
 76

Figure 45(a). Dragging an Actor

Figure 46(b). Dragging an Actor

 77

Figure 47(c). Dragging an Actor

Table 8 presents the description of the steps involved in dragging an actor.
Table 8. Dragging Actor

Steps High-Level View Low-Level View
Select Grid End user speaks the “selectgrid”

command to select a grid
Triggers an invocation through the Event
Driven GUI component to the Square
Managing class, this class invokes a factory
method inside the Square Mapping
Mechanism component that reads each
square from file and returns a collection of
square objects that belong to the grid. Back
in the Square Managing class, each square
from the collection get drawn on screen

Drag actor End user speaks the “dragactor
Actor1 to 1,4” command

System invokes the MouseAI component
through the Event Driven GUI component,
setting the mouse interaction mode to
“movement”, then the ActorHandler
component is invoked to retrieve the
selected Actor’s location. The cursor’s
location is then set to that of the Actor
through the MouseAI component.
The ActorHandler component then stores
the new coordinates of the actor, by
querying the StoreHandler component to
submit the updated actor information as
described in 5.6.1. The MouseAI is finally
invoked to set its mode to “dragging”, and
the new coordinates are used to set the
cursor to the new position

5.6.3 Utilizing Wildcards
Wildcards are part of the system’s design strategy to allow the reutilization of a macro with different

 78

entities (Actors) by allowing the user to assign the wildcard value during runtime. To utilize

wildcards one must first focus on an actor through the “focus command” and then invoke the macro

interaction command, the system will take care of replacing wildcards with the focused actor.

Figure 41 depicts a snapshot of the events involved in utilizing a macro that contains wildcards.

Figure 48. Utilizing Wildcards

Table 9 presents the description of the steps involved in loading a macro with wildcards and

assigning them a specific actor.
Table 9. Utilizing Wildcards

Steps High-Level View Low-Level View
Focus Object End User speaks the “Focus Actor1”

Command
The system gains awareness of
the chosen object.

Invoke Wildcard
Command

End User speaks a Macro Command
containing wildcards

The Macro Interpreter
translates the keyword into
valid commands defined in the
system’s language.
Wildcards found inside the
commands are replaced by the
value specified by the user
(Actor1) by the Wildcard
Translator

 79

Figure 49. Utilizing a Macro

In this example the macro command Pattern1 is spoken, that translates to:

“clickactor Actor1 then clicksquare path then setdrop false then setdragspeed veryslow then

dragactor Actor1 north by verylong then setdragspeed fast then dragactor Actor1 northeast then

setdragspeed slow then dragactor Actor1 east then loop 2 then setdrop true then setdragspeed

veryfast then dragactor Actor1 by octagon by short”

The macro command discussed for this example draws a path for the focused actor. It does so by

setting the speed of dragging (by invoking the mouseAI in the same manner described in 5.6.2).

Then it uses the “dragactor” command to drag the actor in a specific direction and at a specific

distance.

5.6.4 Utilizing the Capturing Method
To capture external application’s windows into our system’s main container the user must invoke

the “captureit” command. Figures 43 and 44 depict snapshots of the usage of the capturing

method that is incorporated into a macro command. The operation steps are labeled as 1, 2 and 3 in

the figures.

 80

Figure 50. Defining a Path through Capture

Table 10 presents the description of the steps involved in defining a path of an actor through the

utilization of the capture method.
Table 10. Defining a Path through Capture

Steps High-Level View Low-Level View
Focus Object End User speaks the “Focus Actor2”

Command
The system gains awareness of
the chosen object.

Invoke Wildcard

Command

End User speaks the macro

Command “definepath”.

The Macro Interpreter
translates the keyword into
valid commands defined in the
system language.
Wildcards found inside the
commands are replaced by the
value specified by the user
(Actor2) by the Wildcard
Translator

“definepath” Macro Command translation:

“clickactor Actor2 by rightclick then sendkey y then captureit then selectstage pathhandler then

selectgrid patterngrid”

 81

We present the low level view of the execution of the translated command as below:

Triggers an event of type right-click on the focused actor and uses the API function calls of

“sendkey” and “captureit” that are invoked through the “Event-Driven GUI” component.

The sendkey command emulates the stroke of the key Y, popping up an application menu, then

using the “captureit” command to capture the external window inside our system’s container. The

“selectStage” command is then called to load the corresponding stage that corresponds to the

current section of the target application. The SquareHandler mechanism loads all the corresponding

squares from file(located inside the stage directory) for this stage. The squares are loaded and their

respective label is instantiated.

Figure 51. Capturing Screen

Table 11 presents the continuation of the description of the steps involved in defining a path of an

actor through the utilization of the capture method.
Table 11. Defining a Path, Continued

Steps High-Level View Low-Level View
Click Coordinate End User speaks the “clickcoordinate

1.3” command to select a moving
pattern

The system performs a click on
the coordinate specified in a
similar way as described in
5.6.2

Accept End User speaks the “clicksquare ok”
command to accept the previously
selected pattern and exiting the stage.

The system performs a click on
the square specified in a similar
way as described in 5.6.2

 82

Figure 52. Defining a Path, Continued

5.6.5 Interacting With the Painting Mode
Figures 46(a) 46(b) 46(c) depict a snapshot of basic interaction through a grid and predefined

patterns that can be used for painting panes. To enter the painting mode of the target interfaced

application, we first invoke the commands to load the corresponding stage and grids of the painting

GUI. We then draw a figure by invoking commands that perform moving patterns as the mouse is

dragged.

Figure 53(a). Interacting with the Paint Mode

 83

Figure 54(b). Interacting with the Paint Mode

.

Figure 55(c). Interacting with the Paint Mode

Table 12 presents the description of the steps involved in interacting with the paint mode of the

target application

 84

Table 12. Paint Mode Interaction

Steps High-Level View Low-Level View
Select Painting Stage End user speaks the “selectstage

paint” macro command
The command gets translated
into the systems internal
language. Then it triggers an
event of type click on the square
labeled “paint”, selects the
“paint” stage and the
“paintgrid” grid.

Draw an image The “drag octagon by short”
command is spoken by the end user,
triggering the drag command to take
place in the directions that are
involved in tracing an octagon

Invocations take place at the
“MouseAI” component in a
similar way as in 5.6.2.

5.6.6 Dragging Objects Referenced by Squares and Coordinates
Figures 47(a) 47(b) depict a snapshot of the steps involved in dragging an object that is referenced

by a square to a zone that is also referenced by a square, consisting of the user invoking a

“dragsquare” command.

Figure 56(a). Dragging Objects Referenced by Squares and Coordinates

 85

Figure 57(b). Dragging Objects Referenced by Squares and Coordinates

Table 13 presents the description of the steps involved in square to square dragging

Table 13. Square to Square Dragging

Steps High-Level View Low-Level View
Select a source and
sink

End user speaks the command
“dragcoordinate 8,1 to scene2”

The cursor is moved to the respective
coordinate, dragging mode is
activated, dragging is performed to
the destination(“Scene2”). All this is
done by making invocations to the
“Square Mapping Mechanism” to get
the coordinates of both the squares
and invocations to the “Mouse AI”
component to perform the involved
mouse actions in a similar way of
what is done in 5.6.2

5.7 Evaluation
We attempt to evaluate the proposed system from two general aspects: 1) “what to be evaluated”

and “how to evaluate it”. In “what to be evaluated”, we focus on evaluating the common application

challenges and limitations of current approaches identified in Chapter 1. In “how to evaluate it”, we

use a qualitative analysis against those metrics identified in the “what” part, by marking the features

supported in our approach that are used to tackle these challenges. In the following subsections, we

elaborate these analyses.

 86

5.7.1 What to be evaluated
We evaluate how our approach enhances the process involved in interfacing an application with a

recognizer by taking into account the characteristics of current interfacing methods with their

challenges and limitations by working a way around them.

We evaluate the following key issues:

‧ Generic Interfacing:

– We evaluate our approach in terms of its flexibility to interface with more than one

application environment and also how its interfacing GUI is designed to achieve this

purpose.

‧ Complexity:

– We evaluate our approach in terms of the level of difficulty involved in interfacing

application software with a speech recognizer.

‧ Customization:

– We evaluate the overhead involved in performing future modifications to an

interfacing environment of an application.

‧ Efficiency:

– We evaluate our approach in terms of its capabilities to abstract a group of actions to

simplify user interaction with target applications.

5.7.2 How to evaluate it
To evaluate our approach, we interfaced an application software[23] with a speech recognizer[17]

by referring the application’s interaction zones, then creating a grammar definition for the speech

engine to recognize theses interfacing environment’s zones, also by composing macros to abstract a

set of actions, and finally by interacting with the interfaced application through our framework, all

of the above by following the interfacing steps described by the scenarios that are covered earlier in

this chapter. Based on this we present and evaluate the features supported in our approach by

contrasting them with the challenges and limitations that are suffered by current interfacing

approaches. These features are summarized bellow:

 Generic Interfacing.

We address non-generic recognizer interfacing by creating a generic, application-independent,

recognizer-driven interface generator framework that allows the creation of interfacing visual

environments that fit multiple applications. As portrayed in the interfacing composition scenarios

discussed in this chapter, our framework allows for custom making of interfaces for applications by

 87

drawing referencing objects such as squares, grids and moreover provides dynamic interaction

capabilities through the registration of actors.

 Complexity.

We address complexity by interfacing applications through their front-end by adopting the

“See-Through Interface” paradigm, allowing a visual interfacing mechanism that does not deal with

low level system design and implementation issues.

 Customization.

We address customization issues by adopting the “See-Through Interface” paradigm that allows

front-end visual customization of the interfacing context during run-time without affecting other

application’s recognition interfaces and without the need of dealing with source code re-compilation

each time changes are made.

 Efficiency.

We address interaction inefficiency by defining and integrating a script language into the system

and providing a post-interfacing mechanism to abstract sets of actions into single, context-free

reusable macros as depicted in the interaction scenarios of this chapter. Macros are defined with the

use of simple reference words, allowing the user to have a less-intense and time consuming

interaction with the system by minimizing the amount of commands that he/she must speak,

providing a more natural way of speaking and enhancing speech-recognition efficiency.

 88

5.7.3 Evaluation Results
In this section we summarize our evaluation results and provide a contrast with the challenges and

limitations of current approaches through a comparison table bellow:

Table 14 summarizes the system evaluation in terms of the application challenges.

Table 14. Comparison of our System against Application Challenges

Challenge Interfacing Interface Framework Current Interfacing Approaches
Non-Generic
Interfacing

Offers a generic interfacing
environment that can be used to
interface a recognizer
simultaneously with multiple
applications that require different
visual interfacing requirements.

Current approaches focus on
programming a direct interfacing of
one application with one speech
recognizer.
Current approaches lack a graphic
interfacing environment that
interfaces application’s interaction
zones through drawing.

Complexity Allows interfacing a recognizer
with 3rd party applications through
a visual environment that interfaces
applications through the front end,
without the need of accessing their
code.

Current approaches focus on
recognizer integration through the
back-end of applications requiring
low-level programming and system
design knowledge.

Non-Customizable Allows modifications to a visual
interfacing environment to be done
at run-time, without the need of
compilation of any source code.

Current approaches’ tightly coupled
system design does not allow the
customization of the interaction
environment by the user.
Modification of application’s
interfacing environment requires
re-compilation of source code.

Inefficiency

Our approach offers a script
language for users to interact
directly with the system in
real-time and that allows the
composition of context-free
reusable macros to simplify user
interaction and increase speech
recognition accuracy.

Lack of a post-interfacing
mechanism to abstract a group of
actions into single composed
commands to minimize and
simplify user interaction tasks.

The proposed system achieved the vision of Interface Interfacing by providing a new method to

interface applications with a recognizer without requiring programming knowledge by the users that

perform the interfacing that can be applied to commercial applications without the need of

accessing their internal code, and also allows the composition of macros to facilitate interaction task,

in this way overcoming common limitations and challenges of current approaches.

 89

5.8 Conclusion
After an extensive qualitative evaluation, it was established that the proposed system generally

achieves its goals well, in terms of supporting the vision of Interface Interfacing and enhancing

application interfacing to recognizers by addressing current application challenges. However, some

limitations were identified, such as the lack of interfacing context switching agents in charge of

dynamically setting up the interfacing environment for the user as this navigates the target

application as well as the requirement of interfacing recognizers into the framework through API

coding instead of applying a further abstracted method. In overall, this chapter provided the

visualization on how our system tackles the challenges and enhances the limitations that are

suffered by current interfacing approaches.

 90

CHAPTER SIX

Conclusions and Future Work

6.1 Conclusion and Major Contributions of this Research
This research alleviates some common problems suffered by developers when bridging an

application to the interface of a recognizer. The proposed approach presents a more flexible and

efficient interfacing compared with the current approaches. To design and implement the proposed

Interface Interfacing Framework, we addressed a number of challenges and limitations imposed by

current approaches, by employing several techniques such as the “See-Through Interface,” design

patterns, and a script language definition plus a parsing technique to carry out the system design and

implementation. The proposed Interface Interfacing Framework enhances the interfacing of

applications to recognizers by making it an easy, generic and flexible process.

We also investigated and identified several challenges for developing and deploying successful

applications in speech-recognition interfacing environments. Some specific criteria that it’s

addressed from application-centric viewpoints are established. We studied current technologies that

have a potential to overcome individual challenges and limitations suffered by current interfacing

approaches. We designed and implemented a system that incorporates these technologies in a

cooperative way to tackle the limitations and challenges of current solutions. We evaluated the

system qualitatively in terms of its functionality against the criteria concluded from the challenges

and limitations of current approaches, and how it supports the vision of Interface Interfacing and

how it enhances the interfacing process. The major contributions of this research include:

‧ Offers a simplistic and personalized way to interface applications with recognizers through

the front-end, without the need of dealing with low-level issues such as system design and

programming.

‧ Allows modifications to a recognition interfacing environment of an application without

requiring the access to source code of applications and re-compilation of it.

‧ Offers a generic and custom interface interfacing environment that allows the coexistence of

multiple applications that hold different interfacing requirements.

‧ Tackles the challenges and limitations imposed by current solutions that focus on wrapping

a single application with a single recognizer in a highly coupled manner.

 91

6.2 Future Work
Many challenges that were not addressed completely in this study still exist in the implementation

of Interface Interfacing systems. The following are the major limitations of our proposed system:

‧ Non-dynamic Switching of Interfacing Content for Applications

– User must invoke the loading of interfacing content as he/she navigates through the

different sections of an application through vocal commands

‧ No plug-in Recognizer Interfacing

– Do to the current design of recognizers, one must program a recognizer’s Integration

through calls on the recognizer’s API

‧ Limited Tracking of Dynamic Application Content

– Since we take a Front-End integration approach, tracking with dynamic content of

applications is limited to user specified movement of actors. Whenever an

application auto-positions its actors (through animations), our system is unable to

efficiently provide actor tracking but however allows the user to re-locate actors that

are misplaced

The complexity of most applications, demand a highly organized and smart interfacing framework

in order to interact with them. Work on the later is ongoing and further investigations need to be

carried out in both the research and development areas, specifically in developing smart agents in

charge of switching interfacing content for applications dynamically and transparently to the user as

their GUI are navigated. Development of agents that compose grammar definitions for recognition

devices dynamically as the user register interfacing zones, eliminating the need of the administrator

user to perform such low level tasks. Interaction with dynamic content of applications is still

needed to be enhanced as this study only attempt to provide a solution that will facilitate this kind of

interaction but however leaving the doors open for enhancing opportunities, especially in the areas

of smart tracking mechanisms and dynamic boundary delimiters.

 The Interface Interfacing field of study is still premature but it has a very promising future that

will change the way of integrating recognition capabilities to 3rd party applications, allowing fast

interfacing with recognition capabilities and detaching users from intense and non-natural

interaction. More importantly eliminating the complicated and time-consuming processes of

recognition integration to applications.

 92

DEFINITION OF TERMS

GUI A graphical user interface (or GUI, pronounced "gooey") is a method of
interacting with a computer through a metaphor of direct manipulation of
graphical images and widgets in addition to text.

CFG Context Free Grammar is used for definition of languages

BNF Backus-Naur Form, is the most common notation used to express context-free
grammars.

API Application Program Interface. The interface (calling conventions) by which an
application program accesses operating system and other services. An API is
defined at source code level and provides a level of abstraction between the
application and the kernel (or other privileged utilities) to ensure the portability
of the code.

SDK Software Development Kit is software provided by a software vendor to allow
their products to be used with those of other software vendors.

OS An Operating System is The low-level software which handles the interface to
peripheral hardware, schedules tasks, allocates storage, and presents a default
interface to the user when no application program is running.

IE Internet Explorer is a popular web-browser developed by Microsoft

ASCII American Standard Code for Information Interchange is the basis of character
sets used in almost all present-day computers. US-ASCII uses only the lower
seven bits (character points 0 to 127) to convey some control codes, space,
numbers, most basic punctuation, and unaccented letters a-z and A-Z.

URL Uniform Resource Locator is a standard way of specifying the location of an
object, typically a web page, on the Internet.

XML XML is a markup language for documents containing structured information.
Structured information contains both content (words, pictures, etc.) and some
indication of what role that content plays (for example, content in a section
heading has a different meaning from content in a footnote, which means
something different than content in a figure caption or content in a database
table, etc.). Almost all documents have some structure. A markup language is a
mechanism to identify structures in a document. The XML specification defines
a standard way to add markup to documents.

 93

REFERENCE APPENDIX

[1] B. Balentine, D. Morgan, and W. Meisel. How to Build a Speech Recognition Application,

Enterprise Integration Group, 1999.

[2] Speech-Actuated Manipulator. Available: http://www.research.att.com/history/89robot.html

[3] VSpeech 1.0, Team BK02 product. Available: http://vspeech.sourceforge.net

[4] Voxx 4.0, Voxx Team product. Available: http://voxxopensource.sourceforge.net/

[5] IVOS 2.0.1, ComunX product. Available: http://ivos.comunx.com/

[6] Eric A. Bier, Maureen C. Stone, K. Pier, W. Buxton Tony D. DeRose, “Toolglass and Magic

Lenses: The See-Through Interface”; Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA

94304.

[7] Y. Boussemart, F. Rioux, F. Rudzicz, M. Wozniewski, Jeremy R. Cooperstock “A Framework

for 3D Visualization and Manipulation in an Immersive Space using an Untethered Bimanual

Gestural Interface”; Centre For Intelligent Machines 3480 University Street Montreal, Quebec,

Canada.

[8] W. LI, W. Wang, I. Marsic, “Collaboration Transparency in the DISCIPLE Framework”; In

Proceedings of the ACM International Conference on Supporting Group Work (GROUP'99)

November 14-17, 1999, Phoenix, AZ.

[9] Christofer R. Wren, Carson J. Reynolds, “Parsimony & Transparency in Ubiquitous Interface

Design”; Media Laboratory, Massachusetts Institute of Technology

[10] Online Laborlawtalk Encyclopedia. Available: http://encyclopedia.laborlawtalk.com/

[11] C.S. Koong, “A Component-based Visual Scenario Construction Environment for

Non-Programming Users to Create Interactive Electronic Books”; A Masters Deegre Thesis,

Computer Science and Information Engineering, National Chiao-Tung University, Taiwan,

2002.

[12] James Gosling,Bill Joy,Guy Steele,Gilad Bracha ; The Java Language Specification, Second

Edition, Sun Microsystems, Inc., 2000.

[13] Robert W. Sebesta ; Concepts of programming languages, Fifth Edition, Addison-Wesley

Publishing Company , 2002.

[14] WinBatch Macro Scripting Language. Available: http://www.winbatch.com/

[15] N. Manasse, “Speech Recognition”; University of Nebraska, Lincoln, 1999.

[16] Microsoft Speech SDK, Version 5.1 Documentation, Microsoft Corporation, 2001.

[17] Microsoft’s Speech Recognizer V.6.1, Microsoft product.

 94

Available: http://www.microsoft.com

[18] Bruce Powel Douglas; Real-time design patterns: robust scalable architecture for Real-time

systems, Addison-Wesley Publishing Company, 2003.

[19] Design Patterns in Java. Available: http://www.fluffycat.com/java/patterns.html

[20] Shih-Kun Huang, “Objected-Oriented Program Behavior Analysis Based on Control

Patterns”;a Ph. D. dissertation, Computer Science and Information Engineering, National

Chiao-Tung University, Taiwan, 2002.

[21] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen; Object-Oriented Modeling

and Design, 1991 Prentice-Hall.

[22] Grady Booch; Object-Oriented Analysis and Design with Applications, The

Benjamin/Cummings Publishing Company, Inc., 1994.

[23] Robot battle scripting language functions. Available:

http://www.duke.edu/~cc27/RobotBattleCommandManual.html

[24] BestWise International Computing Company. Available: http://www.caidiy.com.tw

[25] W. C. Chen, “A Reuse-based Software Construction Paradigm for Visualized Reusable

Components and Frameworks”; a Ph. D. dissertation, Computer Science and Information

Engineering, National Chiao-Tung University, Taiwan, 1998.

[26] Microsoft’s Windows API Reference Web-Site. Available: http://www.mentalis.org

[27] Programming techniques reference forum. Available: http://visualbasicforum.com

[28] S.J. Gibbs, D.C. Tsichritzis; Multimedia Programming, Objects, Environments, and

Frameworks, Addison-Wesley Publishing Company , 1995.

[29] OMG’s CORBA Specification, Object Management Group’s Standard. Available:

http://www.corba.org

[30] Voice Recognition Systems. Available: http://talktoyourcomputer.com

 95

APPENDIX I

SPEECH ENGINE GRAMMAR DEFINITION

<GRAMMAR LANGID="409">

<DEFINE>
<ID NAME="NUM" VAL="1"/>
<ID NAME="VISLIST" VAL="3"/>
<ID NAME="BOOLEAN" VAL="4"/>
<ID NAME="GRIDS" VAL="5"/>
<ID NAME="STAGES" VAL="6"/>
</DEFINE>

<!--Runtime Defined variables-->
<RULE NAME="Actor">
 <P>Actor<RULEREF NAME="num"/></P>
 </RULE>

<RULE NAME="Profile">
 <P>Profile</P>
<RULEREF NAME="num"/>
 </RULE>

<!--Other Variables-->
<RULE NAME="boolean">
<L PROPNAME="boolean" PROPID="BOOLEAN">
 <P>true</P>
<P>false</P>
</l>
 </RULE>

<RULE NAME="spd">
<l>
 <P>veryslow</p>
 <P>slow</p>
 <P>fast</p>
 <P>veryfast</p>
</l>
</RULE>

<!--visuallist-->
<RULE NAME="vislist">
 <L PROPNAME="vislist" PROPID="VISLIST">
 <P>actorlist</p>
 <P>stagelist</p>
 <P>gridlist</p>
 <P>applicationlist</p>

 96

 <P>actorprofilelist</p>
 <P>squarelist</p>
</L>
</Rule>

<!--Commands-->
<RULE NAME="showgrid" TOPLEVEL="ACTIVE">
 <P>showgrid</p>
<o>
 <RULEREF NAME="boolean"/>
</o>
<o>
<RULEREF NAME="then"/>
</o>
 </RULE>

<RULE NAME="setdistance" TOPLEVEL="ACTIVE">
 <P>setdistance</P>
<o>
 <P>to</P>
 <RULEREF NAME="mse"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="addactor" TOPLEVEL="ACTIVE">
 <P>addactor</P>
<o>
 <P>to</P>
<o>
<RULEREF NAME="coord"/>
</o>
</o>
<o><RULEREF NAME="then"/>
 </o>

<o>
<RULEREF NAME="sqrs"/>
</o>
 </RULE>

<RULE NAME="setactorbutton" TOPLEVEL="ACTIVE">
 <P>setactorbutton</P>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

 97

<RULE NAME="setdrop" TOPLEVEL="ACTIVE">
 <P>setdrop</P>
 <RULEREF NAME="boolean"/>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="setdragspeed" TOPLEVEL="ACTIVE">
 <P>setdragspeed</P>
<o>
 <RULEREF NAME="spd"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="setvisualaide" TOPLEVEL="ACTIVE">
 <P>setvisualaide</P>
<o>
 <RULEREF NAME="boolean"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="addactorprofile" TOPLEVEL="ACTIVE">
 <P>addactorprofile</P>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="pastetext" TOPLEVEL="ACTIVE">
 <P>pastetext</P>
<o>
 <l>
 <RULEREF NAME="abc"/>
 <RULEREF NAME="num"/>
 <p>*+</p>
</l>
</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="cleartext" TOPLEVEL="ACTIVE">

 <P>cleartext</P>
 <o>
 <RULEREF NAME="then"/>
 </o>

 98

<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="captureit" TOPLEVEL="ACTIVE">
 <P>captureit</P>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="sendkey" TOPLEVEL="ACTIVE">
 <P>sendkey</P>
<o>
<RULEREF NAME="abc"/>
<RULEREF NAME="num"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="usingactor" TOPLEVEL="ACTIVE">
 <P>usingactor</P>
 <RULEREF NAME="boolean"/>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="usedelay" TOPLEVEL="ACTIVE">
 <P>usedelay</P>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="setactor" TOPLEVEL="ACTIVE">
 <P>setactor</P>
<o>
<RULEREF NAME="Actor"/>
<P>to</P>
<l>

 <RULEREF NAME="coord"/>
 </l>
</o>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="resetactor" TOPLEVEL="ACTIVE">
 <P>resetactor</P>
<o><RULEREF NAME="then"/>

 99

 </o>
 </RULE>

<RULE NAME="setlist" TOPLEVEL="ACTIVE">
 <P>setlist</P>
 <RULEREF NAME="vislist"/>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="eraseactor" TOPLEVEL="ACTIVE">
 <P>eraseactor</P>
 <RULEREF NAME="Actor"/>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="eraseprofile" TOPLEVEL="ACTIVE">
 <P>eraseprofile</P>
<o>
<RULEREF NAME="Profile"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="opendeveloper" TOPLEVEL="ACTIVE">
 <P>opendeveloper</P>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="drag" TOPLEVEL="ACTIVE">
 <P>drag</P>
<o>
<RULEREF NAME="mse"/>
<o>
<p>by</p>
<RULEREF NAME="mse"/>
</o>
</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="dragsquare" TOPLEVEL="ACTIVE">
 <P>dragsquare</P>
 <o>
 <RULEREF NAME="sqrs"/>
 <o>

 100

 <p>to</p>
 <l>
 <RULEREF NAME="sqrs"/>
 <RULEREF NAME="coord"/>
 </l>
 </o>
 <o>
 <o>
 by
 </o>
 <RULEREF NAME="mse"/>
 <o>
 <p>by</p>
 <RULEREF NAME="mse"/>
 </o>
 </o>
 </o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="dragcoordinate" TOPLEVEL="ACTIVE">
 <P>dragcoordinate</P>
 <o>
 <RULEREF NAME="coord"/>
 <o>
 <p>to</p>
 <l>
 <RULEREF NAME="sqrs"/>
 <RULEREF NAME="coord"/>
 </l>
 </o>
 <o>
 <o>
 by
 </o>
 <RULEREF NAME="mse"/>
 <o>
 <p>by</p>
 <RULEREF NAME="mse"/>
 </o>
 </o>
 </o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="dragactor" TOPLEVEL="ACTIVE">
 <P>dragactor</P>
 <o>

 101

 <RULEREF NAME="Actor"/>
 <o>
 <p>to</p>
 <l>
 <RULEREF NAME="sqrs"/>
 <RULEREF NAME="coord"/>
 </l>
 </o>
 <o>
 <o>
 by
 </o>
 <RULEREF NAME="mse"/>
 <o>
 <p>by</p>
 <RULEREF NAME="mse"/>
 </o>
 </o>
 </o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="click" TOPLEVEL="ACTIVE">
 <P>click</P>
<o>
 <P>by</P>
<RULEREF NAME="mse"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="clicksquare" TOPLEVEL="ACTIVE">
 <P>clicksquare</P>
<RULEREF NAME="sqrs"/>
<o>
<p>by</p>
<RULEREF NAME="mse"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="clickactor" TOPLEVEL="ACTIVE">
 <P>clickactor</P>
<RULEREF NAME="Actor"/>
<o>
<p>by</p>
<RULEREF NAME="mse"/>

 102

</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="clickcoordinate" TOPLEVEL="ACTIVE">
 <P>clickcoordinate</P>
<RULEREF NAME="coord"/>
<o>
<p>by</p>
<RULEREF NAME="mse"/>
</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="move" TOPLEVEL="ACTIVE">
 <P>move</P>
<o>
 <P>to</P>
 <l>
 <RULEREF NAME="sqrs"/>
 <RULEREF NAME="coord"/>
 </l>

</o>
<o>
 <RULEREF NAME="mse"/>
 <o>
 <p>by</p>
 <RULEREF NAME="mse"/>
 </o>
</o>
 <o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="stop" TOPLEVEL="ACTIVE">
 <P>stop</P>
 <o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="selectstage" TOPLEVEL="ACTIVE">
 <P>selectstage</P>
 <RULEREF NAME="stages"/>
 <o><RULEREF NAME="then"/>
 </o>
 </RULE>

 103

<RULE NAME="selectgrid" TOPLEVEL="ACTIVE">
 <P>selectgrid</P>
 <RULEREF NAME="grids"/>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="selectactorprofile" TOPLEVEL="ACTIVE">
 <P>selectactorprofile</P>
 <RULEREF NAME="Profile"/>
<o><RULEREF NAME="then"/>
 </o>
 </RULE>

<RULE NAME="selectapplication" TOPLEVEL="ACTIVE">
 <P>selectapplication</P>
<RULEREF NAME="apps"/>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<!--Operators-->
 <RULE NAME="from" TOPLEVEL="ACTIVE">
 <P>from</P>
 <o><RULEREF NAME="then"/>
 </o>
</RULE>

<RULE NAME="loop" TOPLEVEL="ACTIVE">
 <P>loop</P>
 <o><RULEREF NAME="num"/>
 <o><RULEREF NAME="times"/>
 </o>
</o>
<o><RULEREF NAME="then"/>
 </o>
</RULE>

<!--Terminators-->
<RULE NAME="times">
 <P>times</P>
 </RULE>

<RULE NAME="then" TOPLEVEL="ACTIVE">
 <P>then</P>
 </RULE>

<!--SOUND RECOGNITION COMMANDS-->
<RULE NAME="send" TOPLEVEL="ACTIVE">
 <P>send</P>

 104

 </RULE>

<RULE NAME="undofrase" TOPLEVEL="ACTIVE">
 <P>undofrase</P>
 </RULE>

<RULE NAME="undoall" TOPLEVEL="ACTIVE">
 <P>undoall</P>
 </RULE>

<!--Coordinates-->
<RULE NAME="coord">
<RULEREF NAME="num"/>
<P>,</P>
<RULEREF NAME="num"/>
</Rule>

<!--numbers-->
<RULE NAME="num">
 <L PROPNAME="num" PROPID="NUM">
<P>0</P>
<P>1</P>
<P>2</P>
<P>3</P>
<P>4</P>
<P>5</P>
….<P>100</P>
</L>
</RULE>

<!--abc-->
<RULE NAME="abc" TOPLEVEL="ACTIVE">
 <L>
<P>a</P>
<P>b</P>
<P>c</P>
<P>d</p>
….<P>x</p>
<P>y</p>
<P>z</p>
</L>
</RULE>

<!-- applications -->
<RULE NAME="apps">
<l>
 <p>mmWebface</p>
</l>
</rule>

 105

<!-- mouse constants-->

<RULE NAME="mse">
 <L>
 <P>leftclick</P>
 <P>rightclick</P>
 <P>doubleclick</P>
 <P>veryshort</P>
 <P>short</P>
 <P>normal</P>
 <P>long</P>
 <P>verylong</P>
 <P>north</P>
 <P>south</P>
 <P>west</P>
 <P>east</P>
 <P>northeast</P>
 <P>northwest</P>
 <P>southeast</P>
 <P>southwest</P>
 <P>octagon</P>
 <P>hexagon</P>
 <P>pentagon</P>
 <P>square</P>
 <P>triangle</P>
 <P>zigzag</P>
 <P>curves</P>
 <P>spiral</P>
</L>
</RULE>

<!--BELLOW IS ALL APPLICATION DEPENDANT, SO ITS THE ONLY
PART OF THIS DEFFENITION THAT SHOULD BE MODIFIED-->

<!--variables for use with outsorting tool-->
<RULE NAME="sqrs">
<L>
</L>
</RULE>

<!-- stages -->
<RULE NAME="stages">
 <L PROPNAME="stages" PROPID="STAGES">
</L>
</RULE>

<!-- grids -->
<RULE NAME="grids">
 <L PROPNAME="grids" PROPID="GRIDS">

 106

</L>
</RULE>

<!--Composed Commands
Following are key words that when recognized will trigger the execution of 'macros' based on the
defined language-->

<!--DYNAMICINSERTIONFLAG-->

<!--DYNAMICINSERTIONZONE ENDS-->

</GRAMMAR>

 107

APPENDIX II

SYSTEM’S LANGUAGE BNF DEFINITION

<Statement_Sequence> ::= <Statement> | <Statement> <then> <Statement> | <Statement_Sequence>
< Statement > ::= <setDistance> | <setDragSpeed> | <addActorProfile> | <eraseProfile> |
 < addActor> | <eraseActor> | <setActor> | <resetActor> | <setDrop> | <setList> |

<setVisualAide> | <showGrid> | <usingActor> | <drag> | <dragSquare>| <dragCoordinate> |
<dragActor> | <click> | <clickSquare> | <clickActor> | <clickCoordinate> | <move> |
<pasteText> | <clearText> | <sendKey> | <loop> | <openDeveloper>| < captureIt> | <selectStage> |
<selectGrid> | <selectActorProfile> | <selectApplication>

<setDistance> ::= SETDISTANCE <to> <Distance>
<setDragSpeed> ::= SETDRAGSPEED <Speed>
<addActorProfile> ::= ADDACTORPROFILE
<eraseProfile> ::= ERASEPROFILE <ActorProfile>
<addActor> ::= ADDACTOR [<to> <Coordinate>]
<eraseActor> ::= ERASEACTOR <Actor>
<setActor> ::= SETACTOR <Actor> <to> <Coordinate>
<resetActor> ::= RESETACTOR
<setDrop> ::= SETDROP <Boolean>
<setList> ::= SETLIST VisList
<setVisualAide> ::= SETVISUALAIDE <Boolean>
<showGrid> ::= SHOWGRID <Boolean>
<usingActor> ::= USINGACTOR <Boolean>
<drag> ::= DRAG <Direction>|<MovingPattern> <by> <Distance>
<dragSquare> ::= DRAGSQUARE <Square> (<Direction>|<by>|<to>)
 <Square> | <Coordinate> | <Distance> | <MovingPattern> [<by> <Distance>]
<dragActor> ::= DRAGACTOR <Actor> (<Direction>|<by>|<to>)
 <Square> | <Coordinate> | <Distance> | <MovingPattern> [<by> <Distance>]
<dragCoordinate> ::= DRAGCOORDINATE <Coordinate> (<Direction>|<by>|<to>)
 <Square> | <Coordinate> | <Distance> | <MovingPattern> [<by> <Distance>]
<click> ::= CLICK [<by> <Clicktype>]
<clickSquare> ::= CLICKSQUARE <Square> [<by> <Clicktype>]
<clickCoordinate> ::= CLICKCOORDINATE <Coordinate> [<by> <Clicktype>]
<clickActor> ::= CLICKACTOR <Actor> [<by> <Clicktype>]
<move> ::= MOVE (<Direction>|<to>) <Square>|<Coordinate>|Dystance
<pasteText> ::= PASTETEXT <String>
<clearText> ::= CLEARTEXT
<sendKey> ::= SENDKEY <letter>
<loop> ::= LOOP [<times>]
<openDeveloper> ::= OPENDEVELOPER
<captureIt> ::= CAPTUREIT
<selectStage> ::= SELECTSTAGE <Stage>
<selectGrid> ::= SELECTGRID <Grid>
<selectActorProfile> ::= SELECTACTORPROFILE <ActorProfile>
<selectApplication> ::= SELECTAPPLICATION <App>

<Identifier>::= <Zone>|<ConstantVal>|<Operators>|<Terminators>
<Zone> ::= <Stage>|<App>|<Square>|<Grid>|<Coordinate>|<Actor>|<ActorProfile>
<Actor> ::= ACTOR {<number>} <ActorProfile> ::= ACTORPROFILE {<number>}
<Stage> ::= {<string>|<number>} <App> ::= {<string>|<number>}
<Square> ::= {<string>|<number>} <Grid> ::= {<string>|<number>}
<Coordinate> ::= <number> ”,” <number>

 108

<ConstantVal> ::= <VisList>|<Clicktype>|<Direction>|<Distance>|<Speed>|<MovingPattern>
<VisList> ::= <Constant> <Clicktype> ::= <Constant> <Direction> ::= <Constant>
<Distance> ::= <Constant> <Speed> ::= <Constant> <MovingPattern> ::= <Constant>
<Constant> ::= {<string> | <number>}

<Operators> ::= <to>|<by>
<to> ::=<Actor>|<Square>|<Coordinate> to <Square>|<Coordinate>|<Distance>
<by> ::= <Direction>|<Coordinate>|<Square>|<Actor> by <Distance>|<Clicktype>

<Terminators> ::= <then>|<times>
<then> ::= <Statement> then <Statement>
<times> ::= <number> times

<Boolean> ::= true|false
<number> ::= <digital> | <digital> <number>
<string> ::= <letter> | <digital> | <letter> <string> | <digital> <string>
<digital> ::= 0|1|2|3|4|5|6|7|8|9
<letter> ::= a|b|c|......|y|z|A|B|C|......|Y|Z

