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Preface

The last decade has witnessed a lot of research about metric Diophantine ap-
proximation in the field of formal Laurent series, where a recent new and interesting
research direction was concerned with refinements of Kurzweil’s theorem. The pur-
pose of this thesis is to summarize these refinements and give some new contributions.

One of these refinements was given by Kim, Nakada and Natsui in [6]. In this
thesis, we will show that some details of their proofs can be improved. More pre-
cisely, we are able to drop the monotonicity condition and this will allow us to reprove
one direction of Kurzweil’s theorem. Another topic of this thesis will be concerned
with another refinement of Kurzweil’s theorem which in the real case was obtained by
Kurzweil himself in [8]. We will prove an analogue of this theorem in the field of for-
mal Laurent series and compare it with another refinement of a similar flavour which
was recently proved by Kim, Tan, Wang and Xu in [7].

An outline of this thesis is as follows. In Chapter 1, we will introduce some
background knowledge on Diophantine approximation and explain our aim of this the-
sis. There are three sections in this chapter. In Section 1.1, we will recall some funda-
mental properties for formal Laurent series and give some notations. Then, in Section
1.2, we will introduce Diophantine approximation and metric Diophantine approxima-
tion. This introduction will be split into homogeneous and inhomogeneous cases. We
will collect some results for the two cases, especially the inhomogeneous case which
consists of the so-called double-metric and single-metric cases. Finally, we will state
the main goal of this thesis in Section 1.3.

In Chapter 2, we will discuss the refinement of Kim, Nakada and Natsui. In
Section 2.1, we will state some lemmas and present the proof of their refinement. In
Section 2.2, we will give some improvements of the proofs from the previous sec-
tion and use them to prove one direction of Kurzweil’s theorem. In Section 2.3, we
will prove a special case of Kim, Nakada and Natsui’s refinement with a completely
different method as the one in Section 2.1.

In Chapter 3, we will show an analogue of the refinement proved by Kurzweil in
[8]. Since this result and another refinement which was recently proved by Kim, Tan,
Wang and Xu have some similarities and differences, we will compare them at the end
of this chapter.

Finally, in Chapter 4, we will end the thesis with some conjectures.
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Chapter 1

Introduction

1.1 Fundamental Properties

In the beginning, we will introduce some essential knowledge which is necessary
for this thesis. Let F,, be a finite field of size ¢ = p* (where p is a prime number and
k € N) and F,[X] be the set that contains all polynomials over F,. We denote by
[F,(X) the quotient set of IF,[X]. With the above notations, define

F, ((X7Y) = {f: S X ay #0.a; qu} u {0}

1=—00

to be the set of formal Laurent series. To turn the set F, (X ')) into a field, we define
addition and multiplication on it as for polynomials. Then, we have the following

proposition that was proved in [9].
Proposition 1.1.1. (F, (X1)),+,") is a field.

Comparing with the real case, F,[X], F,(X) and F, ((X~')) play the roles of
integers, rational numbers and real numbers, respectively.

Next, we define a norm for each f = S ¢, X' € F, (X)) with ay, # 0

1=—00

by |f| = ¢} = ¢No and |0] = 0. The following property shows that the norm is

non-Archimedean.
Proposition 1.1.2. Forany f,g € F,((X 1)), we have
(1) [fl=0« f=0.

(2) |fgl=1fllgl.



(3) |f + gl < max{[f],]g]}.
Proof.
(D) |f] =0« deg(f) = —00 & f =0.
Q) |fg| = qieslfe) = gdea(f)+dealg) — gdes(f) gdesls) — 11 1gl-

(3) |f + g| = g8 +9) = gmaxides(f)deg(9)} — max{qdeslf) gdesl9)}
=max {|f],[g[}. |

Now, we are going to introduce a set, denoted by I, which plays the role of
the unit interval [0,1) in F, ((X~1)). It is the subset of F, ((X~')) which consists of
elements f with deg(f) < 0. In other words,

L:={f €F,(X 1) :|f] <1}.

By restricting the above norm to this set, we get that [ is a compact topological
group. Thus, there exists an unique translation-invariant measure called Haar measure
which we denote by p.

Define for all g € L,

1 1
B(g;—k> = {fEIL: lf—g| < —k} with & > 1.
q q
The following property is a characterization of this measure.

Proposition 1.1.3. Choose by, by, ... b, € Fy, g € Land k > 1. Then

f= c; X i =0 forl <i<k = —,
u<{ > / !

(o(o7) -

Proof. Assume that b = by X 140, X 24 - -+b, X%, Then, forany f = X e
L, we have f € B (h; q_k) if and only if ¢; = b; for 1 < i < k. Hence,

f:E C'X_]ZCi:bifOrlfiSk :B(h,—)
{ =1 ’ ¢

Next, we consider the set L to be the union

U {f:§§%X”:@:bﬂm1gigk}.
j=1

bi,....b€Fg

and



Then we obtain

1=p(L)
=ul U {f—chXj:ci—biforlgigk}
b,....bp €Fg j=1
= Z u({f—chXj:q—@-forlﬁiﬁk})
by,....bp€F, j=1
:qkﬂ<{f:ZC]X_]CZ:blfOI‘]_SZSk’}>
j=1
Therefore,
1 > .
o B(h;—)):u f= ;X i =0bforl <i<k
1
q*

Since p is translation-invariant, we have
1 1 1
i (B (g;—k)) :;L(B (h;—k)) = — forallge L 1
q q q
Next, we are going to prove an important property of .

Proposition 1.1.4. Each two balls in 1L are either disjoint or one is contained in the

other.

Proof. Let B, ( f; q_’“) and B, (g; q_’”) be two balls in L. Without loss of generality,
we suppose that k; > ko. If they are not disjoint, then there must exist an element

h € L such that h € By N By. We have
1
|f—9|:‘f—h+h—g|Smax{|f—h|,|h—g|}§q72,

This implies that f € By (g; q_kz).
Now, we want to prove that B; is contained in Bs. If there exists A’ € IL such

that b’ € B \ Bs, then we get

1
(W =gl = 0= f 4 f = gl < max{|h" = fI.1f = gl} <

which means that ' € B,. We have a contradiction. Therefore,

1 1
B f; —) CB (g; —) .
1 ( ¢t 7 g



The proof is complete. 1

Similar to the integer part for real numbers, we define for each f = Zfi_oo a; X" e
Fy (X7),

f] = ZaiX" and {f} = f —[f].

We call the former the polynomial part and the latter the fractional part of f.
If we fix an element f € F, ((X~!)), then it can be expressed as the sum of its
polynomial part and fractional part. Thatis, f = [f] + {f}. We can rewrite this as
1

f=A0+ i, where Ag = [f] and ¢; = s

Again, we represent g; as the sum of its polynomial part, which we denote by Aj,
and the reciprocal of 1/{g; }. We let g = 1/{g1}. Continuing this iterative process an
infinite number of times or until gy is a polynomial for some k£ € N, f can be expressed
as a unique continued fraction expansion with A; = [g,] for g; = 1/{g;_1}, j > 2.
Note that f is irrational if and only if the process does not terminate. Thus, for

each irrational f € L., we have

1
Ay + —

where the A;’s are called partial quotients. Moreover, we put

P 1
LA , (Pe,Qr) = 1 with Py = 0and Qo = 1,
@At
1 1
At —

.. _|_ A_k
which are called the principle convergent of f with deg(Qy) := ni. We have the

following property.

Lemma 1.1. Fix an irrational f € L. If P./Qy are the principle convergents of f with
partial quotients Ay, then for k € N, we have the recurrence relation

Piy1 = Ap1 Py + Pia

Qi1 = Ap1CQk + Qr—1

Consequently,

, with initial conditions Py =0, Qo =1, P, =1, Q1 = A;.

Ng+1 — N = deg(Ak+1)7

forall k € NU{0}.



Lemma 1.2. For any k > 0, we have

Pe1Qr — PiQprr = (—1)*

and
1

eI = 15T

Next, we are going to introduce Diophantine approximation in the field of for-

mal Laurent series.

1.2 Diophantine Approximation in the Field of Formal

Laurent Series

The main problem of Diophantine approximation in the field of formal Lau-
rent series is as follows: for f € L, find a function v from {qk ke NU {O}} into
{¢* : k € Z} such that the Diophantine inequality

Pl ()
‘f o< 1a

has infinitely many solutions PP and Q)?

with P,Q € F,[X], Q #0, (1.1)

The following theorem which is an analogue of Dirichlet’s theorem is a repre-

sentative result in this area.

Theorem 1.1. Let f € L. Then,

P 1 ,
f_é <W with P,Q € F,[X], Q # 0,

has infinitely many solutions P and ().

In the above theorem, 1/(|@|) was chosen as 1/|Q)| and this result holds for each
fel.

Now, we will discuss the subarea called metric Diophantine approximation in
the field of formal Laurent series which asks for properties that hold for almost all
f € L. We will give some results from this area. Consider the inequality (1.1) for

P(|Q|) = ¢ " with [,, > 1 and n = deg(Q). Then, (1.1) becomes

< b with P,Q € F,[X], Q # 0, @ monic, n = deg(Q). (1.2

q2n+ln

P
5

In [4], Inoue and Nakada investigated the condition that makes (1.2) have infinitely

many solutions P and () for almost all f € L.



Theorem 1.2 (K. Inoue and H. Nakada [4]). The inequality (1.2) has infinitely many
solutions P and () for almost all f € L if and only if

oo
E q’l" = 00.
n=0

Furthermore, Nakada and Natsui found the following result on the asymptotic

number of solutions ¢) € F,[X]in [11].

Theorem 1.3 (H. Nakada and R. Natsui [11]). Define

U(N) =) =

ln
n<N q

If 1,, satisfies
(i) 1, is non-decreasing and y -, q~'" = oo,
(ii) there exists a constant D > 1 such that j,.1 > Dji for k > 1, where

J1:=min{n >2:10, — 1, > 1},
Jr=min{n > jp_q1:l, — l,_1 > 1}, for k> 2.

Then, for almost all f € 1L, the number of solutions of (1.2) with 0 < deg(Q) < N is
asymptotic to V(N).

In addition, Fuchs obtained an improvement of the above theorem by dropping

the conditions for /,, and adding an error term to this result.

Theorem 1.4 (M. Fuchs [3]). For almost all f € 1L, the number of solutions of (1.2)
with 0 < deg(Q) < N satisfies

W(N) + O (P(N)2 (log W(N))*™) ,
where U(N) is as above and € > 0 is an arbitrary constant.

So far, what we have discussed is the so-called homogeneous case. In this case,

the inequlaity (1.1) can be rewritten as

Qf — Pl <¢(|Q]) with P,Q € F,[X].

If 1 (|Q|) < 1, then we get that the degree of Q) f — P is less than zero so that P is the
polynomial part of ) f. This implies that this inequality can be simplified to

{QFH <¢(Q) with @ € F,[X].



Now, we are going to be concerned with the metric inhomogeneous Diophantine

approximation problem. For f, g € L, consider the Diophantine inequality

{Qf} — gl <(lQ]) with Q € F,[X], (1.3)

where 1) is a function from {¢* : k € NU {0} } into {¢* : k € Z}. The main question
in this area is again the existence of infinitely many solutions to (1.3).

Inhomogeneous Diophantine approximation consists of two cases: double-metric
and single-metric.

Double-metric, as the name suggests, is the case for which f and g are both

random. Consider the inequality (1.3) for ¢(|Q|) = ¢ " ' with [,, > 1 such that

{Qf} -9l <

where f, g € L. Ma and Su studied (1.4) for the double-metric case in [10]. The

—— with @ € F,[X], @ monic, n = deg(Q), (1.4)
g

following theorem is their result.

Theorem 1.5 (C. Ma and W.-Y. Su [10]). The inequality (1.4) has infinitely many
solutions Q) € F [ X] for almost all (f, g) € L? if and only if

S

ln
n=0 q
Moreover, the asymptotic number of solutions () was estimated by Fuchs in [3].

He derived a strong law of large numbers with error terms for the number of solutions

of (1.4) with deg(Q)) < N. We have the following result.

Theorem 1.6 (M. Fuchs [3]). For almost all (f,g) € L% the number of solutions of
(1.4) with 0 < deg(Q) < N satisfies

W(N) + O ((B(N))? (log W(N))? ™),
where U(N) =3 _y q ' and € > 0 is an arbitrary constant.
Next, we are going to introduce the two single-metric cases:

(1) fix g and choose a random f € L,

(2) fix f and choose a random g € L.

As for Case 1, Fuchs in fact showed that Theorem 1.4 holds for any fixed g (not
only g = 0).
In this research, we will focus on the Case 2. Our main objective of this thesis

will be introduced in the next section.



1.3 Kurzweil’s Theorem and its Refinements

In this section, we will introduce the main topic of this thesis. Consider the

Diophantine inequality for f fixed and g random

{Qf} —gl <

i with Q € Fy[X], n = deg(Q), (1.5)

where {/,,} is a given sequence of positive integers. In [5], Kim and Nakada studied
the following problem: for any sequence {/,,} with > 7 ¢~'» = oo, which condition
do we need for f € L such that (1.5) has infinitely many solutions in () for almost all
g € L 7 They found that the condition for f satisfying the above property is that f is

badly approximable whose definition we give next:

Definition 1.1. f is badly approximable if and only if there exists a constant ¢ > (

such that

QI > = 0 = deg(Q),
forallQ € F,[X], Q # 0.

Then, we have the following result which is Kurzweil’s theorem for formal Lau-

rent series.

Theorem 1.7 (D. H. Kim and H. Nakada [5]). fis badly approximable if and only if
(1.5) has infinitely many solutions Q) for almost all g € 1L and all sequence {l,,} with

Yoo ¢ = oo

In the sequel, we are going to discuss some refinements of Kurzweil’s theorem
in the field of formal Laurent series. Kim, Nakada and Natsui [6] investigated the con-
dition for f when adding the additional requirement to {/,,} that /,, is non-decreasing.
Note that this set of f contains all elements that are badly approximable. They ob-
tained some partial results even though they did not find the exact set for f. In order to

state their results, we need some notations. Define

=1
Q= {ln > 1: non-decreasing and Z = oo}

qln

n=0

and
Wq :={f €L :Vl, € Q, (1.5) has infinitely many solutions @ for almost all g € L.} .

Then, the following results were proved by Kim, Nakada and Natsui in [6].



Proposition 1.3.1 (D. H. Kim, H. Nakada and R. Natsui [6]). Let Py,/Qy be the prin-
ciple convergents of f with deg(Qy) = ny. If Y pe, n—lk < 00, then we have f ¢ W,

Note that >, é = oo is satisfied for almost every f € L.

The second result proved in [6] is as folows:

Proposition 1.3.2 (D. H. Kim, H. Nakada and R. Natsui [6]). If there exists a positive
integer C' such that ny, < Ck for all k € N, then we have f € W,

Note that Proposition 1.3.2 is only a sufficient but not necessary condition. We
will prove Proposition 1.3.1, Proposition 1.3.2 and improve some details of this result
in the next chapter.

Kim, Tan, Wang and Xu put forward another refinement from a new viewpoint

in [7]. Consider the inequality which is different from (1.5)

1
{Qr} —gl < pg deg(Q) = n, (1.6)
where f, g, () and [,, are as above. For s > 1, we define

U, = {f €L : 3¢ > 0such that [{Qf}] > ——, VO € F,[X] with n = deg(Q)}.

qsn+c ’

It is obvious that U is the set of badly approximable elements when s = 1.
The main goal of [7] was to search for the set of {l,,} such that f € U is
a necessary and sufficient condition for (1.6) having infinitely many solutions () for

almost all g € L whenever {l,,} belongs to this set. The set is defined as

Q= {Zn >1: iq"“gln = oo} )
n=0

Then, we have the following theorem.

Theorem 1.8 (D. H. Kim, B. Tan, B. Wang and J. Xu [7]). Define
Ws :={f € L:Vi, €y, (1.6) has infinitely many solutions Q) for almost all g € L} .
Then, we have W, = Us,.

In addition, Kurzweil also gave a refinement of the same flavour for the real case
in [8]. One of the main goals of this thesis is to obtain an analogue of this result in
the field of formal Laurent series. We first consider a non-negative and non-decreasing

sequence {r, } which fulfils the following conditions:



(1) n — r, 1s non-increasing,
) r, > 2n,foralln € N,

Define

U,y = {f € L : 3¢ > 0 such that

f— g‘ > q e VP, Q € F,[X] with deg(Q) = n} .

Our goal is similar as the one in Theorem 1.8. However, the set of {/,,} now becomes

of course different. More precisely, we define a set €2,y as follows: the sequence {/,, }

belongs to €1y, y if
(1) [, is non-decreasing, and

(2) there exists an increasing sequence of non-negative integers t; < to < t3 < ...,
and a function §(n) which is non-decreasing with 6(n) — oo as n — oo such

that

Liv1 > T;46(t) — tis

and

i>1

Then, we have the following result.

Theorem 1.9. Define the set

Wiy = {f € L : Vi, € Qy.,, (1.6) has infinitely many solutions Q for almost all g € ]L} :
Then, we have Wy, y = Uy, 3.

Note that U; = Uy,,y when we take 7, = (s + 1)n. In Chapter 3, we are going
to prove Theorem 1.9 and compare the sets (2, and €1y, ; which have some similarities

and differences when r, = (s + 1)n.

10



Chapter 2

The Refinement of Kim, Nakada and

Natsui

In this chapter, we will prove Proposition 1.3.1 and Proposition 1.3.2 from the

introduction and give some improvements.

2.1 Proof of Proposition 1.3.1 and Proposition 1.3.2

From now on, we assume that f is irrational. In order to prove the two proposi-

tions, we need the following lemmas.
Lemma 2.1. {{Qf} : Q € F [X]} is dense in L.

Lemma 2.2 (0-1 law). Let E be a measurable set contained in L. If E is invariant
under the action (- + {Qf}) for all Q € F,[X], then we have

p(E)=0 or 1.

The proofs of Lemma 2.1 and Lemma 2.2 are in [1].

From the second lemma, we obtain the following result.

Lemma 2.3. Define the set
E:={geclL:{Qf} —g| <¢(Q|) with Q € F,[X] has infinitely many solutions} .

Then, E is invariant under the action (- +{Qf}) for all Q € F,[X]. Consequently,
we have (1 (E) =0 or 1.

11



Proof. Let g € E. If we fix a polynomial (Q’, then we can find infinitely many () with
deg(@Q — @) > 0 such that

{(@Q@—-Qf} —gl=KQrf} — (g +{Q /NI < v(Q@ — Q) = »(QD.

This means g + {Q'f} € E. Thatis, E 4+ {Q)'f} C E. On the other hand, since

{@Q@+ Q) —gl = KQf} — (¢ —{Q DI < »(QI)

has infinitely many solutions, we have g—{Q’f} € E. Then, g = ¢—{Q'f}+{Q'f} €
E + {Q'f}, which implies that E C E + {Q’'f}. Hence, we get E = E + {Q'f}.
Consequently, E is invariant under the action (- + {Qf}) for all Q) € F,[X] so that
w(E)=0 or 1by Lemma22. |

From now on, we let 1/(|Q|) = ¢ "= throughout this chapter. (In the next
chapter, we will discuss the inequality with ¢(|Q|) = ¢~'.)

Next, we state the Borel-Cantelli Lemma which will be used below.

Lemma 2.4 (Borel-Cantelli Lemma). Let F}, be a sequence of events in a probability

space. Then,

() 70 1(Fy) < o, then p(limsup, . F) = 0.
(i) 15, u(F,) = oo then

2
(2 n(F))
(pl nLJNF ) > hm sup ij:l Zgﬂ AELOF) forall N € N.

Moreover, we have the right hand side is positive if there exists K > 0 such that
w(F; N Fy) < Kp(F)p(Fy), Vi, j € N

Fix f € L. Let P./Qy be the principle convergents of f with deg(Qx) = ny.
Then, we have the following result that was proved by Kim and Nakada in [5].

Lemma 2.5 (D. H. Kim and H. Nakada [5]). (i) Foreach @ € F,[X]withdeg(Q) <
Ny11, there exists a unique decomposition () = B1Qy + BoQ1 + - -+ + B 1Qx
with B; € FQ[X] and deg(BZ) < n; —N;_1.

(ii) For each nonzero QQ € F,[X] with deg(Q) < nyy1, we have |{Qf} > ¢ ™.

Moreover,

{Qf} = — f0” 0 <5< gy,
if and only if B; = 0 for 1 < i § m with ng, < s < Ny and deg(Bp,11) =

N1 — S in the decomposition of Q in (i).

12



Next, we are going to discuss two lemmas from [6]. Since we will revisit the
proof in the next section, we will give them as well.

Let {l,} be a non-decreasing sequence. Define for ny < n < ngq, I =
max{ngy1 — n,l,}. Let Bg = B({Qf}; ¢ " ') with n = deg(Q). Note that By is
a ball whose radius is not greater than ¢~ "*+'. We denote by F}, the union of By with
ng < deg(Q)) < ngyq1. That s,

r= U U Be

np<n<ngii deg(Q)=n

Note that the B(’s are disjoint. Thus,

1 1
wF)= > (g- 1)@”-@ (-1 > e (2.1)

N <N<ng41 np<n<ngii

Lemma 2.6 (D. H. Kim, H. Nakada and R. Natsui [6]). Let Q € F,[X] with deg(Q)) =

nand ny < n < ngyq. Then, form > 1,
( y .
H’(BQ)/L(Fk-i—m)a lfn + ln < Ntms

g e (u(ka) - (g—1)>q" > :

H(BQ N Fk:-l—m) = TotrmA1 Mt~ =1 <s<Mp i1
gym < n+ 0 < Npymyt,

07 lf?’L + l:; Z Nk4+m+1-

\

Proof. Let Q' be a polynomial with deg(Q)') = n' and ngy,,, < 7' < ngypme1 such
that B{Qf}; ¢ %) N BUQ' f}; ¢ ') # 0. Since n + I¥ < n/ + I%,, we have
Bg C Bg by Proposition 1.1.4.

In the case n + I} > npymy1, we obtain [{(Q — Q') f}| < ¢ " In < g Mmer,
Conversely, since deg(Q — Q') < Ngyme1, We get [{(Q — Q") f} > ¢ ™+m+t by

Lemma 2.5 (ii), a contradiction. Hence, B¢, does not contain By in this case. Then,

1 1
B <{Qf}§ anln) nB ({Q/f}; m) = 0.
Therefore,

(B N Fieym) = 0.
Now, we consider the case n + [, < ngipm41. Choose s € Nwith1 < ¢ < m
such that ngy; < n+ 05 < ngiy1. Then,
1 1
< .

{(Q@—-Q)f}H <

13



By Lemma 2.5, we have

Q' = Q + Bryis1Qr+i + -+ + Brim1Qrktms

where By ;11 € Fy[X] with deg(Byijt1) < Nptjr1 — nigtj for i < j < m and
Bk+m+1 7A 0.

If Byiiy1 # 0, then we use the Lemma 2.5 (ii) again to obtain

qdeg(Bk+i+1)

{@-Q)f}H =

an+i+1

Thus, we have [{(Q — Q') f}| < ¢ " '~ if and only if deg(Byyir1) < Npyic1 —n— L

n*

If Biyi11 = 0, then there exists 7 € N with 7 < r < m such that

deg(Br1rt1) 1 1 1
q
— / —
|{<Q Q )f}| an+r+1 q’nk+T - an+i+l < qn-i-l;; :
Therefore, we have
BQ N Fk+m = U BQ+Bk+i+1Qk+i+'"+3k+m+1Qk+m7

deg(Brtit1)<nktit1—n—l
deg(Bk+j+1)<nk+j+1 Nt j a<j<m
0<deg(Bk+m+1)<Pktm+1—Nk+m

where the union is disjoint. By the definition of B¢, we have

(B ) = :
Q+Brtit1Qk+it+Brtm+1Qr+m an+m+t+l;

ktmtt
where ¢ = deg(Bjrm+1)-

If i < m (e, n+ 1 < ngim), then the number of Q' = Q + Byyir1Qrri +
~++ + Biimt1Qpm With deg(Q') = nypm + t such that [{(Q — Q) f} < ¢ ' is

an+i+1—"—li LR TR L g m T e m (q _ 1)qt — (q _ 1)an+m—n—l;§+t.
Hence,

N<BQ N Fk—i—m)
- 3 8{deg(Q') = nim + 1 : |[{(Q — Q) f} < ¢ "}

*
an+m +t+lnk+m+t

0<t<Nktm+1—Nk+m

Z (g — 1)g"sem—nlntt

Nk+m +t+lek+m+t

0<t<Nktm+1—Nk+m

— g Z (zq —1)

Nk4+m +t
0<t<npimi1—"kim q

— (B Frinm)-

14



If i =m (e, Nprm <N+ 17 < Ngpme1), then
BQ N Fyvm = U BQ+Bk+m+1Qk+m7
0<deg(Brtm+1)<Pgtm+1—n—1

and

1(Bg N Fim)
_ f{deg(Q") = nprm +t: [{(Q - Q) fH <g" '}
o Z Notm 41

nk+m+t

0§t<nk+m+1 —n—l:;

_ (q—1)¢"
o Z Nk+m +t+l*

Ny —+t
0§t<nk+m+1—n—l;j m

1 -1
- an+m Z lq*

Tl +t
0<t<npqm+y1—n—1% q +m

1 qg—1
= : M(Fk—&-m) - Z IR

an+m nk+m+t

Nptm1 == <N 1 —Nktm q

where the last equality is by (2.1). 1

Applying the above lemma, we have the following result.

Lemma 2.7 (D. H. Kim, H. Nakada and R. Natsui [6]). For any k > 0 and m > 1, we

have
1

m—

[(Fe O Fogm) — p(F) t(Froam) | < —=5 i Flom)-

Proof. By Lemma 2.6, we have

N(BQ)MFker)a if n + l;kz < Nptm,
1(Bo M Frim) < W%M(me), i gy <10+ 1 < Npgomgn s

0, ifn 40 > Ngpmer-
This implies that
1
1(Bg N Frpm) — p(B) i Flem) < g 1(Fretm)-

On the other hand,

(B (Fim),  ifn+ 17 < My,

,U(BQ N Fk+m) > .
0, ifn 4105 > nggpm.

Now, we observe that:

15



1. Forn + [} < ngym, we have

Frim
(B O\ Fipm) — u(Bo)u(Fyom) = 0 2 —4km).

an+m

2. Forn + [} > ng4m, we have

1(Bg N Fitm) — (B pt(Fiem) = —p(B) (Fietm)
_ﬂ(Fker) > P(Em)

qu»l,’:L - q+m ’
Therefore, for all m > 1, we have
H Fk m
4B 1 Fim) = p(Bo)(Frrm)] < Lot
Notice that
WEN Feym) = p(F)p(Fipm) = > (1B N Fyom) — p(B)p(Figm)) -
ng<deg(Q)<np41
Thus,

W(Fi N Fopm) = p(Fou(Bosn) < 3 AlEkem)

Nk+m
ng <deg(Q)<ni41

an+m

M(Fk+m) < /VL(FIH—m)'

— 4N -n - m—1
q k+m k+1 q

The proof is complete. 1

By the above lemma and Lemma 2.4, we have the following result.

Lemma 2.8 (D. H. Kim, H. Nakada and R. Natsui [6]).

Z% =0 (i.e., Zu(Fk) = oo)
1" k=0

if and only if |{Qf} — g| < ¢~ "' has infinitely many solutions Q with deg(Q) = n
for almost all g € L.

This result implies the following two theorems that were proved in [6].

Theorem 2.1 (D. H. Kim, H. Nakada and R. Natsui [6]). Let {l,} be a non-decreasing

sequence. Then, (1.5) has infinitely many solutions () for almost all g € 1L if and only
if

g

n=0

=1
fe {f el: Z = 00, where I = max{ngi1 —n,l,} for ny §n<nk+1}.

16



Theorem 2.2 (D. H. Kim, H. Nakada and R. Natsui [6]). Let {l,,} be a non-decreasing
sequence. Then, (1.5) has infinitely many solutions Q) for almost all g € L if and only

if
fe {feL:zmm{W;w—nk} :oo}.
k=0

qmr
Now, we are going to recall Proposition 1.3.1, Proposition 1.3.2 and provide the

proofs of them via Theorem 2.1 and Theorem 2.2.

Recall the sets

= 1
Q= {ln > 1: non-decreasing and Z —-— = oo}
q n

n=0

and
Wq :={f € L:Vl, € Q, (1.5) has infinitely many solutions () for almost all g € L} .

We have the following results.

Proposition 2.1.1 (D. H. Kim, H. Nakada and R. Natsui [6]). Let Py./Qy be the prin-
ciple convergents of f with deg(Qy) = ny. If Y 1o, n—lk < 00, then we have [ ¢ W,

Proof. Choose

.| log (ntog,m)). itn>g

1, ifn <gq.
Then, we have
I S
I, =
—~q — nlogq n

Let ny~ be the smallest positive integer that is larger or equal to ¢. Then,

00 . 00 k*—1
Z mm{lnk,TlLkH —ng} < Z llnk < Z l?k N Z log, nkl—i- log, (log, 1)
k=0 ar ot S e logg e

By Theorem 2.2, the proof is complete. |

Proposition 2.1.2 (D. H. Kim, H. Nakada and R. Natsui [6]). If there exist a positive
integer C' such that n, < Ck forall k € N, then we have f € W,

17



Proof. Let {l,,} € Q. Then,

> min{l,, , Ne1 — Nkt =1 =1
> >> -2
ln - ln - l
k=0 a7 o 4" o ¢ “*
1=/ 1 1 1
= 5 kz; <qle - qle+1 Tt qlC(k+1)—1)
. =1
— — = o0.
B C n=0 qln

Since {[,,} € Q is arbitrary, we have f € W, by applying Theorem 2.2. 1
In the next section, we will give some improvements of this refinement and

prove them.

2.2 Theorem 2.1 without the Monotonicity Condition

In this section, we will improve Lemma 2.6 and Lemma 2.7 by dropping the
monotonicity condition that {l,} is non-decreasing and use these improvements to
prove one direction of Theorem 2.1 without the monotonicity condition. Moreover, we
will show that this theorem also implies one direction of Kurzweil’s theorem.

If we remove the condition that {/,,} is non-decreasing, then the main difference
in Lemma 2.6 is that: ¢~ ', the radius of B, might be greater than ¢~""'». We

will show the following modification of Lemma 2.6.

Lemma 2.9. Let () € F [X] with deg(Q) = n and nj, < n < nyyy. Then, form > 1,

p(BQ) e Frm ), ifn+1, <ngim,

g <,U(Fk+m) - (g—1)>q" ) :

N(BQ N Fker) = Ntmt 1Nk tm—n—15 <s<Npimi1
I e <+ 1 < N1,

. 0 or M(BQ)a lfn + l;kz > Ntm+1-

Proof. Let ()’ be a polynomial with deg(Q’) = n/ and 1y, < n' < ngymi1 such that
BUQfYsa ) N BUQ [ ) # 0.

In the case n + I}, < Njjmt1, We have n’ + 1%, > ngi,q1 > n + [ according
to the definition of [;;,. Thus, the method in this case is the same as before so that we
only have to consider the case n + [} > njymi1-

In the case n + [} > njp1m+1, We have the following two cases:

18



L. Ifn+105 <n/+15, then [{(Q — Q) f} < ¢ " !» < g ™+m+1. Since the degree
of Q@ — @' is less than ng .1, we have [{(Q — Q') f}| > ¢ ™+m+! by Lemma

2.5 (ii). This implies that this case cannot happen, i.e., such a ()’ does not exist.

2. Ifn+ 10} >n'+1}, then

1 1
B ({Qf}§ W) CB <{Q/f}§ W) ;

and from the disjointness of the balls in Fj_,,, we get
(B N Fioym) = u(Bq).

Overall this implies that either (Bg N Fy4.m) = 0 or p(Bg) in the case n + [} >
Nk+ma1 as claimed. |
By the above lemma, Lemma 2.7 still holds when dropping the monotonicity

condition and the proof is almost the same as before.

Lemma 2.10. For any k > 0 and m > 1, we have
1

m—1

[1(Fie O Frepm) — p(Fr) it (From)| <

((Fltm)-

Proof. As in Lemma 2.7, our first goal is to show that

(Fk+m)

1(Bg N Fioim) — i(Bo)i(Fegm) < & 2.2)

qmk+m
Since the case n + [ < ny4m41 can be proved in the same way as before, we focus on
the case n + I > njymt1.
Here, we first show that

(B 1 Fugm) — i(Bo)u( Fpm) < “A0m),

an+m

There are two cases:

(i) If u(Bg N Fiqm) = 0, then the claim is trivial.

(i) If u(Bo N Fysm) = 1(Bo), then Bo C Fiy, which means that By C By with
Ngrm < n' = deg(Q') < ngims1. Observe that

1 1 L1 pl(Fr)

o M(Fk—i-m)

n/+l:/ - an+m+l;/ - aner q— 1 an+m

IN

Consequently,

1(Bg N Fiym) — p(BQ) p( Fipm) = p(Bq) — 1(Bo) it(Frtm)

1

- an+m
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Thus, the claim is established for this case as well.

Next, since p((Bg N Fypm) > 0 for n + ¥ > ny.p,, we have
M(Fker)

1(Bq N Frym) = p(B)pu(Fm) = — o
This concludes the proof of (2.2). The remaining proof follows along the same lines
asin Lemma2.7. |
This lemma together with Lemma 2.4 shows that Lemma 2.8 holds without the
monotonicity condition.
Now, we are going to prove that one direction of Theorem 2.1 also holds without

the monotonicity condition.

Theorem 2.3. Let {l,,} be a sequence. Define
oo 1 .
U:= {f cel: E — = 00, where I, = max{ngy —n,l,} for npy <n < nkH} .
q n
n=0

If f € U, then (1.5) has infinitely many solutions () for almost all g € L.

Proof. Let f € U, we have >~ ¢~ '» = co. Consequently,

1
qn-&-l;‘l

{Qf} —gl <

has infinitely many solutions () for almost all ¢ € L. by Lemma 2.8.

Next, by the definition of [, we have ¢="~» < ¢~"~I», Thus, (1.5) has also
infinitely many solutions () for almostall g € .. 1

We will show that this theorem implies one direction of Kurzweil’s theorem,
namely, the direction that if f is badly approximable and {/,,} is a sequence with

Yoo ¢! = o0, then (1.5) has infinitely many solutions () for almost all g € L.

Proof. Let [ be badly approximable. Then, there exists a ¢ such that ng1 — ngx < ¢
for all k. Fix a sequence {l,,} with Y > ' ¢~'» = oco. Then, we consider the following

cases:

(i) 1, > cforalllarge n. Then [’ = max{ny—n,l,} = [, forall large n. Thus,we

have > ¢~ '» = 3" ¢! = oo. The claim now follows from Theorem 2.3.
n=0 =0

(ii) 1, < cforinfinitely many n. Setl,, = max{l,,, c}. Then 3 g = . Applying
n=1

part (i) gives that [{Qf} —g| < ¢~"~" has infinitely many solutions @ for

almost all g € L. However, since Z:L > 1,,, the same holds for (1.5) as well.
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This concludes this proof. 1

In the next section, we will prove a special case of Theorem 2.2. The purpose for
doing so is two-fold: first we will prove our result with a completely different method
as the one used in Section 2.1 and second this is a kind of warm-up for Chapter 3 where

the same method will be applied.

2.3 A Special Case of Theorem 2.2

The main purpose in this section is to discuss the existence of infinitely many
solutions to (1.5) when the series >, , ¢~ diverges. In order to prove this, we need

the following lemma.

Lemma 2.11. Let g € L. Then, the number of {Q f} with deg(Q) < ny41 belonging

to B(97 q_d) is at most Inax{q”lcﬂ—d7 1}.

Proof. Let (), ' be two different polynomials with deg(Q), deg(Q’) < ng41. Then,

by Lemma 2.5, we have
, 1
Q=@ 2

This means that the distance between two points {Q f }, {Q' f} with deg(Q), deg(Q') <

ng41 18 at least ¢~"++1. Now, consider two cases:

1. If g™+ > ¢~ then there is at most one point in B(g, ¢~¢).

2. If g7™+1 < ¢~¢, then the number of points in B(g, ¢~¢) is at most g™+~

Hence, the number of {Qf} with deg(Q) < ni.1 belonging to B(g,¢~?) is at most
max{q™+14 1}, 1

Applying the above lemma, we can prove the following result.

Lemma 2.12. Let {l,,} be a non-decreasing sequence with > - q "+ = oo. Then,

forall N > 0, we have

x 1
m (U Fk> > —, forallc> 2. (2.3)
k=N q
Proof. Assume that (2.3) is false. Then, there exists Ny € N such that
K 1
pl( U F) <=, forall K > N, (2.4)
k=N q
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Define a set

LTLK+1—1 = {deg(Q) =MNgp — L: {Qf} € U Fk\ L_J Fk} .

k=No k=No
First, we estimate the number of elements in L, , 1. Let
K—1
Ur-U U U s(eny)
k=Np k=Ng nx<n<niiideg(Q)=n

~Us (@),
where B({Q;f}; ¢~%) are disjoint for all 7. By (2.4), we obtain
] K-1
q k=No

_ gi:u (5 ({Qif}; qT)) 3 ql-

%

Using Lemma 2.11, the number of {Qf} with deg(Q)) < nk; belonging to
UB({QZf} q~%) is at most Zmax{q"“l*di,l} = max{¢"x+1 > ¢ % ¢"x} <

q"K +1=1 Thus, the number of elements in L is at least

nK_Hfl

T g — 1) = g = g (g - 2).

Next, we claim that

U (*[Qf}w . ) U Fj\ U Fy. (2.5)

QGLTLK+1 1 k=Ng k=Np

In order to show this, fix Q1 € L, ,_1. Suppose there exists a polynomial (), with

deg(Q2) = u < ng and BUQuf};q ™ ey A B{Qaf brq ) # 0. We
know that {Q1 f} does not belong to Bg,. Hence, we have

1
<{Q2f} u+l*> cB <{Q1f}’ qu+1_1+l:tK+11> '

Then, we have
1
(@} = QP <

nK+1 1
By Lemma 2.11, the number of {Q f} with deg(Q) < ng41 belonging to By, is at
most max{g"* " T i1 1} = 1. Thus, we get {Q1f} = {Q2f}, a contra-

diction. Consequently, (2.5) holds.
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Note that any two balls appearing on the left side of (2.5) are disjoint.
By (2.5), we obtain

p ( U Fk> > ( U Fk> ul U B (Wf i’ quHlilzKHl)

k=Np k=Np QEL"KJrl—l
K-1 1
n —1
> [ (kL]JV Fk) + ¢ (g - 2) -1,
=No
K—1 1
= U Bl +(@—2)—
k=No q"K-H*l
K—1 1
>pl |JF)+(@-2)—
k;:NO q K+1
K—2
-2 -2
u(UR) =2, w2
~ qmE q e+
k=Ny
K+1 1
> > (¢—2) Z —
s=No+2 q

As the series Y ¢~'"» diverges, we have a contradiction for K large enough. 1
Note that the proof of the above lemma only works for ¢ > 2. However, the
case ¢ = 2 can be proved in the same way as in [1].

Now, we are going to prove the main result of this section.

Theorem 2.4. Let {l,,} be a non-decreasing sequence. Then, (1.5) has infinitely many
solutions @) for almost all g € L if

fe{fem:i ! :oo}.

lTLk
n=0 q

Proof. Let {l,,} be a non-decreasing sequence and Y -~ ¢ "+ = oco. Our goal is to
prove that

N=0k=N
By Lemma 2.12, we have

> 1
m <UFk> > — >0, forall N.
k=N q
This implies

m <ﬂ U Fk> > 0.
N=0k=N
By Lemma 2.3, the proof is complete. |
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Chapter 3

Proof of Theorem 1.9

In Chapter 1, we have mentioned that Kurzweil also gave a refinement of his
Theorem 1.7 for the real case in [8]. In this chapter, we will prove Theorem 1.9 which
is an analogue of this refinement and compare the set of {/,,} with the refinement in
Theorem 1.8 which was proved by Kim, Tan, Wang and Xu.

For the sake of convenience, we recall some notation of Theorem 1.9. First
recall that {r,, } is a sequence which is assumed to be non-negative and non-decreasing.
Moreover, {r,} satisfies that n—r,, is non-increasing and r,, > 2n, for all n € N. Next,

the definition of {2y, ; was as follows: the sequence {/,} belongs to {1y, y if
(1) [, is non-decreasing, and

(2) there exists an increasing sequence of non-negative integers t; < ty < t3 < ...
and a function 6(n) which is non-decreasing with §(n) — oo as n — oo such

that
Lit1 > Tti48(t:) — i

and

E ¢ s = o,

i>1

Finally, recall the sets

Upr,y = {f € L : dc > 0 such that 0

P
f- —‘ > q e VP, Q € F,[X] with deg(Q) = n} i
and

Wiy = { f eL:Vi, € Q,;, (1.6) has infinitely many solutions () for almost all g € ]L} .
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The goal is to show that Uy, y = Wy, 5.

In order to show this, we prove the following lemma.

Lemma 3.1. Fix a non-negative integer n and non-negative integers t, k. If we choose

a fraction R/S with |f — R/S| < q”', then we have

nl U B ({Qf}; qik) < max{g*™", ¢*""'} with 5 = deg(5).

deg(Q)<n

Proof. From the inequality |f — R/S| < ¢~ *, we have

< qnft7

R/
‘Qf—g

where R’ = QR and deg(Q) < n. Consider the following cases:

l. If n <t,then |Qf — R'/S| < 1.Let R = US + V with deg(V') < deg(S), we

obtain

R/
o™

Vv
o
~|ten - g| <o
Hence, for g € B ({Qf};q7%),

‘g—%‘ . ‘g—{Qf}Jr{Qf}—%‘
< max{q*k,q"*t}.

This implies that

B({Qf};q*)C B (% maX{q"“,q"’t}> :

and consequently
_ Vv ko
U B{@ke®Hc |J B (E;maX{q "4 t})
deg(Q)<n deg(V)<deg(5)

Thus,

| U s(tenyg)] smatat oo
dea(Q)<n q

— maX{qs—k’ qs—i-n—t}‘
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2. If n > t, then the conclusion still holds since ¢**" ¢ > 1. |
The following proposition is one direction of Theorem 1.9.

Proposition 3.1. If f ¢ Uy, then there exists a sequence {l,,} € S,y such that
(1.6) has only finitely many solutions @) with deg(Q) = n.

Proof. If f ¢ Uy, then there exist a non-decreasing sequence {c, } tending to infinity
and a sequence (P, Q%) such that
P,
’ — 2k with deg(Qy) = ny.
Qr

Let us choose a sequence {d,,} satisfies the following conditions:

= qr'”k+0nk )

(i) ¢, >d, >0andn > d, foralln > 0,

(i1) d, is non-decreasing and d,, — oo as n — oo,
(iii) ¢, — d, is non-decreasing and ¢,, — d,, — 00 as n — o0,
@iv) n —d, — ocoasn — oo.

Define
61 (n) = Cn—d,, — dn—dnu

and
d(n) = inf d1(n).

n<k<oo

From the definition of d;(n), we have d(n) is non-decreasing and 6(n) — oo as n —

00. Moreover,
(5(% + dn) S 51(71 -+ dn) = Cn+dn*dn+dn — dn+dn*dn+dn S Cp — dn

Now, select a subsequence (Py,, Qy,) of (Pg, Q) With deg(Qx,) = ny, such that

= 1
> dny S

i=1 4

and
Mgy > Ty, ten, — M- 3.1)

Define t; = ny, + d,, , ¢ € N. Since n — r, is non-increasing and c, >
1

d, + 0(n + d,), we obtain

Ttito(t:) ~ ng,+ony, —ti = —nyg, —Cny, +5<ti)+nki+cnki Tk teny, T (ti+d(t:) _Tti+5(tz‘))
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< g, = dny, (32)

From this and (3.1), we get

Ts(t) — bi < T ten, — i — dnki < Npyyy < Ligre
Next, we define
lj =ng, + dy, , Tor 0 < j <7 4500) — b1
lj =np, +dn,, fOrre,_ ys5 1) —ticn <J < Tego) — tie

By the above definition of {/;}, we have

E qti_l”i+5(i¢)_ti = 0O0.

i>1
This implies that {/;} € Qg 1.
By Lemma 3.1 and (3.2), we can estimate the measure of the union of the fol-

lowing balls

T, 46(t;) b

p v ) B ({Qf}; q%)

n=14ry, g ps(e,q)—li-1 deg(Q)=n

1

dn

< .
=

Hence,

T, 46(t;) b

> U B ({Qf};q%) <> dik_ < 0.
i=2 i—2 4 "

=141y, 46 q) ~ti-1 deg(Q)=n

The proof is complete. 1

The converse inclusion Uy,,.; € Wy, y is a consequence of the following result.

Proposition 3.2. If f € Uy,.y and {l,,} € Sy, then for all k > 0, we have

U U B({Qf},q%) >qim (33)

n==k deg(Q)=n

for all constants m > 2.
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Proof. Let us fix a sequence {/,} € Qy,,;. Choose the fuction §(n) and the sequence
t; according to the definition of 2y, ;.
Put §'(n) = [§(n)/2] and

g R— / —
lO - ll - lT't1+5/(t1)7t1 lrt1+5(t1)_t17

l; = lrts+5(ts)—ts for Tto 146 (ts—1) — bs—1 <M < Ty qs(t,) — Lsr S 2 2.

Assume that (3.3) is false. Then, there exists kg € N such that
N 1 1
vl U B <{Qf}; 7) < —, forall N > k. (3.4)
n=ko deg(Q)=n ar q

Let P;/Q; be the principle convergent of f. Since f € Uy, there exists a

nonnegative integer ¢ such that

P, 1
f— == —=——— > q "ite, withn; = deg(Q;).
’ o = 1adam (@)
This implies that
Nit1 < Tpyte — T (3.5)

Let us fix an integer s, fulfilling the conditions
§'(ts,) > max{c,m} and ty, > ng. (3.6)

Then, we choose P, /Q;. as the subsequence of P;/(Q); with deg(Q;,) = n,, whose

indices forms a sequence {i,} defined by
Ni,—1 <ts <ng,, 2 So. (3.7)

Obviously, is > 1 for s > s.

Since r,, > 2n, we have
’r’tiJr(;/(ti) - tz = tl —l— 25/(t2) + rti+§(ti) - 2(157, —|— 5(tz)) Z tz + 25/(tl)

Hence, we can define a set

Lusr = {ko <deg(@ <mc{Qnre U U B ({Qf}; %)

n=ko deg(Q)=n

\%U)h U B(‘{Qf};q%)}

n=ko deg(Q)=n
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for s > s, where the integer s; fulfills the conditions s; > sy and ¢4, > k.
Next, we want to estimate the number of elements in L,.,. In order to do this,
we need to find the number of elements {Q f} with deg(Q)) < n,,, contained in a

fixed ball with radius ¢~%. Since

P 1
f=—"+R, with |R| < ———,
le+1 |Qis+1 |2
we have
/
{Qf} = + R, (3.3)

Qis+l
where |P'| < |Q; .. |and |R'| < 1/|Q; .| forall Q € F,[X] with deg(Q) < ni,,,. By

(3.8), we know that {@) f} is contained in a ball of the form B ( i “Mis+1) and all
these balls are disjoint. Then, the number of {Q f} with deg(Q) § nzs ., belonging to

B(g,q™") is

g
max{l, — } —= max{l,q”isﬂ*d}. (3.9)

q Mgy

Now, we are going to estimate the number of elements in Ly ;. Let

Tts+6(ts) ™ ts

J U 5 (1@ ) =Us (10 ).

n=ko

where B({Q; f}; ¢%) are disjoint, for all j. By (3.4), we get

Tts46! (ts) bs
—=ul U U B({Qf};q%)

q n=ko deg(Q)=n

., (UB (@ %))
_ ;u (B <{ij}; q%)) = Z%

;47

Using (3.9), the number of {Q f} with deg(Q) < n,,,, belongingto U, B ({Q;f},q°%)

1S at most

Z max{q™s+1~% 1} = max {q”"’s+1 Z q Y, Z 1}
j J J

< max {q”isﬂ _m7 qrts+5’(ts)_ts+1} (3.10)

Since n — 7, is non-increasing,

Tsom) — 0(1) = Togyny — 0'(n).
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Adding 6(n) to both sides, we obtain

/ 5 n /
Tn—i—d(n) Z Tn-i—é’(n) —(5 (n) +5(n) 2 rn—&—é’(n) — % +5(n) Z Tn+(5’(n) —|—(5 (n) (311)

By (3.6), (3.7), (3.11) and the definition of ¢;, we have

T8 (ts) — Us < Tto+8(ts) — s — 5/(ts)
< Tto4+6(ts) — ts—m
Stsp1—m
< Ny — M.

This implies that (3.10) is less than ¢"s+1 =™, Hence, the number of elements in L, ,

is at least ¢"is+1 — ¢"ist1 ML

Next, we claim that

U B<{Qf} )

Q€Lst1
Migqq 1 Tts+8/ (ts) ~Us 1
U u s(eng)y U U 5 (1@ )
n=ko deg(Q q n=ko deg(Q q
3.12)

In order to show this, fix ()1 € Lsi1. Suppose there exists a polynomial ()2 with

deg(Q) = wand kg < u < 7y_45(,) — ts such that

BUQ:f}iq ") N BUQaf}iq ") # 0

We know that {Q, f} does not belong to B({Q2f}; ¢ "). Hence,

B ({sz}; %) CcB ({Q1 I} s M) .

’ =1 . . .
Then, we get g v < ¢ ™s+1. On the other hand, since Il is non-decreasing and
/ — .
deg(Q2) = u < n,, ., we have ¢ ' > ¢ ™s+1, a contradiction. Consequently, (3.12)
holds.

Now, we consider two cases:

’

) =1, .
1. If g ™s+1 < ¢ ™s+1 with s > sq, then we have

U B({Qf}v ™ +1) U B<{Qf}, "w)' (3.13)

QELst1 QELsy1
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Since {Q1f} —{Q2/} = {(Q1 — Q2)f}| = ¢"™+t for Q1, Q2 € Lyyy with
Q1 # Qo we get B ({Q1f}:¢ ") N B ({Q2f}; ¢ "=+) = 0. Thus, any two
balls in UQeLer1 B ({Qf}, q*”is+1) are disjoint. By (3.12) and (3.13), we obtain

(U U ({Qf};q%)\wﬁ ) U 5 (1@ )

n=ko deg(Q)= n=ko deg(

>l U ({Qf}, )

Q€E€Lst1
-y =
o nis«l»l
QeLs+1 q
1
> (gMist1 — gMispr MLy T
> (q q )

= (1 - q_m+1)7
which when iterated yields a contradiction.

2. If g Ms+r > q_l"is+1 with s > sq, then any two balls in UQELS+1 B ({Qf}; q_l"ierl)

are disjoint.

Thus, we obtain

Migp1—1 1 Tts+6! (ts) "bs 1
| U U B 5 (1@ )

n=ko deg(Q)=n n=ko  deg(Q)=n

> Zu( <{Qf} i ))
QELst1 q et

1
= Z -
Q€Lopr 4 11

> (g — e )

q Mig1q

Applying (3.5), (3.6), (3.7) and the property that n — r, is non-increasing, we

have

Niy < Tny, 14¢ — Mig—1 S Tigge—ts < T8/ (te) — s — 5/(753) +c < T8 (ts) — Us-
(3.14)
By (3.14) and the definition of I/,
1 1
; >

. = 1 _ :
q"ls+1 ths+1+5(ts+1) tst1
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Using (3.7), we get
qniSJrl . qni5+1—m+1 > qnq;SJrl(l . q—m+1) > qts+1(1 . q—m—l—l).
Therefore,

AU U s (th%)\rWCj) ) U <{Qf};q%)

n=ko deg(Q)=n n=ko deg(Q

qts+1

> (1—q ™)

. — .
q Tteypq+o(tgyq) sl

. t5+1—l7~ _ . .o .
As the series ) ¢ ts+1+H0(ts11) T+ djverges, we have a contradiction again

by iteration.

Hence, the proof is complete |

Finally, Proposition 3.1 and Proposition 3.2 imply Theorem 1.9.

Now, we are going to compare Theorem 1.9 with Theorem 1.8. As we have
mentioned at the end of Section 1.3, the sets Uy, .y and U, are the same when 7, =
(s 4 1)n. Thus, we should discuss the relationship between €1y, ; and €),.

Recall the set

Q, = {ln >1: iq"‘“” = oo} .
n=0

When s = 1 (i.e., r, = 2n), it is obvious that (5,3 C ;.
On the other hand, the following two results show that the two sets {1y, 1 and

(), are not contained in each other when s > 1.

Proposition 3.3. Let s > 1. Choose l,, = Vﬂogq n+iogq(1ogq n)J. Then, we have {1} €
QA (41
Proof. Clearly, {l,} € €. Assume that {l,,} € €(s41)n}. Then, there exists {¢,} and
d(n) from the definition of Q(s41),}. Since t;1q > st; + (s + 1)d(t;) > st; for all
i > 1, wehavet, > s" ! forn > 2.

Thus,

00 = E gl lstn (st 1s0n)

n>2
stn+logy stn
< Z e
n>2
nlogqs n
<qy g =q) s <o
n>2 n>2

a contradiction. 1
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Proposition 3.4. For s > 1, we have Qq(s41)n} \ s # 0.

Proof. Choose any {t;} as in the definition of Q2 (.1, where 6(t;) = {2(85111) log, ZJ :

For st;_1 + (s +1)0(t;—1) < n < sty + (s + 1)d(t;), define I, = t; + [log, 7].

Then,
Z qti*lstﬁ(sﬂ)a(ti) — Zq*Uqu i > Z qflogqi — Z% = 0.

i>1 i>1 i>1 i>1
Thus, {ln} S Q{(S+1)n}.

However,

Z qnfsln < Z Z qnfsln

n>0 i>1 stl_1+(s+1)5(tl_1)<n§stl+(s+1)6(tz)
— Z g (it loggil) . Z q"
i>1 sti—1+(s+1)5(ti—1)<n<st;+(s+1)d(t;)
q —s|log, i]+(s+1)8(t;)
_t q q

q —s|log, i]+251|log, i
—_—a q q 2 q

IN

IN

q 1

VAN

< Q.

Hence, {1,,} is not in €2, which implies Q(s; 1)) \Q2s # 0. 1
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Chapter 4

Conclusion

We conclude the thesis with some conjectures.

In Section 2.2, we gave some improvements and proved that one direction of
Theorem 2.1 still holds even when dropping the monotonicity condition on {/,}. In
fact, we conjecture that the converse direction also holds if we remove the monotonic-

ity condition. Thus, we have the following conjecture.

Conjecture 4.1. Let {l,,} be a sequence. Define

=1
U:= {f GL:ZqT; = 00, where [! = max{ng.1 —n,l,} for ny <n < nk+1}.
n=0

Then, f € U if and only if (1.5) has infinitely many solutions () for almost all g € 1L

If the above conjecture is true, then this would allow us to prove Kurzweil’s
theorem in a particular easy manner.

In Chapter 3, we have proved Theorem 1.9 and compared the sets {1y, , with
Qs when r,, = (s + 1)n. Note that the approximation functions of Theorem 1.8 and
Theorem 1.9 are of the same form ¢~'» (in contrast to the other theorems, the fuction
does not tend to 0 as n tends to infinity). The sequence {/,,} in {2y, y is assumed to be
non-decreasing. An interesting question is whether or not one can improve Theorem
1.9 by dropping the monotonicity condition on {/,,}? If yes, then what can be said
about the relation between the sets €2y, 1 and 2, when 7, = (s + 1)n?

Overall, there are still interesting questions left concerning inhomogeneous Dio-

phantine approximation in the field of formal Laurent series.
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