

國 立 交 通 大 學

資訊工程學系

碩 士 論 文

高度可擴充性 DVB-MHP 平台上的軟硬體協同設計

Java VM 之動態編碼最佳化

Dynamic Code Optimization for Java VM Hardware/Software

Co-design of a Highly Upgradeable DVB-MHP Terminal

研 究 生：林君玲

指導教授：蔡淳仁、李素瑛 博士

中 華 民 國 九 十 四 年 六 月

高度可擴充性 DVB-MHP 平台上的軟硬體協同設計

Java VM 之動態編碼最佳化

Dynamic Code Optimization for Java VM Hardware/Software

Co-design of a Highly Upgradeable DVB-MHP Terminal

研 究 生：林君玲 Student：Chun-Ling Lin

指導教授：蔡淳仁、李素瑛 Advisor：Chun-Jen Tsai, Suh-Yin Lee

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 i

高度可擴充性 DVB-MHP 平台上的軟硬體協同設計

Java VM 之動態編碼最佳化

學生: 林君玲 教授: 蔡淳仁、李素瑛 博士

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

多媒體家用平台(MHP)是由 Digital Video Broadcasting(DVB)所提

出，作為互動電視家用娛樂平台上的中介軟體公開標準，這個平台使用

Java 為主要的程式語言，由 Java 虛擬機器(VM)負責程式的運作執行。採

用軟硬體協同設計的方式能讓 Java 虛擬機器具有高度的可擴充性，功能

也強大許多，但仍舊會受限於 Java 語言本身的效率不彰;而傳統的動態編

碼最佳化雖然可以利用一些執行時期所得的資訊來加速系統，但對於嵌入

式系統來說，這個代價是十分昂貴的。因此，在這篇論文中，我們提出了

一個新的動態編碼最佳化演算法，用軟硬體協同設計的方式使這類系統的

整體效能大大的提升，並且更加的省電。我們將這樣的想法實作在 Java

Optimized Processor(JOP)上，並且在 Xilinx 的 Spartan-3 發展板上模

擬執行，實驗結果顯示我們所提出的這套架構在整體上可增進 13.8%的速

度;在省電方面，也分別可以減少 10.4%的微指令執行週期以及 11.1%的外

部記憶體存取。

 ii

Dynamic Code Optimization for Java VM Hardware/Software
Co-design of a Highly Upgradeable DVB-MHP Terminal

Student: Chun Ling, Lin Advisors: Dr. Chun Jen, Tsai

Dr. Suh Yin, Lee

Institute of Computer Science and Information Engineering
National Chiao-Tung University

ABSTRACT

Multimedia Home Platform (MHP) is the open middleware system for interactive

television and related interactive home entertainment designed by the Digital Video

Broadcasting (DVB) project. They use Java as the common programming language and

embed the Java Virtual Machine (VM) that provides a stable and cross-platform java

runtime environment in the system software layer. A hardware/software co-design approach

makes Java VM more flexible and powerful, but it still suffers from the inefficiency of java

system. Typical dynamic code optimization can save method lookup and constant pool

searching time using the runtime information known in the first time we execute it.

However, in such kind of embedded system, it is very expensive due to the overhead of

external memory modification. In this thesis, we propose a new hardware/software

co-design dynamic code optimization schema for this kind of approach that can

significantly improve the efficiency of Java program execution. By analyzing the execution

frequency of Java code segment, we can dynamically decide if the dynamic code

optimization is needed. This approach can also cut down the power consumption with less

microcode execution cycles and less external memory access. We implement this

architecture on Java Optimized Processor (JOP) and simulate on Xilinx Spartan-3

developing board. Experiment Result shows that this proposed dynamic code optimization

schema for Java VM hardware/software co-design of DVB-MHP terminal has 13.8%

average speedup, 10.4% less microcode execution cycles and 11.1% less external memory

access than the original system.

 iii

誌 謝

 這篇論文能夠如此順利的完成，要感謝許多人對我的幫助。首先要感

謝的是我的指導教授們，尤其是蔡淳仁老師，給予我許多寶貴的意見與指

導，使我學到許多專業的知識、實作上的技巧，以及寫作英文科技論文的

方法。還有要謝謝跟我一起合作的伙伴們，謝謝黃士嘉學長，對於硬體不

熟的我幫助指導甚多。接著要感謝 JOP 的作者 Martin，他真的是一個很

厲害又很親切的人，在這篇論文的實作期間，不厭煩的回答我任何問題，

甚至幫我解決程式上的困難，沒有他我想我不會進行得如此順利。感謝交

大資工，讓我在實驗室能夠擁有如此豐富的資源及優良的學習環境，實驗

室的每個人都非常的和善又專業，對於我各式各樣奇怪又笨拙的問題總是

不吝惜的教導以及包容，使我得以在一個非常快樂的氣氛中學習和做研

究。最後，要感謝長期支持我的家人以及朋友們，尤其是洪智傑，在我論

文實作以及撰寫的期間給予我非常多實質上的幫助，和我分享快樂的事

情，也幫我分擔了許多的瑣事以及壓力下所產生的負面情緒，讓我能專心

的完成論文。謝謝所有關心我的親朋好友們，僅將這篇論文，獻給各位。

 iv

Table of Content

摘 要 .. i
ABSTRACT ... ii
誌 謝 ..iii
Table of Content .. iv
List of Figures.. vi
List of Tables ..vii
1. Introduction .. 1

1.1. Why Dynamic Code Optimization (DCO) ... 1
1.1.1. Dynamically Typed Object-Oriented Languages 2
1.1.2. Dynamic Message Sending .. 2

1.2. DCO for Java VM Using HW/SW Co-design Approach 4
1.3. Advantages of DCO & HW/SW Co-design for DVB-MHP Applications 5
1.4. Overview of this Thesis .. 6

2. Related Work .. 7
2.1. Previous DCO Mechanisms ... 7

2.1.1. Lookup Cache Mechanism in Smalltalk-80 ... 7
2.1.2. Inline Cache Mechanism in Smalltalk-80 .. 9
2.1.3. Polymorphic Inline Cache in SELF System... 10
2.1.4. Java Virtual Machine Reference Implementation 13

2.1.4.1. Sun’s Java Virtual Machine Reference Implementation............... 14
2.1.4.2. Sun’s K Virtual Machine Reference Implementation................... 18

2.2. Java Platform .. 20
2.2.1. Java Execution Flowchart... 22
2.2.2. Java Class File Format.. 22
2.2.3. Java Virtual Machine (JVM) .. 24
2.2.4. JVM Instruction Set.. 25

2.3. Implementations of JVM.. 29
2.3.1. Interpreter ... 30
2.3.2. Just-In-Time (JIT) Compiler... 31
2.3.3. HotSpot technology .. 32
2.3.4. Java Processor .. 34

3. Problem Formulation.. 37
3.1. Introduction .. 37
3.2. Java Optimized Processor - JOP... 38

3.2.1. Software Layer Stack of JOP.. 40
3.2.2. System Architecture of JOP.. 41
3.2.3. Datapath of JOP.. 42
3.2.4. Hardware/Software Co-design of JOP ... 43

4. Proposed Dynamic Code Optimization System ... 45
4.1. Data Structure Using in Our Dynamic Code Optimization.......................... 45

4.1.1. Data Arrangement in the External Memory ... 45
4.1.2. Method Cache... 48
4.1.3. Runtime Data Structure .. 49

4.1.3.1. Stack Frame .. 49
4.1.3.2. Data Layout .. 51

 v

4.1.3.3. Runtime Class Structure ... 51
4.2. The Proposed Dynamic Code Optimization Scheme 52

4.2.1. Analysis of Bytecode Execution Frequency... 52
4.2.2. Access Time of External Memory & Internal Memory........................ 55
4.2.3. Architecture Overview ... 57

4.3. Implementation Details .. 59
4.3.1. Hardware Implementation Modules ... 60
4.3.2. Software Implementation Modules .. 62

5. Performance Study ... 64
5.1. Xilinx Spartan-3 Developing Board... 64
5.2. Java Benchmark Programs ... 65

5.2.1. Sieve of Eratosthenes.. 66
5.2.2. Kfl... 66
5.2.3. UDP/IP ... 67

5.3. Experiment Results... 68
5.3.1. Execution Time... 68
5.3.2. Power consumption .. 69

5.3.2.1. Microcode Execution Cycles.. 69
5.3.2.2. External Memory Access Times ... 72

6. Conclusion and Future Work .. 74
REFERENCES ... 76

 vi

 List of Figures

Fig 1. Indirect Access Example .. 2
Fig 2. Polymorphic Operations Example ... 4
Fig 3. DVB – MHP Functional Block .. 5
Fig 4. Selection Mechanism of Lookup Cache... 8
Fig 5. Inline Cache ... 9
Fig 6. Polymorphic Inline Cache (PIC) .. 10
Fig 7. Inlining a Small Method into Polymorphic Inline Cache 12
Fig 8. Impact of Polymorphic Inline Cache ... 12
Fig 9. Inline Cache Miss Ratios ... 13
Fig 10. Original Execution Flowchart .. 15
Fig 11. Java Class File .. 17
Fig 12. Execution with Fast Bytecodes .. 18
Fig 13. Java 2nd Edition (Source: http://java.sun.com)... 19
Fig 14. Java Instruction Format Using DCO.. 20
Fig 15. Java Platform (Source: http://java.sun.com) .. 21
Fig 16. Java Execution Flowchart .. 22
Fig 17. Structure of Java Class File.. 23
Fig 18. Components of Java Runtime System.. 25
Fig 19. Implementations of JVM.. 30
Fig 20. Interpreter ... 31
Fig 21. Just-In-Time Compiler ... 32
Fig 22. HotSpot .. 33
Fig 23. Java Processor .. 34
Fig 24. Software Architecture of Jazelle Chip.. 36
Fig 25. Java Optimized Processor Runtime Environment.................................... 38
Fig 26. Software Layer Stack of JOP ... 41
Fig 27. Block Diagram of JOP ... 42
Fig 28. Datapath and Data Flow of JOP... 43
Fig 29. Data Arrangement in the External Memory ... 46
Fig 30. Method Table Structure .. 47
Fig 31. Stack Change on Method Invocation ... 50
Fig 32. Object Format... 51
Fig 33. Array Format .. 51
Fig 34. Runtime Class Structure... 52
Fig 35. Transmeta Code Morphing Software Control Flow................................. 53
Fig 36. Distribution of Bytecode Execution Frequency....................................... 55
Fig 37. Microcode Sequence of External Memory Read 56
Fig 38. Microcode Sequence of External Memory Write..................................... 56
Fig 39. Our JDCO Architecture Overview ... 58
Fig 40. Java Bytecode Fetch Stage of Our JDCO .. 60
Fig 41. Block Diagram of The Proposed JDCO... 61
Fig 42. The Top Side of Xilinx Spartan-3 .. 65
Fig 43. The Bottom Side of Xilinx Spartan-3 .. 65
Fig 44. Pictures of a Kippfahrleitung Mast in Down and Up Position................. 67
Fig 45. Execution Time .. 69
Fig 46. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185 71
Fig 47. External Memory Access Times of Bytecodes 180. 181. 182. 185.......... 73

 vii

List of Tables

Table 1. Fast Bytecodes in Sun’s Java VM Reference Implementation 14
Table 2. Support Data Type of Java VM .. 26
Table 3. The Providing Types of JVM Opcodes... 27
Table 4. A Comparison of Different Implementations of imul 44
Table 5. The Number of Bytecodes under the Given Execution Frequency. 54
Table 6. Our Designed JDCO Bytecodes & Their Formats.................................. 63
Table 7. Execution Time... 68
Table 8. Microcode Execution Cycles of Each Bytecode 70
Table 9. Execution Times of Bytecodes 180. 181. 182. 185 70
Table 10. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185........... 71
Table 11. External Memory Access Times of Each Bytecode.............................. 72
Table 12. External Memory Access Times of Bytecodes 180. 181. 182. 185 73

 1

1. Introduction

DVB-MHP provides an open standard for interactive digital television and home

entertainment. In DVB-MHP, the DVB-J functional block uses Java VM to construct a

cross-platform Java runtime environment. However, this Java VM technology also makes

the system less efficient.

In this Chapter, we first presented a popular method called dynamic code optimization

(DCO) for speeding up Java VM. Using DCO in a hardware/software co-design approach is

examined in section 2. In section 3, we list the advantages of DCO and hardware/software

co-design for DVB-MHP applications. Finally, the overview of this thesis is given in

section 4.

1.1. Why Dynamic Code Optimization (DCO)

Code optimization for dynamically typed object-oriented languages is more difficult

than statically typed object-oriented languages. Research shows that the main bottleneck is

in the unpredictability of dynamic message sending, which is determined at runtime for

dynamically typed object-oriented languages.

In this section, we first illustrate the differences between statically and dynamically

typed object-oriented languages, and then we focus on dynamic message sending.

Optimizing code dynamically on this topic will significantly improve the efficiency of the

system.

 2

1.1.1. Dynamically Typed Object-Oriented Languages

Dynamically typed object-oriented languages, such as Smalltalk and Java, are much

slower than statically typed languages like C++. The reason is that the reference variables

in dynamically typed languages may potentially reference to any objects in the program at

runtime. Therefore type checking of the references can only be done at runtime.

Furthermore, the addresses of the dynamic objects are also unknown at compile time. As a

result, indirect access must be used, which is again very expensive at runtime. [4]

Consider the Java program segment in Fig 1, integer i is a local variable in method

m(B), and f is an object field in class B. Object cc is sent to method m(B), and the field f of

object cc is retrieved and assigned to local variable i. Because the address of object cc is

unknown at compile time, the address resolution of cc.f must be done at runtime. When

executing the statement i = cc. f, the address of object cc is retrieved first, and then the

address of field f is calculated based on the address of the object cc. As a result, there are

two indirect accesses in order to get the value of cc.f. These accesses cause the inefficiency

of executing dynamically-typed object-oriented programs.

Fig 1. Indirect Access Example

1.1.2. Dynamic Message Sending

In object-oriented languages, message sending is the most frequent operations. When

we invoke a method, a message is sent to a class or an object, which selects the method to

class A {
 public void m(B cc) {
 int i;
 i = cc. f;
 …
 }
}

 3

be executed. Message sending is also called method invocation in some languages.

Polymorphic operations from dynamic binding and inheritance make it easy for

object-oriented language programmers to develop well-designed systems, but also result in

the difficulty of efficient execution of these programs. Because the address of the method

can only be determined at runtime. To perform a message sending we must extract the name

of the method, use it as a key to find the method in the current class (or in the superclass

that this method is inherited), continue in this way up the class hierarchy until we find the

corresponding method or the top of the inheritance hierarchy is reached.

In Fig 2, we will show how the polymorphic operations make the execution of

object-oriented programs more difficult.

Class A is the superclass of class B, and the m1() method of class B override the m1()

method of class A. m0(A) is a method of class A, and m1() method is invoked in it. m2() is

also a method of class A, which method is just directly inherited in class B. Note that in the

main program, the two statements x.m0(y) and x.m0(z) will invoke a.m1() while execute

method m0(A). In the first message sending, the class of y is A, so the statement a.m1() will

invoke the m1() of class A. While in the second message sending, the class of z is B, so the

statement a.m1() will invoke the m1() of class B. Inheritance property also makes it difficult

to determine the access addresses in object-oriented programs. Consider the statement z.m2()

in Fig 2. The class of z is B, but we can not find the method m2() in class B, so we try to

look it up in the superclass of B, i.e., class A. The address of method m2() in class A is then

retrieved in order to execute this statement. From this example, one can realize that the

dynamic message sending is the crucial property of dynamically typed object-oriented

languages.

By analyzing the message sending behavior, we can develop dynamic code

optimization techniques to improve the efficiency of the language systems. Using the

 4

caching mechanism, some duplicated method lookup procedure can be prevented. In this

thesis, an adaptive dynamic code optimization mechanism for a java virtual machine is

developed. By modifying the runtime behavior, method invocation can be more efficient

and the extra memory required for this technique is limited.

Fig 2. Polymorphic Operations Example

1.2. DCO for Java VM Using HW/SW Co-design Approach

Java is also a dynamically-typed pure object-oriented language developed by Sun

Microsystems in the early 1990. It has many features of modern programming languages,

Class A {
 public void m0(A a) {
 a.m1();
 }

 public void m1() {
 …

}

 public void m2() {
 …
}

}

Class B extends A {
 public void m1() {
 …

}
}

main() {
 A x = new A();
 A y = new A();
 B z = new B();

 x.m0(y);
 x.m0(z);

z.m2();
}

 5

such as simple, object-oriented, robust, secure, architecture neutral, automatic garbage

collection, dynamic linking, multi-threaded, and portability. However, it loses the efficiency.

Slow execution speed makes Java incapable of handling multimedia applications efficiently

without resort to native code or hardware accelerator.

Pure hardware implementation approach, such as java processor, can improve the

execution speed greatly. The disadvantages are high design cost and low upgradeability.

Hardware/software co-design takes the advantages of both approaches: low cost, flexibility

and efficiency, but the execution speed can not be as fast as the pure hardware approach.

DCO can significantly improve the system efficiency, which makes this HW/SW co-design

approach more useful and powerful.

1.3. Advantages of DCO & HW/SW Co-design for DVB-MHP

Applications

OS, Drivers, Graphics, Net

System Software

Application
Manager

(Navigator)

Transport
Protocols

Java Virtual Machine

Sun
Java
APIs

DVB
APIs

DAVIC
APIs

HAVi
APIs

Local
Application

(and libraries)

Interoperable
MHP/Java (DVB-J)

Application
(And libraries)

Data
Delegated

App. A

Plus-in A

Delegated
App. B

Plus-in
B

MHP-API

Fig 3. DVB – MHP Functional Block

 6

In 2000, the Digital Video Broadcasting (DVB) organization proposed an open

middleware system standard called Multimedia Home Platform (MHP), which is designed

for interactive television and related interactive home entertainment applications. Java

programming language is chosen as the common language of this platform, which is in the

DVB-J functional block as the dark region in figure 3 (see [10]).

The underneath Java Virtual Machine plays an important role in DVB-MHP System. It

provides a stable and cross-platform Java runtime environment. Java API developers do not

need to know the underlying system software information so they can put more efforts on

the libraries themselves. Because of the interactive and real-time demand, the execution

speed is the crucial factor of DVB-MHP terminal. Using DCO and hardware/software

co-design approach can make Java execution more efficiency. Furthermore, it can cut down

the power consumption, which is a great contribution to such kind of embedded system.

1.4. Overview of this Thesis

The rest of this thesis is organized as follows. In chapter 2, several related works are

listed and reviewed. Previous DCO mechanisms are also discussed here. In chapter 3, we

formulate the problem, and introduce our target hardware/software co-design system – Java

Optimized Processor (JOP) and the target developing board. The main ideas of the

proposed dynamic code optimization scheme are presented in chapter 4. In chapter 5, the

simulation result is shown and discussed. Finally, the conclusion and future work are given

in chapter 6.

 7

2. Related Work

In this chapter, we first list some papers and systems about dynamic code optimization.

Then we introduce the Java platform including Java execution flow, Java class file format,

JVM and its instruction set. In the next section, popular implementation approaches of JVM

are discussed, including Java interpreter, Just-In-Time compiler, HotSpot, and Java

processor.

2.1. Previous DCO Mechanisms

In this section, we will discuss several dynamic code optimization mechanisms for

various dynamically typed object-oriented programming language systems. This concept

was first proposed in 1983 [1], with implementation of the smalltalk-80 system. It is called

lookup cache. In 1984, an efficient implementation of the Smalltalk-80 system that used a

modified cache mechanism (called inline cache) was presented by Deutsch and Schiffman

[2]. The inline cache concept now is adapted into many object-oriented language systems.

One classical example is polymorphic inline cache, which is implemented in SELF system

[3]. Another famous implementation is in the Java programming language. The Java virtual

machine and K virtual machine of Sun’s reference implementation which adopts this

mechanism will be discussed in the end of this chapter.

2.1.1. Lookup Cache Mechanism in Smalltalk-80

The Smalltalk definition specifies that the source code is translated into a sequence of

primitive operations called byte codes. Smalltalk-80 was originally run on virtual machines

 8

which implemented the byte codes in microcode. Early implementations of Smalltalk-80 on

hardware interpreted the byte code in software, which led to poor performance [5]. Ungar

and Patternson proposed a lookup cache mechanism that can improve the performance of

message sending for Smalltalk. [1]

Lookup caches are used to cache the previous lookup result. Method addresses are

retrieved from the lookup cache, a hash table of the most recently used method addresses,

via the pair (receiver class, message selector) as the key. The receiver class is the class that

the called object belongs to, and the message selector selects the method to be executed. Fig

4 illustrates the selection mechanism of the lookup cache. When a method is invoked, the

pair (receiver class, message selector) is used as a key to the lookup cache. If it hits this

hash table, the message address will be extracted and the method lookup procedure can be

avoided. Otherwise, the method lookup routine will be processed. And then the new address

information will be kept in the lookup cache for next method invocation.

selector class

hash

Hit ?

yes

no

Address

Lookup
routine

Update
Cache

Lookup Cache
Key Address

Fig 4. Selection Mechanism of Lookup Cache

Lookup cache is very effective in reducing the lookup overhead. Berkeley Smalltalk

[1], for example, would have been 37% slower without a cache. Furthermore, if the hit ratio

of the lookup cache is high, this advancement will be more observable.

 9

2.1.2. Inline Cache Mechanism in Smalltalk-80

The inline cache mechanism proposed in 1984 [2] predicts the method addresses and

places them in the message send site. Even with a lookup cache, sending a message still

takes considerably longer than calling a simple procedure because the cache must be probed

for every message sent. However, send operations can be sped up further by the observation

that the class of the receiver at a given call site rarely varies; that is, if a message is sent to

an object of class X at a particular call site, it is very likely that the next time the send is

executed will also have a receiver class X.

This locality of receiver class usage can be exploited by caching the most recently

look-up method address at the call site (e.g. by overwriting the call instruction). Fig 5 (see

[5]) shows the modification using this technique. Subsequent executions of the sent code

jump directly to the cached method, completely avoiding any lookup. Of course, the class

type of the receiver could have changed, so the calling method procedure must verify that

the receiver class is correct and call the lookup routine if the type test fails. After updating

the method code of the receiver class, it may be matched and the method lookup cost can be

saved next time. This form of caching proposed by Deutsch and Schiffman is called inline

cache since the target address is stored at the sent point. [2]

Method (a.bb)
System
Lookup
Routine

Implementation
of bb method

code of object a
Before

After

Method (x.bb)

Call Execute

Type
Test

object a Implementation
of bb method

code of object a

System
Lookup
Routine

not
object a

Call Execute

Implementation
of bb method

code of object x

(x.bb)
a

a

Fig 5. Inline Cache

 10

Inline caching is surprisingly effective, with a hit ratio of 95% for Smalltalk code [2].

SOAR, a Smalltalk implementation for a RISC processor, would be 33% slower without

inline cache [6]. Nowadays all compiled implementations of Smalltalk that we know is

integrated with inline cache mechanism.

2.1.3. Polymorphic Inline Cache in SELF System

Inline cache mechanism is effective only if the receiver class remains relatively

constant at a call site. Although it works very well for the majority of sends, it does not

speed up a polymorphic call site with several equally likely receiver classes because the call

target switches back and forth between different methods. Worse, inline cache mechanism

may even slow down these sends because of the extra overhead associated with inline cache

misses.

Based on the inline cache technique, Polymorphic Inline Cache (PIC) caches all

method addresses, if the degree of polymorphism is less than ten [3]. The example in Fig 6

(see [3]) illustrates this.

rectangle
circle
triangle
…

List Element

Call display If class = rectangle
jump to method

If class = circle
jump to method

…
else call lookup

Code to display
a rectangle

Code to display
a circle

System
Lookup
Routine

PIC
rectangle display
method

circle display
method

address

address

Fig 6. Polymorphic Inline Cache (PIC)

 11

Suppose that the method display is sent to all classes in the list, the polymorphic inline

cache mechanism will handle this method invocation. First, the list element is a rectangle

class. Similar to the normal inline cache, the method address will be extracted and the

calling code will jump to the direct method code to display a rectangle. It is the same with

the class circle. Following the type test, a triangle class is passed. When the system finds

that it is a new receiver class type that does not exist in current cache the Polymorphic

Inline Cache handler will call the method lookup routine and construct a new branch

routine for the display method to rebind the receiver class triangle. Next time the receiver

class triangle is called, it can just branch to the corresponding code of the method.

If the cache misses again, the Polymorphic Inline Cache will simply be extended to

handle the new case. Eventually, the Polymorphic Inline Cache handler will contain all

cases seen in practice, and there will be no more cache misses or method lookup procedures.

Thus, a Polymorphic Inline Cache is not a fixed-sized cache similar to a hardware data

cache; rather, it should be viewed as an extensible cache in which no cache item is ever

displaced by another newer item.

Since many methods are very short, the Polymorphic Inline Cache can be modified to

be more effective and more space can be saved. At polymorphic call sites, short methods

could be integrated into the Polymorphic Inline Cache handler instead of being called by it.

For example, suppose the lookup routine finds a method that just loads the receiver’s x field.

Instead of using the stored method address to call this method from the handler, its code can

be copied directly into the handler, eliminating the calling and return procedure. The figure

in Fig 7 (see [3]) explains this example.

The hit ratio of the Polymorphic Inline Cache depends on the runtime behavior of the

programs. In [3], this mechanism is implemented for SELF, a typical dynamically-typed

pure object-oriented language. In SELF, all operations including variable accesses and basic

 12

arithmetic operations are implemented by dynamically bound procedure calls.

rectangle
circle
triangle
…

List Element

Call display If class = triangle
jump to method

If class = circle
jump to method

…
else call lookup

return receiver.x

Code to display
a circle

System
Lookup
Routine

PIC
triangle display
method

circle display
method

address

return receiver.x

Fig 7. Inlining a Small Method into Polymorphic Inline Cache

 Fig 8 (see [3]) shows the individual execution time with several benchmark

programs. PolyTest is an artificial benchmark with only 20 lines that is designed to show

the highest possible speedup with Polymorphic Inline Cache while all the others are

produced by software in order to cover a variety of programming styles. The median

speedup for the benchmark programs (without PolyTest) is 11%. And the space overhead of

Polymorphic Inline Cache is very low, typically less than 2% of the compiled code.

Execution Time (normalized to base system)

0% 20% 40% 60% 80% 100%

Parser

PrimMaker

UI

PathCache

Richards

PolyTest

Fig 8. Impact of Polymorphic Inline Cache

 13

This research also found an interesting observation. In Fig 9 (see [3]), there is no

direct correlation between cache misses and the number of polymorphic call sites. For

example, in these benchmark programs, one receiver type dominates at most call sites in

PathCache, while the receiver class frequently changes in Parser’s Inline Caches. Thus,

ordering a Polymorphic Inline Cache Mechanism may win with programs like Parser.

Richards
PathCache

PrimitiveMaker

Parser

UI

0%

2%

4%

6%

8%

10%

12%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Polymorphic sends

In
lin

e
C

ac
he

 m
is

s
ra

tio

Fig 9. Inline Cache Miss Ratios

2.1.4. Java Virtual Machine Reference Implementation

The Java programming language relies on the simulated machine, known as Java

Virtual Machine (JVM). JVM allows the computer programmer to communicate with the

virtual machine instead of the real hardware system. This is advantageous, because it allows

for portability. If the individual JVM are installed on two completely different machines,

the Java programs should work well on both machines without any code modification,

because it relies on the JVM and not the hardware system it is running on.

Sun Microsystems developed this powerful language system, and this language

becomes very popular nowadays. Various Java VM were constructed by different teams that

conform to the Java Virtual Machine Specification [7] but have independent

implementations. For a reference implementation, Sun Microsystems also develop a Java

 14

Virtual Machine and a K Virtual Machine for a part of the Java 2 Micro Edition (J2ME)

called Connected Limited Device Configuration (CLDC) [8]. Dynamic code optimization

is also used in these reference implementations to improve the efficiency of Java VM

execution.

2.1.4.1. Sun’s Java Virtual Machine Reference Implementation

In Sun’s version of the Java Virtual Machine, compiled java Virtual Machine code is

modified at runtime for better performance. This optimization takes the form of a set of

pseudo-instructions that are distinguishable by the suffix _quick in their mnemonics. These

are variants of normal Java Virtual Machine instructions that take advantage of information

learned at runtime to do less work than the original instructions.

Table 1. Fast Bytecodes in Sun’s Java VM Reference Implementation

203 ldc_quick
204 ldc_w_quick
205 ldc2_w_quick
206 getfield_quick
207 putfield_quick
208 getfield2_quick
209 putfield2_quick
210 getstatic_quick
211 putstatic_static
212 getstatic2_quick
213 putstatic2_static
214 invokevirtual_quick
215 invokenonvirtual_quick
216 invokesuper_quick
217 invokestatic_quick
218 invokeinterface_quick
219 invokevirtualobject_quick
221 new_quick
222 anewarray_quick
223 multianewarray_quick
224 checkcast_quick
225 instanceof_quick
226 invokevirtual_quick_w
227 getfield_quick_w
228 putfield_quick_w

 15

To learn from inline cache mechanism [2], the Reference Implementation (RI) of

Sun’s JVM also uses the concept of caching the previous method lookup information and

stores them in the instruction space. Only standard java bytecode instructions numbered

from 0 to 201 may be generated by the java compiler. The optimization works by

dynamically replacing occurrences of certain instructions by the reserved instructions (in

the range of 202-255) after the first time they are executed. These new instructions listed in

Table 1 have been loaded and linked the first time the associated regular instruction is

executed.

Note that these new instructions (referred to as fast bytecodes) are not specified in the

Java Virtual Machine Specification [7]. However, for the implementation of Java Virtual

Machine the adoption of the fast bytecodes has been proven to be an effective optimization

technique.

Class:5; NameAndType:21

Class:6; NameAndType:20

…

“util/DbgSerial”Utf825

Fieldref2

…

Name:25Class5

…

…

Name:7; type: 8NameAndType21

…

“z”Utf88

“waitHs”Utf87

Methodref1

ValueTypeNo.

putfield 00 02

Constant poolSource code:
DbgSerial() {

waitHs = w;
}

has been
resolved?

noyesreturn pointer
to the data
structure

return pointer to the
data structure;
Save in the run-
time constant pool

resolving

can be
resolved?

no

yes

throw
exception

At any time:

Class:5; NameAndType:21

Class:6; NameAndType:20

…

“util/DbgSerial”Utf825

Fieldref2

…

Name:25Class5

…

…

Name:7; type: 8NameAndType21

…

“z”Utf88

“waitHs”Utf87

Methodref1

ValueTypeNo.

putfield 00 02

Constant poolSource code:
DbgSerial() {

waitHs = w;
}

has been
resolved?

noyesreturn pointer
to the data
structure

return pointer to the
data structure;
Save in the run-
time constant pool

resolving

can be
resolved?

no

yes

throw
exception

At any time:

Fig 10. Original Execution Flowchart

Fig 10 shows the original execution flowchart if we do not enable fast bytecodes.

 16

Consider the assignment instruction waitHs = w in Function DbgSerial (). A sequence of

java bytecodes will be generated after compilation, and putfield 00 02 is the core instruction

of this assignment. When Java VM fetches this instruction for execution, first it will check

that if this constant pool component, indexed by 2 in this case, has been resolved. The java

constant pool inside the java class file format (as the second block in Fig 11, which we will

illustrate it in subsection 2.2.2) is designed to support dynamic linking. When the Java

Virtual Machine encounters a use of a constant pool entry for the first time (e.g., when you

first use the new statement to create a new object of a class, or in the first use of getfield to

get a field), the constant pool entry is resolved [9].

The actions the JVM performs to resolve a constant pool entry depend on its type.

Resolution of an entry involves two basic steps: checking that the item you are trying to

access exists (possibly loading or creating it if it doesn’t already exist), and checking that

you have the right permissions to access the item (i.e., making sure that you don’t access

private fields in other classes, etc.). In Fig 10 the constant pool of the class DbgSerial is

listed. The Java VM checks that the index 2 points to a field that belongs to the class

util/DbgSerial (index 25), its name is waitHs (index 7), and its type is an integer (“z” in

index 8). If any illegal situation happens, an exception will be thrown by the Java VM.

After the entry is resolved, the address of this constant pool item will be returned for

execution of the Java VM. At the same time, this address will be stored in the runtime

constant pool of that class. Next time this constant pool is used, the Java VM will find that

it has been resolved and use the direct address in the runtime constant pool.

 17

13000200000012000100

0400000008000700

00000100

0100060005

002100

140006000A200031000000BEBAFECA

13000200000012000100

0400000008000700

00000100

0100060005

002100

140006000A200031000000BEBAFECA

Attribute Table

of Attribute : 1

Method Table

of Method : 4

Field Table

of Field : 1

Interface Table

of Interface : 1

Super Class: Constant 6

This Class: Constant 5

Access Flags: SUPER+PUBLIC

Constant Pool

of Constant : 32-1

Version Number: 49.0

Magic

Attribute Table

of Attribute : 1

Method Table

of Method : 4

Field Table

of Field : 1

Interface Table

of Interface : 1

Super Class: Constant 6

This Class: Constant 5

Access Flags: SUPER+PUBLIC

Constant Pool

of Constant : 32-1

Version Number: 49.0

Magic
For Example: DbgSerial.class

Fig 11. Java Class File

If fast bytecode is enabled, many duplicated subroutines can be avoided. A flowchart

in Fig 12 shows the modification.

At the first execution of the Java instruction, the Java VM resolves the item address or

gets the constant pool item address from run-time constant pool if it has been resolved.

JVM then overwrites the instruction with the _quick or _quick_w pseudo-instruction listed

in Table 1 with corresponding new operands which may be one byte or two bytes

determined by the length of the item address. The instructions putstatic, getstatic, putfield,

and getfield each have two _quick versions, chosen depending on the type of the field being

operated upon (i.e., putstatic2_quick if the type is long or double). From this point on, the

subsequence execution of that instruction instance is always the _quick variant and can be

execute directly without any check and runtime constant pool consulting.

The operands of these new instructions are invisible outside of the Java Virtual

Machine. Sun Microsystems provides a possible solution, but the decisions such as the

 18

format of operands are left up to the implementer. Just remember that the operands of the

_quick pseudo-instruction must fit within the space allocated for the original instruction’s

operands.

With this dynamic code optimization, a significant amount of time is thus saved on all

subsequent invocations of the pseudo-instruction.

…

“util/DbgSerial”Utf825

Class:5; NameAndType:21Fieldref2

…

Name:25Class5

…

…

Name:7; type: 8NameAndType21

…

“z”Utf88

“waitHs”Utf87

Class:6; NameAndType:20Methodref1

ValueTypeNo.

putfield 00 02

Constant poolSource code:
DbgSerial() {

waitHs = w;
}

can be
resolved?

no

yes

throw
exception

Address :one
or two byte?

overwrite

overwrite

putfield_quick offset unused

putfield_quick_w offsetByte1 offsetByte2

At the first time:

next time:

has been
resolved?

no

resolving

yesGet address
from run-time
constant pool

Fig 12. Execution with Fast Bytecodes

2.1.4.2. Sun’s K Virtual Machine Reference Implementation

Recognizing that one size does not fit all, Sun Microsystems has grouped its Java

technologies into three editions as in Fig 13, and each of them aimed at a specific area of

today’s vast computing industry. Java 2 Enterprise Edition (J2EE) is for enterprises needing

to serve their customers, suppliers, and employees with solid, complete, and scalable

Internet business server solutions. While Java 2 Standard Edition (J2SE) is for the familiar

and well-established desktop computer market. The Java 2 Micro Edition (J2ME), targeted

 19

at two broad categories of products: CDC (Connected Device Configuration) and CLDC

(Connected, Limited Device Configuration), is specified for the consumer and embedded

device manufacturers, service providers, and content creators.

For these three different Java editions, the underneath Virtual Machine also have

different execution speed and ability. The K Virtual Machine (KVM) is developed for

CLDC in Java 2 Micro edition, which is a compact, portable Java Virtual Machine

specifically designed from the ground up for small, resource-constrained devices. The

high-level design goal for the KVM was to create the smallest possible complete Java

virtual machine that would maintain all the central aspects of the Java programming

language, but would run in a resource-constrained device with only a few hundred kilobytes

total memory budget.

In Sun’s Reference Implementation, dynamic code optimization is also used in the K

Virtual Machine. The implementation details are just like Sun’s JVM RI, but _fast suffix is

used as the new instructions instead of _quick. By caching the method lookup result in the

call site, the time of searching constant pool and method table can be saved.

Java HotSpot ™ Java Virtual Machine (JVM) KVM Card VM
Java Programming Language

Java 2
Enterprise

Edition
(J2EE)

Java 2
Standard
Edition
(J2SE)

Profile

Profile

Java 2 Micro Edition (J2ME)

TV
Profile

Car
Profile

Foundation
Profile

Smart
Card

Profile

Mobile Information
Device Profile

Profile

Profile

CLDCCDC

Communicator
Profile

GSM
Profile

PC, laptop

NC

Source: Sun

pager

POS

PDA

communicator

Java HotSpot ™ Java Virtual Machine (JVM) KVM Card VM
Java Programming Language

Java 2
Enterprise

Edition
(J2EE)

Java 2
Standard
Edition
(J2SE)

Profile

Profile

Java 2 Micro Edition (J2ME)

TV
Profile

Car
Profile

Foundation
Profile

Smart
Card

Profile

Mobile Information
Device Profile

Profile

Profile

CLDCCDC

Communicator
Profile

GSM
Profile

PC, laptop

NC

Source: Sun

pager

POS

PDA

communicator

Write-Once-Run-Anywhere−Robust
−Secure

−Small Code size
−Cross Platform

Set top box
net TV

Fig 13. Java 2nd Edition (Source: http://java.sun.com)

 20

As the restrictions of DCO in Java VM, the KVM implementers also need to assure

that the executed java instructions are stored in RAM or other memory types that the stored

data can be modified at runtime. The other important restriction is, the operands of the _fast

pseudo-instruction must fit within the space allocated for the original instruction’s operands.

Instead of just saving the corresponding address, KVM provides a second technique to save

more execution time. Some instructions need much information to be executed, such as

invokevirtual, which instruction will invoke a method of an object instance. The

information (e.g. parameter, method’s return type, etc) now can be stored in an external

memory called inline cache, and an index to the inline cache is used in the instruction

operands. The new instruction format is illustrated in Fig 14.

This additional dynamic code optimization technique in Sun’s KVM RI requires about

100 Kbytes extra memory, but it has been proven to be very efficient. The execution time

with fast bytecodes enabled is two or three times faster than without it. Because using inline

cache to execute method invocation, the performance of Sun’s KVM RI is much better than

the JVM RI.

Fig 14. Java Instruction Format Using DCO

2.2. Java Platform

Fig 15 illustrates the layer structure of the Java Platform, which consists of six layers.

The first underneath layer is Platforms layer. Sun provides implementations of Java

 21

Development Kit (JDK) and Java Runtime Environment (JRE) for Microsoft Windows,

Linux, and the Solaris operating systems. In addition, they can also run in any user-defined

platforms if they have their own Java Virtual Machine, which is the second layer. Java

Virtual Machine (VM) simulates the execution behaviors like a real machine, and it has its

own instruction set. Java bytecodes can be executed by Java VM without knowing which

platform behind it, so do the native programs. Up this structure, Java APIs and JNI provide

basic features and fundamental functionalities for the Java platform. The fourth layer is

development technologies, which enables applications written in other technologies and

gives an integrated solution for that. Development Tools & APIs provide many useful tools

such as Java compiler (javac), Java executer (java), document generator (javadoc), and etc.

This structure provides the Java Programming Language a complete execution

environment.

Development Technologies (Java Plug-in…)

Java APIs

Java Virtual Machine

Platforms

Java Native
Interface (JNI) User

Interfaces
Class

Libraries
Core

Libraries

Development Tools & APIs

Java Language

JRE
JDK

Fig 15. Java Platform (Source: http://java.sun.com)

In following subsections, we will give a detailed introduction to Java execution

flowchart, Java class file format, Java Virtual Machine, and its instruction set. These

knowledge are very important for the design of DCO.

 22

2.2.1. Java Execution Flowchart

To understand the Java runtime system, the Java execution flowchart must be

discussed first (see Fig 16). Java source programs are compiled by javac into Java

bytecodes, and these bytecode sequences are organized into class files. Each class file

contains exactly one class bytecodes and information including methods, fields and

interface of this class. These class files are then loaded either from local storage or through

data network into the Java Virtual Machine for execution.

Java
Source
Code

*.java

Java
Compiler

javac
Java
Bytecodes

*.class

Network

Java Virtual Machine

Fig 16. Java Execution Flowchart

2.2.2. Java Class File Format

We have mentioned the Java class file in subsection 2.1.4.1. Now let us look into

more detail at the Java class file format. A format structure in Fig 17 illustrates it.

Java class files are structured in linear and record-based organization. Each class file

contains seven sections in order: File Header, Constant Pool, Class Descriptor, Interface

Table, Field Table, Method Table, and Attribute Table. File Format includes the magic

 23

number, which is a signature that can be verified to make sure that it’s a Java class file, and

the version number. The version number indicates that which version of Java VM can

execute it.

File
Header

Constant
Pool

Class
Descriptor

Interface
Table

Field
Table

Method
Table

Attributes
Table

Signature Version

Utf8 Integer Float Long Double

MethodrefClass FieldrefString

InterfaceMethodref NameAndType

Access
Flags

This
Class

Super
Class

Count

Index

Code

Length

Data

Line
Number

…

Source
File

Fig 17. Structure of Java Class File

The Constant Pool acts as the symbol table of this class. It has eleven types: Utf8,

Integer, Float, Long, Double, String, Class, Fieldref, Methodref, InterfaceMethodref, and

NameAndType. First the count of this constant pool items is given. The items have variable

length, and all multibyte data are in Big-Endian byte order. Java class files are written using

the Unicode character encoding [11] which is a worldwide encoding standard. All strings in

the constant pool are stored in the UTF-8 formats [12] in which Unicode characters are

packed into bytes to reduce space usage.

The Class Descriptor section contains the Access Flags of this class, this class and

super class. Next to the Class Descriptor are four tables: Interface Table, Field Table,

Method Table, and Attribute Table. These tables contain all the information about interface,

 24

field, method, and attribute. (e.g. count, length, index, data, code, and etc.)

Symbols and values presented in Class Descriptor, Interface Table, Field Table,

Method Table, and Attribute Table are actually indexes which point to the constant pool.

When the class file is loaded into Java VM, these symbols and values must be resolved

from the constant pool before execution. Java uses this delayed symbolic resolution before

execution to achieve dynamic binding. This binging is happened after class files are loaded

into Java VM and before they are executed, but this also makes the inefficiency of VM so

we will improve it in this research work.

2.2.3. Java Virtual Machine (JVM)

Java Virtual Machine is an abstract programmable computing machine with an

instruction set called bytecode. It can be ported to different platforms to provide hardware

and operating system independence.

Java VM is defined by the Java Virtual Machine Specification [7], which gives the

details of the design such as Java class file format and the semantics of each instruction.

Concrete implementations of Java VM specification are required to support these semantics

correctly, and these implementations are known as Java runtime systems. Fig 18 (see [9])

shows the components in a typical Java runtime system.

Applet or application class files are loaded via local memory storage or network into

Java VM. Dynamic Class Loader will handle the loading behavior and do the verifier, and

then pass it to the Execution Engine with the standard-specified build-in Java classes.

Execution Engine is the heart of any runtime system, which has many kinds of

implementations. They can be hardware implementation, software implementation, or both

of them. We will go deeply into it in section 2.3. Bytecodes are executed by Execution

Engine with the simulated memory areas. Garbage collecting and other supporting codes

 25

(e.g. Exceptions, Threads, Security, and etc.) are integrated into Execution Engine to

enhance the ability of Java VM. If the programs use native programs, the native methods

will linked by Native Method Linker and acted like libraries for Java programs to be

executed.

Fig 18. Components of Java Runtime System

2.2.4. JVM Instruction Set

JVM is a stack-based machine. It defines 201 standard instructions. Each instruction

is represented by an 8-bit value, and this is the reasons that the JVM instructions are called

bytecodes.

JVM supports 9 primitive dada types, which can be divided into two categories. One

is numerical type, and the other is address type. Table 2 lists the 9 primitive data types and

their respective lengths. [4]

 26

Data Type Length
(Byte)

int 4
long 8
float 4

double 8
byte 1
char 2
short 2

reference 4
returnAddress 4

Table 2. Support Data Type of Java VM

reference and returnAddress are address types, and others are numerical types. char is

unsigned, while byte, short, int, and long are signed. The floating-point types float and

double represent single-precision 32-bit and double-precision 64-bit format IEEE 754 value.

The values of reference types are pointers to class instances or fields. Arithmetic operations

can not be applied to reference types, so do returnAddress types, which are pointers to

opcode of JVM instructions. This type is used by jump instructions of JVM, and it is not

corresponding to any data types in Java programming language.

 There is one thing must be mentioned about the supported data types of JVM.

Although Java programming language provides boolean data types, but JVM does not have

boolean primitive data types. Instead, JVM uses int types to represent boolean values, and

boolean arrays are represented by byte arrays.

 27

lushriushr?ushr

lshlishl?shl
lshrishr?shr

astoredstorefstorelstoreistore?store
dsubfsublsubisub?sub

athrow?throw

lxorixor?xor

areturndreturnfreturnlreturnireturn?return

dremfremlremirem?rem

lorior?or

anewarray?newarray

dnegfneglnegineg?neg

dmulfmullmulimul?mul

dloadfloadlloadiload?load

spushbpush?push

iinc?inc

ddivfdivldividiv?div

sconst_<n>dconst_<n>fconst_<n>lconst_<n>iconst_<n>?const_<n>

dcmp{g|l}fcmp{g|l}?cmp{g|l}

lcmp?cmp

aastoresastorecastorebastoredastorefastorelastoreiastore?astore

landiand?and

aaloadsaloadcaloadbaloaddaloadfaloadlaloadiaload?aload

daddfaddladdiadd?add

i2s?2s

d2lf2li2l?2l

d2fl2fi2f?2f

d2if2il2i?2i

f2dl2di2d?2d

I2c?2c

referenceshortcharbytedoublefloatlongint

lushriushr?ushr

lshlishl?shl
lshrishr?shr

astoredstorefstorelstoreistore?store
dsubfsublsubisub?sub

athrow?throw

lxorixor?xor

areturndreturnfreturnlreturnireturn?return

dremfremlremirem?rem

lorior?or

anewarray?newarray

dnegfneglnegineg?neg

dmulfmullmulimul?mul

dloadfloadlloadiload?load

spushbpush?push

iinc?inc

ddivfdivldividiv?div

sconst_<n>dconst_<n>fconst_<n>lconst_<n>iconst_<n>?const_<n>

dcmp{g|l}fcmp{g|l}?cmp{g|l}

lcmp?cmp

aastoresastorecastorebastoredastorefastorelastoreiastore?astore

landiand?and

aaloadsaloadcaloadbaloaddaloadfaloadlaloadiaload?aload

daddfaddladdiadd?add

i2s?2s

d2lf2li2l?2l

d2fl2fi2f?2f

d2if2il2i?2i

f2dl2di2d?2d

I2c?2c

referenceshortcharbytedoublefloatlongint

Table 3. The Providing Types of JVM Opcodes

JVM instruction set is not orthogonal. In other words, operations provided for one

data type are not necessarily provided for other data types. This lack of orthogonally is

because each instruction is 8-bit opcode, so there are not enough opcode to offer the same

support to all java’s runtime types. The providing types of JVM opcodes are listed in Table

3. [9]

 28

The instructions of JVM are variable-length, and they depend on the instructions. We

can categorize the instructions of JVM into 9 groups. The following paragraphs describe

them briefly. [4]

1. Load and Store

This group of instructions is responsible for the data movement between the operand

stack and local variable area. Besides, there are instructions for loading constants onto the

operand stack.

2. Arithmetic

Type specific arithmetic instructions are supported by JVM instruction set as mentioned

in the previous paragraph. We can see that there is no arithmetic instruction for byte, short

and char types. If we want to do arithmetic operations, we should first cast them to int types

and use integer arithmetic instructions to perform what we want to do.

3. Type Conversion

JVM provides several instructions to do numeric data type conversion. These

instructions can be divided into two categories. One is widening the data length. For

example, the i2l instruction converts 4-byte integer to 8-byte integer. The other category is

narrowing the data length. The l2i instruction acts like that.

4. Object Creation and Manipulation

This group of instructions deals with object-related operations. For example, create

class instances, create array objects, access object variables, access array elements, and

check object types.

5. Operand Stack Manipulation

As mentioned before, JVM is a stack-based machine, so there are instructions for

manipulating the data in operand stack. This instruction group includes push, pop,

duplication of top element, and swap of top two elements instructions.

 29

6. Flow Control

Except conditional branch and unconditional branch instructions, JVM also provides

two compound conditional instructions: tableswitch and lookupswitch. These two

compound conditional instructions are used to choose an address out of a list of addresses

according to specific conditions.

7. Exception

Java provides exception handling mechanism. An exception is occurred by athrow

instructions thrown by JVM.

8. Synchronization

Because Java is a multi-threaded programming language, there are synchronization

problems. Two instructions, monitorenter and monitorexit, are provided to support

method-level and block-level synchronization.

9. Method Invocation and Return

JVM provides 4 different Method invocation instructions: invokevirtual, invokestatic,

invokeinterface and invokespecial, and 6 different method return instructions: return,

ireturn, lreturn, freturn, dreturn, and areturn.

2.3. Implementations of JVM

JVM is the key point to platform-independence. Once there is an implementation of

JVM on a platform, all Java programs can be run on this platform without any

recompilation. So there is a slogan of Java technology: Write Once, Run Anywhere.

Fig 19 shows the four kinds of implementations. The first kind is Interpreter, and this

is also the original version implementation of JVM. Then the second kind is Just-In-Time

(JIT) compiler. The technology using dynamic compiler is called HotSot. Finally, the fourth

 30

kind is Java processor, which is also our basic target implementation. We will introduce

these four implementations in the following subsections.

Java Program (*.java)

Java Compiler (javac)

Java Bytecodes (*.class)

Interpreter

JIT
Compiler

Machine
Binary

Dynamic
Compiler

Operating System

Non-Java CPU

Java
Operating
System

Java
Processor

1 3 42

Fig 19. Implementations of JVM

2.3.1. Interpreter

The first JVM implementation is interpreter, which includes a big loop in that every

instruction is read and executed in order. Fig 20 illustrates the flowchart of the interpreter.

This kind of implementation is very simple, but it suffers from inefficiency. Consider a loop

code section. If this loop executes 100 times, this code should be interpreted 100 times and

executed 100 times. Compared with fully compiled codes, 99 out of 100 interpretations are

actually overhead.

 31

Java
Source
Code

*.java

Java
Compiler

javac
Java
Bytecodes

*.class

Java Virtual Machine

Network

Java Virtual Machine

Start

Fetch Instruction

Execute Instruction

Fig 20. Interpreter

2.3.2. Just-In-Time (JIT) Compiler

Just-In-Time (JIT) compiler takes the bytecodes and compiles them into native code

for the machine that you are running on before the first time you execute it. This is shown

in Fig 21. The native machine codes exist only in the memory. When the program

terminates, the native machine codes are destroyed rather than restored for next execution.

Compilation must be done for each execution to ensure that the Java bytecodes are portable.

This is the key difference between JIT compiler execution and fully-compiled execution.

Because JIT compiler translates the whole programs into native machine codes before

executing, it can do some optimization of the entire programs. A Java program usually runs

50 times faster on the JIT compiler than on the interpreter. [4] However, the start-up time of

JIT is very long. They should wait for the whole program loaded and compiled. If some

 32

optimization option is adjusted, the start-up time will even longer. Nevertheless, JIT may

spend a lot of time on useless optimizations, such as the instruction that is only executed

one time. Nowadays, Many research works study on this topic to make JIT more efficient.

Java
Source
Code

*.java

Java
Compiler

javac
Java
Bytecodes

*.class

Java Virtual Machine

Network

JIT
Native

Machine
Code

Execute

Java Virtual Machine

Fig 21. Just-In-Time Compiler

2.3.3. HotSpot technology

HotSpot is a dynamic compiler that integrates a compiler with an interpreter. The

concept of dynamic compilation is based on the research done over the past 10 years at

Standford University and the University of Californiam Santa Barbara (UCSB).

Fig 22 illustrates the architecture of HotSpot. Java bytecodes are first loaded into

HotSpot and executed by the interpreter. During the execution, the profiler keeps the

runtime information and determines which method to be compiled into native machine

codes and optimizes them. The control component links the other four together, and

 33

provides the shared information. An apparent important function of the control component

is that it must keep whether a method has a native version or not, and their addresses.

 The dynamic compiler can perform some tasks to improve the performance of

program execution that a normal static compiler can not perform. The first is optimistic

compilation. Compilation during execution is very expensive, so we can choose which ones

are needed to be compiled and others remained to the interpreter. (e.g. the code section that

is executed only one time) By ignoring these cases, the dynamic compiler makes significant

performance improvement with only a small investment in optimizing time. The second

advantage is the run-time information can be taken into account for compilation and

optimization. For object-oriented programs, runtime information is more useful than static

information. The other advantage is that dynamic compilation can perform inlining the

frequently-invoked methods according to the runtime information.

Java Virtual Machine

Network

HotSpot Dynamic
Compiler

Virtual
Machine

Profiler

Native
Machine

Code
Control

Java
Bytecodes

*.java javac *.class

Java
Source
Code

Java
Compiler

Fig 22. HotSpot

 34

HotSpot is implemented in Java Virtual Machine by Sun in 1998. The details of the

internal workings are not open to the programmers, but many experiments show that

HotSpot has a great improvement of the execution efficiency of JVM.

2.3.4. Java Processor

Java Processors are primarily used in embedded system [14]. The native programming

language of such systems is Java, and all operating system related code, such as devices

drivers, are implemented in Java. Java processors are also stack-based machines with their

own instruction set, which bytecode will translate to and be executed in directly. As a result,

this pure hardware implementation has the best performance of the four. Fig 23 shows the

flowchart of Java programs that execute on the Java processor.

Java
Bytecodes

*.java javac *.class

Java
Source
Code

Java
Compiler

Java Virtual Machine

Network

Operating
System

Java
Chip

Fig 23. Java Processor

picoJava is the most well-known Java processor developed by Sun. It always serves as

the reference for new Java processors and as the basic for research into improving various

 35

aspects of a Java processor. The first version of picoJava is presented by Sun in 1997 [15].

This processor was targeting at the embedded systems market as a pure Java processor with

restricted support of C programming language. PicoJava-I contains four pipeline stategs. A

redesign followed in 1999, known as picoJava-II. picoJava-II now is freely available with a

rich set of documentation. In the following, we will briefly introduce four famous Java

processors or Java chips.

1. Zucotto

Zucotto Wireless Inc. is a new company, which established in 1999. The target market

of this company aims wireless communication. Their mainly product is Zucotto XC-100.

Zucotto XC-100 implements the Garbage Collector into their hardware architecture, so they

can manage the memory usage more powerfully. The lower power consumption is also the

main advantage of Zucotto XC-100, which is designed a power saving mode that idle

blocks can enter in.

2. ARM Jazelle

Jazelle is a Java Chip technology of ARM. Based on the RISC architecture, Jazelle

executes bytecodes directly using the translated microcode sequences. Now it can support

95% bytecodes. Besides the two basic instruction set of ARM processor, ARM 32 bits

instructions and ARM 16 bits Thumb instructions, Jazelle adds a third instruction set, that is

Java Bytecode instruction set. These three can switch while needed. The software

architecture of Jazelle chip is shown in Fig 24 (see [16]).

 36

Jazelle Accelerated ARM Processor

Jazelle Support Code

Standard Java Environment: KVM, CVM…

Verifier Class
Loader

Garbage
Collector

Memory
Manger

Process
Manager

Java APIs

Network Graphics Native
Methods

Remote
Methods

Java Application

Native
OS

Native
Application

Fig 24. Software Architecture of Jazelle Chip

3. Tiny J

TinyJ is developed by Advancel Logic Corporation. The advantage of TinyJ is the

support of cryptographic technology, so they especially suited the JavaCard and e-business

devices. The derivations of TinyJ are very practical product, shch as TinyJDSP processor

that integrates TinyJ and DSP Core, and Tiny2J that is designed for Java Card and Smart

Card.

4. MOON

MOON is a Java specified chip developed by Vulcan Machines. The basic

architecture of MOON is a traditional Von Neumann machine, so their instruction set and

data are stored in the same address space. MOON core size is very small and it has a good

performance. The only disadvantage of Moon is that the Garbage Collection must be

implemented in software, which makes it weak than others.

 37

3. Problem Formulation

In this chapter, we first formulate our problem. Then we will give an overview to the

open source system, Java Optimized Processor (JOP), upon which our proposed system is

built. The software layer stack, system architecture, datapath, and hardware/software

co-design of JOP will be discussed in section 3.2.

3.1. Introduction

In order to make the DVB-MHP system stable and condensable, we choose JOP as

our code base of Java VM in DVB-J functional block. JOP is an hardware/software

co-design system, which we will state in the next section. As we mentioned before,

although interpreter is the most suitable kind of embedded Java VM implementation due to

its simplicity and low resource requirement, it has a big problem in efficiency. Typical

dynamic code optimization (Sun’s JVM RI described in subsection 2.1.4.1) can speed up

the execution of this approach, but it suffers from the overhead of external memory access.

Furthermore, it sometimes is dispensable because the modified codes will never be

executed again.

In this research, we want to design a new hardware/software co-processing dynamic

code optimization scheme that is more suitable for embedded system. Our goal is to make

the Java VM more efficient and significantly cut down on the power consumption.

 38

3.2. Java Optimized Processor - JOP

Java is seldom used in embedded systems. Actually, many features of Java, such as

thread support in the language, could greatly simplify development of embedded systems.

Based on this concept, Java optimized Processor (JOP), which is part of a Ph.D. thesis at

the Technical University of Vienna in Austria, is developed by Martin Schoberl In Oct 2001.

[14]

JOP is basically a hardware implementation of JVM with predictable execution time

for embedded real-time systems. The goal of this development is a simple and small Java

processor optimized to execute Java bytecodes. Due to the small size of this processor, it

can be implemented in a low cost FPGA. The flexibility of an FPGA can be of more

importance for low volume systems compared to conventional Java processors.

Fig 25. Java Optimized Processor Runtime Environment

JOP is one way to use a configurable Java processor in small embedded real-time

 39

systems. It shall help to increase the acceptance of Java for these systems. However, it

suffers from the restrictions of embedded systems. Because of the memory limitation and

security concerns, JOP is compatible with the Java Virtual Machine but has following

restrictions:

• No support for floating point data types (float and double).

• No support for the Java Native Interface (JNI).

• No user-defined, Java-level class loaders.

• No reflection features.

• No support for thread groups or daemon threads.

• No support for finalization of class instances.

• No weak references.

• Limitations on error handling.

The simplified Java Runtime System is illustrated in Fig 25. Compared to the typical

Java Runtime Systems in Fig 18, we can see that there are no Java Native Interface and

dynamic class loader and verifier support. Furthermore, garbage collection is not allowed

because it is not suitable for such real-time systems.

The important step of executing Java programs on JOP is JavaCodeCompact (JCC),

which is also known as the class prelinker, preloader or ROMizer. This utility allows Java

classes to be linked directly in the JVM and reduces JVM startup time considerably.

Bytecodes of Java programs and Java APIs including support codes that are used in this

program do the JavaCodeCompact and output a file to be stored in external memory. Then

execution engine starts to execute this program. [8]

 40

3.2.1. Software Layer Stack of JOP

 In Java 2nd platform we mentioned in subsection 2.1.4.2, JOP is targeted at the Java 2

Micro Edition (J2ME). J2ME is a four-layered structure. Upon the operation system and Java

Virtual Machine, configuration and profile are presented. A J2ME configuration defines a

minimum platform for a “horizontal” category or grouping of devices, each with similar

requirements on total memory budget and processing power. A configuration defines the

Java language and virtual machine features and minimum class libraries that a device

manufacturer or a content provider can expect to be available on all devices of the same

category, such as Connected Device Configuration (CDC) and Connected, Limited Device

Configuration (CLDC). On the other hand, a J2ME profile is layered on top of (and thus

extends) a configuration. A profile addresses the specific demands of a certain “vertical”

market segment or device family. The main goal of a profile is to guarantee interoperability

within a certain vertical device family or domain by defining a standard Java platform for

that market. Profiles typically include class libraries that are far more domain-specific than

the class libraries provided in a configuration. The most famous profile that we know is

MIDP (Mobile Information Device Profile). [8]

 Due to the features of embedded system, JOP must have its own configuration

and profile. Fig 26 digests the configuration and profile that JOP are compatible. Small

Embedded Devices Configuration (SEDC) is intended for small embedded devices with a

16-bit (or even 8-bit) microprocessor and a low memory budget (below 128 kB). The JVM

restrictions of SEDC are similar to CLDC 1.0 but smaller than. SEDC use JCC to simplify

the application with preverified and preloaded mechanisms. Threads are not part of SEDC,

and there are no stream input/output facilities. [17] Ravenscar Tasking Profile is designed in

the concept of the ADA Ravenscar Profile [19]. It resembles the ideas from [18] and [20]

but is not compatible with the RTSJ. This profile addresses the same devices as SEDC. Java

 41

language run on this profile and configuration also called Ravenscar Java.

Fig 26. Software Layer Stack of JOP

3.2.2. System Architecture of JOP

A typical configuration of JOP contains the processor core, a memory interface, a

number of IO devices, and the module extension which provides the link between processor

core, memory and IO modules. Block diagram of JOP is illustrated in Fig 27 (see [14]).

The processor core contains four pipeline stages: bytecode fetch, microcode fetch,

decode and execute, which we will discuss in next subsection. As we see, there is no direct

connection between the processor core and the external world. The memory interface

provides a connection between the main memory and the processor core. It also contains

the bytecode cache, which caches the whole method code of one method. The I/O interface

controls peripheral devices, such as the system time, the timer interrupt, a serial interface

and application-specific devices.

 42

JOP Core

Bytecode
Fetch

Fetch

Decode

Stack

Memory Interface

Bytecode
Cache

Extension

Multiplier

I/O Interface

Control

Control

Control

Interrupt

Data

Data

Data

B

A

Busy
BC Address
BC Data

Fig 27. Block Diagram of JOP

The division of this processor into those four modules greatly simplifies the

adaptation of JOP for different application domains or hardware platforms. For example, in

order to port JOP to a different FPGA device, one only needs to modify the memory

module alone, but not the processor core.

3.2.3. Datapath of JOP

In previous subsection, we said that JOP uses a four-stage pipeline architecture and

every instruction in JOP is exactly executed in one single cycle. Look at Fig 28 (see [14]).

Bytecode is fetched in order by pc register, and then looks it up in the jump table to get the

start address of the translated microcode sequence. This is done in the first stage. In the

second pipeline stage, JOP uses the start address to jump to the corresponding microcode.

It is decoded and executed until the nxt instruction in next two pipeline stages.

 43

Bytecode

Fetch, translate
and branch

Microcode

Decode

Microcode

Fetch and
branch

Execute

Stack

Address
generation

Stack

RAM

spill,
fill

branch

bytecode branch

microcode branch conditionnext bytecode

bytecode branch condition

Bytecode

Fetch, translate
and branch

Microcode

Decode

Microcode

Fetch and
branch

Execute

Stack

Address
generation

Stack

RAM

spill,
fill

branch

bytecode branch

microcode branch conditionnext bytecode

bytecode branch condition

Java pc
…
aaload
iload_2
idiv
wait
…

Java
bytecode

…
&dmul
&idiv
&ldiv
&fdiv
…

Jump
table

JOP pc

…
iadd: add nxt
isub: sub nxt
idiv: stm b

stm a
…
ldm c nxt

…

JOP microcode

Fig 28. Datapath and Data Flow of JOP

This stack architecture allows for a short pipeline, which results in short branch delays.

Two branch delay slots are available after a conditional microcode branch. All the needed

memory while execution, such as the method cache (bytecode cache), microcode ROM,

and stack RAM, are implemented with single cycle access in the FPGA’s internal

memories. [14]

3.2.4. Hardware/Software Co-design of JOP

JOP is a hardware/software co-design Java processor. Moving functions between

hardware and software is very easy, and this feather is resulting in a highly configurable

design. If the execution speed is the important issue, more functions are realizes in

 44

hardware; if the cost is the primary concern, these functions are moved to software and a

smaller FPGA can be used.

There are three implementations of bytecodes. They can be VHDL code

implementation, microcode implementation, and Java code implementation. Bytecodes that

are not implemented in VHDL or microcode result in a static Java method call from a

special class. The additional overhead for this implementation is a call and return with

method cache refills. A comparison of resource usage and execution time for the three

implementations of imul is listed in Table 4. We can see that the implementation in Java is

slower than the microcode implementation and consequently VHDL implementation as the

Java method is loaded from main memory into the bytecode cache.

 Hardware
(LC)

Microcode
(Byte)

Time
(cycle)

VHDL 156 10 35
Microcode 0 73 750

Java 0 0 2300

Table 4. A Comparison of Different Implementations of imul

 45

4. Proposed Dynamic Code Optimization System

Due to the demand of efficiency in DVB-MHP applications, we need to further

improve the performance of the JOP system. By analyzing the execution frequency, we

observed an important feature and use it to design our new dynamic code optimization

scheme.

In this chapter, we first discuss the data structure using our framework. Then we

analyze the bytecode execution frequency and give an overview to our scheme. Finally, the

hardware and software modules of our design are respectively illustrated.

4.1. Data Structure Using in Our Dynamic Code Optimization

In this section, the data structure using dynamic code optimization is given. These

include the data arrangement in the external memory, method cache and each of the runtime

data structure.

4.1.1. Data Arrangement in the External Memory

The application programs are compiled into Java class files by the Java compiler

(javac), with all the linked library programs recompiled, and then passed to

JavaCodeCompact (JCC).

In conventional class loading, javac is used to compile Java source files into Java

class files, which are loaded into a Java system, either individually, or as part of a jar

archive file. Upon demand, the class loading mechanisms resolve references to other class

 46

definitions. JCC provides an alternative means of program linking and symbol resolution.

First the multiple input class files will be combined, and JCC will determine the layout and

size of an object instance. Only the designated class members will be loaded and linked

with the Java Virtual Machine in order to reduce JVM’s bandwidth and memory

requirements. Resolution of symbols is also performed in this stage, which reduces the

start-up time of JVM.

The output of JCC is a C file and its format can be arranged by the user-defined writer.

In JOP system, the writer is redesigned to have JCC output a data layout file like the data

arrangement in the external memory (SRAM in Spartan-3) and loaded it directly to the

external memory. An illustration of it is shown in Fig 29.

All Method’s: Bytecode

Special Pointer
String Table

All
Classes

Static Fields
Class Information

Method Table :
(a method use 2 address)

Constant Pool
Interface Table

Address of Special Pointer0

1

Fig 29. Data Arrangement in the External Memory

All of data in this output file are united in 32 bits of an address. This means that the

address 0 has 32 bits data, and the 33rd bit is the first bit in address 1. After collected all the

 47

designated method bytecodes, JCC has the bytecode size in 32-bits. The JOPWriter writes

this size added one in the first address, and then all the designated method bytecodes.

Finished all the writing of bytecodes, the next writing address must be the data saved in

address 0, because it is the size of bytecodes added one.

Then we save four special pointers: a pointer to boot code, a pointer to first

non-object method structure of class JVM, a pointer to first non-object method structure of

class JVMHelp, and a pointer to main method structure. We can easily get special pointers

by using the data in address 0, because it is also the address of first special pointer. For

example, the data in address 0 adds three is the address of main method structure.

The next area is the string table area, followed by the all-class data area. The all-class

data area contains the static fields, class information, method table, constant pool, and

interface table if this class has interfaces. In this area, the data related to all the classes are

listed one after another.

All of the information in the output file (the same as in external memory) will be used

while execution. The method table (Fig 30) of a class is the key data structure to get the

address to other class information. Note that a method table occupies two address space,

and an address is 32 bits.

Local CountConstant Pool

Start Address

22 270 31

Method Length

Arg. Count

Fig 30. Method Table Structure

The highest 10 bits in the first address of method table are the length of method

bytecodes with 32 bits a unit. By shifting right 10 bits of the first address we can get the

 48

method bytecodes’ start address that points to the second block in Fig 29. The start address

has 22 bits and it is in Big-Endian byte order. The second address stores the constant pool

pointer in 22 bits, the number of local variables in 5 bits, and the number of arguments in 5

bits.

4.1.2. Method Cache

Method cache is also called bytecode cache which we had mentioned in subsection

3.2.2. Because the fetch of external memory is very expensive, the concept of method cache

is created in JOP. During one external memory fetch, the whole bytecodes of one executing

method are fetched and loaded to the method cache, which is usually a memory area

synthesized on FPGA. The external memory fetch time can be smaller than fetching one

address a time. For example, assume that we fetch one address in external memory takes 3

microseconds (= 10 ^ -6 seconds). We will spend 30 microseconds if we want to fetch a

method with 10 units (32 bits a unit) address bytecodes. However, if we fetch all bytecodes

of that method (10 units address) one time, we may just spend 22 microseconds in fetching

external memory.

Method cache is designed to cache just one method bytecodes. Consider this example

program [14]:

 Foo () {

 A();

 B();

 }

We will have the following cache loads:

 49

1. method Foo is load on invocation of Foo()

2. method A is load on invocation of A()

3. method Foo is load on return from A()

4. method B is load on invocation of B()

5. method foo is load on return from B()

It should refill the method after returned from its internal method. This is the main

drawback of the method cache. But by that we can almost make sure that the method cache

will reload when executing the same method next time. As a result, we do not need to

reflash the method table when we modified the executing method bytecodes in our dynamic

code optimization scheme. This also saves much time in doing optimization.

4.1.3. Runtime Data Structure

As we mentioned before, memory is addressed as 32 bits data, so the memory

pointers are incremented for every four bytes. No single or 16 bits access is necessary in

our JOP system. The reference data type is a point to memory that represents the object or

an array, which is pushed on the stack before an instruction operating on it. A null reference

is represented by the value 0 [14].

In the following we are going to see each runtime data structure.

4.1.3.1. Stack Frame

First we look into the stack frame. On a method invocation, the information of the

invoker is saved in a newly allocated frame on the stack. It is restored when the method

returns. The information consists of five registers: SP (Stack Pointer), PC (Program

Counter), VP (Variable Pointer), CP (Constant Pool Pointer), and MP (Method Table

 50

Pointer).

SP, PC and VP are registers in JOP while CP and MP are local variables of JVM. Fig

31 (see [14]) provides an example of the stack change before and after invoking a method.

The caller has two arguments and the called method has two local variables. The arguments

that we want to pass into the invocated method can be accessed in the same way as local

variables. As in this example, the arguments arg_0 and arg_1 will become var_0 and var_1

with the original var_0 and var_1 shifted to var_2 and var_3. The start address of the frame

can be calculated with the information from the method table:

 Frame address = VP + Arg. Count + Local Count

var_0
var_1
var_2
Previous SP
Previous PC
Previous VP
Previous CP
Previous MP
Operand Stack
…
arg_0
arg_1

VP

SP

var_0
var_1
var_2
Previous SP
Previous PC
Previous VP
Previous CP
Previous MP
Operand Stack
…
var_0
var_1
var_2
var_3
Previous SP
Previous PC
Previous VP
Previous CP
Previous MP

VP

SP

Old
Frame

This
Frame

Fig 31. Stack Change on Method Invocation

 51

4.1.3.2. Data Layout

In JOP, objects are stored in memory during runtime in the Fig 32 (see [14]) format.

Note that the object reference points directly to the first reference of the object to speedup.

We can access the class information pointer by object reference subtracted one.

Class Method Pointer

Instance Variable 1
Instance Variable 2
…
Instance Variable n

Object
Reference

Fig 32. Object Format

The array layout in memory is just like an object. We showed the array format in Fig

33 (see [14]). Also, if we want to access the array length, just take object reference

subtracted one.

Array Length

Element 1
Element 2
…
Element n

Array
Reference

Fig 33. Array Format

4.1.3.3. Runtime Class Structure

The runtime class structure of JOP is shown in Fig 34 which had discussed in 4.1.1 as

all classes’ information. This class structure is stored in the external memory. For indicating

the pointers in previous data structure, we drew this class structure again with pointers

Class Reference, Class Method Pointer, MP, and CP.

 52

Class Variable 1
Class Variable 2
…
Instance Size
Interface Table
Method Structure 0
Method Structure 1
…
Class Reference
Constant Pool Length
Constant 1
Constant 2
…
Interface Reference 0
Interface Reference 1
…

Class Reference

Class Method
Pointer
Current Method (MP)

Constant Pool (CP)

Fig 34. Runtime Class Structure

4.2. The Proposed Dynamic Code Optimization Scheme

In this section, we propose our dynamic code optimization scheme. First we analyze

the bytecode execution frequency, from which we get the new idea of improvement. Then

we compare the access time of the external memory and the internal memory. By reducing

the number of dynamic code modifications that do not improve the performance, we can

make the system more efficient. The architecture overview is illustrated in the last

subsection.

4.2.1. Analysis of Bytecode Execution Frequency

In subsection 2.3.3, we have mentioned that Hotspot uses optimistic compilation

 53

which can dynamically choose which instructions needs to be compiled and the rest are

executed by the interpreter. The decision is based on the execution frequency. This concept

is used in many systems. For example, the famous code morphing processor from

Transmeta also uses execution frequency to decide whether the code is to be interpreted or

to translated. As Fig 35 (see [22]), the translation threshold is decided by the code

execution frequency. When the number of executions of a section of x86 machine code

reaches a certain threshold, its address is passed to the translator.

Interpreter TranslatorStart

Exceed
Translation
Threshold ?

Interpret
Next

Instruction

Find Next
Instruction
in Tcache?

Translate Region
Store in Tcache

Execute
Translation

from Tcache

No

Not
found

Found

Yes

chainRollback
fault

Fig 35. Transmeta Code Morphing Software Control Flow

We analyze the bytecode execution frequency using the three benchmark programs

described in section 5.2. The distribution of bytecode execution frequency is listed in Table

5 and Fig 36 shows the diagram. The number of bytecodes is counted under the given

execution frequency. Consider the following analysis data. When executing the UDP/IP

 54

program, there are 385 bytecodes that are executed 9 times and 210 bytecodes are executed

13 times. For the same bytecodes (e.g. aload_0), they are different in different methods or

sequences.

321728094132all

00225

20124

00023

321722

150221

4633220

32445419

114328918

826923117

1658616416

2242427715

36812124514

21016538613

35638931912

34224162211

28737842510

3852843829

1412591458

691422837

72651296

813155

10244

3503

0212

2922674871

UDP/IPKflSievefrequency
benchmark

Table 5. The Number of Bytecodes under the Given Execution Frequency.

 55

Look at the curves in Fig 36. We observe a very important rule. The bytecodes are

almost executed exactly once or much more than twice. This observation is the critical

point in our design.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Execution Frequency

N
u
m

b
er

 o
f

B
y
te

co
de

s

Sieve

Kfl

UDP/IP

Fig 36. Distribution of Bytecode Execution Frequency

4.2.2. Access Time of External Memory & Internal Memory

As we mentioned before, typical dynamic code optimization (Sun’s JVM RI described

in subsection 2.1.4.1) can speed up the execution of embedded Java VM, but it suffers from

the overhead of external memory accesses.

Consider the JOP system. The clock frequency of both FPGA and SRAM is 50MHz,

so the clock time is calculated as following.

seconds1021002.010
50
1

50
1 866 −−− ×=×=×=
M

 56

The internal memory access only needs 1 cycle. But if it is the external memory, it

needs 5 cycles for memory read and 7 cycles for memory write on JOP because JOP is

designed for various developing boards. The microcode sequence of external memory read

is shown in Fig 37.

Fig 37. Microcode Sequence of External Memory Read

Upon execution of a memory read, the address is stored and the processor waits for

the value to arrive and then pushed the value to the top of the operand stack as in Fig 31.

Each microcode executes in a single cycle, so the external memory read needs 5 cycles. For

the microcode sequence of external memory write shown in Fig 38, it needs 7 cycles.

Fig 38. Microcode Sequence of External Memory Write

As a result, if we can reduce the number of dynamic code modifications that do not

give us any advantages, e.g. the codes that are exactly executed once, we can make a big

improvement of execution time and cut down the power consumption. In next subsection

we are going to introduce the design of our dynamic code optimization module.

stmra
nop
wait
wait
ldmrd

stmwa
nop
stmwd
nop
wait
wait
nop

 57

4.2.3. Architecture Overview

In subsection 4.2.1, we knew that bytecodes are almost executed exactly one time or

much more than two times. Then in subsection 4.2.2, we analyzed the memory access time,

and found that the access time of external memory is a big overhead of the traditional

dynamic code optimization scheme. Based on these two observations, we designed the new

dynamic code optimization architecture called JDCO.

To speed up the execution and cut down the power consumption, we only modify the

codes when it is necessary. That is, if the code is executed exactly one time, we do not do

the dynamic code optimization – constructing a new bytecode to replace the original

bytecode and storing the field or method offset in the operand of new bytecode. Because

the method bytecodes are stored in external memory in most embedded system and also our

JOP system (described in subsection 4.1.1), this new module can execute the Java programs

with dynamic code optimization in a more efficient way.

However, if the execution frequency can not be determined upon the first encounter of

a bytecode (unless we do a “fast-forward” to check whether the bytecode will be executed

again, which has unacceptable overhead). Another possible way is to perform a pre-pass

counting of the execution of the bytecodes, but this is also very expensive. We proposed a

simple algorithm that reduces unnecessary modifications with very low overhead. The

proposal is as follows. A small memory is synthesized in the FPGA to count the number of

execution of each bytecode during execution. For the first execution, no dynamic code

modification is performed. The DCO is only done at the second time the code is executed,

because we assume that it will be executed again and again base on the observation of

subsection 4.2.1. For third execution and above, we can directly use the operand of new

 58

bytecode to speed up the performance and cut down the power consumption.

Bytecode

Fetch, translate
and branch

Microcode

Decode

Microcode

Fetch and
branch

Execute

Stack

Address
generation

Stack

RAM

spill,
fill

branch

bytecode branch

microcode branch conditionnext bytecode

bytecode branch condition

■ Hardware ■ Software

…
aaload
iload_2
idiv
wait
…

Java
bytecode

JDCO check

…
&putfield
&getfield

&invokevirtual
&invokeinterface

…

New
Jump
Table

JDCO

…
iadd: add nxt
isub: sub nxt
idiv: stm b

stm a
…
ldm c nxt

…

JOP
microcode

…
&dmul
&idiv
&ldiv
&fdiv
…

Can not be
optimized

JDCO bytecodes
implementation

or

Original
Jump
Table

JOP pc

JDCO_Java

First
Time?

No, do
JDCO

Yes

Java pc

Can be
optimized

JOP pc

Fig 39. Our JDCO Architecture Overview

The flowchart of our JDCO architecture is shown in Fig 39. We mark our new

modules in colored background with distinguishing hardware and software implementation

 59

modules. In the beginning of the first stage, bytecode fetch, a bytecode is pointed by Java

pc to be executed. The bytecode will pass to a JDCO check module, which will check if this

bytecode can be optimized or not. For example, if the bytecode has the information that can

be recorded for speeding up the next execution (e.g. getfield. putfield. etc.), we say that it

can be optimized. If the answer of JDCO check is yes, our system will further check if it is

the first time to execute this bytecode to decide whether we should perform DCO or not. If

it is not the first time of execution, the new JDCO optimization will look up the bytecode in

our new jump table to get the JOP pc, which points to our new JDCO module in the second

stage, microcode fetch. JDCO will execute this bytecode and get the runtime information

depending on the specific bytecode. It may be the offset of an object field, or of the class

method that will not change when next time we execute the same bytecode. The runtime

information will be passed to a JDCO Java program which will construct a new bytecode to

replace the original bytecode in external memory, and store the runtime information in the

operand of this new bytecode.

If the answer of the JDCO check is no, or it is yes but this is only the first time of

execution of the byte code, our architecture will follow the original procedure. Looking up

in the jump table, the JOP pc is retrieved for execution. The corresponding bytecode

implementation is executed whether it is a newly implemented bytecode that we

constructed or not. The implementation of the bytecode may be the VHDL implementation,

microcode implementation, or Java Code implementation.

4.3. Implementation Details

In this section, we are going to look into more details of the implementation. The

description is divided into two parts: hardware implementation modules and software

 60

implementation modules, which distinguished in Fig 39.

4.3.1. Hardware Implementation Modules

In our design, a hardware module is needed for first time of execution checking. We

need to synthesis a small on-chip memory that can count the execution times of each

bytecodes, and then decide to do the original bytecode implementation or the JDCO

module.

Fig 40. Java Bytecode Fetch Stage of Our JDCO

 We have mentioned in subsection 3.2.3 that JOP has four pipeline stages. In the first

pipeline stage as in Fig 40, the Java bytecodes are fetched from the internal memory

Counting
Memory

External
Memory
Address 8k * 1 bit

 61

(Bytecode RAM). The bytecode is mapped through the translation table into the address

(jpaddr) for the microcode RAM in next stage.

 We synthesize an 8K * 1 bit memory called Counting Memory, in which one bit map

to an address of method bytecode in external memory (see Fig 29). When Java bytecodes

are fetched from the internal memory, we use its start address of method as an index to see

if the bit in Counting Memory is set or not. If it is set, we know that it is the second time

executed. Then the address of the modified bytecode implementation (e.g. putfield_modify

in next subsection) is mapped through the translation table and passed to next stage. If the

bit is zero, then the address of original bytecode (e.g. putfield) is mapped and passed.

Finally the corresponding bit in Counting Memory is set.

JOP Core

Bytecode
Fetch

Fetch

Decode

Stack

Memory Interface

Bytecode
Cache

Extension

Multiplier

I/O Interface

Control

Control

Control

Interrupt

Data

Data

Data

B

A

Busy
BC Address
BC Data

Fig 41. Block Diagram of The Proposed JDCO

The block diagram of JOP has been shown in Fig 27. The main modification is in the

Bytecode Fetch stage of JOP core. But we do not have the method start address of external

 62

memory because method bytecodes are fetched from the bytecode cache missing the

original address in external memory. So we need to map this port (external memory address)

from memory interface to JOP core, and map to the Bytecode Fetch stage. We summarize

our modification and redraw this as in Fig 41.

4.3.2. Software Implementation Modules

In bytecode level, first we should figure out what bytecodes are needed to do our

JDCO. Based on Sun’s JVM Reference Implementation, we may have 25 bytecodes (Table

1) that can be considered. But most operands of them are not modified. The new bytecodes

of these bytecodes just indicate that they have been resolved. In section 3.2, we have

introduced that all bytecodes are passed to JavaCodeCompact (JCC) first, and then the

output is loaded into the external memory in JOP system. In other words, all method

bytecodes in external memory have been resolved, and the DCO is not useable for these. As

a result, we only have four bytecodes needed to do JDCO: getfield (180), putfield (181),

invokevirtual (182) and invokeinterface (185).

To fulfill our JDCO modules, two bytecodes need to be constructed for one bytecode

without changing the instruction length. We list the new bytecodes of our architecture with

their format in Table 6.

Upon the first time of executions, we will executed the original bytecodes. Modified

bytecodes are used in the second executions and above, and replaced itself in the new

bytecodes. The offset of object field or class method will be stored in the operand of the

new bytecodes for next execution.

 63

indexbyte2indexbyte1invokevirtual182

Our JDCO
Bytecodes

Original
Bytecodes

(not changed)

0nargsoffsetbyte2offserbyte1invokeinterface_new236

offsetbyte2offserbyte1invokevirtual_new235

offsetbyte2offserbyte1putfield_new234

offsetbyte2offserbyte1getfield_new233

0nargsindexbyte2indexbyte1invokeinterface_modify231

indexbyte2indexbyte1invokevirtual_modify230

indexbyte2indexbyte1putfield_modify229

indexbyte2indexbyte1getfield_modify228

0nargsindexbyte2indexbyte1invokeinterface185

indexbyte2indexbyte1putfield181

indexbyte2indexbyte1getfield180

formatbytecode

indexbyte2indexbyte1invokevirtual182

Our JDCO
Bytecodes

Original
Bytecodes

(not changed)

0nargsoffsetbyte2offserbyte1invokeinterface_new236

offsetbyte2offserbyte1invokevirtual_new235

offsetbyte2offserbyte1putfield_new234

offsetbyte2offserbyte1getfield_new233

0nargsindexbyte2indexbyte1invokeinterface_modify231

indexbyte2indexbyte1invokevirtual_modify230

indexbyte2indexbyte1putfield_modify229

indexbyte2indexbyte1getfield_modify228

0nargsindexbyte2indexbyte1invokeinterface185

indexbyte2indexbyte1putfield181

indexbyte2indexbyte1getfield180

formatbytecode

Table 6. Our Designed JDCO Bytecodes & Their Formats

 64

5. Performance Study

In this chapter, we first introduce our development environment – Xilinx Spartan-3

Developing Board, and then we state the Java benchmark used in this research. Finally, the

experiment results are shown and discussed. We analyze the performance on both execution

time and power consumption.

5.1. Xilinx Spartan-3 Developing Board

The Xilinx Spartan-3 Developing Board is used for the development of the proposed

Java VM accelerating algorithm. The top side and bottom side of the board are shown in

Fig 42 and Fig 43 (these figures are taken directly from the user guide. [21]).

The equivalent gate counts of the target Spantan-3 device are 200,000 gates, and the

logic utilization of JOP on the FPGA is 64 percent. The data path of Spartan-3 is 32 bits

with an 8-bit memory interface. Shift instruction can be computed in exactly one single

cycle. The external memory devices of JOP on Spartan-3 is a 32-bit SRAM blcok of 1M

bytes and an 8-bit flash of 2M bits. Java program is compacted by JCC to *.jop file which

is loaded into SRAM. Configuration data is stored in flash. Finally, the maximum working

frequency of this processor is 194.621 MHz, according to the synthesizer.

 65

Fig 42. The Top Side of Xilinx Spartan-3

Fig 43. The Bottom Side of Xilinx Spartan-3

5.2. Java Benchmark Programs

In this research, we use three small Java benchmark programs, which contain a

 66

synthetic benchmark (Sieve of Eratosthenes) and two application benchmarks, Kfl and

UDP/IP. [14] We describe them in the following subsection.

5.2.1. Sieve of Eratosthenes

This program will produce a list of prime numbers. The algorithm is proposed by

Erastosthenes. His method is as following. First, write down a list of integers. Then mark

all multiples of 2. The next step is, move to the next unmarked number, in here is 3, and

mark all its multiples. Continue to mark all multiples of the next unmarked number until

there are no new unmarked numbers. The numbers which survive from this marking

process (the Sieve of Eratosthenses) are primes.

5.2.2. Kfl

Kfl is adopted from a real-time application which is taken from one of the nodes of a

distributed motor control system. The motor control system is a solution to rail cargo.

During loading and unloading goods from wagons, a large amount of time is spent due to

the obstacle of contact wires. Balfour Beatty Austria developed and patented a technical

solution called Kippfahrleitung to tilt up the contact wire. An asynchrony motor on each

mast is used for this titling. However, it has to be done synchronously on the whole line.

[23]

Each motor is controlled by an embedded system. This system also measures the

position and communications with a base station. We show the mast with the motor and the

control system in down and up positions in Fig 44 (see [14]). The base station need to

control the deviation of individual positions during the tilt. It also includes the user

interface for the operator. In technical term, this is a distributed, embedded real-time control

 67

system, communication over an RS 485 network.

A simulation of both the environment (sensors and actors) and the communication

system (commands from the master station) forms part of the benchmark, so as to simulate

the real-time workload.

Fig 44. Pictures of a Kippfahrleitung Mast in Down and Up Position

5.2.3. UDP/IP

UDP/IP benchmark is composed of a tiny TCP/IP stack (Ejip) for embedded Java.

This benchmark contains two UDP server/clients, exchanging message via a loopback

device.

 68

5.3. Experiment Results

We simulated our dynamic code optimization scheme on Spartan-3. The percentage of

logic utilization increment is less than 1%, but we have made a big improvement in both

execution time and power consumption. Now we are going to discuss in these two aspects.

5.3.1. Execution Time

We synthesize our JDCO system with comparisons to DCO (no frequency check) and

the original JOP system. The execution time is listed in Table 7 and shown in Fig 45. In the

table, we can see that the average speedup of our system is 13.8%, and compare to DCO

system, we also have 7.1% execution time speedup.

Considering the execution time of each benchmark, we find an interesting phenomena.

Let us focus on the results of UDP/IP benchmark. In our JDCO system, it has 9.7% speedup

compared to DCO system, while other two benchmarks only have 6.0% and 5.6% speedup.

The reason is that the UDP/IP benchmark has many initialization and executed-only-once

code, so our JDCO system can make a big improvement by avoid that cases. Actually, the

performance of this system is dependent on the Java program behavior.

0.9290.8620.9295615.06029.76448.3average

0.9030.8680.961417946274813UDP/IP
0.9440.8400.890228424192719Kfl
0.9400.8790.935103821104311813Sieve

JDCO/DCOJDCO/JOPDCO/JOPJDCODCOJOP
benchmark

system

Unit: millisecond

Table 7. Execution Time

 69

0 5000 10000 15000

Sieve

Kfl

UDP/IP

Ja
va

 B
en

ch
m

ar
k

Execution Time (milisecond)

JOP

DCO

JDCO

Fig 45. Execution Time

5.3.2. Power consumption

To estimate the power consumption savings, we can analyze the microcode execution

cycles and the external memory access times. We discuss the two aspects in the following

subsections.

5.3.2.1. Microcode Execution Cycles

As we know that the less microcode execution cycles, the less power consumption will

be. We analyze the microcode execution cycles of each bytecode and separate them by the

number occurrences. The analyzed data is in listed in Table 8.

Because we have different microcode execution cycles in different number of

occurrences, we should know the total execution times of the modified bytecodes of each

benchmark separating by the number of occurrences, which is listed in Table 9. But these

are the sum of the four modified bytecodes (putfield, getfield, invokevirtual, and

invokeinterface), we should know the percentages of each of them. By analyzing the

benchmark programs, we assume the percentages of the bytecodes as following:

 70

 180 : 181 : 182 : 185 = 40 : 20 : 20 : 1

For DCOFor JDCO

110131110131118invokeinterface

9811998119106invokevirtual

1036103623putfield

73373320getfield

second and laterfirstthird and latersecondfirst bytecodes

occurences

Unit: cycles

Table 8. Microcode Execution Cycles of Each Bytecode

We can calculate the microcode execution cycles by the following formulation:

∑ ∑
occurrence bytecode

PcyclesT
#

)))*((*(

T is the execution times in Table 9, and P is the percentage of bytecodes. For example,

P of getfield is 40 / (40+20+20+1). The principle of this formulation is to calculate the sum

of the execution cycles multiply the execution times. The execution cycles are calculated

according to the percentage of each bytecode. Note that the microcode execution cycles of

original JOP are always the same as the first time of JDCO.

For JOPFor DCOFor JDCO

167571541513421428711281342UDP/IP

145141338511291238410011129Kfl

209281905418741746215921874Sieve

allsecond and laterfirstthird and latersecondfirstbytecodes

occurences

Table 9. Execution Times of Bytecodes 180. 181. 182. 185

We still calculate the execution cycles of our JDCO system with comparison to DCO

and original JOP system. The experimental results are listed in Table 10 and shown in Fig

 71

46. Because we only calculate on the modified bytecodes, we need to know the percentage

of them of all bytecodes. By analyzing the benchmark programs, we get that the roughly

percentage is 1/2. That is,
2
1 all 185) 182 181 (180 =÷+++ .

 As in Table 10, our JDCO has average 20.8% less execution cycles for the modified

bytecodes, so for the all bytecodes, we have 10.4% less execution cycles than the original

system. However, our JDCO has a little more microcode execution cycles than DCO

system. This can be easily explained. By comparing between our JDCO and DCO system,

we have less execution cycles for the executed-only-once bytecodes, but the needless first

time overhead is happened to all the other bytecodes.

1.0200.7920.776595359.0583546.5751407.8average

1.0190.7890.775571107.3560687.6723654.1UDP/IP

1.0210.7900.773494864.1484812.7626789.8Kfl

1.0210.7970.780720105.5705139.2903779.6Sieve

JDCO/DCOJDCO/JOPDCO/JOPJDCODCOJOPbenchmark
system

Unit: cycles

Table 10. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185

0 200000 400000 600000 800000 1000000

Sieve

Kfl

UDP/IP

Ja
v
a

B
en

ch
m

ar
k

Microcode Execution Cycles of Bytecodes 180. 181. 182. 185

JOP

DCO

JDCO

Fig 46. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185

 72

5.3.2.2. External Memory Access Times

In addition to the microcode execution cycles, there is another important factor of

power consumption. That is the external memory access times. Like the microcode

execution cycles, the less external memory accesses, the more power consumption saving.

The calculation is similar to the microcode execution cycles. We also list the external

memory access times of each bytecode and separate them by the number occurrences as in

Table 11, in which we calculate the sum of memory read and memory write. The times 3 or

5 is based on the number of address we modified because an address is of 32 bits. For

example, if the address of modified bytecode is “42 1 2 181”, we should modify the next

address because it contains the operand of bytecode 181. For calculating, we use the

average 4. Use this information and the total execution times of the modified bytecodes of

each benchmark separating by the number occurrences in Table 9, we can calculate the

external memory access times by the following formulation:

∑ ∑
occurrence bytecode

PtimesT
#

)))*((*(

For DCOFor JDCO

56+3/556+3/56invokeinterface

34+3/534+3/54invokevirtual

12+3/512+3/52putfield

12+3/512+3/52getfield

second and laterfirstthird and latersecondfirst bytecodes

occurences

Unit: times

Table 11. External Memory Access Times of Each Bytecode

The experiment results are listed in Table 12 and showed in Fig 47. Our JDCO system

has 22.2% less external memory access times of the modified bytecodes, so for the system

of total bytecodes, we have 11.1 % less external memory access. If comparing to DCO

 73

system, we still have a little more external memory access times. The reason is as we

mentioned in the previous subsection.

1.0120.7780.76934501.334093.044251.0average

1.0080.7710.76432841.632569.642616.6UDP/IP

1.0170.7730.76028532.128043.136912.2Kfl

1.0110.7920.78342130.341666.353224.3Sieve

JDCO/DCOJDCO/JOPDCO/JOPJDCODCOJOP
benchmark

system

Unit: times

Table 12. External Memory Access Times of Bytecodes 180. 181. 182. 185

0 10000 20000 30000 40000 50000 60000

Sieve

Kfl

UDP/IP

Ja
va

 B
en

ch
m

ar
k

External Memory Access Times of Bytecodes 180.181.182.185

JOP

DCO

JDCO

Fig 47. External Memory Access Times of Bytecodes 180. 181. 182. 185

 74

6. Conclusion and Future Work

In this thesis, we propose a dynamic code optimization scheme which can

significantly improve the efficiency of Java program execution and cut down on the power

consumption for a hardware/software co-designed Java VM. As we mentioned above,

typical dynamic code optimization can save method lookup and constant pool searching time

using the runtime information at the first time a bytecode is executed. However, in the

embedded system such as DVB-MHP terminal, code modification and saving of the runtime

information is very expensive due to the overhead of external memory accesses. By

analyzing the execution frequency of Java code segment, we can dynamically decide if the

dynamic code optimization is needed. This JDCO architecture can make Java execution

more efficient and more suitable to the DVB-MHP terminal due to less power consumption.

We implement this architecture based on the Java Optimized Processor (JOP) and

verified the design on a Xilinx Spartan-3 development board. It is shown by our

experimental results that the proposed dynamic code optimization scheme for Java VM

hardware/software co-design has 13.8% average speedup of execution time. Furthermore,

the power consumption of the proposed system can be reduced due to 10.4% less microcode

execution cycles and 11.1% less external memory accesses compared to the original system.

Future researches can improve on recognizing the pattern of the relationship between

frequency code and non-frequency code (maybe can learn from HotSpot). By doing this,

the overhead of needless first time searching as describe in subsection 5.3.2 can be avoided.

It may give a great improvement in power consumption. Then the format of other bytecodes

will be designed and implemented for target systems that do not use JCC. In the future, the

proposed system will be port to other more powerful developing board, such as the Xilinx

 75

ML 310. It can be expected to have better performance for the Java VM.

 76

REFERENCES

[1] David Ungar and David Patternson, “Berkeley Smalltalk: Who Knows Where the Time

Goes? ,” In Smalltalk-80: Bits of History, Words of advice, Addison-Wesley, Reading, MA, 1983.

[2] Peter Deutsch and Alan M. Schiffman, “Efficient implementation of the Smalltalk-80 system,”

In Conference Record of the Eleventh Annual ACM Symposium on Principles of Programming

Languages, pages 297-302, ACM Press, January 1984.

[3] Urs Hölzle, Craig Chambers, and David Ungar, “Optimizing Dynamically-Typed

Object-Oriented Languages With Polymorphic Inline Caches,“ In Proceeding America, editor,

Proceedings ECOOP ’91, LNCS 512, pages 21–38, Geneva, Switzerland, July 15-19 1991.

Springer-Verlag.

[4] Ming Chan, Lin, “Runtime Profiling and Analysis of Java Program Execution,” Master Thesis,

Computer Science and Information Engineering, National Chiao-Tung University, Taiwan,

June 1998.

[5] Anders Dellian, “Dynamic Code Optimization for Statically Typed OO Languages in An

Integrated Incremental System,” In Proceeding of NWPER’94, Nordic Workshop on

Programming Environment Research, Lund, Sweden, June 1994.

[6] David Ungar, “The Design and Evaluation of a High Performance Smalltalk System,” In MIT

Press, Cambridge, MA, 1986.

[7] Sun Microsystems Inc., “The Java Virtual Machine Specification,” [Online] Available:

http://java.sun.com.

[8] Sun Microsystems Inc, “The K Virtual Machine White Paper,” [Online] Available:

http://java.sun.com , June 1999.

[9] Jon Meyer and Troy Downing, “Java Virtual Machine,” published by O’REILLY, 2000.

[10] DVB project, “Digital Video Broadcasting (DVB): Multimedia Home Platform (MHP)

 77

Specification 1.1.1,” [Online] Available: http://www.mhp.org, Jun 2003.

[11] “The Unicode Standard: Worldwide Character Encoding, “ [Online] Available:

http://unicode.org

[12] “UCS Transformation Format 8 (UTF-8), “ [Online] Available:

http://www.stonehand.com/unicode/standard/wg2n1036.html

[13] Eric Armstrong, “HotSpot : A New Breed of Virtual Machine,“ [Online] Available:

http://www.javaworld.com/jw-03-1998/jw-03-hotspot.html, 1998.

[14] Martin Schoberl, “JOP: A Java Optimized Processor for Embedded Real-Time Systems”,

Vienna, Jan 2005.

[15] J.Michael O’Connor and Marc Tremblay, “picoJava-I: The Java Virtual Machine in

Hardware,” In IEEE Micro, 17(2):45–53, 1997.

[16] ARM, “ARM Jazelle Technology,” [Online] Available:

http://www.arm.com/products/solutions/Jazelle.html

[17] M. Schoeberl, “Restricitons of Java for Embedded Real-Time Systems, “ In Proceeding of the

7th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,

ISORC 2004, Austria, Vienna, May 2004.

[18] P. Puschner and A.J. Wellings, “A Profile for High Integrity Real-Time Java Programs,” In

Proceeding of the 4th IEEE International Symposium on Object-oriented Real-time distributed

Computing (ISORC), 2001

[19] A.Burns and B. Dibbing, “The Ravenscar Tasking Profile for High Integrity Real-Time

Programs,” In Proceeding of the 1998 annual ACM SIGAda intertional conference on Ada,

pp.1-6, Washington, USA, 2002.

[20] J.Kwon, A. Wellings and S. King, “Ravenscar-Java: a High Integrity Profile for Real-Time

Java,” In Proceeding of the 2002 joint ACM-ISCOPE conference on Java Grande, pp.

131-140, Seattle,Washington, USA, 2002.

[21] Xilinx, “Spartan-3 Starter Kit Board User Guide”, Jul 2004.

 78

[22] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler,

Alexander Klaiber, and Jim Mattson, “The Transmeta Code Morphing Software: Using

Speculation, Recovery, and Adaptive Retranslation to Address Real-Life Challenges,” In

Proceeding of the First Annual IEEE/ACM International Symposium on Code Generation and

Optimization, San Francisco, California, 27-29 March 2003.

[23] Martin Schoeberl, “Using a Java Optimized Processor in a Real World Application,” In

Proceeding of the First Workshop on Intelligent Solutions in Embedded Systems (WISES

2003), pages 165–176, Austria, Vienna, June 2003.

