

國 立 交 通 大 學

資訊工程研究所

碩士論文

連結語音辨識系統及應用軟體系統之介面語音之設計及製作

The Design and Implementation of an Interfacing Framework for

Bridging Speech Recognizers to Application Systems

研究生: 蔣加洛

指導教授: 陳登吉教授

中 華 民 國 九 十 四 年 七 月

 ii

連結語音辨識系統及應用軟體系統之介面語音之設計及製作

The Design and Implementation of an Interfacing Framework for
Bridging Speech Recognizers to Application Systems

研究生: 蔣加洛 Student: Jan Karel Ruzicka
指導教授: 陳登吉教授 Advisor: Dr. Deng-Jyi Chen

國立交通大學

資訊工程研究所

碩士論文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree

Master of Science

In

Computer Science and Information Engineering

July 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年七月

 iii

The Design and Implementation of an Interfacing Framework for
Bridging Speech Recognizers to Application Systems

Student: Jan Karel Ruzicka Advisor: Dr. Deng-Jyi Chen

Department of Computer Science and Information Engineering

National Chiao Tung University

ABSTRACT
Current solutions that aim at bridging speech recognizers with applications use an ad hoc approach

and lack of a generic and systematic way. Such recognizer’s interfacing approaches usually lead to

tightly coupled systems where one application is wrapped by a specific recognizer through a

low-level programming implementation that makes future modifications very difficult. Also,

without supporting mechanisms to abstract group of actions into single reusable macro-level

commands to simplify user interaction tasks, intense and time-consuming overheads for end users

are created. Applications, especially multimedia oriented ones deal with highly dynamic content,

interfacing and keeping track of this kind of content is not yet addressed.

In this thesis research, an attempt to provide an interface framework for bridging

speech-recognizers to applications through a generic and systematic approach is proposed to

overcome the above challenges and limitations. Specifically, a script language is designed and

implemented that allows users to define the interfacing commands between a speech recognizer and

application software. These commands are executed on a user-composed visual interfacing

environment that sits on top of applications and acts as a reference layer for interaction. With this

approach, interaction commands can be dynamically scripted to simplify user interaction and allow

more natural speech commanding. Moreover it allows immediate modifications to be made to an

application interfacing environment by simply drawing and registering application zones, without

the need of relying on low-level programming for changes to take effect. Our approach also allows

for the coexistence of multiple application environments, allowing integration of speech recognition

to more than one application at once. A prototype interface framework system has been constructed

and used to demonstrate the feasibility and applicability of the proposed interface framework.

 iv

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude to Dr. Deng-Jyi Chen, who as my advisor and a

friend guided me in a good direction through out all the phases of this research and was always

committed to spend the great amount of time and effort he did in brainstorming and discussing

many areas of this study. I thank him for his patience, dedication, understanding and care.

I also want to express my gratitude to Professor Yih-Ru Wang for his opinions and advice that

provided help for this thesis and to Professors Pao-Ta Yu and Chin-Huang Lee.

I would like to thank all my family for always encouraging me to look up and keep moving

forward during the good and bad times; and for all their support and care throughout the years,

without them my outcome would have not been the same.

I would like to thank all my friends for being there and sharing their moments and living this

life on my side.

Finally, this thesis is dedicated to my mother, the best row model I could ever have.

 v

TABLE OF CONTENTS

ABSTRACT... iii

List of Figures .. ix

List of Tables.. xi

CHAPTER ONE ... 1

Introduction... 1

1.1 Motivation..1

1.2 Current Recognizer Integration Methods...2

1.2.1 Wrapping Integration Approach...2

1.2.2 OS Integration approach ..3

Current Solutions ..3

Voxx 4.0 ..3

VSpeech 1.0 ..4

IVOS 2.0.1 ..5

1.2.3 Challenges and Limitations of Current Recognizer Integration6

1.3 The Proposed Solution...7

1.4 Thesis Organization ...9

CHAPTER TWO .. 10

Related Technologies Used for the Development of the Interface Interfacing Framework 10

2.1 Introduction..10

2.2 “See-Through Interface” Paradigm..10

2.3 Script Languages..13

2.4 Speech Recognition Engines..14

2.5 Conclusion ...17

CHAPTER THREE... 18

System Architecture Design and Implementation of the Proposed Interface Interfacing Framework

... 18

3.1 Introduction..18

3.2 The Interface Interfacing Framework ..18

3.2.1 Interfacing Input Module ...19

3.2.1.1 Interfacing Input Module Components ..20
3.2.1.2 Macro Command Registration and Interpretation20
3.2.1.3 Interfacing Input Module Processes...21

 vi

3.2.2 Kernel Module ...23

3.2.2.1 Kernel Module Components ..23
3.2.2.2 Kernel Module Interpretation Process ...24
3.2.2.3 Kernel Module Interfacing Object Handling ...25

3.2.3 Interfacing Output Module...28

3.2.3.1 Interfacing Output Module Components ...28
3.2.3.2 Interfacing Output Module Processes ..30

3.3 Design Patterns ..32

3.3.4 Facade Design Pattern..32

3.3.5 Interpreter Design Pattern ..33

3.3.6 Proxy Design Pattern ...33

3.3.7 Observer Design Pattern ..34

3.3.8 Factory Design Pattern...35

3.4 Control Patterns..35

3.5 Layered Invocation Scheme...36

3.5.1 Layered Sequential Invocation Example ...37

3.6 Conclusion ...39

CHAPTER FOUR... 40

Interfacing Script Language Definition .. 40

4.1 Introduction..40

4.2 Data types and Syntax..40

4.2.1 Identifiers ...41

4.2.2 Constants..42

4.2.3 Operators..43

4.2.4 Separators and Terminators..44

4.2.5 Reserved Words ...45

4.2.6 Input Element Classification..46

4.3 Semantics ...46

4.3.1 General Static Semantics ...46

4.3.2 Command Statements ..47

Assignment Commands ...47
Action Commands..52
Selection Commands ...58

4.4 Lexical and Syntax Analysis ..60

4.4.1 Lexical Analysis...60

4.4.2 Syntactic Analysis ..61

 vii

4.5 Conclusion ...62

CHAPTER FIVE... 63

Application Examples and Evaluation.. 63

5.1 Introduction..63

5.2 Procedures for Using the proposed Interface Framework to Interface an Application

to a Speech Recognizer ...63

5.3 Step 1) Registration and Interfacing of the Target Application - “BestWise 編輯手

version 2004” is used as an example ..65

5.3.1 Registering an Application...65

5.3.2 Registering a Stage...66

5.3.3 Registering a Grid ..67

5.3.4 Registering a Square ..69

5.3.5 Registering an Actor Profile to Create Actors..70

5.4 Step 2) Interfacing the Recognizer- Microsoft’s Speech Recognizer V.6.1 is used as

an example ..70

5.5 Step 3) Macro Command Registration...72

5.6 Step 4) Interacting with the Interfaced Environment...73

5.6.1 Registering an actor ...73

5.6.2 Dragging an Actor..75

5.6.3 Utilizing Wildcards ..77

5.6.4 Utilizing the Capturing Method ...79

5.6.5 Interacting With the Painting Mode...82

5.6.6 Dragging Objects Referenced by Squares and Coordinates84

5.7 Evaluation ..85

5.7.1 What to be evaluated..86

5.7.2 How to evaluate it ..86

5.7.3 Evaluation Results..88

5.8 Conclusion ...89

CHAPTER SIX... 90

Conclusions and Future Work... 90

6.1 Conclusion and Major Contributions of this Research ..90

6.2 Future Work ...91

DEFINITION OF TERMS.. 92

REFERENCE APPENDIX ... 93

 viii

APPENDIX I .. 95

SPEECH ENGINE GRAMMAR DEFINITION .. 95

APPENDIX II ... 107

SYSTEM’S LANGUAGE BNF DEFINITION.. 107

 ix

List of Figures
Figure 1. Wrapping Integration ..2

Figure 2. Windows Environment Integration ..3

Figure 3. The Voxx 4.0 ..4

Figure 4. The VSpeech 1.0..5

Figure 5. The IVOS 2.0.1 ..6

Figure 6. The Proposed Interfacing Approach...7

Figure 7. The 3D Visualization and Manipulation in an Immersive Space................................. 11

Figure 8. The Conference Agent Interfacing ..12

Figure 9. Transparent Interface ..12

Figure 10. Interfacing the Physical World with the Digital ..13

Figure 11. A Recognition Path Example ...16

Figure 12. The proposed Interface Interfacing System ...19

Figure 13. Macro Composer/Interpreter ..21

Figure 14. Command Translation Process..22

Figure 15. Command Interpretation Process ...25

Figure 16. Storing Graphic Application Objects..26

Figure 17. Storing Non-Graphic Objects ..27

Figure 18. Deleting Application Object...27

Figure 19. Interfacing Objects Hierarchical Organization ...28

Figure 20. Unreferenced Application ..29

Figure 21. User Referenced Application ...29

Figure 22(a). Visual Interfacing Environment Interaction ...31

Figure 22(b). Visual Interfacing Environment Interaction ...31

Figure 23. Facade Design Pattern..32

Figure 24. Interpreter Design Pattern...33

Figure 25. Proxy Design Pattern..33

Figure 26. Observer Design Pattern ..34

Figure 27. Factory Design Pattern ..35

Figure 28. Example of Sequential Invocation ..37

Figure 29. Token Patterns Transition Diagram ...60

Figure 30. Leftmost derivation parsing tree of the dragSquare command61

Figure 31. Registering an Application...65

 x

Figure 32. Registering a Stage ...66

Figure 33(a). Registering a Grid ..67

Figure 33(b). Registering a Grid..68

Figure 34. Registering a Square ..69

Figure 35. Recognition Vocabulary ...71

Figure 36. Composed rule definition that uses references to other lower-level rules71

Figure 37. Translation Repository...71

Figure 38(a). Registering a Macro ...72

Figure 38(b). Registering a Macro...72

Figure 39(a). Registering an Actor ..74

Figure 39(b). Registering an Actor ..74

Figure 39(c). Registering an Actor ..75

Figure 40(a). Dragging an Actor ..76

Figure 40(b). Dragging an Actor..76

Figure 40(c). Dragging an Actor ..77

Figure 41. Utilizing Wildcards ...78

Figure 42. Utilizing a Macro ..79

Figure 43. Defining a Path through Capture..80

Figure 44. Capturing Screen ..81

Figure 45. Defining a Path, Continued ...82

Figure 46(a). Interacting with the Paint Mode ...82

Figure 46(b). Interacting with the Paint Mode...83

Figure 46(c). Interacting with the Paint Mode ...83

Figure 47(a). Dragging Objects Referenced by Squares and Coordinates84

Figure 47(b). Dragging Objects Referenced by Squares and Coordinates85

 xi

 List of Tables
Table 1. Registering an Application ..66

Table 2. Registering a Stage ...67

Table 3. Registering a Grid ..68

Table 4. Registering a Square ..69

Table 5. Registering an Actor Profile ..70

Table 6. Registering Macro ..73

Table 7. Creating Actor ..75

Table 8. Dragging Actor ...77

Table 9. Utilizing Wildcards ..78

Table 10. Defining a Path through Capture ...80

Table 11. Defining a Path, Continued ...81

Table 12. Paint Mode Interaction..84

Table 13. Square to Square Dragging ...85

Table 14. Comparison of our System against Application Challenges...88

 1

CHAPTER ONE
Introduction

Graphic user interfaces that utilize recognition control have been playing an important role as

an interfacing technology that makes possible the use of application software to people that are not

able to interact with computers through traditional input devices. Advances in recognition

technology have opened wide possibilities to these type of users, however current ways of

interfacing applications with recognizers are time consuming and result in highly coupled

applications that lack customization and flexibility, reducing the speech-driven application domain

to users that need them.

1.1 Motivation
Interfacing applications with various recognition technologies (such as speech, gesture, and color

recognition, to name a few) will impact current methods of interaction in the area of

human-machine interfacing technology. Current solutions that aim at bridging speech recognizers

with applications use an ad hoc approach and lack of a generic and systematic way. Such a

recognizer’s interfacing approaches usually lead to tightly coupled systems where one application is

wrapped by a specific recognizer through a low-level programming implementation that makes the

future modifications very difficult. Also, without supporting mechanisms to abstract group of

actions into single reusable macro-level commands to simplify user interaction tasks creates intense

and time-consuming overheads for end users. Applications, especially multimedia oriented ones

deal with highly dynamic content, interfacing and keeping track of this kind of content is not yet

addressed. A generic application-independent, speech-driven interface generator framework that

allows the generation of a modifiable visual interfacing environment without the need of dealing

with low-level details must be quested.

The above challenges and limitations are taken into consideration for the conduction of this study as

this research attempts to provide an interface framework for bridging speech-recognizers to

applications through a generic and systematic approach. Specifically, a script language is designed

and implemented that allows users to define the interfacing commands between a speech recognizer

and application software. These commands are executed on a user-composed visual interfacing

environment that sits on top of applications that acts as a reference layer for interaction. With this

 2

approach, interaction commands can be dynamically scripted to simplify user interaction and allow

more natural speech commanding.

1.2 Current Recognizer Integration Methods
Currently at least two approaches have been used to interface speech recognizers with application

software. Bellow we point out the main features of these two approaches.

1.2.1 Wrapping Integration Approach
A wrapping integration approach focuses on a one-to-one model by integrating one recognition

engine with a specific application. The integration is done through the recognizer’s API and the

application’s components through a direct and tightly coupled way (Figure 1). The application is in

charge of setting up the recognizer’s environment, grammar domain, receiving recognition results

and interpreting these results to perform the respective internal invocations to execute interactions

on its GUI [1]. As it can be foreseen, in Figure 1, the integration results is one application interfaced

with one speech recognizer through a interfacing layer that is in charge of directly mapping speech

commands into actions on the application’s components.

Figure 1. Wrapping Integration

Most of speech-driven robots adopt such interfacing approach for its design and implementation.

Such is the case of AT&T’s Speech-Actuated Manipulator (SAM) [2] that understood spoken

commands via telephone and performed the respective actions. Such complex machines must adopt

a wrapping integration approach do to the uniqueness that they present in their non standardized

internal system that most of the times differ amongst robots. Under such a tightly coupled-system, it

is not surprising that any modifications on the low level application software’s commands will

result in the recoding of the speech interface, leading to the recompilation of the whole system.

 3

1.2.2 OS Integration approach
An OS integration approach focuses on a one-to-many integration by integrating one recognition

device to an Operative System’s windows environment where applications reside. In a similar way

to the wrapping integration approach, the integration is done through the recognizer’s API and the

bridged system’s internal components. This approach adds a reference layer by interfacing

applications through the Operating System’s API that performs simplistic actions on a focused

windows environment where application’s GUIs belong. In this way interfacing and interacting

directly with the operating system allowing it to respond through interactions with applications of

its windows environment. Allowing one speech recognizer to interact with the domain of

applications contained in a windows environment at a given time (Figure 2).

Figure 2. Windows Environment Integration

Current Solutions
Three application systems Vspeech 1.0 [3], Voxx 4.0 [4] and IVOS 2.0.1 [5] that utilize an OS

integration approach where chosen for discussion to provide a clearer view on how current solutions

are designed and what features they provide to users.

Voxx 4.0
Voxx 4.0 [4] is a speech recognition program that incorporates dictation and voice commands for

the windows environment. Its main features include:

(1) Window manipulation and menu navigation through voice commands

(2) Document and application opening through simple shortcut words

(3) Custom shortcut creation

To accomplish menu navigation, Voxx invokes OS API parsing functions to retrieve identification

of objects present in the windows environment. These Identifiers are used to build the dynamic

 4

interaction vocabulary for the speech recognizer. When any recognition occurs, it invokes the OS

API functions that perform native actions on the recognized identifiers. Figure 3 shows the shortcut

list displayed to the user that is used for viewing the current recognition domain.

Figure 3. The Voxx 4.0

VSpeech 1.0
VSpeech 1.0 [3] is a speech recognition program that incorporates dictation and voice commands in

the same fashion as [4]. It differs in the following:

 (1) Internet “link” Navigation Support for Microsoft’s Internet Explorer

 (2) Lacks user-shortcut definition

VSpeech functions just like Voxx, presenting a listing of words that represent the current content

that can be spoken to invoke actions on the windows environment (Figure 4). Unlike Voxx,

VSpeech adds URL links found on focused IE browser to the recognition list, so that they can be

accessed by speaking their reference name.

 5

Figure 4. The VSpeech 1.0

IVOS 2.0.1
IVOS 2.0.1 [5] is also another speech recognition program that incorporates dictation and voice

command capabilities. It differs from VSpeech and Voxx in the following ways:

(1) Extends shortcut commands functionality by allowing the user to register synonyms to

execute the same actions with different vocabulary

(2) Introduces VoiceTouch technology that enables the computer to learn routines performed

by the user as he interacts with the system. This enables routine repetition if needed by

the user.

IVOS is a more advanced solution when compared to VSpeech and Voxx, since it introduces a

mechanism that simplifies interaction by allowing repetitive tasks to be done by the system. Also it

shows signs of a more flexible interaction environment, allowing different vocabulary for

referencing the same content. Although it adds extensibility, it does not tackle most of the common

limitations that are found in speech-recognition applications. Moreover, the interaction environment

imposed to the user compares in a close range of constraint with current solutions even though it

attempts to provide a more friendly interfacing mechanism. Figure 5 depicts the outlook of the

IVOS interaction environment.

 6

Figure 5. The IVOS 2.0.1

1.2.3 Challenges and Limitations of Current Recognizer Integration
Limitations suffered by the current integration approaches mostly result from the direct tightly-bind

integration of a speech recognizer with either an application or a window’s environment. The

following challenges and limitations exist in current approaches:

‧ Non-Generic:

– Current approaches leave no flexibility for future modifications

– Current approaches lack a generic recognizer interfacing system that can truly

coexist with more than one application environment

– Current approaches lack a graphic interfacing environment that interfaces

application’s buttons, containers and menu items

‧ Complex:

– Current approaches focus on recognizer integration through the back-end of

applications requiring low-level programming and system design knowledge.

‧ When integrating applications, the interfacing process to bind recognition

results to internal application actions must be redesigned each time

‧ Modification of application’s interfacing environment require re-compilation

of source code

 7

‧ Non-Customizable:

– Current approaches’ tightly coupled system design does not allow the customization

of the interaction environment by the user

‧ Allows modification of the vocabulary used for speech only

– Current approaches do not efficiently separate and handle recognition context

‧ Inefficient:

– Lacks of a post-interfacing mechanism to abstract a group of actions into single

commands to minimize user interaction tasks

‧ Interaction is based on a “One spoken command yields to execution of one

hard-coded Action＂basis

1.3 The Proposed Solution

Figure 6. The Proposed Interfacing Approach

Our approach consists of an application-independent visual interfacing environment generator to

bridge a speech recognizer with applications’ front-end (Figure 6). In our approach, to incorporate

speech recognition to applications, a user through our system composes a visual interfacing

environment by drawing reference zones on top of applications’ GUI’s interactive areas, without the

need of programming the integration. User-generated visual interfacing environments for

applications are interacted with by the system as it processes user’s requests to perform interaction

on the environment’s zones that are graphically positioned over interaction objects of applications.

Our approach is an improvement of an OS integration approach. The proposed system interacts with

target applications by performing invocations to the Operating System’s API that then manipulates

 8

its input-device and window environments to perform interactions directly on the visual interfacing

environment that lays above target applications.

Our approach aims to tackle current challenges and limitations of recognition integration to

applications by providing:

Generic Interfacing:

 -Fitting more than one application environment

-Allowing simultaneous interfacing content handling for multiple applications resulting in easy

application swapping by simply loading the corresponding interfacing profiles that belong to

an application.

Flexibility:

 -Adopting Front-End custom interfacing through a transparent reference layer

-Developing an interfacing visual environment that allows users to define their specific

speech-driven visual environment through the application’s front end without doing any

low-level programming tasks.

-Allowing visual modification of interfacing content during runtime with out affecting other

application’s recognition interfaces, and without the need of recompilation of application’s

source code to make changes take effect.

Efficiency:

-Integrating a language definition that allows the interaction with the visual interfacing

environment through spoken commands and that also facilitates composition of macro

commands by users to wrap complex and lengthy tasks into single context-free reusable

commands, increasing speech recognition efficiency and approximating the way to speak to a

more natural one, with out utilizing long and complex sentences to accomplish multiple tasks

at once.

Our approach also aims at supporting user interaction with dynamic content of applications during

run-time by keeping track of these entities and their different states as the user interacts with them.

 9

1.4 Thesis Organization
The organization of this thesis is divided into two discrete parts. The first part focuses on the

challenges present in current approaches and focuses in the foundations that will allow overcoming

these challenges. The first chapter is concerned with the importance of the challenges for current

recognizer interfacing technologies and how these challenges motivate our study. Chapter Two

reviews the technologies involved in this study that are considered for tackling the challenges found

in current interfacing solutions.

The second part of the study is concerned about the design and implementation of the proposed

system. Chapter Three introduces the aspects of our proposed solution and provides a low-level

detailed system architecture design context on how our approach was designed from the bottom up.

This Chapter then goes into how the different entities that result from the system architecture design

interact whit each other and what interaction steps are taken by these entities to achieve the

common goal of setting up a visual interfacing environment and provide a successful interaction

with the target application. Chapter Four consists of the definition of the language that is

incorporated to our system. Chapter Four un-wraps every aspect of the designed language, its data

types, rules, syntax description, and the interpretation steps involved in command processing. This

is followed by a detailed analysis and qualitative evaluation of the system in terms of the specific

criteria identified for the successful development and deployment of the proposed system in

Chapter Five, by setting up and performing common interfacing and interaction scenarios. Chapter

Six concludes the paper and offers suggestions for future research.

The reference appendix consists of the listing of previous work referred to and/or referenced in this

study.

Appendix I consists of the speech-engine’s grammar definition that mirrors that of our designed

language.

Appendix II consists of our system’s language definition in BNF format.

 10

CHAPTER TWO

Related Technologies Used for the Development of the

Interface Interfacing Framework

2.1 Introduction
Creating a successful recognizer interfacing system is dependent on several technologies. These

technologies individually belong to different fields of study, however when implemented in a

cooperative environment, these technologies merge to contribute towards the vision of Interface

Interfacing. This chapter goes into detail about each of the technologies involved in the

development of the interface interfacing framework, and gives views of related works for a deeper

understanding of each. This chapter serves as the foundation of the overall technological

background involved in this study and provides a brief overview of the proposed solution and how

it incorporates these technologies.

2.2 “See-Through Interface” Paradigm
In our work we use the “See-Through Interface” paradigm to construct the visual interfacing

environment that allows application front-end integration with recognizers through the drawing of

reference zones.

The “See-Through Interface” paradigm [6] focus on interfacing tools that appear as a transparent

sheet of virtual glass called “Toolglass” between an application and a traditional mouse cursor.

These interfaces provide additional views of application objects. The “See-Through” interface

provides a new style of interaction that better exploits the user’s every day skills. They can be used

to reduce steps, cursor motion and errors; moreover they do not require dedicated screen space since

they lay on top of the application. These interfaces provide rich context-dependent feedback and the

ability to view details and context simultaneously. These widgets [6] can be combined to form

operation and viewing macros to simplify use. This paradigm provides mechanisms to draw grids

on applications to reference zones that may need this type of guidance, such as drawing panes, or

object selection screens. An application may use many views that require more than one “see

through interface”, for this a managing system is presented to load the corresponding transparent

interfaces of each screen, in this way shifting Toolglasses depending on the application content.

 11

The “See-Through Interface” parading is adapted to many research areas. In [7], the authors create

an immersive environment that submerges users into a virtual space, effectively transcending the

boundary between the real and the virtual world. This virtual 3D world can be manipulated by the

user without the need of relaying on traditional input devices such as the mouse and keyboard for

interaction. This study adapts a bimanual gesture interpreter and parser that recognizes and

translates the user’s arm motions to commands that invoke actions on a “Toolglass” based

transparent interface that lays above this 3D environment (Figure 7). The transparent Toolglass

interface paradigm is adapted as a gesture interface widget for spatially immerse environments. The

user is physically surrounded by this environment as it is projected on walls of a room like structure

where the user stands in the middle and uses hand gestures to move the transparent interface to the

different locations of the environment to interact and view information of application objects

without the need of intermediate hardware such as gloves, 3D-Mouse, or VR headgear. Actions are

executed by clicking through one of those wedges, and the action is applied to the object directly

behind the Toolglass.

Figure 7. The 3D Visualization and Manipulation in an Immersive Space

Another work where the “See-Through Interface” paradigm is adapted is Collaboration

Transparency in the DISCIPLE Framework [8]. In this work a framework to share

collaboration-transparent single-applications is developed. To share these applications, a conference

agent is placed between the application’s GUI and the Windows System (Figure 8). The conference

agent intercepts the user input events by adopting a special transparent Toolglass interface to

intercept the events destined for the shared application window.

 12

Figure 8. The Conference Agent Interfacing

This top-down approach intercepts all the user events (mouse, keyboard, input focus events) using a

transparent GUI component without occluding the under-laying applications (Figure 9). Each time

an event gets intercepted by the glass-pane, it is dispatched by the agent to the target application

object. Such transparent pane is used to filter unwanted invocations to application objects in a

collaborative environment when two or more users may be sharing a single application at the same

time and such interaction may create conflicts.

Figure 9. Transparent Interface

Futuristic approaches such as Parsimony & Transparency in Ubiquitous Interface Design [9] focus

on transparently integrating aspects of the digital world into real life artifacts, by providing

ubiquitous interfaces to computation that do not obscure the highly redefined interaction modalities

of the host artifact in the physical world. Coexistence of the physical and the digital worlds leads to

more learnable interfaces. Here a Toolglass like interface is projected upon real life objects (Figure

 13

10), and it is used to mark the status of the objects during time. A board game is chosen in the study

as the physical environment to interface, adding features to the classic game such as game recording

and automatic move clock without altering the physical environment. These interfaces, like

Toolglass based ones provide different views and information about the interfaced objects attributes

when interacting with them physically.

Figure 10. Interfacing the Physical World with the Digital

2.3 Script Languages
In our work we apply script languages to enhance interaction efficiency through the definition and

use of macro commands that allows abstraction of actions into single context-free reusable

commands.

Scripting focuses on connecting diverse pre-existing components to accomplish a new related task

[10]. Those languages which are suited to scripting are typically called scripting languages. Script

languages are viewed as the "glue" that puts several components together; thus they are widely used

for creating and interacting with graphical user interfaces. Scripts are typically stored only in their

plain text form (as ASCII) and compiled each time when they are invoked. A scripting language

controls the operation of a normally-interactive program, giving it a sequence of work to do all in

one batch such as a macro, storing a series of editing commands in a file, and telling an editor to run

that "script" as if those commands had been typed interactively. Script languages generally have

the following properties:

• Source code is present at run time in production system.
• Use of an interpreter or VirtualMachine is generally required.

 14

• Variables, functions, and methods typically do not require type declarations. There are
automated conversions or equivalence between types.

• The ability to generate, load, and interpret source code at run time through an eval function.
• Interface to the underlying system components, in order to run other procedures and

communicate with them.

In [11], Koong utilizes EDBL (Electronic Book Description Language) script language to hold

electronic book projects description files. An interpreter is used along a playback system to present

the multimedia effect of authored scripted documents that when processed result in the playing of

the final presentation by having the interpreter interpret the description commands found in the

script file dynamically. The playback system then executes the associated actions based on the

interpretation results of the script instructions.

The language specification of the designed script language for this study is highly influenced by the

Java Language Specification [12] to establish its syntactic rules; its design is simple enough to

allow programmers to quickly achieve fluency in the language. Unlike Java that is strongly typed by

distinguishing between compile-time errors and the ones that occur at run-time, our language design

is based on Just-In-Time compilation by compiling the code as necessary, running it in an

interpreted framework [13]. In this way code that is not executed does not get compiled,

assimilating our language more to a console command language, but however integrating macro

composition functionalities that also allow our language to behave as scripted. Our language

approach is very simplistic, being a script language that does not focus on creating objects or

maintaining class-like structures but instead interpreting batches of commands.

WinBatch [14], a commercially available high-level macro scripting language takes a similar

approach, by designing a language that provides batch automation for Windows systems by

allowing users to compose macros that are interpreted utilizing Just-In-Time compilation to

automate PC management, business processes, network administration tasks, and overall system use

in order to relax the user’s interaction overhead. WinBatch accomplishes the above by interfacing

directly to the operative system’s underlying system components to communicate and run

procedures involved in the automation of user’s tasks.

2.4 Speech Recognition Engines

Speech Recognition is not a new entity. It first evolved over 30 years ago (Stevens, 1960). This

continued growth in technology opened the doors to various applications of Speech Recognition.

Speech Recognition not only became a popular medium for use by professionals in the working

 15

world, but also an exceptional tool for people with disabilities [15]. Features of Speech Recognition

systems have progressively advanced over the last 35 years. Initially, in 1972, dictation and word

processing systems were combined to formulate the first Speech Recognition system (Lange, 1993;

Meisel, 1993) [15]. At this point, systems could only handle discrete speech dictation where pauses

between every word spoken were required for the signal to be processed. Today, it is difficult to

find any programs that still use discrete speech; most programs have the capacity to handle

continuous speech where the speaker talks naturally, without the need to pause between every word.

Speech applications often use context-free grammars (CFG) to parse the recognizer output and in

some instances, to act as the recognizer's language model, Speech recognition engines use CFGs to

constrain the user's words to words that it will recognize [16].

CFG is based on grammatical rules that are meant for proper recognition of words. Speech

recognition grammar provides the interface of the speech recognizer to the corresponding

operations that take place at the target application at the moment of interaction. Complex grammar

definition is achieved by organizing rules into hierarchical structures, allowing higher level rules to

be composed of references to lower-level rules. Phrases and sub-expressions are represented by

separate rules and combined together to form complete sentences. When interpreting a rule decisive

selection can be applied to provide a more flexible way of speech and avoiding rules re-definition.

Rules restrict the word choices during the recognition process. Applications that are interfaced with

speech recognizers listen to context or events that are triggered when a rule is recognized.

Depending on the context, the applications takes the corresponding actions, speech recognition

engines only handle the recognition job. Phrases spoken use each grammar rule element to

determine the recognition path (Figure 11) by traversing the grammatical rule structure.

 16

Figure 11. A Recognition Path Example

Applications should separate dynamic rule content from static rule content to implement good

grammar design and to improve grammar compiler performance. Applications could create a

separate rule (isolated in its own grammar) that contained only the static rule content, then the static

grammar would contain a rule reference to the dynamic content.

The chosen speech recognizer for this study is Microsoft’s Speech-Recognizer V.6.1. [17]. This

recognizer contains two different types of speech recognition engines, which are the ISpRecognizer

type that is shared amongst several applications by instantiation and the InProc type which is

focused for performance hungry applications in which each application has its own

ISpRecognizer[16]. In this study the ISPRecognizer type engine is used. Grammar definition for the

Microsoft’s Speech-Recognizer is CFG rule-based.

A special component of the system was chosen to directly interface the speech recognition engine,

this component handles recognized context and distributes it to the rest of the system for further

processing to eventually interpret it into actions on the application’s interfacing environment. The

interfacing component is the only entity in the system that presents a tightly coupled binding with

the speech recognition engine as it is integrated into the component through calls of its API to

provide a manipulation interface of the recognizer to the rest of the system.

 17

2.5 Conclusion
This chapter presented an overview of the foundation technologies required to base an interface

interfacing study on. This chapter provided an insight into the technological needs for the

implementation of an environment that tackles the current challenges stated in the previous chapter

and how each of these technologies contribute towards the vision of Interface Interfacing. Chapter

Three introduces our proposed approach and goes into high detail on the entities that compose it and

how they behave with one another to accomplish a common goal of enhanced interfacing with

target applications.

 18

CHAPTER THREE

System Architecture Design and Implementation of the
Proposed Interface Interfacing Framework

3.1 Introduction
This chapter introduces the proposed system, the Interface Interfacing Framework. The system is

discussed in great detail from a high to low level viewpoints to provide a complete view of the

system from various perspectives. Focusing on the modules that compose the system and in what

way each of them is responsible of providing an overall interfacing of a target application with a

recognizer.

3.2 The Interface Interfacing Framework
The proposed system interacts with target applications by performing invocations to the Operating

System’s API that then manipulates its input-device and window environments to perform

interactions directly on the system’s “Transparent Interface” that lays above target applications. It

adapts the “ See-Through Interface ＂ Paradigm to support Front-End custom interfacing of

applications, in this way allowing visual modifications to the interfacing environment without the

need of recompilation of source code. Our approach integrates a script language that allows

real-time interaction through commands with the interfacing environment of an application and also

facilitates composition of macro commands by users to wrap complex and lengthy tasks into single

context-free reusable commands. The system is designed in a modular way by adapting specialized

entities, such as the recognizer interfacing component that integrates a speech recognizer and allows

localized integration of future recognizers through modifications on this component while leaving

the rest of the system intact. The overall system architecture of the proposed Interface Interfacing

Framework is depicted in Figure 12.

 19

Figure 12. The proposed Interface Interfacing System

The interfacing of recognition devices and applications is done through two different interfacing

layers that interact directly with the system’s kernel (Figure 12). The Interfacing Input Module is in

charge of interfacing with recognizers and processing recognized content into a format compatible

with the system. The processed stream is sent to the Kernel where the parsing and interpretation of

commands take place, here a central invocation mechanisms, delegates invocation requests for the

Kernel to the components of the Interfacing Output Module that are the ones that interact directly

with the Interfacing Visual Environment to provide interaction with the target application by

manipulating the window’s environment and emulating input device interactions. To develop our

proposed system we took a service-oriented approach by distributing individual services to

subsystems of our solution to later proceed with the integration of these, to provide a robust,

flexible and modular design. In the following subsections, we elaborate the details of each module

inside the proposed Interface Interfacing Framework.

3.2.1 Interfacing Input Module
The main function of the Interfacing Input Module is to interface the system with recognition

devices, handle the interfacing, setup and initialization of these, retrieve recognition content and

process it by translating it into a format compatible with the system’s language commands

definition.

 20

3.2.1.1 Interfacing Input Module Components

Textual Command Receiver

 In charge of retrieving the content recognized by the Speech Recognizer, including the commands

that are spoken by the users, communicating the recognized streams to the Language Translator,

those are the main task of the Textual Command Receiver. In this research, the Microsoft’s

Speech-Recognizer V.6.1 [17] was chosen as the target speech recognizer. The interfacing was done

through the speech engine’s Standard Developing Kit (Microsoft’s Speech SDK V.5.1) through API

calls on the Textual Command Receiver.

Language Translator

The language translator takes care of translating the spoken text to the language that is understood

by the internal system. Once the translation is completed, it passes down the translated text to the

Macro-Interpreter component.

Macro-Composer/Interpreter

 The Macro Composer/Interpreter is in charge of providing the mechanism of macro command

composition by allowing the user to wrap sequences of commands in the system’s internal language

into single reusable macros. This component interprets macros recognized by the speech recognizer

by loading their corresponding code into the system.

Wildcard-Translator

The Wildcard-Translator takes care of replacing wildcards found in macros with the identifiers of

currently focused interfacing objects. In this way, it provides a generic and context-free command

composition environment.

3.2.1.2 Macro Command Registration and Interpretation

Although interacting with the proposed system by speaking commands according to the syntax

provided by the defined language is possible, it requires a high learning curve and overall

interaction may be degraded. The system contains a mechanism that allows for the composition of

macro commands that are used to perform complex tasks through the invocation of single and

reusable commands. The macro commands are defined using the system’s internal language and add

an extra layer of abstraction but simplifying the user interaction.

 21

The registration of macro commands (Figure 13) takes place at the Developer GUI component

where the user composes the macros and assigns them a referenced identifier (“keyword”). During

the composition of a macro command a XML structure is dynamically created for speech

recognition purposes. When the macro is submitted, the Macro Composer inserts this XML

structure into the speech recognition engine’s grammar definition so that a reference to the macro

can be successfully recognized when spoken, achieving immediate speech recognition of macros as

they are composed. In this way, acting as a black-box mechanism, transparent to the user and

avoiding the use of an external XML editor to add recognition of macros to the recognizer.

The macro command itself gets stored to file through the Reference Object Handler. When a macro

command’s reference keyword is spoken, the macro is loaded from file and executed as a regular set

of commands would.

Figure 13. Macro Composer/Interpreter

3.2.1.3 Interfacing Input Module Processes

Whenever the speech recognition engine recognizes spoken phrases, it outputs those phrases as

 22

text streams in the spoken language, according to its XML Grammar Definition. The stream of text

is then passed down to the Language Translator Component where the first translation takes place.

The Language Translator breaks the stream of text into single words, and queries word by word for

a corresponding match in the Language Translation Resource to translate them to their

corresponding value in the system’s language. Once all the phrases are translated to the system’s

native language, the second translation of the process takes place. The Macro Interpreter receives

the stream of text and checks if the stream of text contains keywords that identify macro

definitions, it does so by querying the Macro Data Repository for matches. If a match is found, the

keyword inside the stream of text gets replaced with the one found. Once a macro is loaded, it is

passed down to the Wild Card Translator that checks for the presence of wildcards, replacing any

found with the identifier of the interfacing object that currently has focus.

Figure 14. Command Translation Process

 23

In Figure 14, the macro command “draw path” gets translated into its corresponding system’s

language format, replacing its wildcards with the actor that currently holds focus.

3.2.2 Kernel Module
The main function of the Kernel Module is to interpret commands into system actions through

invocations on components that interact directly with the interfacing environment. The Kernel

Module is in charge of delegating and moderating invocation traffic through a centralized

component to entities that interact with the “See-Through Interface”. The Kernel Module is also in

charge of handling the loading, storing, tracking, and activating objects of interfacing content. We

design a script language that allows real-time issuing of commands to our system and its rules are

used by this module to interpret commands. The language definition is explained in details in

Chapter 4.

3.2.2.1 Kernel Module Components

Lexical Translator

 The Lexical Translator is in charge of receiving a stream of commands from the Macro Interpreter

and breaking it into token sets, each token set represents a command that is sent to the Syntactic

Analyzer for interpretation and validation in a token set per token set basis.

Syntactic Analyzer

 It receives token sets from the Lexical Translator one set at a time, and processes them by checking

their syntactic meaning against the grammatical rules by parsing a syntactic structure and validating

any undefined variables found in the tokens. Depending on the parsing path, it produces the target

program that consists in invocations through the Event Driven GUI on components that interact

with the interfacing visual environment.

Interfacing Object Reader/Writer

This component is in charge of storing, retrieving and performing the object activation of the

different interfacing objects that are used for building a visual interfacing environment of an

application. It is also in charge of handling dynamic interfacing content and providing the tracking

mechanism to re-locate them whenever a user interacts with them. This component is subdivided

into two parts:

 -Application/Actors/Stages/Grids Handler

 24

Handles the loading and storing of objects of type application, actor, actor profile,

stage and grid and keeps track of the location of dynamic content such as actors.

 -Square Mapping Mechanism

Handles square loading and registration by storing each square’s graphical

information and identifier into individual files under their corresponding stage

directory.

Event Driven GUI (Event Delegating Component)

The Event Driven GUI is the centralized component that delegates and moderates invocation traffic

that results from the command interpretation process into components that interact with the

interfacing environment, in this way acting as a proxy.

3.2.2.2 Kernel Module Interpretation Process

Translated commands that result from the Interfacing Input Module process are sent to the Kernel

so that they can be interpreted into a target program (Figure 15) that provides the interaction with

the interfacing environment. As the stream of text enters the kernel, the Lexical Translator splits the

stream of text into token sets. Each token set represents a single command that is fed down to the

Syntactic Analyzer for interpretation. When the Syntactic Analyzer receives a token set, it analyses it

token by token and traverses the parsing structure until a match of a valid command with a

compatible format is found. Once the parsing is successful, the corresponding target program is

executed at the Event Delegation Component (Event-Driven GUI) and the later delegates the

invocations to the respective system components.

 25

Figure 15. Command Interpretation Process

In this example diagram, the command resulting from the translation process of the input

interfacing module (“clickactor actor1 then clicksquare path”) is broken down into two token sets

that are interpreted into the target program depicted above.

3.2.2.3 Kernel Module Interfacing Object Handling

The Kernel Module is also in charge of loading, storing, tracking and performing the object

activation of interfacing content. To store a graphic object (Figure 16), it involves the drawing of

the reference zone at the Developer GUI. Once the request is made, the Square Mapping

Mechanism instantiates the object. If the object is of grid type, the Grid Composer component is

invoked to automatically compose a grid by creating several squares that later get instantiated and

submitted to the storage repository through the Square Mapping Mechanism. If the object is of type

square, the user specifies its name and other information back in the Developer GUI witch then

invokes the Square Mapping Mechanism once more to submit the graphic object.

 26

Figure 16. Storing Graphic Application Objects

The registration of a non-graphic application object (Figure 17) can be made directly from the

Developer GUI, by interacting with the controls of the desired object type, triggering the

instantiation of the object type in the Application Handler component. If the object to be stored is of

a type that requires automatic creation (grids, actors, actor profiles) then the system handles the

specification of its information, otherwise the user specifies this information at the Developer GUI

component during the registration stage and requests the submission of the object to finalize the

process.

The Syntactic Analyzer also interfaces with any of the methods used to store application objects at

the Developer GUI so that they can be executed through speech.

 27

Figure 17. Storing Non-Graphic Objects

A request to delete an object (Figure 18) can be made directly from the Developer GUI, by

interacting with the controls of the desired object type. The Square Mapping Mechanism component

then takes care of parsing the object storage files and removing any information that corresponds to

the selected object. The Syntactic Analyzer also interfaces with any of the methods used to delete

application objects at the Developer GUI so that they can be executed through speech.

Figure 18. Deleting Application Object

Reference interfacing objects such as squares, grids, stages, actor profiles and actors are

stored-retrieved and modified dynamically into and from a 4-level hierarchical directory structure

(Figure 19).

 28

Figure 19. Interfacing Objects Hierarchical Organization

3.2.3 Interfacing Output Module
The main function of the Interfacing Output Module is to provide the mechanisms to interact

directly with the front-end of the application through the Interfacing Visual Environment by

performing input-device emulation and window’s environment manipulation. This module adopts

the “See-Through Interface” paradigm to provide the tools that are used to compose the Interfacing

Visual Environment and macro commands.

3.2.3.1 Interfacing Output Module Components

Developer GUI(Graphic User Interface)

Component targeted at the composition of the customized Event-Driven Visual Interfacing

Environment. The “See-Through Interface” Paradigm is adapted to allow users to visually establish

reference to buttons, containers or other context inside the target application. Through this

component, zones of the target application can be interfaced by drawing referencing zones such as

squares and grids on a transparent frame, organizing the context through non-visual referencing by

defining Actor Profiles and Stages. A labeling system is developed to visually label each of the

registered reference zones at their graphic location with its registered identification name. Figure 20

depicts an application in its natural state, while Figure 21 depicts the application’s corresponding

visual interfacing environment composed of interfacing objects.

 29

Figure 20. Unreferenced Application

Figure 21. User Referenced Application

Grid Composer

The task of this component is to create grids. It creates individual square objects and later returns a

collection of them that form the grid, labeling each square with coordinates so that the user can

identify each of them individually.

 30

Mouse AI (Input Device Controller)

In Charge of manipulating input devices to perform mouse or keyboard related actions on the

Interfacing Visual Environment is the Input Device Controller. This component takes care of

emulating the following mouse actions:

-Left_Mouse_Click

-Left_Mouse_Double_Click

-Right_Mouse_Click

-Right_Mouse_Double_Click

-Drag_and_Drop

-Move

Additional features such as moving the mouse cursor in any possible direction and speed,

predefined movement-patterns and virtual keyboard implementation are also incorporated in this

component.

External App Manager (Window’s Environment Handler)

The main task of this component is to manipulate the window’s environment by capturing windows,

their child and applications inside a container to modify their size and perform any other tasks

needed for interacting with the Interfacing Visual Environment. This component interacts directly

with the operative system’s API to accomplish the above.

3.2.3.2 Interfacing Output Module Processes

Target programs that result from the syntactic analysis are executed through the Event Delegating

Component. Depending on the command, the requests for each of the involved events is sent to

corresponding components that interact directly with the interfacing environment.

These interacting components can also interact with each other by delegating requests amongst

them to satisfy a command request. Commands depending on their magnitude could trigger an

exponential growth in the number of system-internal calls needed to serve a request or might as well

achieve completeness through a single invocation. A more detailed view on invocations is discussed

in section 3.6.

 31

Figure 22(a). Visual Interfacing Environment Interaction

Figure 23(b). Visual Interfacing Environment Interaction

In Figures 22, the target program is executed by first enabling left click emulation at the Input

Device Controller(1), then the cursor is set to the location of the specified actor that is retrieved by

 32

the Object Reader component(2) and lastly a click is performed by the Input Device Controller(3).

The same process is repeated for clicking the specified square.

3.3 Design Patterns
Throughout the design of our system, Object-Oriented design patterns [18,19] where taken into

consideration to provide a more organized and efficient system interaction. Following are the design

patterns that we took into consideration for this study.

3.3.4 Facade Design Pattern

Figure 24. Facade Design Pattern

The facade pattern (Figure 23) can make the task of accessing a large number of modules much

simpler by providing an additional interface layer. When designing good programs, programmers

usually attempt to avoid excess coupling between module/classes. Using this pattern helps to

simplify much of the interfacing that makes large amounts of coupling complex to use and difficult

to understand. This is accomplished by creating a small collection of classes that have a single class

that is used to access them, the facade [18].

In our system a facade approach is used, where the Event Driven GUI component is used as this

interface layer that acts as the “bridge” to access all of the under-laying modules.

The Syntactic Analyzer module acts as the client that requests services from modules through the

Event Driven GUI. A double facade effect occurs in our system in the sense that the Square

Mapping Mechanism module itself acts as a facade that delivers requests from the Event Driven

GUI that is a facade as well.

The primary advantage of using the facade is to make the interfacing between many modules or

classes more manageable and organized [19].

 33

3.3.5 Interpreter Design Pattern

Figure 25. Interpreter Design Pattern

The Interpreter Design Pattern (Figure 24) focuses on defining a macro language and syntax,

parsing input into objects which perform the correct operations desired [19].

In our system, a language definition exists, and the above design pattern for language interpretation

is applied. The Interpreter Design Pattern is present at different levels; the first interpretation is

done at the Macro Interpreter, to check if the spoken word is a keyword of a macro command, if it

is it gets translated to our defined language. The Lexical Translator breaks this phrase into token

sets and feeds it to the Syntactic Analyzer, acting as the client. The Syntactic Analyzer then acts as

the Interpreter of the language, by representing phrases according to the defined grammar and

performing the set of invocations to procedures through our earlier discussed facade mechanism

that reaches a set of worker classes that will take care of performing individual operations of the

composed command.

3.3.6 Proxy Design Pattern

Figure 26. Proxy Design Pattern

 34

The proxy design pattern (Figure 25) consist of a main entity (proxy) that controls access to real

subjects [18], the real subjects hold methods that are invoked through the proxy to enhance security

and handling of objects. The client requests a service destined to the real subjects through the proxy

and this one delegates the requests.

The Syntactic Analyzer acts as the client while the Event Driven GUI component acts as the Proxy

mechanism, inside this component the class AppInterfacer acts as a proxy for the requests of the

client, these requests are then served by a second proxy that corresponds to the Persistent Object

Proxy class that is the one that makes the final delivery of requests to the real subject. Note that the

Persistent Object Proxy also plays the role of real subject when related to the class AppInterfacer

that acts as its proxy, in this way the system utilizes this 2-layered proxy mechanism to deliver

requests from the Syntactic Analyzer.

3.3.7 Observer Design Pattern

Figure 27. Observer Design Pattern

The observer design pattern (Figure 26) is based on defining a one-to-many dependency between

objects so that when one object changes state, all its dependents are notified and updated

automatically [19].

The Persistent Object Proxy class holds most of the instances for the real subjects of the invocation

system. Whenever the state of these entities has been changed, both the class AppInterfacer and the

class Syntactic Analyzer get notified of these new states. In this way the class Persistent Object

Proxy acts as the Subject while the AppInterfacer and the Syntactic Analyzer act as the registered

Observers.

 35

3.3.8 Factory Design Pattern

Figure 28. Factory Design Pattern

The Factory Design Pattern (Figure 27) consists of an interface for creating an object, letting

subclasses decide which class to instantiate [18].

The best example of a factory design applied in our application is that of grid creation, when a grid

is created, the Event Driven GUI component delegates the request to the Grid Composer which

holds the factory method that instantiates objects of type square individually and returns a collection

of these that form a full grid. The Square Composing Mechanism is used to create each individual

square that is placed on the grid, however the Grid Composer’s factory method is the one in charge

of positioning the squares, labeling them and grouping them into a grid, in this way falling under

the category of factory, while the grid being the product of the factory method.

3.4 Control Patterns
During the execution of an object-oriented program, the action of invoking a method to execute is

known as a control transfer. A method invocation sequence keeps track of all the control transfers

occurred during program execution [20].

Most of the Control Patterns [20] that are common in our system fall in the category of Complex

Control Patterns since there are log patterns that exist to execute a command in a specified way, this

type of log patterns are more abundant in the Syntactic Analyzer component do to its strict rules that

a command invocation must follow, most of the invocations follow a invocation path from source to

sink. Complex Control Patterns are mostly formed of Simple Control Patterns. Perhaps the most

abundant Simple Control pattern is the Sequence Pattern. Invocations to methods that fall under this

 36

category are done in sequence, synchronously [20].

A specialized sequence pattern known as the Consecutive Pattern is also present in some types of

invocations. The Consecutive Pattern occurs when a sequence of invocations take place to a single

method class (The class that holds the invoked method). Perhaps the component that experiences

most Consecutive Pattern invocations is the MouseAI component that has a high level of interaction.

In our language definition we incorporate a loop command, that when invoked it can trigger a

Control Pattern behavior known as the Loop pattern. Our loop command loops the preceding

command N times (specified by the user); Making invocations for one command to occur N

times thus triggering a loop that could be measured as a Loop-N pattern [20].

 Compound Control Patterns [20] are also present, especially in the Syntactic Analyzer

component, where invocation decisions must be made in order to satisfy the languages grammar.

Most Compound Control Patterns are in the form of a sequence, where each invocation of the

sequence is dependant on a set of rules, in our case we check the syntax of the command and decide

what components to invoke in the sequence so that a grammatical rule is followed properly.

3.5 Layered Invocation Scheme
Command decomposition and processing in the system occurs in a 5-level invocation scheme.

The five layers involved in this invocation scheme are the Lexical Translation Layer, Syntactic

Analyzer Layer, Event-Handling Layer, API Interfacing Layer and the OS API Layer. The highest

layers present invocations with the highest level of abstraction. Invocations at these layers have a

longer processing life and do not occur as much as in the lower layers. On the other hand lower

layers present invocations with the lowest level of abstraction. Invocations at these layers have a

shorter processing life and occur with much more frequency than at the higher invocation layers.

The behavior previously described is do to the highly task-specialized component design used that

forces the distribution and breaking down of command handling calls to different layers of

processing. Lower layers increase in complexity because of the higher number of invocations that

are involved. On the contrary, higher layers posses a lower invocation level.

A command’s processing life is directly proportional to its nature, since different commands result

in different execution paths [20], so the nature of the command directly affects what layers its

invocations traverses.

 37

3.5.1 Layered Sequential Invocation Example
The following example is of a valid command utilized in the system. We take an inside look at all

the different types of invocations that take place as the command gets processed as it transverses the

above described layer structure (Figure 28) in a top-down manner.

Recognized command by the speech engine: dragactor Actor1 to coordinate 5,6
Figure 29. Example of Sequential Invocation

When the command enters the Lexical Translation Layer it gets processed in to a single Token Set

that gets sent to the Syntactic Analyzer Layer through a single invocation.

During the parsing at the Syntactic Analyzer, the sub-structure belonging to “dragactor” is found.

This substructure gets further parsed until the first invocation to the Event Handling Layer is found:

“set the cursor to movement”

This Invocation to the Event Handling Layer is then separated in to two invocations executed on the

Windows API Interfacer Layer:

“disable left click emulation”

“disable drawing mode”

These two invocations simply set two values inside the Windows API Interfacer Layer to a Boolean

value and their execution ends in this layer.

Back at the Syntactic Analyzer Layer, the parsing continues and the next sequence of invocations to

 38

the Event Handling Layer is found:

I.“select actor Actor1”

II.“store Actor1’s current location”

III.“set the cursor mode to dragging”

Invocation (I) will trigger the Event Handling Layer to simply invoke its internal component that

handles actors, this invocation will set the current actor in the system to “Actor1”. No further

processing is required thus the next invocation at the Syntactic Analyzer Layer gets processed.

Invocation (II) will trigger the Event Handling Layer to simply invoke its internal component that

handles actors, this invocation will store the current actor location in the system for later referencing.

No further processing is required thus the next invocation at the Syntactic Analyzer Layer gets

processed.

Invocation (III) triggers two invocations that occur in sequence inside the Event Handling Layer:

A. “enable left click emulation”

B. “enable drawing mode”

These two invocations get served at the Windows API Interfacer and simply set two values inside

the Windows API Interfacer Layer’s Mouse AI component to a Boolean value of “true” in order to

enable the dragging mode, ending their execution at this layer.

After this invocation, back in the Syntactic Analyzer Layer, the parsing continues and the next

invocation to the Event Handling Layer takes place when a match of the word “To” occurs during

the parsing. The corresponding invocation under the next left derivation is:

“set selected grid square”

This invocation to the Event Handling Layer triggers the following invocations in the Windows API

Interfacer Layer:

I.”set cursor location”

II.”set actor location”

III.”emulate click”

 39

Invocations (I) and (II) get executed at the Windows API Interfacer’s Mouse AI component. (I) sets

the cursor location to a specified position in this case “5,6” thus dragging the actor to that position.

(III), on the other hand, invokes the following API calls at the OS API Layer in a sequential order:

“mouse event left down”

“mouse event left up”

These API calls perform a mouse click by first holding the left mouse down and then releasing it.

This is an example of an Invocation that traversed all the existing layers from top to bottom in order

to achieve completeness.

Back in the Windows API Interfacer Layer invocation (II) gets handled locally without the need of

interfacing with other layers, but instead utilizing the local Actor Handling Component to set the

actor to its new location.

3.6 Conclusion
In this chapter the proposed system is introduced and studied in great detail from a high to low level

perspective. The different architectural views are analyzed and the behavioral interactions

amongst the entities that compose the system are discussed in detail. Overall this chapter provides

the reader with a detailed and comprehensive view of all the features, processes and interactions

that occur transparently when the user interacts with the system for interfacing applications with

recognizers or interacting with applications. This chapter is structured in a task oriented manner,

organizing it by separating the different tasks done by the system and going through each of them in

detail to enrich the reader’s perception of the overall interfacing environment and its sequential

command processing behavior.

The following chapter introduces and discusses the proposed system’s internal language definition.

 40

CHAPTER FOUR
Interfacing Script Language Definition

4.1 Introduction
This chapter describes the language definition of the script language used in this system for users to

interact with the interface interfacing environment that references applications. This chapter unveils

every aspect of the designed language, its data types, rules, syntax description, and the

interpretation steps involved in command processing.

4.2 Data types and Syntax
Types limit the values that a variable can hold or that an expression can produce, limit the

operations supported on those values, and determine the meaning of the operations. Strong typing

helps detect errors at compile time [12, 13]. The Interfacing Script Language separates data types

into:

-Identifiers that are used to refer the system’s internal variables used to reference the GUIs of

the target applications

-Constants that have a binding time that occurs statically prior to compilation thus containing

pre-defined values that cannot be reassigned

-Operators that are the key non-terminal symbols used to decide the pattern of expansion of the

parsing routes. Providing commands the flexibility that allows their use to deal with multiple

interaction situations (Expansion Paths)

-Separators and Terminators, being the elements used by the lexical analysis process as a guide

to break down the command input stream by collecting characters into logical groupings

known as lexemes[13]

In the following subsections, we elaborate each one of these data types as well as their common use

in the language.

 41

4.2.1 Identifiers
In this section variables which can be performed a binding during runtime are introduced. These

variables can be changed during the course of execution through dynamic binding by means of

assignments.

Square

It is a graphical reference that is introduced by the user to associate locations of static

interaction zones. A variable of type square is associated to a location (integer, integer) and a

graphic rectangle in the system.

Instance limit: from 0 to 999 (excluding instances created in grids)

Coordinate

A graphical square reference used in grids that is auto-generated by the system. The type

coordinate is associated to a location (integer, integer) and a graphic rectangle in the system.

 Instance limit: from 0 to 999

Actor

The actor type is composed of a location (integer, integer) and a graphical label (string) in the

system and is used for the reference to dynamic content of applications. .

Instance limit: from 0 to 999

ActorProfile

An actor profile is the entity that actors are organized by. It is defined by the user prior to actor

creation. Actors when created are auto-assigned into their corresponding profiles.

 Instance limit: from 0 to 999

App

Represents the name of a target application (String) and is introduced by the user.

 42

 Instance limit: unlimited (limited by computing power)

Stage

It is used to reference the different GUIs used in an application and is used as the entity to

organize and group sets of squares.

Instance limit: from 0 to 999

Grid

The Grid type corresponds to user-defined grids that represent a collection of objects of type

square in the system. Grids are used to add reference through localization to GUIs.

 Instance limit: from 0 to 999

Number

The number type maps directly to integers and are used to specify coordinates and revolutions

of command loops.

Instance limit: unlimited (limited by computing power)

Text

Dictation text (string) spoken by the user and is used to emulate typing on the keyboard.

Instance limit: unlimited (limited by computing power)

4.2.2 Constants
In this section variables which have a binding time that occurs prior to runtime are introduced.

These variables are constants, with predefined values assigned through static binding that cannot be

reassigned during the course of execution.

Direction

Holds predefined constant values of: North, South, East, West, Northeast, Northwest, Southeast,

and Southwest. Direction type is used in conjunction with the drag and move commands to

specify cursor orientation.

 43

Pattern

Hold constant values that are predefined by the system that represents geometric moving

patterns. Used for dragging the cursor in a predefined manner by executing a batch of

instructions that represents the moving pattern.

Distance

The distance constant holds predefined constant values of: very short, short, normal, long, very

long. The distance constant is used for moving and dragging of the cursor, restricting the length

of a mouse movement.

Speed

The speed constant holds predefined and constant values of: very slow, slow, fast, and very fast.

The speed constant is used when moving or dragging the cursor, restricting the speed of a mouse

movement.

clickType

The clickType constant specifies the type of click to perform when the click command is

invoked, it holds predefined values of rightclick, doubleclick , and leftclick.

Boolean

Holds the predefined values of true or false and it’s used with the commands showGrid, setDrop,

setVisualAide and usingActor.

VisList

Used for referencing the system’s visual-aided lists that contain a listing of available stages,

grids, squares, actors, applications and actor profiles.

4.2.3 Operators
Operators are the base that our syntactic analysis process utilizes to produce its leftmost derivations

as it traces the parse tree structure in a top-down manner (section 4.4.2). They are the key

non-terminal symbols that are used to when deciding pattern of expansion of the parsing routes [13].

Our system makes use of three different operators that are the to, by and loop operators, bellow is an

overview of them and how they are used in the interfacing script language.

 44

Operator to

 The “to” operator is used in conjunction with action and assignment statements to specify

assignment of locations to identifiers.

The use of to operator is restricted for commands move, drag, and set, for the use with right

operands of data type square, coordinate and distance, and for the use with left operands of data

type actor, squares or coordinates or null.

Operator by

 The “by” operator is used for assigning modes to its left operand. It is used in conjunction

with action statements to specify desired speed, distance, moving pattern, and click type

commands.

The use of “by” operator is restricted for commands move and drag, for the use with left operands

of data type direction, square, coordinate or actor, and for the use with right operands of data type

distance ,clickType, and pattern.

Operator loop

The “loop” operator allows for looping a command an specific number (number type) of times.

Its left operand is always a command. Its right operand is the number of times to loop the

command, if not stated its default is set to one loop.

The loop operator is restricted for the use with right operands of data type number.

4.2.4 Separators and Terminators
The following elements are used by the lexical analysis process as a guide to break down the input

stream by collecting characters into logical groupings known as lexemes [13].

Terminator then

 The terminator then is used for conjunction of statements and delimits one statement from

the others.

Syntax

 [stmt] (then) [stmt]

dragActor actor x to coordinate y then click square x

 45

 “dragActor actor1 to 10,4 then click rotate”

Here two action statements (dragActor, click) are delimited by then.

Terminator times

The terminator “times” specifies the end of a loop command, and it is placed after the number

identifier.

Syntax

[stmt] (loop) (times)

drag direction x by distance y loop number times

 “drag south by very long then loop 2 times”

Here the drag command gets executed number times

Separator Comma

The separator “comma” separates x and y values of a coordinate identifier.

Example

dragActor actor x to coordinate y

“dragActor tree to 2,9”

In the coordinate 2,9 the comma separates the left value(2) which is interpreted as an x and the

right value(9) which is interpreted as a y.

4.2.5 Reserved Words
The following list of words are reserved by this language definition, the use of them as values of

identifiers will create conflicts and an exception with its respective error message will be displayed

by the system.

send

clearConsole

undoPhrase

$

 46

to

by

loop

Double spacing (will be interpreted as single)

then

times

4.2.6 Input Element Classification
The allowed input elements of the language definition are classified into white space and tokens.

Tokens are further classified into the following types:

 Identifier

 Command Statement

 Separator

 Operator

4.3 Semantics
This section introduces the semantic meaning of each command statement, rules, and the data type

compatibility issues of the language.

4.3.1 General Static Semantics
The type compatibility rules that are used for compile time analysis are generalized and resumed

bellow:

I. A token of type command must be followed by a token of type operator or identifier or

stand alone only.

II. A token of type command being used by an operator must comply with the operator rules

(section 4.2.4)

III. A token of type operator must be followed by a token of type identifier only.

IV. A token of type identifier must be followed by a token of type operator or stand alone

only.

 47

V. A token of type identifier being used by an operator (right or left operand) must comply

with the operator rules (section 4.2.4)

VI. The last token of a sequence of tokens is always of type command or identifier only.

VII. A token following a valid token of type command must comply with the command type

compatibility definition (section 4.3.2) for the respective command.

4.3.2 Command Statements
The definition of the different command statements of the language and their type compatibility

rules are stated bellow. In the event of breaking any of the rules specified, the system triggers an

incompatible type exception with its corresponding warning to the user, halting command

execution.

Assignment Commands

Assignment Commands focus on assigning values to system internal identifiers.

setDistance

The setDistance command is used to set the distance that the mouse cursor will use during user

command-driven movement.

Usage:

setDistance to distance x

 “setDistance to short”

 The distance gets set to short

The setDistance command is only compatible with types distance and the operator to.

setDragSpeed

The setDragSpeed command is used to set the speed that the mouse cursor will use during user

command-driven movement.

 48

Usage:

setDragSpeed speed x

 “setDragSpeed fast”

 The speed of the mouse cursor is set to fast, when the cursor moves through

commands it will do so at a faster pace.

The setDragSpeed command is only compatible with type speed.

addActorProfile

The addActorProfile command is used for creating an actor profile. It is a stand-alone command

thus it does not interact with any identifiers or operators.

Usage:

 addActorProfile

 A new actor profile gets created by the system

The addActorProfile command can only be used as stand-alone.

eraseProfile

The eraseProfile command is used for deleting an existing specified actor profile.

Usage:

eraseProfile actorprofile x

 “eraseProfile Profile1”

 The specified actor profile is erased

The eraseProfile command is compatible with the type actorprofile only.

addActor

The addActor command is used for creating an actor to a specific coordinate or square, it can also

be used as a standalone command where the actor’s location is chosen automatically by the system.

Usage:

 49

 addActor

 The actor gets instantiated to system selected location.

addActor to coordinate x

 “addActor to 3,5”

 The actor gets instantiated to the user specified location

The command addActor is compatible with the type square and coordinate.

eraseActor

The eraseActor command is used for deleting an existing specified actor.

Usage:

eraseActor actor x

 “eraseActor Actor1”

 The specified actor is erased

The eraseActor command is compatible with the type actor only.

setActor

The setActor command is used for fixing an already instantiated actor to a corresponding coordinate

or square.

Usage:

 setActor actor x to coordinate x

“setActor Actor1 to 10,3”

The actor gets fixed to the coordinate 10,3 of a grid.

The setActor command is only compatible with the type actor, coordinate, square and the

operator to.

resetActor

The resetActor command is used for re-setting the location of the currently selected actor to its

 50

previous location.

Usage:

resetActor

The current actor is fixed to its previous location.

The resetActor command is a standalone command.

setDrop

The setDrop command is used for disabling the drop of drag commands. Performing a drop if set to

true (system’s default), and a not performing a drop when set to false.

Usage:

 setDrop boolean x

“setDrop false”

Triggers the system to disable the drop event when a drag is executed, thus hanging on

the object that is being dragged.

The setDrop command is only compatible with the type Boolean.

setList

The setList command is use to give focus to the system’s visual-aid lists, displaying them

graphically.

Usage:

 setList VisList x

“setList actorlist”

Trigger the system to give focus to the specified list in this way will display it to the

user.

The setList command is only compatible with the type VisList.

 51

setVisualAide

The setVisualAide command when set, allows the user to see visual aid content such as labeling of

buttons, and grid coordinates. When not set, the system simply displays bounding boxes with out a

textual description.

Usage:

 setVisualAide boolean x

“setVisualAide true”

Trigger the system to enable visual aid in the application, will textually identify

interfacing objects.

The setVisualAide command is only compatible with the type Boolean.

showGrid

The showGrid command when set, allows the user to hide or show the present displayed grid if any.

Usage:

 showGrid boolean x

“showGrid false”

This will trigger the system to hide the present grid.

The showGrid command is only compatible with the type Boolean.

usingActor

The usingActor command is used for enabling and disabling actor interaction.

Usage:

 usingActor boolean x

“usingActor false”

This will trigger the system to disable all interaction with actors, hiding them from the user.

 52

The usingActor command is only compatible with the type Boolean.

Action Commands

The command type “action” focuses on interacting with application system’s interfacing content,

performing actions that directly affect the target application.

drag

The drag command is used for dragging of the mouse cursor, applied to type direction, pattern,

speed and distance. When invoked the respective mouse movement will occur (depending on

operand) and simultaneously activating the left click of the mouse, in this way emulating a drag.

Usage:

drag direction x by distance x

“drag north by Long”

The mouse is “dragged” in the specified direction.

drag pattern x by distance x

“drag spiral by short”

Again a “dragging” occurs, but this time it follows a predefined dragging pattern and

performs each segment of the pattern at short distance, resulting in a small spiral.

The drag command is only compatible with the type directon, pattern,speed, distance and the

operator by.

dragSquare

The dragSquare command is used to drag a specific square to a specified coordinate or square or

by a specified moving pattern or in the specified direction by the defined distance and by the

selected speed.

Usage:

 53

dragSquare square x to coordinate x

“dragSquare tree to 7,3”

The cursor is focused on the specified square and then performs a drag to the given

destination.

dragSquare square x direction x by distance y

“dragSquare tree northeast by verylong”

The cursor is focused on the specified square and then performs a drag in the given

direction moving at the specified distance.

dragSquare square x by pattern x by distance x

“dragSquare tree by zigzag by medium”

The cursor is focused on the specified square and then performs a drag in the given pattern

moving at the specified distance.

The dragSquare command is compatible with the type square, coordinate, direction, distance,

pattern, speed and the operators by and to.

dragCoordinate

The dragCoordinate command is the same as the dragSquare with the exception that is used to

drag the type coordinate. When invoked, the specified coordinate will be dragged to the

specified coordinate or square, by the defined pattern, or in the specified direction by the

defined distance and by the selected speed depending on the usage.

The dragCoordinate command is compatible with the type square, coordinate, direction,

distance, pattern, speed and the operators by and to.

dragActor

The dragActor command is the same as the dragSquare with the exception that is used to drag

the type actor. When invoked, the specified actor will be dragged to the specified coordinate or

 54

square, by the defined pattern, or in the specified direction by the defined distance and by the

selected speed depending on the usage.

The dragActor command is compatible with the type actor, coordinate, direction, distance,

pattern, speed and the operators by and to.

click

The click command triggers a click at the current cursor position and is used in conjunction

with the operator by and the identifier clicktype only.

Usage:

 click

When executed, a click will be triggered on the current cursor location.

 click by clicktype x

 “click by rightclick”

When executed, a click will be triggered on the current cursor location in the specified

mode.

The click command is compatible with the type clicktype and the operator by

clickSquare

The clickSquare command triggers the cursor to first move to the square location specified by

square x, and then triggers a click in the fashion specified by the clicktype identifier, if any.

Usage:

 clickSquare square x by clicktype x

 “clickSquare house by rightclick”

When executed, the cursor will move to the corresponding square’s location and trigger a

click of the type specified (if not specified it will click as the default click (leftclick))

The clickSquare command is compatible with types square, clicktype and the operator by.

 55

clickActor

The clickActor Command functions in the exact way as the clickSquare command with the

exception that Actors are being clicked.

The clickActor command is compatible with type actor, clicktype and the operator by.

clickCoordinate

The clickCoordinate Command functions in the exact way as the clickSquare command with the

exception that the types being clicked are Coordinates.

The clickCoordinate command is compatible with type coordinate, clicktype and the operator

by.

move

The move command is used for moving the mouse cursor, and it’s applied to variables of type

square, coordinate and direction and operators to and by.

Usage:

 move to typesquare x

 “move to house”

When invoked the cursor moves to the specified square location

 move to typecoordinate (x,y)

 “move to 10,3

 When invoked the cursor moves to the specified coordinate location

 move direction x by distance y

 “move southeast by verylong”

 When invoked the cursor moves in the specified direction by the specified amount

 56

The move command is compatible with type square, coordinate, direction and operators to, by.

pasteText

The pasteText command is used for pasting text into a focused text field.

Usage:

 pasteText text x

“pasteText Hello”

The text variable is copied into the clipboard and pasted into the current focused text field.

The pasteText command is only compatible with the type text.

clearText

The clearText command is used for deleting text of a text field.

Usage:

 clearText then loop 3 times

Three characters from the focused text field’s text are deleted.

The clearText command is a stand-alone command.

sendKey

The sendKey command is used for emulating a keyboard stroke on the specified key.

Usage:

 sendKey text x

“sendKey Y”

The system emulates a keyboard stroke of the letter Y.

The sendKey command is only compatible with the type text.

 57

openDeveloper

The openDeveloper command is used for entering the developing mode of the system through

speech whenever is not possible to interact with the system’s GUI directly through the mouse.

Usage:

 openDeveloper

The Developing mode is opened by the system

The openDeveloper command is a stand-alone command.

send

The send command is used for sending the stream of text already spoken to the lexical translator, in

order to begin the command processing.

Usage:

 send

The already spoken stream of text is sent to the lexical translator.

The send command is a stand-alone command.

undoAll

The undoAll command is used for deleting all phrases spoken in order to reset the stream of text to

emptiness if a mistake was made.

Usage:

 undoAll

The already spoken stream of text is cleared.

The undoAll command is a stand-alone command.

 58

undoPhrase

The undoPhrase command is used for deleting the last phrase spoken in order to reset the stream of

text to its previous content.

Usage:

 undoPhrase

The last phrase spoken is deleted from the stream of already spoken text.

The undoPhrase command is a stand-alone command

captureIt

The captureIt command is used for capturing free windows (pop-ups) into the system.

Usage:

 captureIt

Here the most front “free” window will be captured.

The captureIt command is a stand-alone command.

Selection Commands

The selection commands are used for switching visual interfacing content.

selectStage:

The selectStage command selects the current stage, when executed all the registered squares for that

stage are loaded by the system.

 selectStage stage x

 “selectStage stage 1”

Selects the stage identified as “stage 1” and loads all its corresponding squares, painting them

onscreen.

 59

The “selectStage” Command is only compatible with the type stage.

selectGrid:

The selectGrid command selects a grid for display, when executed all the registered squares for that

grid get loaded and painted on screen by the system.

 selectGrid grid x

 “selectGrid paintgrid”

Selects the grid identified as “paintgrid” and loads all its corresponding squares.

The “selectGrid” Command is only compatible with the type grid.

selectActorProfile:

The selectActorProfile command is used to set the current actor profile, when invoked a list of

actors corresponding to the selected profile is loaded and registered actors under this profile are

placed graphically on screen.

 selectActorProfile actorprofile x

 “selectActorProfile profile 1”

Selects the actor profiled identified as “profile 1” and loads its corresponding actors onto

screen.

The “selectActorProfile” Command is only compatible with the type actorprofile.

selectApplication:

The selectApplication command is used to focus a target application. If invoked, all the stages, grids

and actor profiles corresponding to the specified application are automatically loaded by the system.

 selectApplication app x

 “selectApplication paint program”

 60

Selects the application identified as “paint program” and loads all its corresponding stages,

grids, and actor profiles.

The “selectApplication” Command is only compatible with the type app.

4.4 Lexical and Syntax Analysis

4.4.1 Lexical Analysis
The lexical analysis is in charge of extracting lexemes from the input string in order to produce the

corresponding tokens that are returned to the caller (syntax analyzer) one lexeme at a time. During

this process, the input string is separated whenever a separator or terminator is found and discarded,

in this way forming sub-segments of the stream. These sub-segments, then in sequence of

appearance are further processed by removing white spaces and any other characters that are not

relevant to the meaning of the program, in this way decomposing the stream into tokens. The

resulting tokens are grouped in token sets and fed to the syntax analyzer in a token-set per token-set

basis.

The Lexical Analyzer distributes its chores to four sub-programs, one in charge of getting the next

stream input through an event handling function, another one in charge of building lexemes as

described above, another tokenizing sub-program that takes care of removing non-relevant

characters and finally a subprogram that takes care of the recognition of reserved words, constants

and identifier names. The later with the purpose of validating the content of the data types of the

command in question by looking them up in their corresponding tables to make sure they exist in

the system and that no reserved word are being used.

Once a stream is processed at the Lexical Analysis, it’s passed down to the Syntax Analysis phase in

the form of token sets, each set representing an individual command.

Figure 30. Token Patterns Transition Diagram

 61

Figure 29 depicts the state transition diagram that provides the representation of the token patterns

implemented for building the Lexical Analyzer of the system.

4.4.2 Syntactic Analysis

The syntactic analysis tasks include the checking of the syntax of the input program, providing error

messages when syntactic errors are encountered and recovering from them to continue analysis on

the input program [13]. In our approach a complete parse tree structure is traced in a top-down

manner, rather than generated. As this structure is parsed, the placement of tokens is checked

against the rules established in section 4.3.1, making sure that no identifier or command is used as

an operand in a way that it breaks an operator’s rules. Successful parsing leads to the interpretation

of commands into the target program that is executed to perform system related interactions to

achieve the purpose of the command in question.

In our syntactic analysis we trace a leftmost derivation, tracing the parse tree in preorder, beginning

with the root and following branches in left-to-right order. Expanding non-terminal symbols to get

the next sentential form in the leftmost derivation, basing the expansion route on the type of the

non-terminal symbol. Do to the simplicity and recursive nature of the language’s grammatical rules,

our approach implements a recursive descent parser rather than utilizing parsing tables to

accomplish the syntactic analysis, in this way assuring that the next token represents the left most

token of input that has not been used in the parsing, this token is compared against the first portion

of all existing right hand sides of the non-terminal symbol, selecting the right hand sides where a

match is found. Parsing expansion is directly affected by the number of operators used in the

command in question, since operators are the non-terminal symbols that are used as checkpoints

when selecting a parsing path.

Figure 31. Leftmost derivation parsing tree of the dragSquare command

Figure 30 shows the corresponding parsing structure of the command “dragSquare”, depicting all

the possible right hand sides that can be matched to be the next leftmost derivation for any of the

operators that compose the command.

 62

4.5 Conclusion
This chapter presented the language definition that is implemented in our system to facilitate

complex task interactions for providing flexibility and efficiency to overcome challenges of current

interfacing mechanisms between speech recognizers and application systems. The chapter

summarizes the structure of this language, the rules the language revolves around when parsing and

checking syntax of commands, its compatible data types and a detailed view of each command and

their compatibility constrains. This chapter provides readers with the basic information needed to

understand how an interfacing mechanism can be constructed to simplify the voice commands used

in the speech recognition process to interface to the application system while expanding their

functionality.

 63

CHAPTER FIVE

Application Examples and Evaluation

5.1 Introduction
In this chapter, we illustrate the procedures that are adapted to interface a target application using

the proposed framework. This chapter will elaborate on scenarios that provide high and low level

detail on the overall functional view of the system, and create a contrast with the challenges found

on the other interfacing approaches addressed in Chapter 1. We will then evaluate our proposed

system against the challenges and limitations imposed in the earlier chapter.

5.2 Procedures for Using the proposed Interface Framework to
Interface an Application to a Speech Recognizer

The interfacing procedure is separated into multiple steps, each with its own set of scenarios. The

following steps give the details:

 Step 1) Registration and Interfacing of the Target Application

– The first step involved in interfacing an application to a speech recognizer through

the proposed framework is to register a desired application into the system. Once

registered, we create the visual interfacing environment by drawing reference zones

on the transparent interface that lays on top of the application’s GUI, in this way

referencing application content such as buttons, containers and menus through the

graphic registration of grids and squares, separating this content into stages that

represent the different GUIs of the application.

‧ This step is required every time a new application is interfaced with a speech

recognizer

‧ As an example to illustrate this step, we register the application BestWise 編

輯手 version 2004 and reference its GUI’s content

 Step 2) Recognizer Integration

– The second step involves the integration of a chosen recognizer into the system by

programming the recognizer’s API calls that are used to start, setup and handle the

 64

recognizer and as well as the calls involved in retrieving recognition content in the

system’s specialized recognizer interfacing component, in this way interfacing the

recognizer into the system.

‧ This step is only required when no recognizer has previously been integrated

into the system.

‧ As an example to illustrate this step, we interface our system with

Microsoft’s Speech-Recognizer V.6.1

– We then proceed to define the grammar definition file that the speech recognizer uses

to recognize and interpret spoken content by incorporating the rules that were

established in our language definition, allowing the checking of the syntax to occur

twice.

‧ This step is done each time a recognizer is integrated with the system.

- The vocabulary used to reference the target application in the first step is

incorporated into the recognizer’s grammar definition each time a new application is

interfaced by the system in order to allow the recognition of the identifier names

used for the graphical zones that compose the visual interfacing environment.

– Each time a recognizer is interfaced with the system, an XML file is composed that

contains associations of commands in the format used in the recognizer’s grammar

with those commands of the language definition of the system. This resource is used

as the source for translating spoken content into streams compatible with the

system’s syntactic analysis process.

 Step 3) Macro Composition

– Once an application is properly interfaced with a speech recognizer, we compose a

set of macro commands to simplify user interaction with the interfaced environment

by wrapping complex and repetitive tasks into short, reusable context free

commands.

 Step 4) Interaction Evaluation

– In our last step, interactions with the speech-driven environment built in previous

steps are performed in order to evaluate the system’s overall functionality against the

criteria built from the current approaches’ challenges and limitations.

 65

5.3 Step 1) Registration and Interfacing of the Target Application -

“BestWise 編輯手 version 2004” is used as an example

Object registration uses the constrained genericity stated in [21, 22] and the“See-Trough

Interface＂paradigm for users to perform application software registration. In the following

subsections, we depict the use of BestWise visual authoring software as an example to perform the

application software registration.

5.3.1 Registering an Application
Our proposed framework allows for the coexistence of multiple applications, each application that

is registered into the system must have its unique identifier that can be given by the user or set by

the system with the name of the application’s executable file. Figure 31 depicts a snapshot of

loading the application software into our proposed interface framework system for registration. The

operation steps are labeled as 1, 2, 3, and 4 in the figure.

Figure 32. Registering an Application

Table 1 presents the description of the steps involved in the process of registering an application

into the system.

 66

Table 1. Registering an Application

Steps High-Level View Low-Level View
Select add application
option

Administrator user presses the Add
App button(1), triggering an
executable selection dialog to
appear

System displays the executable
selection dialog

Select Desire
Executable

The administrator user then selects
the desired application (2) and
presses ok(3). The application
registration form appears
containing the name of the
selected application, the user may
modify the name and continue the
registration process by clicking on
the submit button(4)

The StoreHandler component calls
its internal method to register
non-graphical objects, a directory
is created with the name of the
application under the Bin directory

5.3.2 Registering a Stage
Stages are used for organizing and separating the square zones that reference the different GUIs of

the target application. Each stage has a name given by the user. To register a stage the user simply

selects the register stage option and gives it an identifier name. Figure 32 depicts a snapshot of

stage registration for the BestWise visual authoring software. The operation steps are labeled as 1, 2,

and 3 in the figure.

Figure 33. Registering a Stage

 67

Table 2 presents the description of the steps involved in registering a stage into the system.
Table 2. Registering a Stage

Steps High-Level View Low-Level View
Select add stage option The Administrator user presses the

Add Stage button, Triggering the
stage registration dialog to appear

The system makes visible the
stage registration dialog

Enter Reference Name Administrator user enters a name to
reference this stage in the textbox
found at the stage registration dialog.
To finalize the process the user
presses on the submit button of the
stage registration dialog

The StoreHandler component
calls its internal method to
register non-graphical objects,
inside this method a directory is
created with the name of the
stage, placing it inside the
Stages directory under the
current application’s path

5.3.3 Registering a Grid
Grids are composed of auto-generated square objects and are used to reference panes and containers

of the target application, allowing for a localized referencing through coordinates. Each grid has a

name given by the user, and they are registered through drawing on the desired interaction zone.

Figure 33 depicts a snapshot of grid registration for the BestWise visual authoring software. The

operation steps are labeled as 1, 2,3,4 and 5 in the figure.

Figure 34(a). Registering a Grid

 68

Figure 35(b). Registering a Grid

Table 3 presents the description of the steps involved in the composition of a grid into the system.

Table 3. Registering a Grid

Steps High-Level View Low-Level View
Register Grid Administrator user

clicks on the draw grid
checkbox, triggering the
display of grid
registration dialog where
the user enters a name
for the grid and presses
on the submit button(3)

System displays the grid registration dialog and
the StoreHandler component invokes its internal
method to register non-graphical objects, inside
this method a directory is created in the Grids
directory under the current application’s path,
with the name of the grid specified by the user

Enter Visual
Environment
Composition Mode

Administrator user
presses on the Square
Handler button

The system modifies the current environment by
allowing all features used in composition of
environments

Draw Grid Administrator user
selects the previously
registered grid from the
grid listbox and drags
the mouse to draw the
grid

The Grid Composer component is invoked. The
component’s design is based on the Factory
Design Pattern [19] acting as a dynamic factory
to create objects of type square, each one being
a coordinate of the grid. In the Grid Composer a
method is invoked to create each square object.
Each square is then stored to file invoking the
Square Mapping Mechanism’s method in charge
of square information handling to store the
squares attributes to file

 69

5.3.4 Registering a Square
Squares are referencing objects used to interface buttons or zones of applications, each square has a

name given by the user and they are registered by drawing them on top of the interaction zone to

interface. To register a square one must first select the desired stage to associate the square with.

Figure 34 depicts a snapshot of square registration for the BestWise visual authoring software. The

operation steps are labeled as 1, 2,3 and 4 in the figure.

Figure 36. Registering a Square

Table 4 presents the description of the steps involved in registering a square object into the system.
Table 4. Registering a Square

Steps High-Level View Low-Level View
Select Stage Administrator user

selects the desired stage
System loads all reference squares associated
with that stage if any and draws them on screen

Enter Visual
Environment
Composition Mode

Administrator user
presses on the Square
Handler button

The system modifies the current environment by
allowing all features used in composition of
environments

Drawing a square Administrator user
draws a square on top of
the desired zone of the
application(3). Square
registration dialog
appears where a name to
identify this square is
entered by the user(4)

The system makes the square registration dialog
visible to the user

Submit Data Administrator user
presses on the submit
button

A square object gets stored to file by invoking
the Square Mapping Mechanism component’s
method in charge of square information

 70

handling, storing the square’s given name, its
coordinates and dimensions into a file under the
corresponding stage directory

5.3.5 Registering an Actor Profile to Create Actors
Actor Profiles are used to separate and organize actors that reference dynamic content of the

different GUIs of the target application. Actor Profiles have a name that is auto-assigned by the

system. Table 5 presents the description of the steps involved in registering an actor profile into the

system.
Table 5. Registering an Actor Profile

Steps High-Level View Low-Level View
Add Actor Profile End user speaks the

“addactorprofile” command
The StoreHandler component calls its
internal method to register an actor
profile. Inside this method a directory
gets created with a name that is
auto-assigned by the system, this
folder is placed inside the Actors
directory under the current
applications path

As one can see the process is very similar to the one used to register stages or grid objects because

the same method is used to register all these type of objects, however differentiating the way the

different objects are treated by applying constrained genericity [22].

5.4 Step 2) Interfacing the Recognizer- Microsoft’s Speech
Recognizer V.6.1 is used as an example

The Microsoft’s Speech Recognizer V.6.1 is selected as an example for the target recognizer and

its Development Kit [16] is used to set-up handle the basic functionalities of the speech engine and

to receive recognition content from it. First of all, we need to implement the grammar specification

program according to the speech recognizer’s grammar. The specification program consists of

interaction commands and the vocabulary used (Figure 35) to interface the target application [23].

Next, we need to define the recognizer’s grammar; a set of rules is defined through extensible

markup language (Figure 36), in order for the speech-recognition engine to recognize spoken

commands. This set of rules is used by the speech-recognizer to validate recognized words,

restricting the possible words or sentences chosen during the sound recognition process. In this way

a syntactic analysis is performed twice, once on the speech-recognition engine side and secondly in

the syntactic analyzing processes of our proposed system.

Each rule defines separate sentence context, composed sentences are formed through the reference

 71

of existing rules to form a compound rule. Decisive selection is applied to provide more flexibility

in speech and avoiding re-definition of context. These rules are structured in the exact same way the

commands are defined in the system’s language definition, obeying the definition token placement

rules for operators and commands.

<!--BELLOW IS ALL APPLICATION DEPENDANT, SO ITS THE ONLY

PART OF THIS DEFFENITION THAT SHOULD BE MODIFIED-->

<!--variables for use with outsorting tool-->

<RULE NAME="sqrs">

<l> <P>save</P> <P>saveas</P> <P>player</P> <P>new</P>

<P>normal</P> <P>duplicate</P> Continues…..

Figure 37. Recognition Vocabulary

<RULE NAME="dragsquare" TOPLEVEL="ACTIVE"> <P>dragsquare</P> <o> <RULEREF NAME="sqrs"/> <o> <p>to</p>

 <l> <RULEREF NAME="sqrs"/> <RULEREF NAME="coord"/> </l> </o>

 <o> <o> by </o> <RULEREF NAME="mse"/> <o> <p>by</p>

<RULEREF NAME="mse"/> </o> </o> </o> <o><RULEREF NAME="then"/>

 </o> </RULE>

Figure 38. Composed rule definition that uses references to other lower-level rules

The definition of a translation XML resource file (Figure 37) that associates commands in the

recognizer’s grammar format into context in the system’s internal language is made. This translation

resource allows for generic integration of other recognizers and languages into the system.

In this case, the translation was not necessary since the system’s internal language matches the one

specified at the speech recognizer; however it was done to illustrate this step.

<grammar>

<word NAME="Actor">Actor</word>

<word NAME="Profile">Profile</word>

<word NAME="boolean">boolean</word>

<word NAME="true">true</word>

Continues…..

Figure 39. Translation Repository

 72

5.5 Step 3) Macro Command Registration

To simplify interaction with the recognizer, we define macro commands in the specification

program for target application interaction. Without the support for macros, users will have to speak

long sentences with complicated syntax to achieve a set of interaction tasks. For this reason we

compose context-free macros to abstract multiple tasks into one reusable command that

approximates to the user’s natural way of speaking and enhances speech recognition’s efficiency.

Figure 38 depicts a snapshot of a macro command registration for the BestWise visual authoring

software. The operation steps are labeled as 1,2,3,4 and 5 in the figure.

Figure 40(a). Registering a Macro

Figure 41(b). Registering a Macro

 73

Table 6 presents the description of the steps involved in registering a macro command.

Table 6. Registering Macro

Steps High-Level View Low-Level View
Enter Macro Composer End User enters the macro composer

mode by clicking on the “composer”
button(1)

The system loads the macro
composing GUI

Define a Macro
Command

End User first defines a keyword to
identify the macro command.
The user then composes the macro
command, defining it in the system’s
internal language. In this case a
macro utilizing wildcards is
composed so that it can be applied to
more than one actor(3)

The Macro Composer generates
the XML structure that will be
inserted into the speech engine’s
grammar definition so that the
macro keyword can be
recognized by the
speech-recognizer

Submit Macro
Command

End user presses the submit button(4)
and exits the composer(5)

The Macro Composer stores the
macro command in the macro
command repository and
regenerates the speech engine’s
grammar definition file,
inserting the XML structure
created for this macro command
in the previous step

5.6 Step 4) Interacting with the Interfaced Environment

The following scenarios focus on overall user interaction with the predefined interfacing

environment.

5.6.1 Registering an actor
Actors are used to reference dynamic content of applications so that they can be interacted with

through voice commands. In order to avoid the possible confusion, in our system, we organize

actors into actor profiles to avoid displaying all actors of an application at once.

To create a new actor, one must select an actor profile to associate it with, and then speak the “add

actor” command. Figures 39(a) 39(b) 39(c) depict the snapshots of runtime actor registration for

the BestWise visual authoring software. The operation steps are labeled as 1 and 2 in the figures.

 74

 Figure 42(a). Registering an Actor

Figure 43(b). Registering an Actor

 75

Figure 44(c). Registering an Actor

Table 7 presents the description of the steps involved in registering an actor.
Table 7. Creating Actor

Steps High-Level View Low-Level View
Select Actor Profile End user speaks the

selectactorprofile
Profile1 command

The Event Driven GUI component invokes the
Actor Handler component where the selection
of the actor profile takes place

Add actor The user then speaks the
“addactor” command. In
this particular case the
macro command
“addactor ob2” is used
that translates to a
command written in the
system’s internal
language “clicksquare
ob2 then addactor”.

The “clicksquare” command triggers an
invocation to the mouseAI component through
the Event Driven GUI component to set the
clicking stile to “button interaction”.
The square to click is selected, retrieving its
coordinates through the Square Mapping
Mechanism component that reads them from
file. The mouseAI’s sendclick method is then
invoked, performing a click on the specified
coordinates. The ActorHandler component
creates a visual label that contains the name of
the actor and places it on the corresponding
coordinates.
The coordinates information and auto-assigned
name of the actor is stored to file through the
StoreHandler component

5.6.2 Dragging an Actor
To be able to drag an actor, a grid must be present on screen in order to assign an actor a new

location. In the following scenario we first load a grid and then perform a “dragactor” command to

drag an actor to a specific coordinate of the grid. Figures 40(a) 40(b) 40(c) depict the snapshots of

dragging an actor. The operation steps are labeled as 1 and 2 in the figures.

