SR A R T R Y 1 R R

The Design and Implementation of an Interfacing Framework for
Bridging Speech Recognizersto Application Systems

TJ,IZID . if Jmﬂ
?Fl*v—w;%z bl F':,

s S e e

R PR b R R s ;”I?w;"ﬁg[;_l/—%ﬁb;g[’t

The Design and Implementation of an Interfacing Framework for
Bridging Speech Recognizers to Application Systems

L Student: Jan Karel Ruzicka
S Bﬁﬁg F“ Advisor: Dr. Deng-Jyi Chen

I 3
T A

R

A Thesis
Submitted to Department of Computer-Science and Information Engineering
College of Electrical Engineering.and Computer Science
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree
Master of Science

In

Computer Science and Information Engineering
July 2005

Hsinchu, Taiwan, Republic of China

Pl Sl o] paF = £

The Design and Implementation of an Interfacing Framework for
Bridging Speech Recognizers to Application Systems

Student: Jan Karel Ruzicka Advisor: Dr. Deng-Jyi Chen

Department of Computer Science and Information Engineering

National Chiao Tung University

ABSTRACT

Current solutions that aim at bridging speech recognizers with applications use an ad hoc approach
and lack of a generic and systematic way. Such recognizer’s interfacing approaches usually lead to
tightly coupled systems where one application is wrapped by a specific recognizer through a
low-level programming implementation that makes future modifications very difficult. Also,
without supporting mechanisms to abstract group of actions into single reusable macro-level
commands to simplify user interaction tasks, intense and time-consuming overheads for end users
are created. Applications, especially multimedia oriented-ones deal with highly dynamic content,
interfacing and keeping track of this kind of content is not yet addressed.

In this thesis research, an attempt‘.to. provide -‘an interface framework for bridging
speech-recognizers to applications through a generic and systematic approach is proposed to
overcome the above challenges and limitations. Specifically, a script language is designed and
implemented that allows users to define the interfacing commands between a speech recognizer and
application software. These commands are executed on a user-composed visual interfacing
environment that sits on top of applications and acts as a reference layer for interaction. With this
approach, interaction commands can be dynamically scripted to simplify user interaction and allow
more natural speech commanding. Moreover it allows immediate modifications to be made to an
application interfacing environment by simply drawing and registering application zones, without
the need of relying on low-level programming for changes to take effect. Our approach also allows
for the coexistence of multiple application environments, allowing integration of speech recognition
to more than one application at once. A prototype interface framework system has been constructed

and used to demonstrate the feasibility and applicability of the proposed interface framework.

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude to Dr. Deng-Jyi Chen, who as my advisor and a
friend guided me in a good direction through out all the phases of this research and was always
committed to spend the great amount of time and effort he did in brainstorming and discussing

many areas of this study. | thank him for his patience, dedication, understanding and care.

| also want to express my gratitude to Professor Yih-Ru Wang for his opinions and advice that
provided help for this thesis and to Professors Pao-Ta Yu and Chin-Huang Lee.

I would like to thank all my family for always encouraging me to look up and keep moving
forward during the good and bad times;and for‘all their support and care throughout the years,
without them my outcome would have not been the same.

I would like to thank all my friends for being there and sharing their moments and living this

life on my side.

Finally, this thesis is dedicated to my mother, the best row model | could ever have.

TABLE OF CONTENTS

N S I ¥ 3 PP ii
LIST OF FIQUIES ...ttt bbbttt b e bt bbbt et s et e b b e bbb IX
LST OF TADIES ... ettt bbb bbbttt ettt b nre s Xi
CHAPTER ONE ..ottt bbbt e se bt e e e be st e be st et e nearentens 1
L1 g0 ¥ Tod o] o [PPSR PPTTR TP 1
1.1 A0 A2 4 o] o TSRS 1

1.2 Current Recognizer Integration Methods..........cccceiviiiiieiieene e 2

1.2.1 Wrapping Integration APPrOach..........ccccciiieiieiecie e 2

1.2.2 OS Integration apProaChcccvoiiiiiieese e e 3

CUITENT SOIULIONS ...t r e s te e s e sneesteeseesreenteeneeeneenrens 3
WOXX 4.0 .ottt 3

RS 1=T=Tod o T SRS USROS PRI 4

IV OS 2.0.1 oottt aadae ettt e et et be s teete e et et e e e 5

1.2.3 Challenges and Limitatiens of Current Recognizer Integrationc.ccocceevevveriennnn 6

1.3 The Proposed SOIULION ... e siities ettt e sre e ens 7

1.4 Thesis Organization i T T e et ee e e e se e se et reente e sreenreans 9

(O o 1 el I N o PR TR 10
Related Technologies Used for the Development of the Interface Interfacing Framework 10
2.1 INEFOAUCTION ...t bbb 10

2.2 “See-Through Interface” ParadigM.........ccccocvviieiieieiie e 10

2.3 SCIIPE LANGUAGES.eteerteiieeeieeie ettt sttt sttt ettt e s et e e be e b e sbeesbeeneesreene e 13

24 Speech ReCOgNItION ENQINES.cc.oiiiiiiiiiie e 14

2.5 (@] 0T 1] o] o SRS 17
CHAPTER THREEo oottt ettt ettt 18
System Architecture Design and Implementation of the Proposed Interface Interfacing Framework
... 18

3.1 INEFOTUCTION ... ettt e e e e steeseesreenteeneenneens 18

3.2 The Interface Interfacing Frameworkcccoooeiiiiiiieie e 18
3.2.1 Interfacing INPUt MOAUIEcoiiiiiie e 19

3.2.1.1 Interfacing Input Module COMPONENTES.......cceiieiiriieieiie e 20

3.2.1.2 Macro Command Registration and Interpretationcccecvevvriverennnne 20

3.2.1.3 Interfacing INput MOdUle PrOCESSES........ccvriirieerieeienienieeie e 21

3.2.2 KEIMNEI MOAUIE ... et e e e e e e e e e 23

3.2.2.1 Kernel Module COMPONENEScoveiiiiiecieeie e 23

3.2.2.2 Kernel Module Interpretation PrOCESSccccvvieiierenenenenineseeeeee e 24

3.2.2.3 Kernel Module Interfacing Object Handlingccocvvvvieiiinneiencien, 25

3.2.3 Interfacing OULPUE MOAUIE..........ccoiiiiiii e 28
3.2.3.1 Interfacing Output Module COMPONENLSccceevveieiieiieie e, 28

3.2.3.2 Interfacing Output Module ProCESSES.......ccovvrierieeieniesieie e, 30

3.3 Do [0 g 11 =] OSSR 32
3.3.4 Facade Design Pattern..........ccoueiiiieiieie e see s ste et snaeae e nns 32
3.3.5 Interpreter DeSIgN PATErNc.oiiiiiee et 33
3.3.6 Proxy DeSign PNcceoiueiiiiieiieie ettt 33
3.3.7 Observer Design PATEINc.ooiiiiiiiiiseeeee e 34
3.3.8 FaCtOry DeSIgN PAtterN........cccveiieieeie ettt see et et e e ae e nneas 35
3.4 CONEIOI PALLEIMIS. ...cveeiie ettt bbb e 35
3.5 Layered INVOCAtION SCNEME..........c.ooiiiiiiieee e 36
3.5.1 Layered Sequential Invocation EXample ... 37
3.6 (070]3Tod 11151 (0] o HO TR RO TPV URURURORPRIS 39
CHAPTER FOUR ..ot adfane s i Fara nasnanedhe s ofar e eesessessesaasessessasessessesessessnssssessessessssenes 40
Interfacing Script Language Definition ... it e 40
4.1 INEFOTUCTION ... Bk Bt rerrmrmesmmese e deas e eeeseeeseesseeseeeseesseeneesseesseeseesseenseeneennenns 40
4.2 Data types and SYNTAX ... u i eeveeeesreriaiansreesseeseseesseessesseesseesseseesseessesssesseessessessees 40
A.2. 1 TABNTITIEIS .ottt bbbt 41
4.2.2 CONSLANTS ...ttt ettt e bttt e shb e et e e be e et e e she e e beeebe e e e e e nnn e nes 42
B.2.3 OPBIALOIS ...ttt ettt ettt b bt b et r e n s 43
4.2.4 Separators and TerMINALOIS........c.civeieiiiereere e e ese st e et e e sreesae e e e ae e e eeeenes 44
4.2.5 RESEIVEU WOITSooviiiiiie sttt sttt bbb s e 45
4.2.6 Input Element ClassifICatION...........ccooiiiiiiiiii e 46
4.3 SBIMANTICS ...ttt et e e e s e ste e teeseeereebeeneesreeeeeneeareente e 46
4.3.1 General StatiC SEMANTICScoiiiiiiieie e 46
4.3.2 COoMMANG SEALEMENTSoveiiiiiiiieieeieie ettt sb e bbb 47
ASSIGNMENT COMMEANAS ..ottt sbe e 47

ACHION COMMANGS. ...ttt bbbt 52
Selection COMMANGSccviiieiiiie et see e b e e 58

4.4 Lexical and SYNntaX ANAIYSISccviruiiieiieiesie e 60
4.4.1 LeXiCal ANAIYSIS.......vciiiiiiiecie ettt et 60
4.4.2 SYNTACTIC ANAIYSISiieiiiiieciieieee ettt sae et ne e 61

Vi

45 (0] a1 [T15] [0 o IR TR TR 62

CHAPTER FIVE....c.o ottt ettt s bbb et st n et ne it e 63
Application Examples and EVAlUALION...........c.coiiiiiiiiii e e 63
5.1 L1 oo o1 o] o USROS 63
5.2 Procedures for Using the proposed Interface Framework to Interface an Application
10 @ SPEECN RECOGNIZEN ...t ettt e be e e aeestaeneeneas 63

53 Step 1) Registration and Interfacing of the Target Application - “BestWise ;”\r.j_, =

version 20047 is used as an EXAMPIEccveieeieiieii e 65
5.3.1 Registering an ApPlICALION..........coviiiiiiie e 65

5.3.2 REQISIEIING & STAGE....c.veiueeiieeiteeiiesiee sttt sttt ettt b et neesreens 66

5.3.3 REQISIEINING @ Glcviitiiiiiiiiieieie bbb 67

5.3.4 REQISIEIING & SQUAIE ...ecvveiveeieeeieiteesteeeesiee e eaeseesteeaesseesteestessaessaesseeneessaesseeneesseenes 69

5.3.5 Registering an Actor Profile to Create ACOrS.......cccvevveieeieevieiicceee e 70

54 Step 2) Interfacing the Recognizer- Microsoft’s Speech Recognizer V.6.1 is used as

an example ... 8B G 70

55 Step 3) Macro CommandRegISTIAIIONGL, .. il veveereeieereeie e eie e see e nee e 72

5.6 Step 4) Interacting with:the InterfacedEnviranment...........c.cccooevieivvicvecce e, 73
5.6.1 REQISIEIING N ACLOT ... iauee.veio it itaraeisaadiesueaihasheesseessesseesseassesssessesssesssessesssessessseseessens 73

5.6.2 DragQing an ACTOro it aeeeseeeiee s ibesht e eesteeseesteesteeeesseesbeeseesseestesneesseesaeeneessens 75

5.6.3 UtIIZING WIACAITS ..o e i s 77

5.6.4 Utilizing the Capturing Methodcccoveiiie i 79

5.6.5 Interacting With the Painting MOUEccceoveiieii i 82

5.6.6 Dragging Objects Referenced by Squares and Coordinatescccceveevevveveeiieennnn. 84

5.7 EVAIUALION ...t ettt et sre e enes 85
5.7.1 What t0 D8 eVAIUALET.coiviiiiiii e 86

5.7.2 HOW 0 @VAIUALE 1Tueiiiiiiiieieiee e 86

5.7.3 EValUBLION RESUILS.......viiiiiiiieiiciieieee ettt 88

5.8 (O] o0 1] [0 o [OOSR 89
CHAPTER SEX ..ottt sttt s e b b se b e st et nente e ene st s 90
CoNnClUSIONS AN FULUIE WOTKocuiiiiiiiiieieie ettt bbb 90
6.1 Conclusion and Major Contributions of this Research..........c.ccocooveiiiiiiiiiiciicin, 90

6.2 FULUIE WWOTK ...ttt sttt sne et et e beeneesneenns 91
DEFINITION OF TERMS......oo ittt sttt sttt ettt nre s 92
REFERENCE APPENDIX ...ttt sttt sttt ane st ntene s nnenes 93

vii

APPENDIX T oo 95

SPEECH ENGINE GRAMMAR DEFINITION ..ot 95
APPEND X T ot 107
SYSTEM’S LANGUAGE BNF DEFINITION......coiiiiiiiiiiiiesieee e 107

viii

List of Figures

Figure 1. Wrapping INTEGIatioNcccoiveiuiiieiie et te et ste e saeeneesneas 2
Figure 2. Windows Environment INTegrationccooeeeiienieiiiie e 3
FIQUIE 3. TNE WOXX 4.0 ..ottt bbbt bbbttt 4
FIgure 4. The VSPEECN L.0.....cci ettt s e e be et esneenteeneeaseenaeeneenneas 5
FIGUIE 5. TRE TVOS 2.0. 1 ..ottt ettt et e st e st e et e eneesteeneeareenteaneenreas 6
Figure 6. The Proposed Interfacing APProOaCh...........ccovieiiieiieiiiie et 7
Figure 7. The 3D Visualization and Manipulation in an Immersive Space...........ccccoovvverennenn. 11
Figure 8. The Conference Agent INterfaCing.........cccvevviieiieii s 12
Figure 9. Transparent INTEITACEccciiii it 12
Figure 10. Interfacing the Physical World with the Digital ..., 13
Figure 11. A Recognition Path EXamPIe..........ccoiiiiiiiiieee s 16
Figure 12. The proposed Interface Interfacing SyStemccccovveiiiie i, 19
Figure 13. Macro CompoSer/INTErPIELENovmieeeeeireiieiteeiiesiesteeste s e seesaeseesteeseesraesreesesseenreens 21
Figure 14. Command Translation PrOCESS.ciiitafiesueeiesiesieeieseesieesae e sseeeesseessessessessseans 22
Figure 15. Command INterpretation PrOCESS ililiik. ot st ereeeiesieeieeee et 25
Figure 16. Storing Graphic Application OBJECIS:......... ...t 26
Figure 17. Storing Non-Graphic ODJeBES.. r i e 27
Figure 18. Deleting Application OB ject.... i e 27
Figure 19. Interfacing Objects Hierarchical Organization.............c.ccocevvieneieninieninieieieieee 28
Figure 20. Unreferenced APPIHICALIONcoviieiiiiieie e 29
Figure 21. User Referenced APPLCAtiONccoiveiiiiiiic e 29
Figure 22(a). Visual Interfacing Environment INteractioncoccooevveienieninie e, 31
Figure 22(b). Visual Interfacing Environment INteraction............ccoceoeieienenencnieneseeieeeee 31
Figure 23. Facade DeSigN PatlerN..........ccccoiiieiiiie ettt e sra e e s e nne e 32
Figure 24. Interpreter DeSign PatterN..........ccooi it 33
Figure 25. ProxXy Design PatterN.........ccooi ittt st nne e 33
Figure 26. ObServer DeSIgN PAtEINcocoiiiiiiiieiieeeee e 34
Figure 27. Factory DeSign Patlernccceiieieiieiecie et sta e nne e 35
Figure 28. Example of Sequential INVOCALIONc.ccviieiieieiicse e 37
Figure 29. Token Patterns Transition DIiagramccccovveiiiieieeie e 60
Figure 30. Leftmost derivation parsing tree of the dragSquare command.............ccccceeereennene. 61
Figure 31. Registering an APPHICATION. ... 65

Figure 32. REQISTEFING @ SLAGE ...c.veiveiieeieiieieeitesiee e e ste st este e e e e steesae s e steesaeaneesteessesseesseeneeaneenseens 66

Figure 33(2). REGIStEFING @ GFilcccveiiiiiiieee ettt reea e nne e 67
Figure 33(b). RegIStEring @ Grid........ccooiiiiiiieieie et sae e 68
Figure 34. REQISTEIING & SQUAKEoovieiiiitesii ettt n e 69
Figure 35. Recognition VOCADUIAIYcccoiveiiiiiiiecc st 71
Figure 36. Composed rule definition that uses references to other lower-level rules................. 71
Figure 37. Translation REPOSITONYccviiiiieieiie et are e 71
Figure 38(2). REGIStENING & IMACKOcouiiiiiieiecie ettt bbb nne e 72
Figure 38(b). ReQIStEFING @ IMACKO.......cueiiiiiiiiiiiieiieiee et 72
Figure 39(2). REGISTEFING AN ACTOLeeieciiecieee ettt te et e et e e e sreenaeaneenneens 74
Figure 39(b). RegIStEring @n ACKOKcve et ene e 74
Figure 39(C). REGISTEFING AN ACTOLeiiiiiiiiiieie ettt bt e e neenne e 75
Figure 40(2). Dragging @N ACTOKccoiiiiiiiisieieee ettt bbbt n e 76
Figure 40(b). Dragging @n ACTOTccceiieiieeie e se s e e e steesae e steeaeaseessaeseeseesreenseaneesseens 76
Figure 40(C). Dragging an ACLOKoveeu st B s veeveesteesesseesseeseesseesseesseaseesseessesssessesssessessseens 77
Figure 41. UtIZING WIlACArdSc.o i i i coadh s eeieseesieeie et ae et ee e stesnsesneessenns 78
Figure 42, UTIlIZING 8 IMACKOc.. fius . vessuessestbass s abeesis 440kttt ste st sseeseessessesseneessesbessesseaseeneenennes 79
Figure 43. Defining a Path through Capture i i 80
Figure 44, Capturing SCIEENc..eivee i it esreasesseesiiast e e esseseesseestesseesteesseaseesseeeesseesreeseaseesseens 81
Figure 45. Defining a Path, Continuedo e 82
Figure 46(a). Interacting with the Paint MOdEe............ccooiiiiiiiiiie e 82
Figure 46(b). Interacting with the Paint MOdEe...........cccccviieiiiieiee e 83
Figure 46(c). Interacting with the Paint MOE...........ccocoviiiiiiiiiceee e, 83
Figure 47(a). Dragging Objects Referenced by Squares and Coordinates...........cc.ccoveveriereennenn. 84
Figure 47(b). Dragging Objects Referenced by Squares and Coordinates.............c.ccoovevverernenne. 85

List of Tables

Table 1. Registering an APPHICATIONccoiiiiiiee e e 66
Table 2. REQISTEITNG 8 SEAQEecueeieieieieerte ettt bbb 67
Table 3. REQISTENING @ Gridccve ittt ra et e e e reeneanes 68
Table 4. REQISTEIING @ SQUAKIEccveieiieii ettt be e te e reesae e e e sreeneanes 69
Table 5. Registering an ACtor Profile ..o 70
Table 6. REQISTEITNG IMIACKOocuiiiieiiieie bbbttt 73
Table 7. Creating ACLOKociee ettt e s te et e e se e s te e teeneeereeteeneesreenneanes 75
Table 8. DragQing ACLOKoviiie ettt ettt e e be e te e e s re e teaneesreeneanes 77
Table 9. UtHIZING WILACAITSooieieiieee e et 78
Table 10. Defining a Path through Capture ... 80
Table 11. Defining a Path, CONtINUEMcccooiieiicecece e 81
Table 12. PaiNt MOdE INTEIACTIONcviiiiitiit i simeseeeeeesiesteste e ste ettt sttt ne e eeeeens 84
Table 13. Square t0 SQUAre DIragQing .. i e e eeieriiafineeeeesieesiesseesieeseesessreessesseesseessessessseessesses 85
Table 14. Comparison of our System against Application-Challenges.............cccoovviiininnennn, 88

Xi

CHAPTER ONE
Introduction

Graphic user interfaces that utilize recognition control have been playing an important role as
an interfacing technology that makes possible the use of application software to people that are not
able to interact with computers through traditional input devices. Advances in recognition
technology have opened wide possibilities to these type of users, however current ways of
interfacing applications with recognizers are time consuming and result in highly coupled
applications that lack customization and flexibility, reducing the speech-driven application domain
to users that need them.

1.1 Motivation

Interfacing applications with various recognition technelogies (such as speech, gesture, and color
recognition, to name a few) will simpaet current. methods of interaction in the area of
human-machine interfacing technology. Current solutions that aim at bridging speech recognizers
with applications use an ad hoc approach and'lack of a generic and systematic way. Such a
recognizer’s interfacing approaches usually lead to.tightly coupled systems where one application is
wrapped by a specific recognizer through a low-level programming implementation that makes the
future modifications very difficult. Also, without supporting mechanisms to abstract group of
actions into single reusable macro-level commands to simplify user interaction tasks creates intense
and time-consuming overheads for end users. Applications, especially multimedia oriented ones
deal with highly dynamic content, interfacing and keeping track of this kind of content is not yet
addressed. A generic application-independent, speech-driven interface generator framework that
allows the generation of a modifiable visual interfacing environment without the need of dealing
with low-level details must be quested.

The above challenges and limitations are taken into consideration for the conduction of this study as
this research attempts to provide an interface framework for bridging speech-recognizers to
applications through a generic and systematic approach. Specifically, a script language is designed
and implemented that allows users to define the interfacing commands between a speech recognizer
and application software. These commands are executed on a user-composed visual interfacing

environment that sits on top of applications that acts as a reference layer for interaction. With this

approach, interaction commands can be dynamically scripted to simplify user interaction and allow

more natural speech commanding.

1.2 Current Recognizer Integration Methods

Currently at least two approaches have been used to interface speech recognizers with application

software. Bellow we point out the main features of these two approaches.

1.2.1 Wrapping Integration Approach

A wrapping integration approach focuses on a one-to-one model by integrating one recognition
engine with a specific application. The integration is done through the recognizer’s API and the
application’s components through a direct and tightly coupled way (Figure 1). The application is in
charge of setting up the recognizer’s environment, grammar domain, receiving recognition results
and interpreting these results to perform the respective internal invocations to execute interactions
on its GUI [1]. As it can be foreseen, in Figure 1, the integration results is one application interfaced
with one speech recognizer through a interfacing'layer. that is in charge of directly mapping speech

commands into actions on the application’s components.

Speech Recognizer E\/h:l Spaach Recognizer

J) 1‘ lIJ Contaxt-Based
nwocation

Interfacing Layer
s

olalat N
Application ‘%, >

Application Software

Application
?I ‘rocedurs calls
T

End User

Figure 1. Wrapping Integration

Most of speech-driven robots adopt such interfacing approach for its design and implementation.
Such is the case of AT&T’s Speech-Actuated Manipulator (SAM) [2] that understood spoken
commands via telephone and performed the respective actions. Such complex machines must adopt
a wrapping integration approach do to the uniqueness that they present in their non standardized
internal system that most of the times differ amongst robots. Under such a tightly coupled-system, it
is not surprising that any modifications on the low level application software’s commands will

result in the recoding of the speech interface, leading to the recompilation of the whole system.

1.2.2 OS Integration approach

An OS integration approach focuses on a one-to-many integration by integrating one recognition
device to an Operative System’s windows environment where applications reside. In a similar way
to the wrapping integration approach, the integration is done through the recognizer’s API and the
bridged system’s internal components. This approach adds a reference layer by interfacing
applications through the Operating System’s API that performs simplistic actions on a focused
windows environment where application’s GUIs belong. In this way interfacing and interacting
directly with the operating system allowing it to respond through interactions with applications of
its windows environment. Allowing one speech recognizer to interact with the domain of

applications contained in a windows environment at a given time (Figure 2).

Speech Recognizer E/\]’I:'

Windows
Environment

Interfacing Layer

Windows

Environment

o5 ap

Recognizar 4P|

End Usar

Figure 2. Windows Environment Integration

Current Solutions
Three application systems Vspeech 1.0 [3], Voxx 4.0 [4] and IVOS 2.0.1 [5] that utilize an OS
integration approach where chosen for discussion to provide a clearer view on how current solutions

are designed and what features they provide to users.

Voxx 4.0
Voxx 4.0 [4] is a speech recognition program that incorporates dictation and voice commands for
the windows environment. Its main features include:
(1) Window manipulation and menu navigation through voice commands
(2) Document and application opening through simple shortcut words
(3) Custom shortcut creation
To accomplish menu navigation, Voxx invokes OS API parsing functions to retrieve identification

of objects present in the windows environment. These ldentifiers are used to build the dynamic

interaction vocabulary for the speech recognizer. When any recognition occurs, it invokes the OS
API functions that perform native actions on the recognized identifiers. Figure 3 shows the shortcut

list displayed to the user that is used for viewing the current recognition domain.

>

CD Drive
Find
=-Windows Commands
Maximise Window
Minimise Window
Previous Window
Next Window
Restore Window
Close Program
b Show Desktop
- Vour Shorteuts Add Mew ‘ - Menu Commands
oo I frenem = Web Browser commands
Go horne
Go Back
Go Forward
Refresh
New Window
= Internet Services
Search Ask Jeeves
Search Yahoo
Search BExcite
Search Lycos
Search Hotbot
Search Go
Search Google
Search Altavista
= Text Editing
Cut
Copy
Paste
Undo

2

File | Folder

mi A]
Add this command|

SInopoys 830, SDUMBS

Figure 3. The Voxx 4.0

VSpeech 1.0
VSpeech 1.0 [3] is a speech recognition program that incorporates dictation and voice commands in
the same fashion as [4]. It differs in the following:

(1) Internet “link” Navigation Support for Microsoft’s Internet Explorer

(2) Lacks user-shortcut definition
VSpeech functions just like Voxx, presenting a listing of words that represent the current content
that can be spoken to invoke actions on the windows environment (Figure 4). Unlike Voxx,
VSpeech adds URL links found on focused IE browser to the recognition list, so that they can be

accessed by speaking their reference name.

What can | say?
@ ush
&} guiaaveriasadsl
-Gk dwlagdriver
&} BreakDanceBear
- &} piidencontestainner
&} #® The Design
&1 deskiop
~ &} Windows Update
&} Windows Catalog
-5 Al Ol E
23 ICQ Lite N
- &1 Free AOL Unlimited
&} desktop

o BN | L
>

BN)W a0 B0 0 9, Fp B29FM

&)

Figure 4. The VVSpeech 1.0

IVOS 2.0.1
IVOS 2.0.1 [5] is also another speech recognition program that incorporates dictation and voice
command capabilities. It differs from VSpeech and Voxx in the following ways:
(1) Extends shortcut commands functionality by allowing the user to register synonyms to
execute the same actions with different vocabulary
(2) Introduces VoiceTouch technology that enables-the computer to learn routines performed
by the user as he interacts with the system. This:enables routine repetition if needed by

the user.

IVOS is a more advanced solution when compared to VSpeech and Voxx, since it introduces a
mechanism that simplifies interaction by allowing repetitive tasks to be done by the system. Also it
shows signs of a more flexible interaction environment, allowing different vocabulary for
referencing the same content. Although it adds extensibility, it does not tackle most of the common
limitations that are found in speech-recognition applications. Moreover, the interaction environment
imposed to the user compares in a close range of constraint with current solutions even though it
attempts to provide a more friendly interfacing mechanism. Figure 5 depicts the outlook of the

IVOS interaction environment.

@ Start recognition | I@ Command ” @ Dictation
Unregistred copy (30 days left) 3 voiceTouch | [T Speak selected || <2 Use audia fie Tk settings & Help
] b w =

Common || System || H Application || Dictation H WoiceT ouch || Confirmation

‘ + Add command ‘ | ¥ Delete command

shortcut [ak-p, A

Categories

Clear -
wsEMEE Effis Y |close fie Yoice commands + add l:l
i B

(Cantact
Copy Add ko Favorites
(Customize

Cut

Delete

Detect and repair

Favorites
File
Find
Find How
g [Find next

0K ¥ Cancel Apphy

Figure 5. The IVOS 2.0.1

1.2.3 Challenges and Limitations of Current Recognizer Integration
Limitations suffered by the current integration approaches mostly result from the direct tightly-bind
integration of a speech recognizer with either an application or a window’s environment. The

following challenges and limitations existiin current-approaches:

+ Non-Generic:
- Current approaches leave no flexibility for future modifications
- Current approaches lack a generic recognizer interfacing system that can truly
coexist with more than one application environment
- Current approaches lack a graphic interfacing environment that interfaces

application’s buttons, containers and menu items

« Complex:
- Current approaches focus on recognizer integration through the back-end of
applications requiring low-level programming and system design knowledge.
« When integrating applications, the interfacing process to bind recognition
results to internal application actions must be redesigned each time
« Modification of application’s interfacing environment require re-compilation

of source code

+ Non-Customizable:
- Current approaches’ tightly coupled system design does not allow the customization
of the interaction environment by the user

« Allows modification of the vocabulary used for speech only

- Current approaches do not efficiently separate and handle recognition context

+ Inefficient:
- Lacks of a post-interfacing mechanism to abstract a group of actions into single
commands to minimize user interaction tasks

« Interaction is based on a “One spoken command yields to execution of one

hard-coded Action” basis

1.3 The Proposed Solution

Interface Interfacing Mechanism

= ek
= . e i g

Speech ._
Recognizer =rem S —

User

Application Software
Figure 6. The Proposed Interfacing Approach

Our approach consists of an application-independent visual interfacing environment generator to
bridge a speech recognizer with applications’ front-end (Figure 6). In our approach, to incorporate
speech recognition to applications, a user through our system composes a visual interfacing
environment by drawing reference zones on top of applications” GUI’s interactive areas, without the
need of programming the integration. User-generated visual interfacing environments for
applications are interacted with by the system as it processes user’s requests to perform interaction
on the environment’s zones that are graphically positioned over interaction objects of applications.
Our approach is an improvement of an OS integration approach. The proposed system interacts with

target applications by performing invocations to the Operating System’s API that then manipulates

its input-device and window environments to perform interactions directly on the visual interfacing
environment that lays above target applications.

Our approach aims to tackle current challenges and limitations of recognition integration to
applications by providing:

Generic Interfacing:
-Fitting more than one application environment
-Allowing simultaneous interfacing content handling for multiple applications resulting in easy
application swapping by simply loading the corresponding interfacing profiles that belong to

an application.

Flexibility:
-Adopting Front-End custom interfacing through a transparent reference layer
-Developing an interfacing visual environment that allows users to define their specific
speech-driven visual environment through:the application’s front end without doing any
low-level programming tasks.
-Allowing visual modification of-interfacing content during runtime with out affecting other
application’s recognition interfaces, and-without the-need of recompilation of application’s

source code to make changes take effect.

Efficiency:

-Integrating a language definition that allows the interaction with the visual interfacing
environment through spoken commands and that also facilitates composition of macro
commands by users to wrap complex and lengthy tasks into single context-free reusable
commands, increasing speech recognition efficiency and approximating the way to speak to a
more natural one, with out utilizing long and complex sentences to accomplish multiple tasks

at once.

Our approach also aims at supporting user interaction with dynamic content of applications during

run-time by keeping track of these entities and their different states as the user interacts with them.

1.4 Thesis Organization

The organization of this thesis is divided into two discrete parts. The first part focuses on the
challenges present in current approaches and focuses in the foundations that will allow overcoming
these challenges. The first chapter is concerned with the importance of the challenges for current
recognizer interfacing technologies and how these challenges motivate our study. Chapter Two
reviews the technologies involved in this study that are considered for tackling the challenges found
in current interfacing solutions.

The second part of the study is concerned about the design and implementation of the proposed
system. Chapter Three introduces the aspects of our proposed solution and provides a low-level
detailed system architecture design context on how our approach was designed from the bottom up.
This Chapter then goes into how the different entities that result from the system architecture design
interact whit each other and what interaction steps are taken by these entities to achieve the
common goal of setting up a visual interfacing environment and provide a successful interaction
with the target application. Chapter Foursconsists:,of the definition of the language that is
incorporated to our system. Chapter Four un-wraps.every aspect of the designed language, its data
types, rules, syntax description, and the interpretation steps-involved in command processing. This
is followed by a detailed analysis and:qualitative evaluation of the system in terms of the specific
criteria identified for the successful development and-deployment of the proposed system in
Chapter Five, by setting up and performing common interfacing and interaction scenarios. Chapter
Six concludes the paper and offers suggestions for future research.

The reference appendix consists of the listing of previous work referred to and/or referenced in this
study.

Appendix | consists of the speech-engine’s grammar definition that mirrors that of our designed
language.

Appendix Il consists of our system’s language definition in BNF format.

CHAPTER TWO
Related Technologies Used for the Development of the

Interface Interfacing Framework

2.1 Introduction

Creating a successful recognizer interfacing system is dependent on several technologies. These
technologies individually belong to different fields of study, however when implemented in a
cooperative environment, these technologies merge to contribute towards the vision of Interface
Interfacing. This chapter goes into detail about each of the technologies involved in the
development of the interface interfacing framework, and gives views of related works for a deeper
understanding of each. This chapter serves as the foundation of the overall technological
background involved in this study and provides.a brief overview of the proposed solution and how

it incorporates these technologies.

2.2 “See-Through Interface” Paradigm

In our work we use the “See-Through: Interface” paradigm to construct the visual interfacing
environment that allows application front-end.integration with recognizers through the drawing of
reference zones.

The “See-Through Interface” paradigm [6] focus on interfacing tools that appear as a transparent
sheet of virtual glass called “Toolglass” between an application and a traditional mouse cursor.
These interfaces provide additional views of application objects. The “See-Through” interface
provides a new style of interaction that better exploits the user’s every day skills. They can be used
to reduce steps, cursor motion and errors; moreover they do not require dedicated screen space since
they lay on top of the application. These interfaces provide rich context-dependent feedback and the
ability to view details and context simultaneously. These widgets [6] can be combined to form
operation and viewing macros to simplify use. This paradigm provides mechanisms to draw grids
on applications to reference zones that may need this type of guidance, such as drawing panes, or
object selection screens. An application may use many views that require more than one “see
through interface”, for this a managing system is presented to load the corresponding transparent

interfaces of each screen, in this way shifting Toolglasses depending on the application content.

10

The “See-Through Interface” parading is adapted to many research areas. In [7], the authors create
an immersive environment that submerges users into a virtual space, effectively transcending the
boundary between the real and the virtual world. This virtual 3D world can be manipulated by the
user without the need of relaying on traditional input devices such as the mouse and keyboard for
interaction. This study adapts a bimanual gesture interpreter and parser that recognizes and
translates the user’s arm motions to commands that invoke actions on a “Toolglass” based
transparent interface that lays above this 3D environment (Figure 7). The transparent Toolglass
interface paradigm is adapted as a gesture interface widget for spatially immerse environments. The
user is physically surrounded by this environment as it is projected on walls of a room like structure
where the user stands in the middle and uses hand gestures to move the transparent interface to the
different locations of the environment to interact and view information of application objects
without the need of intermediate hardware such as gloves, 3D-Mouse, or VR headgear. Actions are
executed by clicking through one of those wedges, and the action is applied to the object directly
behind the Toolglass.

(b} Pieglass Pointing ic) Pieglass Selecnon

Figure 7. The 3D Visualization and Manipulation in an Immersive Space

Another work where the “See-Through Interface” paradigm is adapted is Collaboration
Transparency in the DISCIPLE Framework [8]. In this work a framework to share
collaboration-transparent single-applications is developed. To share these applications, a conference
agent is placed between the application’s GUI and the Windows System (Figure 8). The conference
agent intercepts the user input events by adopting a special transparent Toolglass interface to
intercept the events destined for the shared application window.

11

End User

3

Windows
System

:

T
Conference o

Intercepts and Filters User
Input Events

Y
,

Figure 8. The Conference Agent Interfacing

This top-down approach intercepts all the user events (mouse, keyboard, input focus events) using a
transparent GUI component without occluding the under-laying applications (Figure 9). Each time
an event gets intercepted by the glass-pane, it IS dispatched by the agent to the target application
object. Such transparent pane is used t@ filter upwanted invocations to application objects in a
collaborative environment when two or more-users.may be-sharing a single application at the same

time and such interaction may create conflicts.

X MenuBar
rd =ﬁ
y
JrRootPane
,—o—'—"''-'f_ﬂ_ﬂ I
ToolBar //{hmne

Figure 9. Transparent Interface

Futuristic approaches such as Parsimony & Transparency in Ubiquitous Interface Design [9] focus
on transparently integrating aspects of the digital world into real life artifacts, by providing
ubiquitous interfaces to computation that do not obscure the highly redefined interaction modalities
of the host artifact in the physical world. Coexistence of the physical and the digital worlds leads to

more learnable interfaces. Here a Toolglass like interface is projected upon real life objects (Figure

12

10), and it is used to mark the status of the objects during time. A board game is chosen in the study
as the physical environment to interface, adding features to the classic game such as game recording
and automatic move clock without altering the physical environment. These interfaces, like
Toolglass based ones provide different views and information about the interfaced objects attributes

when interacting with them physically.

Projector
- = i
T
— —
CameF;\-

= 8

Figure 10. Interfacing the I5Hy§,ical World with the Digital

2.3 Script Languages

In our work we apply script languages to enhance" interaction efficiency through the definition and
use of macro commands that allows abstraction of actions into single context-free reusable
commands.

Scripting focuses on connecting diverse pre-existing components to accomplish a new related task
[10]. Those languages which are suited to scripting are typically called scripting languages. Script
languages are viewed as the "glue” that puts several components together; thus they are widely used
for creating and interacting with graphical user interfaces. Scripts are typically stored only in their
plain text form (as ASCII) and compiled each time when they are invoked. A scripting language
controls the operation of a normally-interactive program, giving it a sequence of work to do all in
one batch such as a macro, storing a series of editing commands in a file, and telling an editor to run
that "script" as if those commands had been typed interactively. Script languages generally have

the following properties:

e Source code is present at run time in production system.
e Use of an interpreter or VirtualMachine is generally required.

13

e \ariables, functions, and methods typically do not require type declarations. There are
automated conversions or equivalence between types.
e The ability to generate, load, and interpret source code at run time through an eval function.
o Interface to the underlying system components, in order to run other procedures and
communicate with them.
In [11], Koong utilizes EDBL (Electronic Book Description Language) script language to hold
electronic book projects description files. An interpreter is used along a playback system to present
the multimedia effect of authored scripted documents that when processed result in the playing of
the final presentation by having the interpreter interpret the description commands found in the
script file dynamically. The playback system then executes the associated actions based on the

interpretation results of the script instructions.

The language specification of the designed script language for this study is highly influenced by the
Java Language Specification [12] to establish its syntactic rules; its design is simple enough to
allow programmers to quickly achieve fluency in the language. Unlike Java that is strongly typed by
distinguishing between compile-time errors and the:ones that occur at run-time, our language design
is based on Just-In-Time compilation<by compiling the code as necessary, running it in an
interpreted framework [13]. In this-way code that is' not executed does not get compiled,
assimilating our language more to a console command language, but however integrating macro
composition functionalities that also allow “our language to behave as scripted. Our language
approach is very simplistic, being a script‘language that does not focus on creating objects or
maintaining class-like structures but instead interpreting batches of commands.

WinBatch [14], a commercially available high-level macro scripting language takes a similar
approach, by designing a language that provides batch automation for Windows systems by
allowing users to compose macros that are interpreted utilizing Just-In-Time compilation to
automate PC management, business processes, network administration tasks, and overall system use
in order to relax the user’s interaction overhead. WinBatch accomplishes the above by interfacing
directly to the operative system’s underlying system components to communicate and run

procedures involved in the automation of user’s tasks.

2.4 Speech Recognition Engines

Speech Recognition is not a new entity. It first evolved over 30 years ago (Stevens, 1960). This
continued growth in technology opened the doors to various applications of Speech Recognition.

Speech Recognition not only became a popular medium for use by professionals in the working

14

world, but also an exceptional tool for people with disabilities [15]. Features of Speech Recognition
systems have progressively advanced over the last 35 years. Initially, in 1972, dictation and word
processing systems were combined to formulate the first Speech Recognition system (Lange, 1993;
Meisel, 1993) [15]. At this point, systems could only handle discrete speech dictation where pauses
between every word spoken were required for the signal to be processed. Today, it is difficult to
find any programs that still use discrete speech; most programs have the capacity to handle

continuous speech where the speaker talks naturally, without the need to pause between every word.

Speech applications often use context-free grammars (CFG) to parse the recognizer output and in
some instances, to act as the recognizer's language model, Speech recognition engines use CFGs to

constrain the user's words to words that it will recognize [16].

CFG is based on grammatical rules that are meant for proper recognition of words. Speech
recognition grammar provides the interface of the speech recognizer to the corresponding
operations that take place at the target application at the moment of interaction. Complex grammar
definition is achieved by organizing rules into hierarchical structures, allowing higher level rules to
be composed of references to lower-level rules. Phrases and sub-expressions are represented by
separate rules and combined together to form complete sentences. When interpreting a rule decisive
selection can be applied to provide a more flexible-way of speech and avoiding rules re-definition.
Rules restrict the word choices during the recognition process. Applications that are interfaced with
speech recognizers listen to context or events that are triggered when a rule is recognized.
Depending on the context, the applications takes the corresponding actions, speech recognition
engines only handle the recognition job. Phrases spoken use each grammar rule element to
determine the recognition path (Figure 11) by traversing the grammatical rule structure.

15

I would like to driwve from Seattle to Hew York. _Cﬂmpuund Rlllﬁ
| | | | |
[Method] —f ' Individnal
/ % | Rules
Flvy Driwve
|
[Direction]
7)

From To

[City]
Seattle

MNew York
Los Angeles

Albuguergue L.
Desicive

Selection

[Direction]

[City]
deattle

Mew York
Loz Angeles
Albuguergue

Figure 11. A Recognition Path Example

Applications should separate dynamic «ule content-from static rule content to implement good
grammar design and to improve grammar compiler performance. Applications could create a
separate rule (isolated in its own grammar) that-Contained only the static rule content, then the static

grammar would contain a rule reference to the'dynamic content.

The chosen speech recognizer for this study is Microsoft’s Speech-Recognizer V.6.1. [17]. This
recognizer contains two different types of speech recognition engines, which are the ISpRecognizer
type that is shared amongst several applications by instantiation and the InProc type which is
focused for performance hungry applications in which each application has its own
ISpRecognizer[16]. In this study the ISPRecognizer type engine is used. Grammar definition for the
Microsoft’s Speech-Recognizer is CFG rule-based.

A special component of the system was chosen to directly interface the speech recognition engine,
this component handles recognized context and distributes it to the rest of the system for further
processing to eventually interpret it into actions on the application’s interfacing environment. The
interfacing component is the only entity in the system that presents a tightly coupled binding with
the speech recognition engine as it is integrated into the component through calls of its API to

provide a manipulation interface of the recognizer to the rest of the system.

16

2.5 Conclusion

This chapter presented an overview of the foundation technologies required to base an interface
interfacing study on. This chapter provided an insight into the technological needs for the
implementation of an environment that tackles the current challenges stated in the previous chapter
and how each of these technologies contribute towards the vision of Interface Interfacing. Chapter
Three introduces our proposed approach and goes into high detail on the entities that compose it and
how they behave with one another to accomplish a common goal of enhanced interfacing with

target applications.

17

CHAPTER THREE
System Architecture Design and Implementation of the

Proposed Interface Interfacing Framework

3.1 Introduction

This chapter introduces the proposed system, the Interface Interfacing Framework. The system is
discussed in great detail from a high to low level viewpoints to provide a complete view of the
system from various perspectives. Focusing on the modules that compose the system and in what
way each of them is responsible of providing an overall interfacing of a target application with a

recognizer.

3.2 The Interface Interfacing Framework

The proposed system interacts with target applications. by performing invocations to the Operating
System’s APl that then manipulates its input-device and window environments to perform
interactions directly on the system’s “TFransparent-Interface” that lays above target applications. It

adapts the “See-Through Interface” Paradigm to.support Front-End custom interfacing of

applications, in this way allowing visual modifications to the interfacing environment without the
need of recompilation of source code. Our approach integrates a script language that allows
real-time interaction through commands with the interfacing environment of an application and also
facilitates composition of macro commands by users to wrap complex and lengthy tasks into single
context-free reusable commands. The system is designed in a modular way by adapting specialized
entities, such as the recognizer interfacing component that integrates a speech recognizer and allows
localized integration of future recognizers through modifications on this component while leaving
the rest of the system intact. The overall system architecture of the proposed Interface Interfacing

Framework is depicted in Figure 12.

18

Interface Interfacing System

Interfacing Input Module Kernel InterFacing
- o Madul
Sends Lexical i
Recognized - Translation / 0S API
Stream Of || R€Cognizer Syntactic Invokes || Emulation || ||nvocations
Interfacin Sends -
Text 9 Processed AnaIySIS Interfacing
Stream Methods
m * # ﬁ Window’'s |
Component Manipulation|
Invocations
Speech
Recognizer Command Interaction
Translation with [—
gont ext Intertaced - LI ﬁ A
ueries Environment - 1
T A .
* : Rt eas]
Application Software
clicksquare mediai =
Open Media 17 then selectstage sc"p y
== mediaoptions then files

clicksgquare openm

then selectstage
scenario then
selectgrid scenegrid

Figure 12. The proposed Interface Interfacing System

The interfacing of recognition devices and applications is done through two different interfacing
layers that interact directly with the system’s'kernel (Figure 12). The Interfacing Input Module is in
charge of interfacing with recognizers and proeessing recognized content into a format compatible
with the system. The processed streamr is'sent to the Kernel:where the parsing and interpretation of
commands take place, here a central invocation-mechanisms, delegates invocation requests for the
Kernel to the components of the Interfacing Output Module that are the ones that interact directly
with the Interfacing Visual Environment to provide interaction with the target application by
manipulating the window’s environment and emulating input device interactions. To develop our
proposed system we took a service-oriented approach by distributing individual services to
subsystems of our solution to later proceed with the integration of these, to provide a robust,
flexible and modular design. In the following subsections, we elaborate the details of each module

inside the proposed Interface Interfacing Framework.

3.2.1 Interfacing Input Module

The main function of the Interfacing Input Module is to interface the system with recognition
devices, handle the interfacing, setup and initialization of these, retrieve recognition content and
process it by translating it into a format compatible with the system’s language commands

definition.

19

3.2.1.1 Interfacing Input Module Components

Textual Command Receiver

In charge of retrieving the content recognized by the Speech Recognizer, including the commands
that are spoken by the users, communicating the recognized streams to the Language Translator,
those are the main task of the Textual Command Receiver. In this research, the Microsoft’s
Speech-Recognizer V.6.1 [17] was chosen as the target speech recognizer. The interfacing was done
through the speech engine’s Standard Developing Kit (Microsoft’s Speech SDK V.5.1) through API
calls on the Textual Command Receiver.

Language Translator
The language translator takes care of translating the spoken text to the language that is understood
by the internal system. Once the translation is completed, it passes down the translated text to the

Macro-Interpreter component.

Macro-Composer/Interpreter

The Macro Composer/Interpreter is in charge of providing the mechanism of macro command
composition by allowing the user to wrap sequences of commands in the system’s internal language
into single reusable macros. This component interprets macros recognized by the speech recognizer

by loading their corresponding code into the system.

Wildcard-Translator
The Wildcard-Translator takes care of replacing wildcards found in macros with the identifiers of
currently focused interfacing objects. In this way, it provides a generic and context-free command

composition environment.

3.2.1.2 Macro Command Registration and Interpretation

Although interacting with the proposed system by speaking commands according to the syntax
provided by the defined language is possible, it requires a high learning curve and overall
interaction may be degraded. The system contains a mechanism that allows for the composition of
macro commands that are used to perform complex tasks through the invocation of single and
reusable commands. The macro commands are defined using the system’s internal language and add

an extra layer of abstraction but simplifying the user interaction.

20

The registration of macro commands (Figure 13) takes place at the Developer GUI component
where the user composes the macros and assigns them a referenced identifier (“keyword”). During
the composition of a macro command a XML structure is dynamically created for speech
recognition purposes. When the macro is submitted, the Macro Composer inserts this XML
structure into the speech recognition engine’s grammar definition so that a reference to the macro
can be successfully recognized when spoken, achieving immediate speech recognition of macros as
they are composed. In this way, acting as a black-box mechanism, transparent to the user and
avoiding the use of an external XML editor to add recognition of macros to the recognizer.

The macro command itself gets stored to file through the Reference Object Handler. When a macro
command’s reference keyword is spoken, the macro is loaded from file and executed as a regular set

of commands would.

Speech-
Recognizer XML

Grammar Inserts Recognition
Definition Content
< .> <RULE NAME="drmwpath”

TOPLEYEL="ACTIYE"s «F>drawpath
Command

M\Mitjin

b T oo | T o | e T s e | s |

Stores Macro

Admin User t El ickactur
T VVACTORVVY
then

Lo BITLE WAME="d powpath” H
Ef.ri EVEL="RCTIVE =« Fadmwpalh EI “:mﬂuam
{ P R ILE

path

Bty D Bral iremes Woed
r—

The Mol Caid woad ey arlon m TTACTORYTY.

Exampl of wer: dangetr YYALCTORTY onf

ThizwrZdlra g e i el e for o snsl
Extor secuinor of communds b malch wond

1

Figure 13. Macro Composer/Interpreter

3.2.1.3 Interfacing Input Module Processes

Whenever the speech recognition engine recognizes spoken phrases, it outputs those phrases as

21

text streams in the spoken language, according to its XML Grammar Definition. The stream of text
is then passed down to the Language Translator Component where the first translation takes place.
The Language Translator breaks the stream of text into single words, and queries word by word for
a corresponding match in the Language Translation Resource to translate them to their
corresponding value in the system’s language. Once all the phrases are translated to the system’s
native language, the second translation of the process takes place. The Macro Interpreter receives
the stream of text and checks if the stream of text contains keywords that identify macro
definitions, it does so by querying the Macro Data Repository for matches. If a match is found, the
keyword inside the stream of text gets replaced with the one found. Once a macro is loaded, it is
passed down to the Wild Card Translator that checks for the presence of wildcards, replacing any

found with the identifier of the interfacing object that currently has focus.

<RULE RAME="dprwpath”

TOFLEVEL="ACTIVE "> «Fslenwpuih <@y Reats W
«FsaRULE= —

Speech-Recognizer XML
Grammar Definitien

Spaach
Recognizer

Outputs Recognized
Slream
<word NAME="drawpath">

drawpath<fword= (2:) Flas g Languaga Tramskatar

XML Language Dutputs commands in
Translation Resourca Intarnal ystem s language

Reads
i Wiacra [nbarpeatar

t'_‘u tputs macro command if
faund

hMacr Mot Found hMacro Found
wlum.u'rmumu.r

Raplacas Wildcards with
Focused Contant

actory
clckoctor

than
clcksquanrg
path

Macro Translation
Repository

Figure 14. Command Translation Process

In Figure 14, the macro command “draw path” gets translated into its corresponding system’s

language format, replacing its wildcards with the actor that currently holds focus.

3.2.2 Kernel Module

The main function of the Kernel Module is to interpret commands into system actions through
invocations on components that interact directly with the interfacing environment. The Kernel
Module is in charge of delegating and moderating invocation traffic through a centralized
component to entities that interact with the “See-Through Interface”. The Kernel Module is also in
charge of handling the loading, storing, tracking, and activating objects of interfacing content. We
design a script language that allows real-time issuing of commands to our system and its rules are
used by this module to interpret commands. The language definition is explained in details in
Chapter 4.

3.2.2.1 Kernel Module Components

Lexical Translator
The Lexical Translator is in charge of-receiving a stream. of-commands from the Macro Interpreter
and breaking it into token sets, each token set-represents a.command that is sent to the Syntactic

Analyzer for interpretation and validation in a'token set per token set basis.

Syntactic Analyzer

It receives token sets from the Lexical Translator one set at a time, and processes them by checking
their syntactic meaning against the grammatical rules by parsing a syntactic structure and validating
any undefined variables found in the tokens. Depending on the parsing path, it produces the target
program that consists in invocations through the Event Driven GUI on components that interact

with the interfacing visual environment.

Interfacing Object Reader/Writer
This component is in charge of storing, retrieving and performing the object activation of the
different interfacing objects that are used for building a visual interfacing environment of an
application. It is also in charge of handling dynamic interfacing content and providing the tracking
mechanism to re-locate them whenever a user interacts with them. This component is subdivided
into two parts:

-Application/Actors/Stages/Grids Handler

23

Handles the loading and storing of objects of type application, actor, actor profile,

stage and grid and keeps track of the location of dynamic content such as actors.

-Square Mapping Mechanism
Handles square loading and registration by storing each square’s graphical
information and identifier into individual files under their corresponding stage

directory.

Event Driven GUI (Event Delegating Component)
The Event Driven GUI is the centralized component that delegates and moderates invocation traffic
that results from the command interpretation process into components that interact with the

interfacing environment, in this way acting as a proxy.

3.2.2.2 Kernel Module Interpretation Process

Translated commands that result from the Interfacing. Input Module process are sent to the Kernel
so that they can be interpreted into a target program: (Figure 15) that provides the interaction with
the interfacing environment. As the stream of text enters the-kernel, the Lexical Translator splits the
stream of text into token sets. Each token set‘representsa single command that is fed down to the
Syntactic Analyzer for interpretation. When the:Syntactic Analyzer receives a token set, it analyses it
token by token and traverses the parsing structure until a match of a valid command with a
compatible format is found. Once the parsing is successful, the corresponding target program is
executed at the Event Delegation Component (Event-Driven GUI) and the later delegates the

invocations to the respective system components.

24

Qutput From Input
Interfacing Module

‘1 clicksquare path i
Terminal Symbol Lexical Translator
Composition
Token se Token set 2

Outputs Token Sets

clickactor

2
Parsing / Interpretation / \ g Syntactic Analyzer
actor clicksquare

/ Parses and Interprets
square Token Sets into invocations
1 on event delegating
component
. Enable leftclick
3 . Set cursor location actor
. Perform click
Targ\?t Pl'Ogl'ﬂm — % Event Delegating Component
. Enable leftclick
Set cursor-locatlon Elinli Delegates and moderates
[+ Perform click 1 invocation traffic to
components that interact
@ with the transparent
interface

Figure 152 Command Interpretation Process

In this example diagram, the command: resulting from the translation process of the input
interfacing module (“clickactor actorl then clicksquare path™) is broken down into two token sets
that are interpreted into the target program depicted above.

3.2.2.3 Kernel Module Interfacing Object Handling

The Kernel Module is also in charge of loading, storing, tracking and performing the object
activation of interfacing content. To store a graphic object (Figure 16), it involves the drawing of
the reference zone at the Developer GUI. Once the request is made, the Square Mapping
Mechanism instantiates the object. If the object is of grid type, the Grid Composer component is
invoked to automatically compose a grid by creating several squares that later get instantiated and
submitted to the storage repository through the Square Mapping Mechanism. If the object is of type
square, the user specifies its name and other information back in the Developer GUI witch then

invokes the Square Mapping Mechanism once more to submit the graphic object.

25

Store Graphic Application Object

Developer GUI Square Mapping Grid Composer
Mechanism

nstarfiale Square Cojedt

\
/

Instanliste Grid Squares F:"’FJ
[nﬁ“‘.lﬁl Llsser Sipwancifined Ioafior "llnl'l:"l"l]

/

Submil Squans Objecl)s)

Figure 16. Storing‘Graphic Application Objects

The registration of a non-graphic application object (Figure 17) can be made directly from the
Developer GUI, by interacting with the controls of the desired object type, triggering the
instantiation of the object type in the Application Handler component. If the object to be stored is of
a type that requires automatic creation (grids, actors, actor profiles) then the system handles the
specification of its information, otherwise the user specifies this information at the Developer GUI
component during the registration stage and requests the submission of the object to finalize the
process.

The Syntactic Analyzer also interfaces with any of the methods used to store application objects at

the Developer GUI so that they can be executed through speech.

26

Store Application Object

Developer GUI Application
Handler

Fagisler Applcalion Objsc

Inslantiate Qbject

(n. ikhar Usar 8 psscifisd |||I'|":|"||ﬁ||-|"|}

_‘Hh“"-h-\

[

Suomil Dbecl

Figure 17. Storing Non-Graphic Objects

A request to delete an object (Figure 18) can be made directly from the Developer GUI, by
interacting with the controls of the desired object type. The Square Mapping Mechanism component
then takes care of parsing the object storage:files and-removing any information that corresponds to
the selected object. The Syntactic Analyzer also-interfaces.with any of the methods used to delete
application objects at the Developer GUI 'so that‘t‘hey‘can be-executed through speech.

Delete Application Object

Developer GUI Sguare
Mapping
Mechanism

Reamuys Application Cbjec

Ermasi Ohjpect

Figure 18. Deleting Application Object
Reference interfacing objects such as squares, grids, stages, actor profiles and actors are
stored-retrieved and modified dynamically into and from a 4-level hierarchical directory structure

(Figure 19).

27

mi
tI

/

e
Applications
..—o-""l --'-J

I | 1

ot iad G

/ Grids \ /Slag{-s \ Actors

| | | | | | |

i s cuf ___J o s ol e il

objectgrid volumegrid Grid N movieaditor mainscreen Stage N Prafilal Profile? Prafila M

Figure 19. Interfacing Objects Hierarchical Organization

3.2.3 Interfacing Output Module

The main function of the Interfacing Output Module is to provide the mechanisms to interact
directly with the front-end of the application”through the Interfacing Visual Environment by
performing input-device emulation and“window’s environment manipulation. This module adopts
the “See-Through Interface” paradigm to provide the tools that are used to compose the Interfacing

Visual Environment and macro commands.

3.2.3.1 Interfacing Output Module Components

Developer GUI(Graphic User Interface)

Component targeted at the composition of the customized Event-Driven Visual Interfacing
Environment. The “See-Through Interface” Paradigm is adapted to allow users to visually establish
reference to buttons, containers or other context inside the target application. Through this
component, zones of the target application can be interfaced by drawing referencing zones such as
squares and grids on a transparent frame, organizing the context through non-visual referencing by
defining Actor Profiles and Stages. A labeling system is developed to visually label each of the
registered reference zones at their graphic location with its registered identification name. Figure 20
depicts an application in its natural state, while Figure 21 depicts the application’s corresponding

visual interfacing environment composed of interfacing objects.

28

Figure 20. Unrefg_renced Application
AR .

5 b

¥ Labels Visible
WV Stuares Vishls

Spplication |

Squares

0IL LI [ZIL 30T (B [5I0 (&I [GiL [8I0 [3,01 [1011 15,11 Mok 1510

GI0 (L0 310 (310 %10 510 (510 (R0 [GI0 (510 [1010 [1LI0 (1Z10 1510 1410 (1500
0 (L0 (210 310 410 (510 (510 (710 (10 |5, 0 [TLI0 1210 [1510 (1410 |15, el _ 5
["t |dentifiers List

00 |19 23 (39 {45 53 |89 (79 [@Interaction Object Listing 53 auares |ands | ac 4]
pen ~
08 |I.E (38 |38 |48 |58 |68 (78 |68 |08 |08 |18 (158|158 |48 |58 spray
exit
O i L i A A R L T P L L 1 text
actors
background
06 |16 (26 |36 |86 |56 (|66 |6 |66 |96 |06 (11,6 (156 [156 |46 |56 undo
felt
05 (L5 |25 |35 |45 |55 |65 |n5 |85 (%5 [105 |11,5 (125 (135 [14,5 ::‘n'::e‘
eraser
04 L& (24 |34 |44 54 [64 %4 [8F (34 (104|114 [12F (134 mop =
brush
e R L e [e [e e e R e T T e % moviemskey 1atula
/ werythin
thin hedl
2 T Y DS . [O 1 JS [T [M 0 Y 2 46 1 2 e

=

. =
| |

| Souare | Stage
ol
|

||_er [A
= =] |

P G 3 S Bl O e e O 1 0 6155 B % B 3 i 3 o -

W
N
Visual Interfacing Environment i

¥ UP Clk Enabled
™ R Click ON/OFF

¥ L Click ONIOFF
¥ Dragging OM/OFF

=k
7] Brawne: |coprogram FilssB " biace exe |Line Length ~|

¥ Show Grid

2l[c]

undo recy

exit

Profilet -| W Aute paintaric -

Addl Actor Proflle
I~ Using Actor e Actor

Figure 21. User Referenced Application
Grid Composer
The task of this component is to create grids. It creates individual square objects and later returns a

collection of them that form the grid, labeling each square with coordinates so that the user can

identify each of them individually.

29

Mouse Al (Input Device Controller)
In Charge of manipulating input devices to perform mouse or keyboard related actions on the
Interfacing Visual Environment is the Input Device Controller. This component takes care of
emulating the following mouse actions:

-Left_Mouse_Click

-Left_Mouse_Double_Click

-Right_Mouse_Click

-Right_Mouse_Double_Click

-Drag_and_Drop

-Move

Additional features such as moving the mouse cursor in any possible direction and speed,
predefined movement-patterns and virtual keyboard implementation are also incorporated in this

component.

External App Manager (Window’s Environment Handler)

The main task of this component is to manipulate the window’s environment by capturing windows,
their child and applications inside a container to modify.their size and perform any other tasks
needed for interacting with the Interfacing Visual Environment. This component interacts directly

with the operative system’s API to accomplish the above.

3.2.3.2 Interfacing Output Module Processes

Target programs that result from the syntactic analysis are executed through the Event Delegating
Component. Depending on the command, the requests for each of the involved events is sent to
corresponding components that interact directly with the interfacing environment.

These interacting components can also interact with each other by delegating requests amongst
them to satisfy a command request. Commands depending on their magnitude could trigger an
exponential growth in the number of system-internal calls needed to serve a request or might as well
achieve completeness through a single invocation. A more detailed view on invocations is discussed

in section 3.6.

30

Event Dalogation Companant Invacations Resulling from
(:n:l:l: kel click emulat onj (;!I CUPSEE Oﬂlb:) [ﬂ:r..mm nlnh} SWIEC‘UF— An ﬂ|?5|5
P

L | Call
‘/”ﬂ

Interface Interaction
Output From Components
Kernel 1.3 . po
Input Davics Cantrallar

S
’g Dbjact Ruader Transparent Interface
Interaciors

Ralrizves Location of Object
‘Windoas Environment Hamdler
L
— :
l

Interactions On Transparent
Interface

Figure 22(a). Visual Interfacing Environment Interaction

BEE
0 TG0 S0 (610 (510 (610 1610 (100 L0 1410 L
| 9 z a beckand |qentifiers List
38 (49 (59 69 (19 89 |8] N 129 P 3 Coordinates |Squuc:'|’i
! 11 A
58 (68 2.1
31
T 4.1
57 .
v 5.1
6.1
7.1
8,1
9.1
101
11
121
' 131
ks “-:

Fel rn%-\ful_F

me e Bet e e

presview pRCture scan o movie o ifusge

W Ao Add Actor Profie fmﬂvn -I 7] DrawGrid [C evogam FiesBestvisemmiieblace Projctimminiebisce exe
Using Actor New Actor W Show Grid

Figure 23(b). Visual Interfacing Environment Interaction

In Figures 22, the target program is executed by first enabling left click emulation at the Input

Device Controller(1), then the cursor is set to the location of the specified actor that is retrieved by

31

the Object Reader component(2) and lastly a click is performed by the Input Device Controller(3).

The same process is repeated for clicking the specified square.

3.3 Design Patterns

Throughout the design of our system, Object-Oriented design patterns [18,19] where taken into
consideration to provide a more organized and efficient system interaction. Following are the design
patterns that we took into consideration for this study.

3.3.4 Facade Design Pattern

Facade Design Pattern

Application Handler
Syntactic Analyzer
Event Driven GU| — Square Mapping Mechanism

External Application Manager

Figure 24. Facade Design Pattern

The facade pattern (Figure 23) can make the task of aceessing a large number of modules much
simpler by providing an additional interface layer."When designing good programs, programmers
usually attempt to avoid excess coupling between module/classes. Using this pattern helps to
simplify much of the interfacing that makes large amounts of coupling complex to use and difficult
to understand. This is accomplished by creating a small collection of classes that have a single class

that is used to access them, the facade [18].

In our system a facade approach is used, where the Event Driven GUI component is used as this
interface layer that acts as the “bridge” to access all of the under-laying modules.

The Syntactic Analyzer module acts as the client that requests services from modules through the
Event Driven GUI. A double facade effect occurs in our system in the sense that the Square
Mapping Mechanism module itself acts as a facade that delivers requests from the Event Driven
GUI that is a facade as well.

The primary advantage of using the facade is to make the interfacing between many modules or
classes more manageable and organized [19].

32

3.3.5 Interpreter Design Pattern

Interpreter Design Pattern

Macro Interpreter

Lexical Translator

Application Handler
Event Driven GUI |— Square Mapping Mechanism

Syntactic Analyzer

External Application Manager

Figure 25. Interpreter Design Pattern

The Interpreter Design Pattern (Figure 24) focuses on defining a macro language and syntax,
parsing input into objects which perform the correct operations desired [19].

In our system, a language definition exists, and the above design pattern for language interpretation
is applied. The Interpreter Design Patternis present at- different levels; the first interpretation is
done at the Macro Interpreter, to check: if the spoken word-is a keyword of a macro command, if it
is it gets translated to our defined language. The Lexical Translator breaks this phrase into token
sets and feeds it to the Syntactic Analyzer, actingasithe client. The Syntactic Analyzer then acts as
the Interpreter of the language, by representing phrases according to the defined grammar and
performing the set of invocations to procedures through our earlier discussed facade mechanism
that reaches a set of worker classes that will take care of performing individual operations of the

composed command.

3.3.6 Proxy Design Pattern

Proxy Design Pattern

E Syntactic Analyzer Event Driven GUI
Appinterfacer
Application Handler
1

1

Persistent Object Proxy
Square Mapping Mechanism

External Application Manager

Figure 26. Proxy Design Pattern

33

The proxy design pattern (Figure 25) consist of a main entity (proxy) that controls access to real
subjects [18], the real subjects hold methods that are invoked through the proxy to enhance security
and handling of objects. The client requests a service destined to the real subjects through the proxy
and this one delegates the requests.

The Syntactic Analyzer acts as the client while the Event Driven GUI component acts as the Proxy
mechanism, inside this component the class Applnterfacer acts as a proxy for the requests of the
client, these requests are then served by a second proxy that corresponds to the Persistent Object
Proxy class that is the one that makes the final delivery of requests to the real subject. Note that the
Persistent Object Proxy also plays the role of real subject when related to the class Applnterfacer
that acts as its proxy, in this way the system utilizes this 2-layered proxy mechanism to deliver

requests from the Syntactic Analyzer.

3.3.7 Observer Design Pattern

Observer Design Pattern

Event Driven GUI

Syntactic Analyzer

Observer

Parsistant Ohject Proxy

Applnterfacer

Subject

Ohserver

Figure 27. Observer Design Pattern

The observer design pattern (Figure 26) is based on defining a one-to-many dependency between
objects so that when one object changes state, all its dependents are notified and updated
automatically [19].

The Persistent Object Proxy class holds most of the instances for the real subjects of the invocation
system. Whenever the state of these entities has been changed, both the class Applinterfacer and the
class Syntactic Analyzer get notified of these new states. In this way the class Persistent Object
Proxy acts as the Subject while the Appinterfacer and the Syntactic Analyzer act as the registered
Observers.

34

3.3.8 Factory Design Pattern

Factory Dasign Pattern

Square Composing Mechanism

Square Handi
Evemnt Driven GUI —E
Grid Composer I_I_I—
; Sguare Mapping Machanism

Figure 28. Factory Design Pattern

Squars

The Factory Design Pattern (Figure 27) consists of an interface for creating an object, letting

subclasses decide which class to instantiate [18].

The best example of a factory design applied in ourapplication is that of grid creation, when a grid
is created, the Event Driven GUI component!delegates the request to the Grid Composer which
holds the factory method that instantiates objects of type square individually and returns a collection
of these that form a full grid. The Square Cemposing=-IMechanism is used to create each individual
square that is placed on the grid, however the Grid Composer’s factory method is the one in charge
of positioning the squares, labeling them and grouping them into a grid, in this way falling under
the category of factory, while the grid being the product of the factory method.

3.4 Control Patterns
During the execution of an object-oriented program, the action of invoking a method to execute is
known as a control transfer. A method invocation sequence keeps track of all the control transfers

occurred during program execution [20].

Most of the Control Patterns [20] that are common in our system fall in the category of Complex
Control Patterns since there are log patterns that exist to execute a command in a specified way, this
type of log patterns are more abundant in the Syntactic Analyzer component do to its strict rules that
a command invocation must follow, most of the invocations follow a invocation path from source to
sink. Complex Control Patterns are mostly formed of Simple Control Patterns. Perhaps the most

abundant Simple Control pattern is the Sequence Pattern. Invocations to methods that fall under this

35

category are done in sequence, synchronously [20].

A specialized sequence pattern known as the Consecutive Pattern is also present in some types of
invocations. The Consecutive Pattern occurs when a sequence of invocations take place to a single
method class (The class that holds the invoked method). Perhaps the component that experiences
most Consecutive Pattern invocations is the MouseAl component that has a high level of interaction.
In our language definition we incorporate a loop command, that when invoked it can trigger a
Control Pattern behavior known as the Loop pattern. Our loop command loops the preceding
command N times (specified by the user); Making invocations for one command to occur N
times thus triggering a loop that could be measured as a Loop-N pattern [20].

Compound Control Patterns [20] are also present, especially in the Syntactic Analyzer
component, where invocation decisions must be made in order to satisfy the languages grammar.
Most Compound Control Patterns are in the form of a sequence, where each invocation of the
sequence is dependant on a set of rules, in our case we check the syntax of the command and decide

what components to invoke in the sequence so.that-a.grammatical rule is followed properly.

3.5 Layered Invocation Scheme
Command decomposition and progessing in‘the system:-occurs in a 5-level invocation scheme.

The five layers involved in this invocation scheme are:the Lexical Translation Layer, Syntactic
Analyzer Layer, Event-Handling Layer, API Interfacing Layer and the OS API Layer. The highest
layers present invocations with the highest level of abstraction. Invocations at these layers have a
longer processing life and do not occur as much as in the lower layers. On the other hand lower
layers present invocations with the lowest level of abstraction. Invocations at these layers have a
shorter processing life and occur with much more frequency than at the higher invocation layers.
The behavior previously described is do to the highly task-specialized component design used that
forces the distribution and breaking down of command handling calls to different layers of
processing. Lower layers increase in complexity because of the higher number of invocations that
are involved. On the contrary, higher layers posses a lower invocation level.

A command’s processing life is directly proportional to its nature, since different commands result

in different execution paths [20], so the nature of the command directly affects what layers its

invocations traverses.

36

3.5.1 Layered Sequential Invocation Example
The following example is of a valid command utilized in the system. We take an inside look at all
the different types of invocations that take place as the command gets processed as it transverses the

above described layer structure (Figure 28) in a top-down manner.

Lexical Translation Layer

Feed Token Sat

I
Syntactic Anal)!$l Layer —
[Set Cursor Mode to I\’Iovamanl) [selact actor Amoﬂ] (s'.ore Actor!'s current Iooa‘.inn) (set the curser mode to dragg\ng] [sai selectad grid square)
1 Il
K — 1 — C—

Event-Handlin Components Layer) &(F‘

Ejisabla left click emulat\an] [d\sable drawing mode (anabla left click amu\ationj (anable drawing mde) (!‘él cursor \ocauun) (531 actor |UGHHDI'V) (emulate dick)
T

AP Interfacer C

[ITIUIJSE event laft duwn} [mouse svent |sfl up)

@< e

08 API Layer

.

Recognized command by the speech éngine: dragactor Actorl to coordinate 5,6

Figure 29: Example of-Sequential Invocation

When the command enters the Lexical Translation Layer it gets processed in to a single Token Set
that gets sent to the Syntactic Analyzer Layer through a single invocation.

During the parsing at the Syntactic Analyzer, the sub-structure belonging to “dragactor” is found.
This substructure gets further parsed until the first invocation to the Event Handling Layer is found:

*“set the cursor to movement™

This Invocation to the Event Handling Layer is then separated in to two invocations executed on the

Windows API Interfacer Layer:
*“disable left click emulation™

““disable drawing mode”

These two invocations simply set two values inside the Windows API Interfacer Layer to a Boolean

value and their execution ends in this layer.

Back at the Syntactic Analyzer Layer, the parsing continues and the next sequence of invocations to

37

the Event Handling Layer is found:
|.“select actor Actorl”
I1.““store Actorl’s current location”

I11.*“set the cursor mode to dragging™

Invocation (|) will trigger the Event Handling Layer to simply invoke its internal component that
handles actors, this invocation will set the current actor in the system to “Actorl”. No further

processing is required thus the next invocation at the Syntactic Analyzer Layer gets processed.

Invocation (11') will trigger the Event Handling Layer to simply invoke its internal component that
handles actors, this invocation will store the current actor location in the system for later referencing.
No further processing is required thus the next invocation at the Syntactic Analyzer Layer gets

processed.

Invocation (I11') triggers two invocations that.occur: in sequence inside the Event Handling Layer:
A. “enable left click emulation™

B. *“enable drawing mode™

These two invocations get served at the-Windows API Interfacer and simply set two values inside
the Windows API Interfacer Layer’s Mouse ‘Al component to a Boolean value of “true” in order to

enable the dragging mode, ending their execution at this layer.

After this invocation, back in the Syntactic Analyzer Layer, the parsing continues and the next
invocation to the Event Handling Layer takes place when a match of the word “To” occurs during

the parsing. The corresponding invocation under the next left derivation is:

““set selected grid square”

This invocation to the Event Handling Layer triggers the following invocations in the Windows API

Interfacer Layer:

|.”’set cursor location”
I1.”’set actor location”

I11.”’emulate click”

38

Invocations (1) and (11) get executed at the Windows API Interfacer’s Mouse Al component. (1) sets

the cursor location to a specified position in this case “5,6” thus dragging the actor to that position.

(111), on the other hand, invokes the following API calls at the OS API Layer in a sequential order:
“mouse event left down™

“mouse event left up”

These API calls perform a mouse click by first holding the left mouse down and then releasing it.
This is an example of an Invocation that traversed all the existing layers from top to bottom in order

to achieve completeness.

Back in the Windows API Interfacer Layer invocation (I1) gets handled locally without the need of
interfacing with other layers, but instead utilizing the local Actor Handling Component to set the

actor to its new location.

3.6 Conclusion

In this chapter the proposed system is introduced-and studied in great detail from a high to low level
perspective. The different architectural- views are analyzed and the behavioral interactions
amongst the entities that compose the:system. are discussed:in detail. Overall this chapter provides
the reader with a detailed and comprehensive view of all the features, processes and interactions
that occur transparently when the user interacts ‘with the system for interfacing applications with
recognizers or interacting with applications. This chapter is structured in a task oriented manner,
organizing it by separating the different tasks done by the system and going through each of them in
detail to enrich the reader’s perception of the overall interfacing environment and its sequential
command processing behavior.

The following chapter introduces and discusses the proposed system’s internal language definition.

39

CHAPTER FOUR

Interfacing Script Language Definition

4.1 Introduction

This chapter describes the language definition of the script language used in this system for users to
interact with the interface interfacing environment that references applications. This chapter unveils
every aspect of the designed language, its data types, rules, syntax description, and the

interpretation steps involved in command processing.

4.2 Datatypes and Syntax
Types limit the values that a variable can hold or that an expression can produce, limit the
operations supported on those values, and determine the meaning of the operations. Strong typing
helps detect errors at compile time [12, 13]. The Interfacing Script Language separates data types
into:

-ldentifiers that are used to refer the system’s internal variables used to reference the GUIs of

the target applications

-Constants that have a binding time‘that occurs statically prior to compilation thus containing

pre-defined values that cannot be reassigned

-Operators that are the key non-terminal symbols used to decide the pattern of expansion of the
parsing routes. Providing commands the flexibility that allows their use to deal with multiple

interaction situations (Expansion Paths)
-Separators and Terminators, being the elements used by the lexical analysis process as a guide
to break down the command input stream by collecting characters into logical groupings

known as lexemes[13]

In the following subsections, we elaborate each one of these data types as well as their common use

in the language.

40

4.2.1 Identifiers
In this section variables which can be performed a binding during runtime are introduced. These
variables can be changed during the course of execution through dynamic binding by means of

assignments.

Square
It is a graphical reference that is introduced by the user to associate locations of static
interaction zones. A variable of type square is associated to a location (integer, integer) and a
graphic rectangle in the system.
Instance limit: from 0 to 999 (excluding instances created in grids)

Coordinate
A graphical square reference used in grids that is auto-generated by the system. The type
coordinate is associated to a location (integersinteger) and a graphic rectangle in the system.

Instance limit: from O to 999

Actor
The actor type is composed of a location (integer, integer) and a graphical label (string) in the
system and is used for the reference to dynamic content of applications. .
Instance limit: from O to 999

ActorProfile
An actor profile is the entity that actors are organized by. It is defined by the user prior to actor

creation. Actors when created are auto-assigned into their corresponding profiles.

Instance limit: from 0 to 999

App

Represents the name of a target application (String) and is introduced by the user.

41

Instance limit: unlimited (limited by computing power)

Stage
It is used to reference the different GUIs used in an application and is used as the entity to

organize and group sets of squares.

Instance limit: from 0 to 999

Grid
The Grid type corresponds to user-defined grids that represent a collection of objects of type

square in the system. Grids are used to add reference through localization to GUIs.

Instance limit: from 0 to 999

Number
The number type maps directly to integers.and are used to specify coordinates and revolutions

of command loops.

Instance limit: unlimited (limited by computing power)

Text

Dictation text (string) spoken by the user and is used to emulate typing on the keyboard.

Instance limit: unlimited (limited by computing power)

4.2.2 Constants
In this section variables which have a binding time that occurs prior to runtime are introduced.
These variables are constants, with predefined values assigned through static binding that cannot be

reassigned during the course of execution.

Direction
Holds predefined constant values of: North, South, East, West, Northeast, Northwest, Southeast,
and Southwest. Direction type is used in conjunction with the drag and move commands to

specify cursor orientation.

42

Pattern
Hold constant values that are predefined by the system that represents geometric moving
patterns. Used for dragging the cursor in a predefined manner by executing a batch of

instructions that represents the moving pattern.

Distance
The distance constant holds predefined constant values of: very short, short, normal, long, very
long. The distance constant is used for moving and dragging of the cursor, restricting the length

of a mouse movement.

Speed
The speed constant holds predefined and constant values of: very slow, slow, fast, and very fast.
The speed constant is used when moving or dragging the cursor, restricting the speed of a mouse

movement.

clickType
The clickType constant specifies:the type of click to-perform when the click command is

invoked, it holds predefined values of rightclick, doubleclick , and leftclick.

Boolean
Holds the predefined values of true or false and it’s used with the commands showGrid, setDrop,

setVisualAide and usingActor.

VisList
Used for referencing the system’s visual-aided lists that contain a listing of available stages,

grids, squares, actors, applications and actor profiles.

4.2.3 Operators

Operators are the base that our syntactic analysis process utilizes to produce its leftmost derivations
as it traces the parse tree structure in a top-down manner (section 4.4.2). They are the key
non-terminal symbols that are used to when deciding pattern of expansion of the parsing routes [13].
Our system makes use of three different operators that are the to, by and loop operators, bellow is an

overview of them and how they are used in the interfacing script language.

43

Operator to
The “to” operator is used in conjunction with action and assignment statements to specify

assignment of locations to identifiers.

The use of to operator is restricted for commands move, drag, and set, for the use with right
operands of data type square, coordinate and distance, and for the use with left operands of data

type actor, squares or coordinates or null.

Operator by
The “by” operator is used for assigning modes to its left operand. It is used in conjunction
with action statements to specify desired speed, distance, moving pattern, and click type

commands.

The use of “by” operator is restricted for commands move and drag, for the use with left operands
of data type direction, square, coordinate or,actor,-and for the use with right operands of data type

distance ,clickType, and pattern.

Operator loop
The “loop” operator allows for looping a‘command-an specific number (number type) of times.
Its left operand is always a command.”Its right operand is the number of times to loop the

command, if not stated its default is set to one loop.

The loop operator is restricted for the use with right operands of data type number.

4.2.4 Separators and Terminators
The following elements are used by the lexical analysis process as a guide to break down the input

stream by collecting characters into logical groupings known as lexemes [13].

Terminator then
The terminator then is used for conjunction of statements and delimits one statement from
the others.

Syntax
[stmt]> (then)—>[stmt]>

dragActor actor x to coordinate y then click square x

44

“dragActor actorl to 10,4 then click rotate™

Here two action statements (dragActor, click) are delimited by then.

Terminator times

The terminator “times” specifies the end of a loop command, and it is placed after the number

identifier.

Syntax
[stmt]->(loop)—> (times)—>

drag direction x by distance y loop number times

*““drag south by very long then loop 2 times”

Here the drag command gets executed number times

Separator Comma

The separator “comma’ separates x and y.values of a coordinate identifier.

Example

dragActor actor x to coordinate y

“dragActor tree to 2,9”

In the coordinate 2,9 the comma separates the left value(2) which is interpreted as an x and the

right value(9) which is interpreted as a y.

425 Reserved Words

The following list of words are reserved by this language definition, the use of them as values of
identifiers will create conflicts and an exception with its respective error message will be displayed
by the system.

send
clearConsole
undoPhrase
$

45

to

by

loop

Double spacing (will be interpreted as single)
then

times

4.2.6 Input Element Classification
The allowed input elements of the language definition are classified into white space and tokens.
Tokens are further classified into the following types:

Identifier

Command Statement

Separator

Operator

4.3 Semantics
This section introduces the semantic meaning of each command statement, rules, and the data type

compatibility issues of the language.
4.3.1 General Static Semantics
The type compatibility rules that are used for compile time analysis are generalized and resumed

bellow:

I. A token of type command must be followed by a token of type operator or identifier or

stand alone only.

I1. A token of type command being used by an operator must comply with the operator rules
(section 4.2.4)

I11. A token of type operator must be followed by a token of type identifier only.

IV. A token of type identifier must be followed by a token of type operator or stand alone

only.

46

V. A token of type identifier being used by an operator (right or left operand) must comply

with the operator rules (section 4.2.4)

V1. The last token of a sequence of tokens is always of type command or identifier only.

VII. A token following a valid token of type command must comply with the command type

compatibility definition (section 4.3.2) for the respective command.

4.3.2 Command Statements

The definition of the different command statements of the language and their type compatibility
rules are stated bellow. In the event of breaking any of the rules specified, the system triggers an
incompatible type exception with its corresponding warning to the user, halting command

execution.
Assignment Commands
Assignment Commands focus on assigning valuesto system-internal identifiers.
setDistance
The setDistance command is used to set the distance that the mouse cursor will use during user
command-driven movement.
Usage:
setDistance to distance x
““setDistance to short™
The distance gets set to short
The setDistance command is only compatible with types distance and the operator to.
setDragSpeed

The setDragSpeed command is used to set the speed that the mouse cursor will use during user

command-driven movement.

47

Usage:
setDragSpeed speed x
“setDragSpeed fast™
The speed of the mouse cursor is set to fast, when the cursor moves through

commands it will do so at a faster pace.

The setDragSpeed command is only compatible with type speed.

addActorProfile
The addActorProfile command is used for creating an actor profile. It is a stand-alone command

thus it does not interact with any identifiers or operators.
Usage:

addActorProfile

A new actor profile gets created by:the system

The addActorProfile command can-only be used as stand-alone.

eraseProfile

The eraseProfile command is used for deleting an existing specified actor profile.
Usage:

eraseProfile actorprofile x

*“eraseProfile Profilel”

The specified actor profile is erased

The eraseProfile command is compatible with the type actorprofile only.

addActor
The addActor command is used for creating an actor to a specific coordinate or square, it can also

be used as a standalone command where the actor’s location is chosen automatically by the system.

Usage:

48

addActor

The actor gets instantiated to system selected location.

addActor to coordinate x
“addActor to 3,5”

The actor gets instantiated to the user specified location

The command addActor is compatible with the type square and coordinate.

eraseActor

The eraseActor command is used for deleting an existing specified actor.

Usage:

eraseActor actor X
“eraseActor Actorl”

The specified actor is erased

The eraseActor command is compatible with the type actor only.

setActor

The setActor command is used for fixing an already instantiated actor to a corresponding coordinate
or square.

Usage:
setActor actor x to coordinate x
““setActor Actorl to 10,3

The actor gets fixed to the coordinate 10,3 of a grid.

The setActor command is only compatible with the type actor, coordinate, square and the

operator to.

resetActor

The resetActor command is used for re-setting the location of the currently selected actor to its

49

previous location.

Usage:
resetActor

The current actor is fixed to its previous location.

The resetActor command is a standalone command.

setDrop
The setDrop command is used for disabling the drop of drag commands. Performing a drop if set to

true (system’s default), and a not performing a drop when set to false.

Usage:
setDrop boolean x

“setDrop false”

Triggers the system to disable the drop event when a drag is executed, thus hanging on

the object that is being dragged,

The setDrop command is only compatible with the type Boolean.

setL.ist
The setList command is use to give focus to the system’s visual-aid lists, displaying them

graphically.

Usage:
setList VisList x

“setList actorlist™

Trigger the system to give focus to the specified list in this way will display it to the

user.

The setList command is only compatible with the type VisList.

50

setVisualAide

The setVisualAide command when set, allows the user to see visual aid content such as labeling of
buttons, and grid coordinates. When not set, the system simply displays bounding boxes with out a
textual description.

Usage:
setVisualAide boolean x

“setVisualAide true”

Trigger the system to enable visual aid in the application, will textually identify

interfacing objects.

The setVisualAide command is only compatible with the type Boolean.

showGrid

The showGrid command when set, allows.the user to-hide or show the present displayed grid if any.
Usage:
showGrid boolean x
“showGrid false™
This will trigger the system to hide the present grid.

The showGrid command is only compatible with the type Boolean.

usingActor

The usingActor command is used for enabling and disabling actor interaction.

Usage:
usingActor boolean x

“usingActor false”

This will trigger the system to disable all interaction with actors, hiding them from the user.

51

The usingActor command is only compatible with the type Boolean.

Action Commands

The command type “action” focuses on interacting with application system’s interfacing content,

performing actions that directly affect the target application.

drag
The drag command is used for dragging of the mouse cursor, applied to type direction, pattern,
speed and distance. When invoked the respective mouse movement will occur (depending on

operand) and simultaneously activating the left click of the mouse, in this way emulating a drag.

Usage:

drag direction x by distance x

*““drag north by Long™

The mouse is “dragged” in the specified direction.

drag pattern x by distance x

“drag spiral by short™

Again a “dragging” occurs, but this time it follows a predefined dragging pattern and

performs each segment of the pattern at short distance, resulting in a small spiral.

The drag command is only compatible with the type directon, pattern,speed, distance and the

operator by.

dragSquare
The dragSquare command is used to drag a specific square to a specified coordinate or square or
by a specified moving pattern or in the specified direction by the defined distance and by the

selected speed.

Usage:

52

dragSquare square x to coordinate x

“dragSquare tree to 7,3”

The cursor is focused on the specified square and then performs a drag to the given

destination.

dragSquare square x direction x by distance y

“dragSquare tree northeast by verylong”

The cursor is focused on the specified square and then performs a drag in the given

direction moving at the specified distance.

dragSquare square x by pattern x by distance x

“dragSquare tree by zigzag by medium”

The cursor is focused on the specified square and then performs a drag in the given pattern

moving at the specified distance.

The dragSquare command is compatible with the type square, coordinate, direction, distance,
pattern, speed and the operators by and to.

dragCoordinate
The dragCoordinate command is the same as the dragSquare with the exception that is used to
drag the type coordinate. When invoked, the specified coordinate will be dragged to the
specified coordinate or square, by the defined pattern, or in the specified direction by the

defined distance and by the selected speed depending on the usage.

The dragCoordinate command is compatible with the type square, coordinate, direction,

distance, pattern, speed and the operators by and to.

dragActor
The dragActor command is the same as the dragSquare with the exception that is used to drag

the type actor. When invoked, the specified actor will be dragged to the specified coordinate or

53

square, by the defined pattern, or in the specified direction by the defined distance and by the

selected speed depending on the usage.

The dragActor command is compatible with the type actor, coordinate, direction, distance,

pattern, speed and the operators by and to.

click
The click command triggers a click at the current cursor position and is used in conjunction

with the operator by and the identifier clicktype only.

Usage:
click

When executed, a click will be triggered on the current cursor location.

click by clicktype x
*“click by rightclick™

When executed, a click will-be triggered on the current cursor location in the specified

mode.
The click command is compatible with the type clicktype and the operator by
clickSquare
The clickSquare command triggers the cursor to first move to the square location specified by

square X, and then triggers a click in the fashion specified by the clicktype identifier, if any.

Usage:

clickSquare square x by clicktype x

*““clickSquare house by rightclick™

When executed, the cursor will move to the corresponding square’s location and trigger a

click of the type specified (if not specified it will click as the default click (leftclick))

The clickSquare command is compatible with types square, clicktype and the operator by.

54

clickActor
The clickActor Command functions in the exact way as the clickSquare command with the

exception that Actors are being clicked.

The clickActor command is compatible with type actor, clicktype and the operator by.

clickCoordinate
The clickCoordinate Command functions in the exact way as the clickSquare command with the

exception that the types being clicked are Coordinates.

The clickCoordinate command is compatible with type coordinate, clicktype and the operator

by.
move

The move command is used for moving the mouse cursor, and it’s applied to variables of type

square, coordinate and direction and operators to.and by.
Usage:
move to typesquare x
““move to house”

When invoked the cursor moves to the specified square location

move to typecoordinate (x,y)

“move to 10,3

When invoked the cursor moves to the specified coordinate location

move direction x by distance y

“move southeast by verylong”

When invoked the cursor moves in the specified direction by the specified amount

55

The move command is compatible with type square, coordinate, direction and operators to, by.
pasteText
The pasteText command is used for pasting text into a focused text field.

Usage:
pasteText text x

“pasteText Hello™

The text variable is copied into the clipboard and pasted into the current focused text field.

The pasteText command is only compatible with the type text.

clearText

The clearText command is used for deleting text:of a.text field.

Usage:

clearText then loop 3 times

Three characters from the focused text field’s text are deleted.

The clearText command is a stand-alone command.

sendKey
The sendKey command is used for emulating a keyboard stroke on the specified key.

Usage:
sendKey text x
“sendKey Y™

The system emulates a keyboard stroke of the letter Y.

The sendKey command is only compatible with the type text.

56

openDeveloper
The openDeveloper command is used for entering the developing mode of the system through

speech whenever is not possible to interact with the system’s GUI directly through the mouse.

Usage:
openDeveloper

The Developing mode is opened by the system
The openDeveloper command is a stand-alone command.
send
The send command is used for sending the stream of text already spoken to the lexical translator, in

order to begin the command processing.

Usage:

send
The already spoken stream of text'is sent to the lexical translator.
The send command is a stand-alone command.
undoAll
The undoAll command is used for deleting all phrases spoken in order to reset the stream of text to

emptiness if a mistake was made.

Usage:
undoAll

The already spoken stream of text is cleared.

The undoAll command is a stand-alone command.

57

undoPhrase
The undoPhrase command is used for deleting the last phrase spoken in order to reset the stream of

text to its previous content.

Usage:
undoPhrase

The last phrase spoken is deleted from the stream of already spoken text.

The undoPhrase command is a stand-alone command

capturelt
The capturelt command is used for capturing free windows (pop-ups) into the system.

Usage:
capturelt

Here the most front “free” window will-be captured.

The capturelt command is a stand-alone’command.

Selection Commands

The selection commands are used for switching visual interfacing content.

selectStage:
The selectStage command selects the current stage, when executed all the registered squares for that

stage are loaded by the system.

selectStage stage x
““selectStage stage 1”

Selects the stage identified as “stage 1” and loads all its corresponding squares, painting them

onscreen.

58

The “selectStage”” Command is only compatible with the type stage.

selectGrid:
The selectGrid command selects a grid for display, when executed all the registered squares for that

grid get loaded and painted on screen by the system.

selectGrid grid x
*“selectGrid paintgrid”

Selects the grid identified as “paintgrid” and loads all its corresponding squares.

The “selectGrid” Command is only compatible with the type grid.
selectActorProfile:
The selectActorProfile command is used to set.the.current actor profile, when invoked a list of
actors corresponding to the selected profile is loaded and-registered actors under this profile are

placed graphically on screen.

selectActorProfile actorprofile x
““selectActorProfile profile 1

Selects the actor profiled identified as “profile 1” and loads its corresponding actors onto

screen.

The “selectActorProfile” Command is only compatible with the type actorprofile.
selectApplication:
The selectApplication command is used to focus a target application. If invoked, all the stages, grids

and actor profiles corresponding to the specified application are automatically loaded by the system.

selectApplication app x

““selectApplication paint program”

59

Selects the application identified as “paint program” and loads all its corresponding stages,
grids, and actor profiles.

The “selectApplication” Command is only compatible with the type app.

4.4 Lexical and Syntax Analysis

44.1 Lexical Analysis

The lexical analysis is in charge of extracting lexemes from the input string in order to produce the
corresponding tokens that are returned to the caller (syntax analyzer) one lexeme at a time. During
this process, the input string is separated whenever a separator or terminator is found and discarded,
in this way forming sub-segments of the stream. These sub-segments, then in sequence of
appearance are further processed by removing white spaces and any other characters that are not
relevant to the meaning of the program, in this way decomposing the stream into tokens. The
resulting tokens are grouped in token sets and fed to the syntax analyzer in a token-set per token-set
basis.

The Lexical Analyzer distributes its chares, to four sub-programs, one in charge of getting the next
stream input through an event handling:function, -another=one in charge of building lexemes as
described above, another tokenizing: sub-program -that takes care of removing non-relevant
characters and finally a subprogram that.takes care of the recognition of reserved words, constants
and identifier names. The later with the purpose of validating the content of the data types of the
command in question by looking them up in their corresponding tables to make sure they exist in
the system and that no reserved word are being used.

Once a stream is processed at the Lexical Analysis, it’s passed down to the Syntax Analysis phase in
the form of token sets, each set representing an individual command.

removeSeparatorsTerminators;
removesSpaces;

getinput;

Tokenizing

Lexime Building

Valid Token Sets
Validating

validaleTokens;

Figure 30. Token Patterns Transition Diagram

60

Figure 29 depicts the state transition diagram that provides the representation of the token patterns

implemented for building the Lexical Analyzer of the system.

4.4.2 Syntactic Analysis

The syntactic analysis tasks include the checking of the syntax of the input program, providing error
messages when syntactic errors are encountered and recovering from them to continue analysis on
the input program [13]. In our approach a complete parse tree structure is traced in a top-down
manner, rather than generated. As this structure is parsed, the placement of tokens is checked
against the rules established in section 4.3.1, making sure that no identifier or command is used as
an operand in a way that it breaks an operator’s rules. Successful parsing leads to the interpretation
of commands into the target program that is executed to perform system related interactions to
achieve the purpose of the command in question.

In our syntactic analysis we trace a leftmost derivation, tracing the parse tree in preorder, beginning
with the root and following branches in left-to-right order. Expanding non-terminal symbols to get
the next sentential form in the leftmost derivation; basing the expansion route on the type of the
non-terminal symbol. Do to the simplicity and reeursive nature of the language’s grammatical rules,
our approach implements a recursive .descent parser. rather than utilizing parsing tables to
accomplish the syntactic analysis, in this way assuring that-the next token represents the left most
token of input that has not been used in'the parsing, this.token is compared against the first portion
of all existing right hand sides of the non-terminal symbol, selecting the right hand sides where a
match is found. Parsing expansion is directly affected by the number of operators used in the

command in question, since operators are the non-terminal symbols that are used as checkpoints
coordinate
square

direction (by) distance
— (by) —[
pattern (by) distance

Figure 31. Leftmost derivation parsing tree of the dragSquare command

when selecting a parsing path.

dragSquare square —

Figure 30 shows the corresponding parsing structure of the command “dragSquare”, depicting all
the possible right hand sides that can be matched to be the next leftmost derivation for any of the

operators that compose the command.

61

4.5 Conclusion

This chapter presented the language definition that is implemented in our system to facilitate
complex task interactions for providing flexibility and efficiency to overcome challenges of current
interfacing mechanisms between speech recognizers and application systems. The chapter
summarizes the structure of this language, the rules the language revolves around when parsing and
checking syntax of commands, its compatible data types and a detailed view of each command and
their compatibility constrains. This chapter provides readers with the basic information needed to
understand how an interfacing mechanism can be constructed to simplify the voice commands used
in the speech recognition process to interface to the application system while expanding their
functionality.

62

CHAPTER FIVE

Application Examples and Evaluation

5.1 Introduction

In this chapter, we illustrate the procedures that are adapted to interface a target application using
the proposed framework. This chapter will elaborate on scenarios that provide high and low level
detail on the overall functional view of the system, and create a contrast with the challenges found
on the other interfacing approaches addressed in Chapter 1. We will then evaluate our proposed
system against the challenges and limitations imposed in the earlier chapter.

5.2 Procedures for Using the proposed Interface Framework to

Interface an Application to a Speech Recognizer

The interfacing procedure is separated-into multiple steps,-each with its own set of scenarios. The
following steps give the details:
B Step 1) Registration and Interfacing of therTarget Application
- The first step involved in interfacing an application to a speech recognizer through
the proposed framework is to register a desired application into the system. Once
registered, we create the visual interfacing environment by drawing reference zones
on the transparent interface that lays on top of the application’s GUI, in this way
referencing application content such as buttons, containers and menus through the
graphic registration of grids and squares, separating this content into stages that
represent the different GUIs of the application.
This step is required every time a new application is interfaced with a speech
recognizer

As an example to illustrate this step, we register the application BestWise ?*FT}

BE = version 2004 and reference its GUI’s content

B Step 2) Recognizer Integration
- The second step involves the integration of a chosen recognizer into the system by

programming the recognizer’s API calls that are used to start, setup and handle the

63

recognizer and as well as the calls involved in retrieving recognition content in the
system’s specialized recognizer interfacing component, in this way interfacing the
recognizer into the system.
« This step is only required when no recognizer has previously been integrated
into the system.
« As an example to illustrate this step, we interface our system with

Microsoft’s Speech-Recognizer V.6.1

- We then proceed to define the grammar definition file that the speech recognizer uses
to recognize and interpret spoken content by incorporating the rules that were
established in our language definition, allowing the checking of the syntax to occur
twice.

« This step is done each time a recognizer is integrated with the system.

- The vocabulary used to reference,the target application in the first step is
incorporated into the recognizer’s.grammar- definition each time a new application is
interfaced by the system in' order to-allow the recognition of the identifier names
used for the graphical zenes that.compose the-visual interfacing environment.

- Each time a recognizer is interfaced with the system, an XML file is composed that
contains associations of commands in the format used in the recognizer’s grammar
with those commands of the language definition of the system. This resource is used
as the source for translating spoken content into streams compatible with the

system’s syntactic analysis process.

B Step 3) Macro Composition
- Once an application is properly interfaced with a speech recognizer, we compose a
set of macro commands to simplify user interaction with the interfaced environment
by wrapping complex and repetitive tasks into short, reusable context free

commands.

W Step 4) Interaction Evaluation
- In our last step, interactions with the speech-driven environment built in previous
steps are performed in order to evaluate the system’s overall functionality against the

criteria built from the current approaches’ challenges and limitations.

64

5.3 Step 1) Registration and Interfacing of the Target Application -

“BestWise ?.*IT}EE{:" version 2004” is used as an example

Object registration uses the constrained genericity stated in [21, 22] and the “See-Trough
Interface” paradigm for users to perform application software registration. In the following

subsections, we depict the use of BestWise visual authoring software as an example to perform the

application software registration.

5.3.1 Registering an Application

Our proposed framework allows for the coexistence of multiple applications, each application that
is registered into the system must have its unique identifier that can be given by the user or set by
the system with the name of the application’s executable file. Figure 31 depicts a snapshot of
loading the application software into our proposed interface framework system for registration. The

operation steps are labeled as 1, 2, 3, and 4 in the figure.
Applcation | [Fagy AFF'I [select appiication | Run F;abe's Vijb'zl Square Handler | Composer
v Sguares YVisible

1

Erﬁér App Né;na

mmiiehface
Select Application Execulable E]
| submit
iEEC T |-4I Project ﬂ ek B~ _I]
> =6u | Identifiers List
L) HtmlSm st ol
Recent yscheme AgEs |Squares I Ay
=
/
L
et
e
48
FREES R
«
»
Eililalpeag
E I |mmWebface ﬂ | e (O
WRABAUD): [Ene-tiles (*exe) -1 L] 3
DELETE
Sousre Stage
Grid App
Stage Selector -
Add Stage |
I UP Clk Enabled
I R Click OMOFF
W' L Click ONIOFF
I Dragging OROFF
Actor Profie w| [Auto Add Actor Profils Selact Grid «|] Braworid [=\Frogram Files\Bestiseimmyiebiace Projectimmiebiace exe | Line Length ﬂ
™ Using Actor Mewy Actor Show Grid

Figure 32. Registering an Application

Table 1 presents the description of the steps involved in the process of registering an application

into the system.

65

Table 1. Registering an Application

Steps High-Level View Low-Level View
Select add application | Administrator user presses the Add | System displays the executable
option App button(1), triggering an selection dialog
executable selection dialog to
appear
Select Desire The administrator user then selects | The StoreHandler component calls
Executable the desired application (2) and its internal method to register
presses 0k(3). The application non-graphical objects, a directory
registration form appears is created with the name of the
containing the name of the application under the Bin directory
selected application, the user may
modify the name and continue the
registration process by clicking on
the submit button(4)

5.3.2 Registering a Stage

Stages are used for organizing and separating the square zones that reference the different GUIs of
the target application. Each stage has a namegiven by the user. To register a stage the user simply
selects the register stage option and gives it anzidentifierr-name. Figure 32 depicts a snapshot of
stage registration for the BestWise visual authoring software, The operation steps are labeled as 1, 2,

and 3 in the figure.

[’TQ. sl E@‘ﬁ]
Application L agg apn | | mmiiebiace ~| Run g;z:ea‘fe:‘\iii:;e Square Handler Composer
" b k3 & e _ ——
o L E—E B RIS ; o
- EHTIFE NEW Identifiers List
- FEEEFIE
= B - Stages |Squares I Ay
o (Fmiiaar | —
FgFEE
gy EE e — —
g pEEL — — —
o R =
T NEW || NEW | | NEW
Einintieve] Eidipteie ey AR
l J | J
NEW NEW NEW
DELETE
lkﬁ‘]%?%iﬂ J {&E‘J%ﬁiﬁ] [&E‘J%ﬁiﬁ J Stiars stage
Grid app
N
) o] AFE|Rre]
AR BRI =
P p——) | e |
¥ L Click CRUOFF
I Dragaing OHIOFF
[actorProfies | T Auto_Add Actor Profiie [Select Grie |] BraWictd] [cprogram Fies Bestiviseimmiisbtace Projsctimmiiebiacs sx2 [LineLength |

™ Using Actor New Actor Show Grid

Figure 33. Registering a Stage

66

Table 2 presents the description of the steps involved in registering a stage into the system.
Table 2. Registering a Stage

Steps High-Level View Low-Level View

Select add stage option | The Administrator user presses the | The system makes visible the
Add Stage button, Triggering the | stage registration dialog
stage registration dialog to appear

Enter Reference Name | Administrator user enters anameto | The StoreHandler component

reference this stage in the textbox calls its internal method to
found at the stage registration dialog. | register non-graphical objects,
To finalize the process the user inside this method a directory is
presses on the submit button of the created with the name of the
stage registration dialog stage, placing it inside the

Stages directory under the
current application’s path

5.3.3 Registering a Grid

Grids are composed of auto-generated square objects and are used to reference panes and containers
of the target application, allowing for a localized referencing through coordinates. Each grid has a
name given by the user, and they are registered thrgugh drawing on the desired interaction zone.
Figure 33 depicts a snapshot of grid regiétration‘ for f"h‘en BestWise visual authoring software. The

operation steps are labeled as 1, 2,3,4 ahd 5in tH‘e} fiijgyr‘e. e

Application aggiapp] [mmivveintace = e W Labeis Visible l Seuare Handler I Composer

AE

¥ Snuares Visible

Identifiers Lisl:2

Stages Souares }A‘ ar

[wamseresn — +|
Add Stage

W UP Clk Enablec

I™ R Click GNIOFF

''''' I¥ L Click ONACFF
™ Dragging OMIOFF
Acior Profles w| | Auto _&dd Actor Profie Select Grid «|| V] BrawGnd i Frooram FilesiB & exe [CineLeratn |

™ Using Actor New Actor S |

Figure 34(a). Registering a Grid

67

[;’g;,

maH

afion Ui app| [mmvestace [T ¥ Labels visibls

¥ Squares Visible

Souate Handier | ExtHandler | - Composer

Appl

e
=

E?E’v

Identifiers List

| mctors | e 4| ¥

SRR YL AT
3

DELETE
Souare Slage
Grid App
MainScresn v

¥ UP Clk Enabled
I R Click OMiOFF
VL Click ON/OFF
I™ Dragging OMIOFF

1=

Actor Prafiles | | Auto

A [cProgram diect
. rid

Add Actor Profle ' PaintGrid = Ip it
[™ Using actor _New Actar | —j I'4 s

|une Length j

Figure 35(b). Registering a Grid

Table 3 presents the description of the steps invq‘l\i/q‘d "i‘n ‘th(:e'composition of a grid into the system.

Table 3. Reg

iste

ring a Gri‘a

Steps High-Level View Low-Level View

Register Grid Administrator user “1+-System displays the grid registration dialog and
clicks on the draw grid | the StoreHandler component invokes its internal
checkbox, triggering the | method to register non-graphical objects, inside
display of grid this method a directory is created in the Grids
registration dialog where | directory under the current application’s path,
the user enters a name with the name of the grid specified by the user
for the grid and presses
on the submit button(3)

Enter Visual Administrator user The system modifies the current environment by

Environment presses on the Square allowing all features used in composition of

Composition Mode | Handler button environments

Draw Grid Administrator user The Grid Composer component is invoked. The

selects the previously
registered grid from the
grid listbox and drags
the mouse to draw the
grid

component’s design is based on the Factory
Design Pattern [19] acting as a dynamic factory
to create objects of type square, each one being
a coordinate of the grid. In the Grid Composer a
method is invoked to create each square object.
Each square is then stored to file invoking the
Square Mapping Mechanism’s method in charge
of square information handling to store the
squares attributes to file

68

534

Registering a Square

Squares are referencing objects used to interface buttons or zones of applications, each square has a

name given by the user and they are registered by drawing them on top of the interaction zone to

interface. To register a square one must first select the desired stage to associate the square with.

Figure 34 depicts a snapshot of square registration for the BestWise visual authoring software. The

operation steps are labeled as 1, 2,3 and 4 in the figure.

(™ Application Inferfacer

! : x NEW ?\ ‘ Identifiers List
[mewintes ST a1 M | F?“m el
' 4]
NEW NEW NEW
_:&mlﬁﬂi!’ :m;mu) :M-.‘f.au]
(v
NEW NEW NEW
f:mmnr) ETTT (wibiag 1
Emlmlsl) A& RETEL o
O F/BIENER O LWBARE = o @ ' i

R Chek OMECFF
L ok CouRF

Cragging OHCFF

[t =

Figure 36. Registering a Square

Table 4 presents the description of the steps involved in registering a square object into the system.

Table 4. Registering a Square

Steps

High-Level View

Low-Level View

Select Stage

Administrator user
selects the desired stage

System loads all reference squares associated
with that stage if any and draws them on screen

Enter Visual
Environment
Composition Mode

Administrator user
presses on the Square
Handler button

The system modifies the current environment by
allowing all features used in composition of
environments

Drawing a square

Administrator user
draws a square on top of
the desired zone of the
application(3). Square
registration dialog
appears where a name to
identify this square is
entered by the user(4)

The system makes the square registration dialog
visible to the user

Submit Data

Administrator user
presses on the submit

button

A sqguare object gets stored to file by invoking
the Square Mapping Mechanism component’s
method in charge of square information

69

handling, storing the square’s given name, its
coordinates and dimensions into a file under the
corresponding stage directory

5.3.5 Registering an Actor Profile to Create Actors
Actor Profiles are used to separate and organize actors that reference dynamic content of the
different GUIs of the target application. Actor Profiles have a name that is auto-assigned by the

system. Table 5 presents the description of the steps involved in registering an actor profile into the

system.
Table 5. Registering an Actor Profile
Steps High-Level View Low-Level View
Add Actor Profile End user speaks the The StoreHandler component calls its

“addactorprofile” command internal method to register an actor
profile. Inside this method a directory
gets created with a name that is
auto-assigned by the system, this
folder is placed inside the Actors
directory under the current
applications path

As one can see the process is very similarto the one used to register stages or grid objects because
the same method is used to register all these type ‘of objects, however differentiating the way the

different objects are treated by applying constrained genericity [22].

5.4 Step 2) Interfacing theRecognizer- Microsoft’s Speech

Recognizer V.6.1 is used as an example

The Microsoft’s Speech Recognizer V.6.1 is selected as an example for the target recognizer and
its Development Kit [16] is used to set-up handle the basic functionalities of the speech engine and
to receive recognition content from it. First of all, we need to implement the grammar specification
program according to the speech recognizer’s grammar. The specification program consists of
interaction commands and the vocabulary used (Figure 35) to interface the target application [23].
Next, we need to define the recognizer’s grammar; a set of rules is defined through extensible
markup language (Figure 36), in order for the speech-recognition engine to recognize spoken
commands. This set of rules is used by the speech-recognizer to validate recognized words,
restricting the possible words or sentences chosen during the sound recognition process. In this way
a syntactic analysis is performed twice, once on the speech-recognition engine side and secondly in
the syntactic analyzing processes of our proposed system.

Each rule defines separate sentence context, composed sentences are formed through the reference

70

of existing rules to form a compound rule. Decisive selection is applied to provide more flexibility
in speech and avoiding re-definition of context. These rules are structured in the exact same way the
commands are defined in the system’s language definition, obeying the definition token placement
rules for operators and commands.

<I--BELLOW IS ALL APPLICATION DEPENDANT, SO ITS THE ONLY
PART OF THIS DEFFENITION THAT SHOULD BE MODIFIED-->
<l--variables for use with outsorting tool-->

<RULE NAME="sqrs">

<I> <P>save</P> <P>saveas</P> <P>player</P> <P>new</P>

<P>normal</P> <P>duplicate</P> Continues.....

Figure 37. Recognition Vocabulary

<RULE NAME="dragsquare" TOPLEVEL="ACTIVE"> <P>dragsquare</P> <0> <RULEREF NAME="sqrs"/> <0> <p>to</p>
<I> <RULEREF NAME="sgrs"/> <RULEREF NAME="coord"/> </I> </o>
<0> <0> by </0> <RULEREF NAME="mse"/> <0> <p>by</p>
<RULEREF NAME="mse"/> </0> </0> </0> <0><RULEREF NAME="then"/>
</0> </RULE>

Figure 38. Composed rule definition that uses references to other lower-level rules

The definition of a translation XML resource file (Figure 37) that associates commands in the
recognizer’s grammar format into context in the system’s internal language is made. This translation
resource allows for generic integration of other recognizers and languages into the system.

In this case, the translation was not necessary since the system’s internal language matches the one

specified at the speech recognizer; however it was done to illustrate this step.

<grammar>

<word NAME="Actor">Actor</word>
<word NAME="Profile">Profile</word>
<word NAME="boolean">boolean</word>
<word NAME="true">true</word>
Continues.....

Figure 39. Translation Repository

71

5.5 Step 3) Macro Command Registration

To simplify interaction with the recognizer, we define macro commands in the specification
program for target application interaction. Without the support for macros, users will have to speak
long sentences with complicated syntax to achieve a set of interaction tasks. For this reason we
compose context-free macros to abstract multiple tasks into one reusable command that

approximates to the user’s natural way of speaking and enhances speech recognition’s efficiency.

Figure 38 depicts a snapshot of a macro command registration for the BestWise visual authoring

software. The operation steps are labeled as 1,2,3,4 and 5 in the figure.

o R [——<] [] fuemes [ia] [-

Identifiers List
Bages | sqans | 24|+

scanarin ~
malnscreen
filebrnwser
mediaplayer
mediaoplions
soundsalectlon
wcanabuilder

actorhandler
uhjecthandior
pathhandier

soundhandier
uploadar
manvirditor L

EF—V[—F”EIE
a

I OHOFF
Cas sl [oomts <]] B ooy eempmermew L]

I uUsrgAcir _New Actor

Figure 40(a). Registering a Macro

@ Macro Composer

e B

<RULE NAME="drawpath"
TOPLEVEL="ACTIVE"><P=drawpath
«P=<RULE>

clickactor YV ACTORYY then clicksquare path
Wildcard

Figure 41(b). Registering a Macro

72

Table 6 presents the description of the steps involved in registering a macro command.

Table 6. Registering Macro

Steps

High-Level View

Low-Level View

Enter Macro Composer

End User enters the macro composer
mode by clicking on the “composer”
button(1)

The system loads the macro
composing GUI

Define a Macro
Command

End User first defines a keyword to
identify the macro command.

The user then composes the macro
command, defining it in the system’s
internal language. In this case a
macro utilizing wildcards is
composed so that it can be applied to
more than one actor(3)

The Macro Composer generates
the XML structure that will be
inserted into the speech engine’s
grammar definition so that the
macro keyword can be
recognized by the
speech-recognizer

Submit Macro
Command

End user presses the submit button(4)
and exits the composer(5)

The Macro Composer stores the
macro command in the macro
command repository and
regenerates the speech engine’s
grammar definition file,
inserting the XML structure
created for this macro command
in the previous step

5.6 Step 4) Interacting with the Interfaced Environment

The following scenarios focus on overall user interaction with the predefined interfacing

environment.

5.6.1

Registering an actor

Actors are used to reference dynamic content of applications so that they can be interacted with

through voice commands. In order to avoid the possible confusion, in our system, we organize

actors into actor profiles to avoid displaying all actors of an application at once.

To create a new actor, one must select an actor profile to associate it with, and then speak the “add

actor” command.

Figures 39(a) 39(b) 39(c) depict the snapshots of runtime actor registration for

the BestWise visual authoring software. The operation steps are labeled as 1 and 2 in the figures.

73

il T dentifiers List
_;&I m|mmm

dulute

A A WA AN =
| nf’,ll'a‘llq' =Y HPARNRN L A EI N s |

e | e h..h, At | peund | EDOTOUTOONN lbcet foback mu.umu

L i v
I Fecace Counre
e et et ¥ L ok OHIPT

. HICFF
[acter Praties v T Ao A] BRG] [Frogran Fies Destrdsammaiekioce Fromcl e ieteace aoe LoeLengn v
I Ui Actir Acker

I~ Show Gna

Figure 42(a). Registering an Actor

Figure 43(b). Registering an Actor

74

T ep— - o]

Figure 44(c). Registering an Actor

Table 7 presents the description of the steps involved in registering an actor.
Table 7. Creating Actor

Steps High-Level View Low-Level View

Select Actor Profile | End user speaks the: The Event Driven GUI component invokes the
selectactorprofiles" | Actor Handler component where the selection
Profilel command | of the actor profile takes place

Add actor The user then speaksthe | The — “clicksquare” command triggers an

“addactor” command. In—{-invocation to the mouseAl component through
this particular case the | the "Event Driven GUI component to set the

macro command clieking stile to “button interaction”.

“addactor ob2” isused | The square to click is selected, retrieving its
that translates to a coordinates through the Square Mapping
command written in the | Mechanism component that reads them from
system’s internal file. The mouseAl’s sendclick method is then
language “clicksquare invoked, performing a click on the specified
ob2 then addactor”. coordinates. The ActorHandler component

creates a visual label that contains the name of
the actor and places it on the corresponding
coordinates.

The coordinates information and auto-assigned
name of the actor is stored to file through the
StoreHandler component

5.6.2 Dragging an Actor

To be able to drag an actor, a grid must be present on screen in order to assign an actor a new
location. In the following scenario we first load a grid and then perform a “dragactor” command to
drag an actor to a specific coordinate of the grid. Figures 40(a) 40(b) 40(c) depict the snapshots of

dragging an actor. The operation steps are labeled as 1 and 2 in the figures.

75

