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高度可擴充性 DVB-MHP 平台上的軟硬體協同設計           

Java VM 之動態編碼最佳化 

學生: 林君玲             教授: 蔡淳仁、李素瑛 博士 

 

 

 

國立交通大學資訊工程學系﹙研究所﹚碩士班 

摘 要       
  

多媒體家用平台(MHP)是由 Digital Video Broadcasting(DVB)所提

出，作為互動電視家用娛樂平台上的中介軟體公開標準，這個平台使用

Java 為主要的程式語言，由 Java 虛擬機器(VM)負責程式的運作執行。採

用軟硬體協同設計的方式能讓 Java 虛擬機器具有高度的可擴充性，功能

也強大許多，但仍舊會受限於 Java 語言本身的效率不彰;而傳統的動態編

碼最佳化雖然可以利用一些執行時期所得的資訊來加速系統，但對於嵌入

式系統來說，這個代價是十分昂貴的。因此，在這篇論文中，我們提出了

一個新的動態編碼最佳化演算法，用軟硬體協同設計的方式使這類系統的

整體效能大大的提升，並且更加的省電。我們將這樣的想法實作在 Java 

Optimized Processor(JOP)上，並且在 Xilinx 的 Spartan-3 發展板上模

擬執行，實驗結果顯示我們所提出的這套架構在整體上可增進 13.8%的速

度;在省電方面，也分別可以減少 10.4%的微指令執行週期以及 11.1%的外

部記憶體存取。 
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Dynamic Code Optimization for Java VM Hardware/Software 
Co-design of a Highly Upgradeable DVB-MHP Terminal 

 

Student: Chun Ling, Lin      Advisors:  Dr. Chun Jen, Tsai 

Dr. Suh Yin, Lee 

Institute of Computer Science and Information Engineering         
National Chiao-Tung University 

ABSTRACT 
  

Multimedia Home Platform (MHP) is the open middleware system for interactive 

television and related interactive home entertainment designed by the Digital Video 

Broadcasting (DVB) project. They use Java as the common programming language and 

embed the Java Virtual Machine (VM) that provides a stable and cross-platform java 

runtime environment in the system software layer. A hardware/software co-design approach 

makes Java VM more flexible and powerful, but it still suffers from the inefficiency of java 

system. Typical dynamic code optimization can save method lookup and constant pool 

searching time using the runtime information known in the first time we execute it. 

However, in such kind of embedded system, it is very expensive due to the overhead of 

external memory modification. In this thesis, we propose a new hardware/software 

co-design dynamic code optimization schema for this kind of approach that can 

significantly improve the efficiency of Java program execution. By analyzing the execution 

frequency of Java code segment, we can dynamically decide if the dynamic code 

optimization is needed. This approach can also cut down the power consumption with less 

microcode execution cycles and less external memory access. We implement this 

architecture on Java Optimized Processor (JOP) and simulate on Xilinx Spartan-3 

developing board. Experiment Result shows that this proposed dynamic code optimization 

schema for Java VM hardware/software co-design of DVB-MHP terminal has 13.8% 

average speedup, 10.4% less microcode execution cycles and 11.1% less external memory 

access than the original system. 
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1.  Introduction 

DVB-MHP provides an open standard for interactive digital television and home 

entertainment. In DVB-MHP, the DVB-J functional block uses Java VM to construct a 

cross-platform Java runtime environment. However, this Java VM technology also makes 

the system less efficient. 

In this Chapter, we first presented a popular method called dynamic code optimization 

(DCO) for speeding up Java VM. Using DCO in a hardware/software co-design approach is 

examined in section 2. In section 3, we list the advantages of DCO and hardware/software 

co-design for DVB-MHP applications. Finally, the overview of this thesis is given in 

section 4. 

 

1.1. Why Dynamic Code Optimization (DCO) 

Code optimization for dynamically typed object-oriented languages is more difficult 

than statically typed object-oriented languages. Research shows that the main bottleneck is 

in the unpredictability of dynamic message sending, which is determined at runtime for 

dynamically typed object-oriented languages. 

In this section, we first illustrate the differences between statically and dynamically 

typed object-oriented languages, and then we focus on dynamic message sending. 

Optimizing code dynamically on this topic will significantly improve the efficiency of the 

system. 
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1.1.1. Dynamically Typed Object-Oriented Languages 

Dynamically typed object-oriented languages, such as Smalltalk and Java, are much 

slower than statically typed languages like C++. The reason is that the reference variables 

in dynamically typed languages may potentially reference to any objects in the program at 

runtime. Therefore type checking of the references can only be done at runtime. 

Furthermore, the addresses of the dynamic objects are also unknown at compile time. As a 

result, indirect access must be used, which is again very expensive at runtime. [4] 

Consider the Java program segment in Fig 1, integer i is a local variable in method 

m(B), and f is an object field in class B. Object cc is sent to method m(B), and the field f of 

object cc is retrieved and assigned to local variable i. Because the address of object cc is 

unknown at compile time, the address resolution of cc.f must be done at runtime. When 

executing the statement i = cc. f, the address of object cc is retrieved first, and then the 

address of field f is calculated based on the address of the object cc. As a result, there are 

two indirect accesses in order to get the value of cc.f. These accesses cause the inefficiency 

of executing dynamically-typed object-oriented programs. 

 

Fig 1.    Indirect Access Example 

 

1.1.2. Dynamic Message Sending 

In object-oriented languages, message sending is the most frequent operations. When 

we invoke a method, a message is sent to a class or an object, which selects the method to 

class A { 
 public void m(B cc) { 
  int i; 
  i =  cc. f; 
  … 
 } 
} 
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be executed. Message sending is also called method invocation in some languages. 

Polymorphic operations from dynamic binding and inheritance make it easy for 

object-oriented language programmers to develop well-designed systems, but also result in 

the difficulty of efficient execution of these programs. Because the address of the method 

can only be determined at runtime. To perform a message sending we must extract the name 

of the method, use it as a key to find the method in the current class (or in the superclass 

that this method is inherited), continue in this way up the class hierarchy until we find the 

corresponding method or the top of the inheritance hierarchy is reached. 

In Fig 2, we will show how the polymorphic operations make the execution of 

object-oriented programs more difficult. 

Class A is the superclass of class B, and the m1() method of class B override the m1() 

method of class A. m0(A) is a method of class A, and m1() method is invoked in it. m2() is 

also a method of class A, which method is just directly inherited in class B. Note that in the 

main program, the two statements x.m0(y) and x.m0(z) will invoke a.m1() while execute 

method m0(A). In the first message sending, the class of y is A, so the statement a.m1() will 

invoke the m1() of class A. While in the second message sending, the class of z is B, so the 

statement a.m1() will invoke the m1() of class B. Inheritance property also makes it difficult 

to determine the access addresses in object-oriented programs. Consider the statement z.m2() 

in Fig 2. The class of z is B, but we can not find the method m2() in class B, so we try to 

look it up in the superclass of B, i.e., class A. The address of method m2() in class A is then 

retrieved in order to execute this statement. From this example, one can realize that the 

dynamic message sending is the crucial property of dynamically typed object-oriented 

languages. 

By analyzing the message sending behavior, we can develop dynamic code 

optimization techniques to improve the efficiency of the language systems. Using the 
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caching mechanism, some duplicated method lookup procedure can be prevented. In this 

thesis, an adaptive dynamic code optimization mechanism for a java virtual machine is 

developed. By modifying the runtime behavior, method invocation can be more efficient 

and the extra memory required for this technique is limited. 

 

Fig 2.    Polymorphic Operations Example 

 

1.2. DCO for Java VM Using HW/SW Co-design Approach 

Java is also a dynamically-typed pure object-oriented language developed by Sun 

Microsystems in the early 1990. It has many features of modern programming languages, 

Class A { 
  public void m0(A a) { 
       a.m1(); 
  } 
   
  public void m1() {  
   … 

}  
 

  public void m2() {  
 … 
} 

} 
 
Class B extends A { 
  public void m1() {  
   … 

} 
} 
  
main() { 
  A x = new A(); 
  A y = new A(); 
  B z = new B(); 
 
  x.m0(y); 
  x.m0(z); 

z.m2(); 
}          



 5

such as simple, object-oriented, robust, secure, architecture neutral, automatic garbage 

collection, dynamic linking, multi-threaded, and portability. However, it loses the efficiency. 

Slow execution speed makes Java incapable of handling multimedia applications efficiently 

without resort to native code or hardware accelerator. 

Pure hardware implementation approach, such as java processor, can improve the 

execution speed greatly. The disadvantages are high design cost and low upgradeability. 

Hardware/software co-design takes the advantages of both approaches: low cost, flexibility 

and efficiency, but the execution speed can not be as fast as the pure hardware approach. 

DCO can significantly improve the system efficiency, which makes this HW/SW co-design 

approach more useful and powerful. 

1.3. Advantages of DCO & HW/SW Co-design for DVB-MHP 

Applications 

OS, Drivers, Graphics, Net

System Software

Application
Manager

(Navigator)

Transport
Protocols

Java Virtual Machine

Sun 
Java
APIs

DVB
APIs

DAVIC
APIs

HAVi
APIs

Local
Application

(and libraries)

Interoperable
MHP/Java (DVB-J)

Application
(And libraries)

Data
Delegated

App. A

Plus-in A

Delegated
App. B

Plus-in
B

MHP-API

 

Fig 3. DVB – MHP Functional Block 

 



 6

In 2000, the Digital Video Broadcasting (DVB) organization proposed an open 

middleware system standard called Multimedia Home Platform (MHP), which is designed 

for interactive television and related interactive home entertainment applications. Java 

programming language is chosen as the common language of this platform, which is in the 

DVB-J functional block as the dark region in figure 3 (see [10]). 

The underneath Java Virtual Machine plays an important role in DVB-MHP System. It 

provides a stable and cross-platform Java runtime environment. Java API developers do not 

need to know the underlying system software information so they can put more efforts on 

the libraries themselves. Because of the interactive and real-time demand, the execution 

speed is the crucial factor of DVB-MHP terminal. Using DCO and hardware/software 

co-design approach can make Java execution more efficiency. Furthermore, it can cut down 

the power consumption, which is a great contribution to such kind of embedded system. 

 

1.4. Overview of this Thesis 

The rest of this thesis is organized as follows. In chapter 2, several related works are 

listed and reviewed. Previous DCO mechanisms are also discussed here. In chapter 3, we 

formulate the problem, and introduce our target hardware/software co-design system – Java 

Optimized Processor (JOP) and the target developing board. The main ideas of the 

proposed dynamic code optimization scheme are presented in chapter 4. In chapter 5, the 

simulation result is shown and discussed. Finally, the conclusion and future work are given 

in chapter 6. 
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2. Related Work  

In this chapter, we first list some papers and systems about dynamic code optimization. 

Then we introduce the Java platform including Java execution flow, Java class file format, 

JVM and its instruction set. In the next section, popular implementation approaches of JVM 

are discussed, including Java interpreter, Just-In-Time compiler, HotSpot, and Java 

processor. 

 

2.1. Previous DCO Mechanisms 

In this section, we will discuss several dynamic code optimization mechanisms for 

various dynamically typed object-oriented programming language systems. This concept 

was first proposed in 1983 [1], with implementation of the smalltalk-80 system. It is called 

lookup cache. In 1984, an efficient implementation of the Smalltalk-80 system that used a 

modified cache mechanism (called inline cache) was presented by Deutsch and Schiffman 

[2]. The inline cache concept now is adapted into many object-oriented language systems. 

One classical example is polymorphic inline cache, which is implemented in SELF system 

[3]. Another famous implementation is in the Java programming language. The Java virtual 

machine and K virtual machine of Sun’s reference implementation which adopts this 

mechanism will be discussed in the end of this chapter. 

 

2.1.1. Lookup Cache Mechanism in Smalltalk-80 

The Smalltalk definition specifies that the source code is translated into a sequence of 

primitive operations called byte codes. Smalltalk-80 was originally run on virtual machines 
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which implemented the byte codes in microcode. Early implementations of Smalltalk-80 on 

hardware interpreted the byte code in software, which led to poor performance [5]. Ungar 

and Patternson proposed a lookup cache mechanism that can improve the performance of 

message sending for Smalltalk. [1] 

Lookup caches are used to cache the previous lookup result. Method addresses are 

retrieved from the lookup cache, a hash table of the most recently used method addresses, 

via the pair (receiver class, message selector) as the key. The receiver class is the class that 

the called object belongs to, and the message selector selects the method to be executed. Fig 

4 illustrates the selection mechanism of the lookup cache. When a method is invoked, the 

pair (receiver class, message selector) is used as a key to the lookup cache. If it hits this 

hash table, the message address will be extracted and the method lookup procedure can be 

avoided. Otherwise, the method lookup routine will be processed. And then the new address 

information will be kept in the lookup cache for next method invocation. 

selector class

hash

Hit ?

yes

no

Address

Lookup
routine

Update 
Cache

Lookup Cache
Key Address

 

Fig 4.    Selection Mechanism of Lookup Cache 

 
Lookup cache is very effective in reducing the lookup overhead. Berkeley Smalltalk 

[1], for example, would have been 37% slower without a cache. Furthermore, if the hit ratio 

of the lookup cache is high, this advancement will be more observable. 
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2.1.2. Inline Cache Mechanism in Smalltalk-80 

The inline cache mechanism proposed in 1984 [2] predicts the method addresses and 

places them in the message send site. Even with a lookup cache, sending a message still 

takes considerably longer than calling a simple procedure because the cache must be probed 

for every message sent. However, send operations can be sped up further by the observation 

that the class of the receiver at a given call site rarely varies; that is, if a message is sent to 

an object of class X at a particular call site, it is very likely that the next time the send is 

executed will also have a receiver class X. 

This locality of receiver class usage can be exploited by caching the most recently 

look-up method address at the call site (e.g. by overwriting the call instruction). Fig 5 (see 

[5]) shows the modification using this technique. Subsequent executions of the sent code 

jump directly to the cached method, completely avoiding any lookup. Of course, the class 

type of the receiver could have changed, so the calling method procedure must verify that 

the receiver class is correct and call the lookup routine if the type test fails. After updating 

the method code of the receiver class, it may be matched and the method lookup cost can be 

saved next time.  This form of caching proposed by Deutsch and Schiffman is called inline 

cache since the target address is stored at the sent point. [2] 

Method (a.bb)
System 
Lookup
Routine

Implementation 
of bb method 

code of object a
Before

After

Method (x.bb)

Call Execute

Type
Test

object a Implementation 
of bb method 

code of object a

System 
Lookup
Routine

not 
object a

Call Execute

Implementation 
of bb method 

code of object x

(x.bb)
a

a

 

Fig 5.    Inline Cache 
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Inline caching is surprisingly effective, with a hit ratio of 95% for Smalltalk code [2]. 

SOAR, a Smalltalk implementation for a RISC processor, would be 33% slower without 

inline cache [6]. Nowadays all compiled implementations of Smalltalk that we know is 

integrated with inline cache mechanism. 

 

2.1.3. Polymorphic Inline Cache in SELF System 

Inline cache mechanism is effective only if the receiver class remains relatively 

constant at a call site. Although it works very well for the majority of sends, it does not 

speed up a polymorphic call site with several equally likely receiver classes because the call 

target switches back and forth between different methods.  Worse, inline cache mechanism 

may even slow down these sends because of the extra overhead associated with inline cache 

misses. 

Based on the inline cache technique, Polymorphic Inline Cache (PIC) caches all 

method addresses, if the degree of polymorphism is less than ten [3]. The example in Fig 6 

(see [3]) illustrates this. 

rectangle
circle
triangle
…

List Element

Call display If class = rectangle
jump to method

If class = circle
jump to method

…
else call lookup 

Code to display 
a rectangle

Code to display
a circle

System
Lookup
Routine

PIC
rectangle display
method

circle display
method

address

address

 

Fig 6.    Polymorphic Inline Cache (PIC) 
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Suppose that the method display is sent to all classes in the list, the polymorphic inline 

cache mechanism will handle this method invocation. First, the list element is a rectangle 

class. Similar to the normal inline cache, the method address will be extracted and the 

calling code will jump to the direct method code to display a rectangle. It is the same with 

the class circle. Following the type test, a triangle class is passed. When the system finds 

that it is a new receiver class type that does not exist in current cache the Polymorphic 

Inline Cache handler will call the method lookup routine and construct a new branch 

routine for the display method to rebind the receiver class triangle. Next time the receiver 

class triangle is called, it can just branch to the corresponding code of the method. 

If the cache misses again, the Polymorphic Inline Cache will simply be extended to 

handle the new case. Eventually, the Polymorphic Inline Cache handler will contain all 

cases seen in practice, and there will be no more cache misses or method lookup procedures. 

Thus, a Polymorphic Inline Cache is not a fixed-sized cache similar to a hardware data 

cache; rather, it should be viewed as an extensible cache in which no cache item is ever 

displaced by another newer item. 

Since many methods are very short, the Polymorphic Inline Cache can be modified to 

be more effective and more space can be saved. At polymorphic call sites, short methods 

could be integrated into the Polymorphic Inline Cache handler instead of being called by it. 

For example, suppose the lookup routine finds a method that just loads the receiver’s x field. 

Instead of using the stored method address to call this method from the handler, its code can 

be copied directly into the handler, eliminating the calling and return procedure. The figure 

in Fig 7 (see [3]) explains this example. 

The hit ratio of the Polymorphic Inline Cache depends on the runtime behavior of the 

programs. In [3], this mechanism is implemented for SELF, a typical dynamically-typed 

pure object-oriented language. In SELF, all operations including variable accesses and basic 
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arithmetic operations are implemented by dynamically bound procedure calls. 
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…

List Element
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…
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Fig 7.   Inlining a Small Method into Polymorphic Inline Cache 

 
 Fig 8 (see [3]) shows the individual execution time with several benchmark 

programs. PolyTest is an artificial benchmark with only 20 lines that is designed to show 

the highest possible speedup with Polymorphic Inline Cache while all the others are 

produced by software in order to cover a variety of programming styles. The median 

speedup for the benchmark programs (without PolyTest) is 11%. And the space overhead of 

Polymorphic Inline Cache is very low, typically less than 2% of the compiled code.  
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Fig 8.   Impact of Polymorphic Inline Cache 
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This research also found an interesting observation. In Fig 9 (see [3]), there is no 

direct correlation between cache misses and the number of polymorphic call sites. For 

example, in these benchmark programs, one receiver type dominates at most call sites in 

PathCache, while the receiver class frequently changes in Parser’s Inline Caches. Thus, 

ordering a Polymorphic Inline Cache Mechanism may win with programs like Parser. 
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Fig 9.   Inline Cache Miss Ratios 

 

2.1.4. Java Virtual Machine Reference Implementation 

The Java programming language relies on the simulated machine, known as Java 

Virtual Machine (JVM). JVM allows the computer programmer to communicate with the 

virtual machine instead of the real hardware system. This is advantageous, because it allows 

for portability. If the individual JVM are installed on two completely different machines, 

the Java programs should work well on both machines without any code modification, 

because it relies on the JVM and not the hardware system it is running on.  

Sun Microsystems developed this powerful language system, and this language 

becomes very popular nowadays. Various Java VM were constructed by different teams that 

conform to the Java Virtual Machine Specification [7] but have independent 

implementations. For a reference implementation, Sun Microsystems also develop a Java 
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Virtual Machine and a K Virtual Machine for a part of the Java 2 Micro Edition (J2ME) 

called Connected Limited Device Configuration (CLDC) [8].  Dynamic code optimization 

is also used in these reference implementations to improve the efficiency of Java VM 

execution. 

 

2.1.4.1. Sun’s Java Virtual Machine Reference Implementation 

In Sun’s version of the Java Virtual Machine, compiled java Virtual Machine code is 

modified at runtime for better performance. This optimization takes the form of a set of 

pseudo-instructions that are distinguishable by the suffix _quick in their mnemonics. These 

are variants of normal Java Virtual Machine instructions that take advantage of information 

learned at runtime to do less work than the original instructions. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.  Fast Bytecodes in Sun’s Java VM Reference Implementation 

 

203 ldc_quick 
204 ldc_w_quick 
205 ldc2_w_quick 
206 getfield_quick 
207 putfield_quick 
208 getfield2_quick 
209 putfield2_quick 
210 getstatic_quick 
211 putstatic_static 
212 getstatic2_quick 
213 putstatic2_static 
214 invokevirtual_quick 
215 invokenonvirtual_quick 
216 invokesuper_quick 
217 invokestatic_quick 
218 invokeinterface_quick 
219 invokevirtualobject_quick
221 new_quick 
222 anewarray_quick 
223 multianewarray_quick 
224 checkcast_quick 
225 instanceof_quick 
226 invokevirtual_quick_w 
227 getfield_quick_w 
228 putfield_quick_w 
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To learn from inline cache mechanism [2], the Reference Implementation (RI) of 

Sun’s JVM also uses the concept of caching the previous method lookup information and 

stores them in the instruction space. Only standard java bytecode instructions numbered 

from 0 to 201 may be generated by the java compiler. The optimization works by 

dynamically replacing occurrences of certain instructions by the reserved instructions (in 

the range of 202-255) after the first time they are executed. These new instructions listed in 

Table 1 have been loaded and linked the first time the associated regular instruction is 

executed.  

 
Note that these new instructions (referred to as fast bytecodes) are not specified in the 

Java Virtual Machine Specification [7]. However, for the implementation of Java Virtual 

Machine the adoption of the fast bytecodes has been proven to be an effective optimization 

technique. 
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Fig 10.   Original Execution Flowchart 

 
Fig 10 shows the original execution flowchart if we do not enable fast bytecodes. 
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Consider the assignment instruction waitHs = w in Function DbgSerial ( ). A sequence of 

java bytecodes will be generated after compilation, and putfield 00 02 is the core instruction 

of this assignment. When Java VM fetches this instruction for execution, first it will check 

that if this constant pool component, indexed by 2 in this case, has been resolved. The java 

constant pool inside the java class file format (as the second block in Fig 11, which we will 

illustrate it in subsection 2.2.2) is designed to support dynamic linking. When the Java 

Virtual Machine encounters a use of a constant pool entry for the first time (e.g., when you 

first use the new statement to create a new object of a class, or in the first use of getfield to 

get a field), the constant pool entry is resolved [9]. 

The actions the JVM performs to resolve a constant pool entry depend on its type. 

Resolution of an entry involves two basic steps: checking that the item you are trying to 

access exists (possibly loading or creating it if it doesn’t already exist), and checking that 

you have the right permissions to access the item (i.e., making sure that you don’t access 

private fields in other classes, etc.). In Fig 10 the constant pool of the class DbgSerial is 

listed. The Java VM checks that the index 2 points to a field that belongs to the class 

util/DbgSerial (index 25), its name is waitHs (index 7), and its type is an integer (“z” in 

index 8). If any illegal situation happens, an exception will be thrown by the Java VM. 

After the entry is resolved, the address of this constant pool item will be returned for 

execution of the Java VM. At the same time, this address will be stored in the runtime 

constant pool of that class. Next time this constant pool is used, the Java VM will find that 

it has been resolved and use the direct address in the runtime constant pool. 
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Fig 11.   Java Class File 

 
If fast bytecode is enabled, many duplicated subroutines can be avoided. A flowchart 

in Fig 12 shows the modification. 

At the first execution of the Java instruction, the Java VM resolves the item address or 

gets the constant pool item address from run-time constant pool if it has been resolved. 

JVM then overwrites the instruction with the _quick or _quick_w pseudo-instruction listed 

in Table 1 with corresponding new operands which may be one byte or two bytes 

determined by the length of the item address. The instructions putstatic, getstatic, putfield, 

and getfield each have two _quick versions, chosen depending on the type of the field being 

operated upon (i.e., putstatic2_quick if the type is long or double). From this point on, the 

subsequence execution of that instruction instance is always the _quick variant and can be 

execute directly without any check and runtime constant pool consulting. 

The operands of these new instructions are invisible outside of the Java Virtual 

Machine. Sun Microsystems provides a possible solution, but the decisions such as the 
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format of operands are left up to the implementer. Just remember that the operands of the 

_quick pseudo-instruction must fit within the space allocated for the original instruction’s 

operands.  

With this dynamic code optimization, a significant amount of time is thus saved on all 

subsequent invocations of the pseudo-instruction. 
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Fig 12.   Execution with Fast Bytecodes 

 

2.1.4.2. Sun’s K Virtual Machine Reference Implementation 

Recognizing that one size does not fit all, Sun Microsystems has grouped its Java 

technologies into three editions as in Fig 13, and each of them aimed at a specific area of 

today’s vast computing industry. Java 2 Enterprise Edition (J2EE) is for enterprises needing 

to serve their customers, suppliers, and employees with solid, complete, and scalable 

Internet business server solutions. While Java 2 Standard Edition (J2SE) is for the familiar 

and well-established desktop computer market. The Java 2 Micro Edition (J2ME), targeted 
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at two broad categories of products: CDC (Connected Device Configuration) and CLDC 

(Connected, Limited Device Configuration), is specified for the consumer and embedded 

device manufacturers, service providers, and content creators. 

For these three different Java editions, the underneath Virtual Machine also have 

different execution speed and ability. The K Virtual Machine (KVM) is developed for 

CLDC in Java 2 Micro edition, which is a compact, portable Java Virtual Machine 

specifically designed from the ground up for small, resource-constrained devices. The 

high-level design goal for the KVM was to create the smallest possible complete Java 

virtual machine that would maintain all the central aspects of the Java programming 

language, but would run in a resource-constrained device with only a few hundred kilobytes 

total memory budget. 

In Sun’s Reference Implementation, dynamic code optimization is also used in the K 

Virtual Machine. The implementation details are just like Sun’s JVM RI, but _fast suffix is 

used as the new instructions instead of _quick. By caching the method lookup result in the 

call site, the time of searching constant pool and method table can be saved. 
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Fig 13.   Java 2nd Edition (Source: http://java.sun.com) 
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As the restrictions of DCO in Java VM, the KVM implementers also need to assure 

that the executed java instructions are stored in RAM or other memory types that the stored 

data can be modified at runtime. The other important restriction is, the operands of the _fast 

pseudo-instruction must fit within the space allocated for the original instruction’s operands. 

Instead of just saving the corresponding address, KVM provides a second technique to save 

more execution time. Some instructions need much information to be executed, such as 

invokevirtual, which instruction will invoke a method of an object instance. The 

information (e.g. parameter, method’s return type, etc) now can be stored in an external 

memory called inline cache, and an index to the inline cache is used in the instruction 

operands. The new instruction format is illustrated in Fig 14. 

This additional dynamic code optimization technique in Sun’s KVM RI requires about 

100 Kbytes extra memory, but it has been proven to be very efficient. The execution time 

with fast bytecodes enabled is two or three times faster than without it. Because using inline 

cache to execute method invocation, the performance of Sun’s KVM RI is much better than 

the JVM RI. 

 

Fig 14.   Java Instruction Format Using DCO 

 

2.2. Java Platform 

Fig 15 illustrates the layer structure of the Java Platform, which consists of six layers. 

The first underneath layer is Platforms layer. Sun provides implementations of Java 
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Development Kit (JDK) and Java Runtime Environment (JRE) for Microsoft Windows, 

Linux, and the Solaris operating systems. In addition, they can also run in any user-defined 

platforms if they have their own Java Virtual Machine, which is the second layer. Java 

Virtual Machine (VM) simulates the execution behaviors like a real machine, and it has its 

own instruction set. Java bytecodes can be executed by Java VM without knowing which 

platform behind it, so do the native programs. Up this structure, Java APIs and JNI provide 

basic features and fundamental functionalities for the Java platform. The fourth layer is 

development technologies, which enables applications written in other technologies and 

gives an integrated solution for that. Development Tools & APIs provide many useful tools 

such as Java compiler (javac), Java executer (java), document generator (javadoc), and etc. 

This structure provides the Java Programming Language a complete execution 

environment. 
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Fig 15.   Java Platform (Source: http://java.sun.com) 

 
In following subsections, we will give a detailed introduction to Java execution 

flowchart, Java class file format, Java Virtual Machine, and its instruction set. These 

knowledge are very important for the design of DCO. 
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2.2.1. Java Execution Flowchart 

To understand the Java runtime system, the Java execution flowchart must be 

discussed first (see Fig 16). Java source programs are compiled by javac into Java 

bytecodes, and these bytecode sequences are organized into class files. Each class file 

contains exactly one class bytecodes and information including methods, fields and 

interface of this class. These class files are then loaded either from local storage or through 

data network into the Java Virtual Machine for execution. 

Java
Source
Code

*.java

Java
Compiler

javac
Java
Bytecodes

*.class

Network

Java Virtual Machine
 

Fig 16.   Java Execution Flowchart 

 

2.2.2. Java Class File Format 

We have mentioned the Java class file in subsection 2.1.4.1. Now let us look into 

more detail at the Java class file format. A format structure in Fig 17 illustrates it. 

Java class files are structured in linear and record-based organization. Each class file 

contains seven sections in order: File Header, Constant Pool, Class Descriptor, Interface 

Table, Field Table, Method Table, and Attribute Table. File Format includes the magic 
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number, which is a signature that can be verified to make sure that it’s a Java class file, and 

the version number. The version number indicates that which version of Java VM can 

execute it. 
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Fig 17.   Structure of Java Class File 

 

The Constant Pool acts as the symbol table of this class. It has eleven types: Utf8, 

Integer, Float, Long, Double, String, Class, Fieldref, Methodref, InterfaceMethodref, and 

NameAndType. First the count of this constant pool items is given. The items have variable 

length, and all multibyte data are in Big-Endian byte order. Java class files are written using 

the Unicode character encoding [11] which is a worldwide encoding standard. All strings in 

the constant pool are stored in the UTF-8 formats [12] in which Unicode characters are 

packed into bytes to reduce space usage. 

The Class Descriptor section contains the Access Flags of this class, this class and 

super class. Next to the Class Descriptor are four tables: Interface Table, Field Table, 

Method Table, and Attribute Table. These tables contain all the information about interface, 
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field, method, and attribute. (e.g. count, length, index, data, code, and etc.)  

Symbols and values presented in Class Descriptor, Interface Table, Field Table, 

Method Table, and Attribute Table are actually indexes which point to the constant pool. 

When the class file is loaded into Java VM, these symbols and values must be resolved 

from the constant pool before execution. Java uses this delayed symbolic resolution before 

execution to achieve dynamic binding. This binging is happened after class files are loaded 

into Java VM and before they are executed, but this also makes the inefficiency of VM so 

we will improve it in this research work. 

 

2.2.3. Java Virtual Machine (JVM) 

Java Virtual Machine is an abstract programmable computing machine with an 

instruction set called bytecode. It can be ported to different platforms to provide hardware 

and operating system independence.  

Java VM is defined by the Java Virtual Machine Specification [7], which gives the 

details of the design such as Java class file format and the semantics of each instruction. 

Concrete implementations of Java VM specification are required to support these semantics 

correctly, and these implementations are known as Java runtime systems. Fig 18 (see [9]) 

shows the components in a typical Java runtime system. 

Applet or application class files are loaded via local memory storage or network into 

Java VM. Dynamic Class Loader will handle the loading behavior and do the verifier, and 

then pass it to the Execution Engine with the standard-specified build-in Java classes. 

Execution Engine is the heart of any runtime system, which has many kinds of 

implementations. They can be hardware implementation, software implementation, or both 

of them. We will go deeply into it in section 2.3. Bytecodes are executed by Execution 

Engine with the simulated memory areas. Garbage collecting and other supporting codes 
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(e.g. Exceptions, Threads, Security, and etc.) are integrated into Execution Engine to 

enhance the ability of Java VM. If the programs use native programs, the native methods 

will linked by Native Method Linker and acted like libraries for Java programs to be 

executed. 

 

Fig 18.   Components of Java Runtime System 

 

2.2.4.  JVM Instruction Set 

JVM is a stack-based machine. It defines 201 standard instructions. Each instruction 

is represented by an 8-bit value, and this is the reasons that the JVM instructions are called 

bytecodes.  

JVM supports 9 primitive dada types, which can be divided into two categories. One 

is numerical type, and the other is address type. Table 2 lists the 9 primitive data types and 

their respective lengths. [4] 
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Data Type Length 
(Byte) 

int 4 
long 8 
float 4 

double 8 
byte 1 
char 2 
short 2 

reference 4 
returnAddress 4 

Table 2.  Support Data Type of Java VM 

 
reference and returnAddress are address types, and others are numerical types. char is 

unsigned, while byte, short, int, and long are signed. The floating-point types float and 

double represent single-precision 32-bit and double-precision 64-bit format IEEE 754 value. 

The values of reference types are pointers to class instances or fields. Arithmetic operations 

can not be applied to reference types, so do returnAddress types, which are pointers to 

opcode of JVM instructions. This type is used by jump instructions of JVM, and it is not 

corresponding to any data types in Java programming language. 

 There is one thing must be mentioned about the supported data types of JVM. 

Although Java programming language provides boolean data types, but JVM does not have 

boolean primitive data types. Instead, JVM uses int types to represent boolean values, and 

boolean arrays are represented by byte arrays. 
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Table 3.  The Providing Types of JVM Opcodes 

 
JVM instruction set is not orthogonal. In other words, operations provided for one 

data type are not necessarily provided for other data types. This lack of orthogonally is 

because each instruction is 8-bit opcode, so there are not enough opcode to offer the same 

support to all java’s runtime types. The providing types of JVM opcodes are listed in Table 

3. [9] 
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The instructions of JVM are variable-length, and they depend on the instructions. We 

can categorize the instructions of JVM into 9 groups. The following paragraphs describe 

them briefly. [4] 

1. Load and Store 

This group of instructions is responsible for the data movement between the operand 

stack and local variable area. Besides, there are instructions for loading constants onto the 

operand stack. 

2. Arithmetic 

Type specific arithmetic instructions are supported by JVM instruction set as mentioned 

in the previous paragraph. We can see that there is no arithmetic instruction for byte, short 

and char types. If we want to do arithmetic operations, we should first cast them to int types 

and use integer arithmetic instructions to perform what we want to do. 

3. Type Conversion 

JVM provides several instructions to do numeric data type conversion. These 

instructions can be divided into two categories. One is widening the data length. For 

example, the i2l instruction converts 4-byte integer to 8-byte integer. The other category is 

narrowing the data length. The l2i instruction acts like that. 

4. Object Creation and Manipulation 

This group of instructions deals with object-related operations. For example, create 

class instances, create array objects, access object variables, access array elements, and 

check object types. 

5. Operand Stack Manipulation 

As mentioned before, JVM is a stack-based machine, so there are instructions for 

manipulating the data in operand stack. This instruction group includes push, pop, 

duplication of top element, and swap of top two elements instructions. 
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6. Flow Control 

Except conditional branch and unconditional branch instructions, JVM also provides 

two compound conditional instructions: tableswitch and lookupswitch. These two 

compound conditional instructions are used to choose an address out of a list of addresses 

according to specific conditions. 

7. Exception 

Java provides exception handling mechanism. An exception is occurred by athrow 

instructions thrown by JVM. 

8. Synchronization 

Because Java is a multi-threaded programming language, there are synchronization 

problems. Two instructions, monitorenter and monitorexit, are provided to support 

method-level and block-level synchronization. 

9. Method Invocation and Return 

JVM provides 4 different Method invocation instructions: invokevirtual, invokestatic, 

invokeinterface and invokespecial, and 6 different method return instructions: return, 

ireturn, lreturn, freturn, dreturn, and areturn. 

 

2.3. Implementations of JVM 

JVM is the key point to platform-independence. Once there is an implementation of 

JVM on a platform, all Java programs can be run on this platform without any 

recompilation. So there is a slogan of Java technology: Write Once, Run Anywhere. 

Fig 19 shows the four kinds of implementations. The first kind is Interpreter, and this 

is also the original version implementation of JVM. Then the second kind is Just-In-Time 

(JIT) compiler. The technology using dynamic compiler is called HotSot. Finally, the fourth 
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kind is Java processor, which is also our basic target implementation. We will introduce 

these four implementations in the following subsections. 

Java Program (*.java)

Java Compiler (javac)

Java Bytecodes (*.class)

Interpreter

JIT
Compiler

Machine
Binary

Dynamic
Compiler

Operating System

Non-Java CPU

Java
Operating
System

Java
Processor

1 3 42  

Fig 19.   Implementations of JVM 

 

2.3.1. Interpreter 

The first JVM implementation is interpreter, which includes a big loop in that every 

instruction is read and executed in order. Fig 20 illustrates the flowchart of the interpreter. 

This kind of implementation is very simple, but it suffers from inefficiency. Consider a loop 

code section. If this loop executes 100 times, this code should be interpreted 100 times and 

executed 100 times. Compared with fully compiled codes, 99 out of 100 interpretations are 

actually overhead. 
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Fig 20.   Interpreter 

 

2.3.2. Just-In-Time (JIT) Compiler 

Just-In-Time (JIT) compiler takes the bytecodes and compiles them into native code 

for the machine that you are running on before the first time you execute it. This is shown 

in Fig 21. The native machine codes exist only in the memory. When the program 

terminates, the native machine codes are destroyed rather than restored for next execution. 

Compilation must be done for each execution to ensure that the Java bytecodes are portable. 

This is the key difference between JIT compiler execution and fully-compiled execution. 

Because JIT compiler translates the whole programs into native machine codes before 

executing, it can do some optimization of the entire programs. A Java program usually runs 

50 times faster on the JIT compiler than on the interpreter. [4] However, the start-up time of 

JIT is very long. They should wait for the whole program loaded and compiled. If some 
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optimization option is adjusted, the start-up time will even longer. Nevertheless, JIT may 

spend a lot of time on useless optimizations, such as the instruction that is only executed 

one time. Nowadays, Many research works study on this topic to make JIT more efficient. 

Java
Source
Code
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Java
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JIT
Native 
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Execute
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Fig 21.   Just-In-Time Compiler 

 

2.3.3. HotSpot technology 

HotSpot is a dynamic compiler that integrates a compiler with an interpreter. The 

concept of dynamic compilation is based on the research done over the past 10 years at 

Standford University and the University of Californiam Santa Barbara (UCSB). 

Fig 22 illustrates the architecture of HotSpot.  Java bytecodes are first loaded into 

HotSpot and executed by the interpreter. During the execution, the profiler keeps the 

runtime information and determines which method to be compiled into native machine 

codes and optimizes them. The control component links the other four together, and 
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provides the shared information. An apparent important function of the control component 

is that it must keep whether a method has a native version or not, and their addresses. 

  The dynamic compiler can perform some tasks to improve the performance of 

program execution that a normal static compiler can not perform. The first is optimistic 

compilation. Compilation during execution is very expensive, so we can choose which ones 

are needed to be compiled and others remained to the interpreter. (e.g. the code section that 

is executed only one time) By ignoring these cases, the dynamic compiler makes significant 

performance improvement with only a small investment in optimizing time. The second 

advantage is the run-time information can be taken into account for compilation and 

optimization. For object-oriented programs, runtime information is more useful than static 

information. The other advantage is that dynamic compilation can perform inlining the 

frequently-invoked methods according to the runtime information.  

Java Virtual Machine
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HotSpot Dynamic
Compiler
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Native
Machine

Code
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*.java javac *.class
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Source
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Compiler

 

Fig 22.   HotSpot 
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HotSpot is implemented in Java Virtual Machine by Sun in 1998. The details of the 

internal workings are not open to the programmers, but many experiments show that 

HotSpot has a great improvement of the execution efficiency of JVM. 

 

2.3.4. Java Processor 

Java Processors are primarily used in embedded system [14]. The native programming 

language of such systems is Java, and all operating system related code, such as devices 

drivers, are implemented in Java. Java processors are also stack-based machines with their 

own instruction set, which bytecode will translate to and be executed in directly. As a result, 

this pure hardware implementation has the best performance of the four. Fig 23 shows the 

flowchart of Java programs that execute on the Java processor. 
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Fig 23.   Java Processor 

 

picoJava is the most well-known Java processor developed by Sun. It always serves as 

the reference for new Java processors and as the basic for research into improving various 
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aspects of a Java processor. The first version of picoJava is presented by Sun in 1997 [15]. 

This processor was targeting at the embedded systems market as a pure Java processor with 

restricted support of C programming language. PicoJava-I contains four pipeline stategs. A 

redesign followed in 1999, known as picoJava-II. picoJava-II now is freely available with a 

rich set of documentation. In the following, we will briefly introduce four famous Java 

processors or Java chips. 

1. Zucotto 

Zucotto Wireless Inc. is a new company, which established in 1999. The target market 

of this company aims wireless communication. Their mainly product is Zucotto XC-100. 

Zucotto XC-100 implements the Garbage Collector into their hardware architecture, so they 

can manage the memory usage more powerfully. The lower power consumption is also the 

main advantage of Zucotto XC-100, which is designed a power saving mode that idle 

blocks can enter in. 

2. ARM Jazelle 

Jazelle is a Java Chip technology of ARM. Based on the RISC architecture, Jazelle 

executes bytecodes directly using the translated microcode sequences. Now it can support 

95% bytecodes. Besides the two basic instruction set of ARM processor, ARM 32 bits 

instructions and ARM 16 bits Thumb instructions, Jazelle adds a third instruction set, that is 

Java Bytecode instruction set. These three can switch while needed. The software 

architecture of Jazelle chip is shown in Fig 24 (see [16]). 
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Fig 24.   Software Architecture of Jazelle Chip 

3. Tiny J 

TinyJ is developed by Advancel Logic Corporation. The advantage of TinyJ is the 

support of cryptographic technology, so they especially suited the JavaCard and e-business 

devices. The derivations of TinyJ are very practical product, shch as TinyJDSP processor 

that integrates TinyJ and DSP Core, and Tiny2J that is designed for Java Card and Smart 

Card. 

4. MOON 

MOON is a Java specified chip developed by Vulcan Machines. The basic 

architecture of MOON is a traditional Von Neumann machine, so their instruction set and 

data are stored in the same address space. MOON core size is very small and it has a good 

performance. The only disadvantage of Moon is that the Garbage Collection must be 

implemented in software, which makes it weak than others. 
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3. Problem Formulation 

In this chapter, we first formulate our problem. Then we will give an overview to the 

open source system, Java Optimized Processor (JOP), upon which our proposed system is 

built. The software layer stack, system architecture, datapath, and hardware/software 

co-design of JOP will be discussed in section 3.2. 

  

3.1. Introduction 

In order to make the DVB-MHP system stable and condensable, we choose JOP as 

our code base of Java VM in DVB-J functional block. JOP is an hardware/software 

co-design system, which we will state in the next section. As we mentioned before, 

although interpreter is the most suitable kind of embedded Java VM implementation due to 

its simplicity and low resource requirement, it has a big problem in efficiency. Typical 

dynamic code optimization (Sun’s JVM RI described in subsection 2.1.4.1) can speed up 

the execution of this approach, but it suffers from the overhead of external memory access. 

Furthermore, it sometimes is dispensable because the modified codes will never be 

executed again. 

In this research, we want to design a new hardware/software co-processing dynamic 

code optimization scheme that is more suitable for embedded system. Our goal is to make 

the Java VM more efficient and significantly cut down on the power consumption. 
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3.2. Java Optimized Processor - JOP 

Java is seldom used in embedded systems. Actually, many features of Java, such as 

thread support in the language, could greatly simplify development of embedded systems. 

Based on this concept, Java optimized Processor (JOP), which is part of a Ph.D. thesis at 

the Technical University of Vienna in Austria, is developed by Martin Schoberl In Oct 2001. 

[14] 

JOP is basically a hardware implementation of JVM with predictable execution time 

for embedded real-time systems. The goal of this development is a simple and small Java 

processor optimized to execute Java bytecodes. Due to the small size of this processor, it 

can be implemented in a low cost FPGA. The flexibility of an FPGA can be of more 

importance for low volume systems compared to conventional Java processors. 

 

 

Fig 25.   Java Optimized Processor Runtime Environment  

 
JOP is one way to use a configurable Java processor in small embedded real-time 
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systems. It shall help to increase the acceptance of Java for these systems. However, it 

suffers from the restrictions of embedded systems. Because of the memory limitation and 

security concerns, JOP is compatible with the Java Virtual Machine but has following 

restrictions: 

• No support for floating point data types (float and double). 

• No support for the Java Native Interface (JNI). 

• No user-defined, Java-level class loaders. 

• No reflection features. 

• No support for thread groups or daemon threads. 

• No support for finalization of class instances. 

• No weak references. 

• Limitations on error handling. 

The simplified Java Runtime System is illustrated in Fig 25. Compared to the typical 

Java Runtime Systems in Fig 18, we can see that there are no Java Native Interface and 

dynamic class loader and verifier support. Furthermore, garbage collection is not allowed 

because it is not suitable for such real-time systems. 

The important step of executing Java programs on JOP is JavaCodeCompact (JCC), 

which is also known as the class prelinker, preloader or ROMizer. This utility allows Java 

classes to be linked directly in the JVM and reduces JVM startup time considerably. 

Bytecodes of Java programs and Java APIs including support codes that are used in this 

program do the JavaCodeCompact and output a file to be stored in external memory. Then 

execution engine starts to execute this program. [8] 
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3.2.1.  Software Layer Stack of JOP 

 In Java 2nd platform we mentioned in subsection 2.1.4.2, JOP is targeted at the Java 2 

Micro Edition (J2ME). J2ME is a four-layered structure. Upon the operation system and Java 

Virtual Machine, configuration and profile are presented. A J2ME configuration defines a 

minimum platform for a “horizontal” category or grouping of devices, each with similar 

requirements on total memory budget and processing power. A configuration defines the 

Java language and virtual machine features and minimum class libraries that a device 

manufacturer or a content provider can expect to be available on all devices of the same 

category, such as Connected Device Configuration (CDC) and Connected, Limited Device 

Configuration (CLDC). On the other hand, a J2ME profile is layered on top of (and thus 

extends) a configuration. A profile addresses the specific demands of a certain “vertical” 

market segment or device family. The main goal of a profile is to guarantee interoperability 

within a certain vertical device family or domain by defining a standard Java platform for 

that market. Profiles typically include class libraries that are far more domain-specific than 

the class libraries provided in a configuration. The most famous profile that we know is 

MIDP (Mobile Information Device Profile). [8] 

 Due to the features of embedded system, JOP must have its own configuration 

and profile. Fig 26 digests the configuration and profile that JOP are compatible. Small 

Embedded Devices Configuration (SEDC) is intended for small embedded devices with a 

16-bit (or even 8-bit) microprocessor and a low memory budget (below 128 kB). The JVM 

restrictions of SEDC are similar to CLDC 1.0 but smaller than. SEDC use JCC to simplify 

the application with preverified and preloaded mechanisms. Threads are not part of SEDC, 

and there are no stream input/output facilities. [17] Ravenscar Tasking Profile is designed in 

the concept of the ADA Ravenscar Profile [19]. It resembles the ideas from [18] and [20] 

but is not compatible with the RTSJ. This profile addresses the same devices as SEDC. Java 
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language run on this profile and configuration also called Ravenscar Java. 

 

Fig 26.   Software Layer Stack of JOP 

 

3.2.2. System Architecture of JOP 

A typical configuration of JOP contains the processor core, a memory interface, a 

number of IO devices, and the module extension which provides the link between processor 

core, memory and IO modules. Block diagram of JOP is illustrated in Fig 27 (see [14]). 

The processor core contains four pipeline stages: bytecode fetch, microcode fetch, 

decode and execute, which we will discuss in next subsection. As we see, there is no direct 

connection between the processor core and the external world. The memory interface 

provides a connection between the main memory and the processor core. It also contains 

the bytecode cache, which caches the whole method code of one method. The I/O interface 

controls peripheral devices, such as the system time, the timer interrupt, a serial interface 

and application-specific devices. 
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Fig 27.   Block Diagram of JOP 

 

The division of this processor into those four modules greatly simplifies the 

adaptation of JOP for different application domains or hardware platforms. For example, in 

order to port JOP to a different FPGA device, one only needs to modify the memory 

module alone, but not the processor core. 

 

3.2.3. Datapath of JOP 

In previous subsection, we said that JOP uses a four-stage pipeline architecture and 

every instruction in JOP is exactly executed in one single cycle. Look at Fig 28 (see [14]). 

Bytecode is fetched in order by pc register, and then looks it up in the jump table to get the 

start address of the translated microcode sequence. This is done in the first stage. In the 

second pipeline stage, JOP uses the start address to jump to the corresponding microcode. 

It is decoded and executed until the nxt instruction in next two pipeline stages.  
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Fig 28.   Datapath and Data Flow of JOP 

 

This stack architecture allows for a short pipeline, which results in short branch delays. 

Two branch delay slots are available after a conditional microcode branch. All the needed 

memory while execution, such as the method cache (bytecode cache), microcode ROM, 

and stack RAM, are implemented with single cycle access in the FPGA’s internal 

memories. [14] 

 

3.2.4. Hardware/Software Co-design of JOP 

JOP is a hardware/software co-design Java processor. Moving functions between 

hardware and software is very easy, and this feather is resulting in a highly configurable 

design. If the execution speed is the important issue, more functions are realizes in 
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hardware; if the cost is the primary concern, these functions are moved to software and a 

smaller FPGA can be used. 

There are three implementations of bytecodes. They can be VHDL code 

implementation, microcode implementation, and Java code implementation. Bytecodes that 

are not implemented in VHDL or microcode result in a static Java method call from a 

special class. The additional overhead for this implementation is a call and return with 

method cache refills. A comparison of resource usage and execution time for the three 

implementations of imul is listed in Table 4. We can see that the implementation in Java is 

slower than the microcode implementation and consequently VHDL implementation as the 

Java method is loaded from main memory into the bytecode cache. 

 

 Hardware 
(LC) 

Microcode 
(Byte) 

Time 
(cycle) 

VHDL 156 10 35 
Microcode 0 73 750 

Java 0 0 2300 

Table 4.  A Comparison of Different Implementations of imul 
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4. Proposed Dynamic Code Optimization System 

Due to the demand of efficiency in DVB-MHP applications, we need to further 

improve the performance of the JOP system. By analyzing the execution frequency, we 

observed an important feature and use it to design our new dynamic code optimization 

scheme. 

In this chapter, we first discuss the data structure using our framework. Then we 

analyze the bytecode execution frequency and give an overview to our scheme. Finally, the 

hardware and software modules of our design are respectively illustrated. 

 

4.1. Data Structure Using in Our Dynamic Code Optimization 

In this section, the data structure using dynamic code optimization is given. These 

include the data arrangement in the external memory, method cache and each of the runtime 

data structure. 

 

4.1.1.  Data Arrangement in the External Memory 

The application programs are compiled into Java class files by the Java compiler 

(javac), with all the linked library programs recompiled, and then passed to 

JavaCodeCompact (JCC). 

In conventional class loading, javac is used to compile Java source files into Java 

class files, which are loaded into a Java system, either individually, or as part of a jar 

archive file. Upon demand, the class loading mechanisms resolve references to other class 
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definitions. JCC provides an alternative means of program linking and symbol resolution. 

First the multiple input class files will be combined, and JCC will determine the layout and 

size of an object instance. Only the designated class members will be loaded and linked 

with the Java Virtual Machine in order to reduce JVM’s bandwidth and memory 

requirements. Resolution of symbols is also performed in this stage, which reduces the 

start-up time of JVM. 

The output of JCC is a C file and its format can be arranged by the user-defined writer. 

In JOP system, the writer is redesigned to have JCC output a data layout file like the data 

arrangement in the external memory (SRAM in Spartan-3) and loaded it directly to the 

external memory. An illustration of it is shown in Fig 29. 

 

All Method’s: Bytecode
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Fig 29.   Data Arrangement in the External Memory 

 
All of data in this output file are united in 32 bits of an address. This means that the 

address 0 has 32 bits data, and the 33rd bit is the first bit in address 1. After collected all the 
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designated method bytecodes, JCC has the bytecode size in 32-bits. The JOPWriter writes 

this size added one in the first address, and then all the designated method bytecodes. 

Finished all the writing of bytecodes, the next writing address must be the data saved in 

address 0, because it is the size of bytecodes added one. 

Then we save four special pointers: a pointer to boot code, a pointer to first 

non-object method structure of class JVM, a pointer to first non-object method structure of 

class JVMHelp, and a pointer to main method structure. We can easily get special pointers 

by using the data in address 0, because it is also the address of first special pointer. For 

example, the data in address 0 adds three is the address of main method structure. 

The next area is the string table area, followed by the all-class data area. The all-class 

data area contains the static fields, class information, method table, constant pool, and 

interface table if this class has interfaces. In this area, the data related to all the classes are 

listed one after another. 

All of the information in the output file (the same as in external memory) will be used 

while execution. The method table (Fig 30) of a class is the key data structure to get the 

address to other class information. Note that a method table occupies two address space, 

and an address is 32 bits. 
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Start Address

22 270 31

Method Length
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Fig 30.   Method Table Structure 

 

The highest 10 bits in the first address of method table are the length of method 

bytecodes with 32 bits a unit. By shifting right 10 bits of the first address we can get the 
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method bytecodes’ start address that points to the second block in Fig 29. The start address 

has 22 bits and it is in Big-Endian byte order. The second address stores the constant pool 

pointer in 22 bits, the number of local variables in 5 bits, and the number of arguments in 5 

bits. 

 

4.1.2. Method Cache 

Method cache is also called bytecode cache which we had mentioned in subsection 

3.2.2. Because the fetch of external memory is very expensive, the concept of method cache 

is created in JOP. During one external memory fetch, the whole bytecodes of one executing 

method are fetched and loaded to the method cache, which is usually a memory area 

synthesized on FPGA. The external memory fetch time can be smaller than fetching one 

address a time. For example, assume that we fetch one address in external memory takes 3 

microseconds ( = 10 ^ -6 seconds). We will spend 30 microseconds if we want to fetch a 

method with 10 units (32 bits a unit) address bytecodes. However, if we fetch all bytecodes 

of that method ( 10 units address) one time, we may just spend 22 microseconds in fetching 

external memory. 

Method cache is designed to cache just one method bytecodes. Consider this example 

program [14]: 

 Foo () { 

  A(); 

  B(); 

 } 

 

We will have the following cache loads: 
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1. method Foo is load on invocation of Foo() 

2. method A is load on invocation of A() 

3. method Foo is load on return from A() 

4. method B is load on invocation of B() 

5. method foo is load on return from B() 

It should refill the method after returned from its internal method. This is the main 

drawback of the method cache. But by that we can almost make sure that the method cache 

will reload when executing the same method next time. As a result, we do not need to 

reflash the method table when we modified the executing method bytecodes in our dynamic 

code optimization scheme. This also saves much time in doing optimization. 

 

4.1.3. Runtime Data Structure 

As we mentioned before, memory is addressed as 32 bits data, so the memory 

pointers are incremented for every four bytes. No single or 16 bits access is necessary in 

our JOP system. The reference data type is a point to memory that represents the object or 

an array, which is pushed on the stack before an instruction operating on it. A null reference 

is represented by the value 0 [14]. 

In the following we are going to see each runtime data structure. 

 

4.1.3.1. Stack Frame 

First we look into the stack frame. On a method invocation, the information of the 

invoker is saved in a newly allocated frame on the stack. It is restored when the method 

returns. The information consists of five registers: SP (Stack Pointer), PC (Program 

Counter), VP (Variable Pointer), CP (Constant Pool Pointer), and MP (Method Table 
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Pointer). 

SP, PC and VP are registers in JOP while CP and MP are local variables of JVM. Fig 

31 (see [14]) provides an example of the stack change before and after invoking a method. 

The caller has two arguments and the called method has two local variables. The arguments 

that we want to pass into the invocated method can be accessed in the same way as local 

variables. As in this example, the arguments arg_0 and arg_1 will become var_0 and var_1 

with the original var_0 and var_1 shifted to var_2 and var_3. The start address of the frame 

can be calculated with the information from the method table: 

 Frame address = VP + Arg. Count + Local Count 
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Fig 31.   Stack Change on Method Invocation 
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4.1.3.2. Data Layout 

In JOP, objects are stored in memory during runtime in the Fig 32 (see [14]) format. 

Note that the object reference points directly to the first reference of the object to speedup. 

We can access the class information pointer by object reference subtracted one. 

Class Method Pointer

Instance Variable 1
Instance Variable 2
…
Instance Variable n

Object 
Reference

 

Fig 32.   Object Format 

 
The array layout in memory is just like an object. We showed the array format in Fig 

33 (see [14]). Also, if we want to access the array length, just take object reference 

subtracted one. 

Array Length

Element 1
Element 2
…
Element n

Array 
Reference

 

Fig 33.   Array Format 

 

4.1.3.3. Runtime Class Structure 

The runtime class structure of JOP is shown in Fig 34 which had discussed in 4.1.1 as 

all classes’ information. This class structure is stored in the external memory. For indicating 

the pointers in previous data structure, we drew this class structure again with pointers 

Class Reference, Class Method Pointer, MP, and CP. 
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Fig 34.   Runtime Class Structure 

 

4.2. The Proposed Dynamic Code Optimization Scheme 

In this section, we propose our dynamic code optimization scheme. First we analyze 

the bytecode execution frequency, from which we get the new idea of improvement. Then 

we compare the access time of the external memory and the internal memory. By reducing 

the number of dynamic code modifications that do not improve the performance, we can 

make the system more efficient. The architecture overview is illustrated in the last 

subsection. 

 

4.2.1.  Analysis of Bytecode Execution Frequency 

In subsection 2.3.3, we have mentioned that Hotspot uses optimistic compilation 



 53

which can dynamically choose which instructions needs to be compiled and the rest are 

executed by the interpreter. The decision is based on the execution frequency. This concept 

is used in many systems. For example, the famous code morphing processor from 

Transmeta also uses execution frequency to decide whether the code is to be interpreted or 

to translated. As Fig 35 (see [22]), the translation threshold is decided by the code 

execution frequency. When the number of executions of a section of x86 machine code 

reaches a certain threshold, its address is passed to the translator. 
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Fig 35.   Transmeta Code Morphing Software Control Flow 

 

We analyze the bytecode execution frequency using the three benchmark programs 

described in section 5.2. The distribution of bytecode execution frequency is listed in Table 

5 and Fig 36 shows the diagram. The number of bytecodes is counted under the given 

execution frequency. Consider the following analysis data. When executing the UDP/IP 
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program, there are 385 bytecodes that are executed 9 times and 210 bytecodes are executed 

13 times. For the same bytecodes (e.g. aload_0), they are different in different methods or 

sequences. 
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Table 5.  The Number of Bytecodes under the Given Execution Frequency. 
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Look at the curves in Fig 36. We observe a very important rule. The bytecodes are 

almost executed exactly once or much more than twice. This observation is the critical 

point in our design. 
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Fig 36.   Distribution of Bytecode Execution Frequency 

 

4.2.2.  Access Time of External Memory & Internal Memory 

As we mentioned before, typical dynamic code optimization (Sun’s JVM RI described 

in subsection 2.1.4.1) can speed up the execution of embedded Java VM, but it suffers from 

the overhead of external memory accesses. 

Consider the JOP system. The clock frequency of both FPGA and SRAM is 50MHz, 

so the clock time is calculated as following. 

seconds1021002.010
50
1

50
1 866 −−− ×=×=×=
M
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The internal memory access only needs 1 cycle. But if it is the external memory, it 

needs 5 cycles for memory read and 7 cycles for memory write on JOP because JOP is 

designed for various developing boards. The microcode sequence of external memory read 

is shown in Fig 37. 

 

 

 

 

Fig 37.   Microcode Sequence of External Memory Read 

 

Upon execution of a memory read, the address is stored and the processor waits for 

the value to arrive and then pushed the value to the top of the operand stack as in Fig 31. 

Each microcode executes in a single cycle, so the external memory read needs 5 cycles. For 

the microcode sequence of external memory write shown in Fig 38, it needs 7 cycles. 

 

 

 

 

 

Fig 38.   Microcode Sequence of External Memory Write 

 

As a result, if we can reduce the number of dynamic code modifications that do not 

give us any advantages, e.g. the codes that are exactly executed once, we can make a big 

improvement of execution time and cut down the power consumption. In next subsection 

we are going to introduce the design of our dynamic code optimization module. 

stmra 
nop 
wait 
wait 
ldmrd 

stmwa 
nop 
stmwd 
nop 
wait 
wait 
nop 
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4.2.3.  Architecture Overview 

In subsection 4.2.1, we knew that bytecodes are almost executed exactly one time or 

much more than two times. Then in subsection 4.2.2, we analyzed the memory access time, 

and found that the access time of external memory is a big overhead of the traditional 

dynamic code optimization scheme. Based on these two observations, we designed the new 

dynamic code optimization architecture called JDCO. 

To speed up the execution and cut down the power consumption, we only modify the 

codes when it is necessary. That is, if the code is executed exactly one time, we do not do 

the dynamic code optimization – constructing a new bytecode to replace the original 

bytecode and storing the field or method offset in the operand of new bytecode. Because 

the method bytecodes are stored in external memory in most embedded system and also our 

JOP system (described in subsection 4.1.1), this new module can execute the Java programs 

with dynamic code optimization in a more efficient way. 

However, if the execution frequency can not be determined upon the first encounter of 

a bytecode (unless we do a “fast-forward” to check whether the bytecode will be executed 

again, which has unacceptable overhead). Another possible way is to perform a pre-pass 

counting of the execution of the bytecodes, but this is also very expensive. We proposed a 

simple algorithm that reduces unnecessary modifications with very low overhead. The 

proposal is as follows. A small memory is synthesized in the FPGA to count the number of 

execution of each bytecode during execution. For the first execution, no dynamic code 

modification is performed. The DCO is only done at the second time the code is executed, 

because we assume that it will be executed again and again base on the observation of 

subsection 4.2.1. For third execution and above, we can directly use the operand of new 
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bytecode to speed up the performance and cut down the power consumption. 
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Fig 39.   Our JDCO Architecture Overview 

 

The flowchart of our JDCO architecture is shown in Fig 39. We mark our new 

modules in colored background with distinguishing hardware and software implementation 
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modules. In the beginning of the first stage, bytecode fetch, a bytecode is pointed by Java 

pc to be executed. The bytecode will pass to a JDCO check module, which will check if this 

bytecode can be optimized or not. For example, if the bytecode has the information that can 

be recorded for speeding up the next execution (e.g. getfield. putfield. etc.), we say that it 

can be optimized. If the answer of JDCO check is yes, our system will further check if it is 

the first time to execute this bytecode to decide whether we should perform DCO or not. If 

it is not the first time of execution, the new JDCO optimization will look up the bytecode in 

our new jump table to get the JOP pc, which points to our new JDCO module in the second 

stage, microcode fetch. JDCO will execute this bytecode and get the runtime information 

depending on the specific bytecode. It may be the offset of an object field, or of the class 

method that will not change when next time we execute the same bytecode. The runtime 

information will be passed to a JDCO Java program which will construct a new bytecode to 

replace the original bytecode in external memory, and store the runtime information in the 

operand of this new bytecode. 

If the answer of the JDCO check is no, or it is yes but this is only the first time of 

execution of the byte code, our architecture will follow the original procedure. Looking up 

in the jump table, the JOP pc is retrieved for execution. The corresponding bytecode 

implementation is executed whether it is a newly implemented bytecode that we 

constructed or not. The implementation of the bytecode may be the VHDL implementation, 

microcode implementation, or Java Code implementation. 

 

4.3. Implementation Details 

In this section, we are going to look into more details of the implementation. The 

description is divided into two parts: hardware implementation modules and software 
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implementation modules, which distinguished in Fig 39. 

 

4.3.1. Hardware Implementation Modules 

In our design, a hardware module is needed for first time of execution checking. We 

need to synthesis a small on-chip memory that can count the execution times of each 

bytecodes, and then decide to do the original bytecode implementation or the JDCO 

module. 

 

Fig 40.  Java Bytecode Fetch Stage of Our JDCO 

 

 We have mentioned in subsection 3.2.3 that JOP has four pipeline stages. In the first 

pipeline stage as in Fig 40, the Java bytecodes are fetched from the internal memory 

Counting 
Memory

External
Memory
Address 8k * 1 bit
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(Bytecode RAM). The bytecode is mapped through the translation table into the address 

(jpaddr) for the microcode RAM in next stage. 

 We synthesize an 8K * 1 bit memory called Counting Memory, in which one bit map 

to an address of method bytecode in external memory (see Fig 29). When Java bytecodes 

are fetched from the internal memory, we use its start address of method as an index to see 

if the bit in Counting Memory is set or not. If it is set, we know that it is the second time 

executed. Then the address of the modified bytecode implementation (e.g. putfield_modify 

in next subsection) is mapped through the translation table and passed to next stage. If the 

bit is zero, then the address of original bytecode (e.g. putfield) is mapped and passed. 

Finally the corresponding bit in Counting Memory is set. 
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Fig 41.   Block Diagram of The Proposed JDCO 

 

The block diagram of JOP has been shown in Fig 27. The main modification is in the 

Bytecode Fetch stage of JOP core. But we do not have the method start address of external 
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memory because method bytecodes are fetched from the bytecode cache missing the 

original address in external memory. So we need to map this port (external memory address) 

from memory interface to JOP core, and map to the Bytecode Fetch stage. We summarize 

our modification and redraw this as in Fig 41. 

 

4.3.2. Software Implementation Modules 

In bytecode level, first we should figure out what bytecodes are needed to do our 

JDCO. Based on Sun’s JVM Reference Implementation, we may have 25 bytecodes (Table 

1) that can be considered. But most operands of them are not modified. The new bytecodes 

of these bytecodes just indicate that they have been resolved. In section 3.2, we have 

introduced that all bytecodes are passed to JavaCodeCompact (JCC) first, and then the 

output is loaded into the external memory in JOP system. In other words, all method 

bytecodes in external memory have been resolved, and the DCO is not useable for these. As 

a result, we only have four bytecodes needed to do JDCO: getfield (180), putfield (181), 

invokevirtual (182) and invokeinterface (185). 

To fulfill our JDCO modules, two bytecodes need to be constructed for one bytecode 

without changing the instruction length. We list the new bytecodes of our architecture with 

their format in Table 6. 

Upon the first time of executions, we will executed the original bytecodes. Modified 

bytecodes are used in the second executions and above, and replaced itself in the new 

bytecodes. The offset of object field or class method will be stored in the operand of the 

new bytecodes for next execution. 
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indexbyte2indexbyte1invokevirtual182

Our JDCO
Bytecodes

Original
Bytecodes

(not changed)

0nargsoffsetbyte2offserbyte1invokeinterface_new236

offsetbyte2offserbyte1invokevirtual_new235

offsetbyte2offserbyte1putfield_new234

offsetbyte2offserbyte1getfield_new233

0nargsindexbyte2indexbyte1invokeinterface_modify231

indexbyte2indexbyte1invokevirtual_modify230

indexbyte2indexbyte1putfield_modify229

indexbyte2indexbyte1getfield_modify228

0nargsindexbyte2indexbyte1invokeinterface185

indexbyte2indexbyte1putfield181

indexbyte2indexbyte1getfield180 

formatbytecode

indexbyte2indexbyte1invokevirtual182

Our JDCO
Bytecodes

Original
Bytecodes

(not changed)

0nargsoffsetbyte2offserbyte1invokeinterface_new236

offsetbyte2offserbyte1invokevirtual_new235

offsetbyte2offserbyte1putfield_new234

offsetbyte2offserbyte1getfield_new233

0nargsindexbyte2indexbyte1invokeinterface_modify231

indexbyte2indexbyte1invokevirtual_modify230

indexbyte2indexbyte1putfield_modify229

indexbyte2indexbyte1getfield_modify228

0nargsindexbyte2indexbyte1invokeinterface185

indexbyte2indexbyte1putfield181

indexbyte2indexbyte1getfield180 

formatbytecode

 

Table 6.  Our Designed JDCO Bytecodes & Their Formats 
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5. Performance Study 

In this chapter, we first introduce our development environment – Xilinx Spartan-3 

Developing Board, and then we state the Java benchmark used in this research. Finally, the 

experiment results are shown and discussed. We analyze the performance on both execution 

time and power consumption. 

 

5.1.  Xilinx Spartan-3 Developing Board 

The Xilinx Spartan-3 Developing Board is used for the development of the proposed 

Java VM accelerating algorithm. The top side and bottom side of the board are shown in 

Fig 42 and Fig 43 (these figures are taken directly from the user guide. [21]). 

The equivalent gate counts of the target Spantan-3 device are 200,000 gates, and the 

logic utilization of JOP on the FPGA is 64 percent. The data path of Spartan-3 is 32 bits 

with an 8-bit memory interface. Shift instruction can be computed in exactly one single 

cycle. The external memory devices of JOP on Spartan-3 is a 32-bit SRAM blcok of 1M 

bytes and an 8-bit flash of 2M bits. Java program is compacted by JCC to *.jop file which 

is loaded into SRAM. Configuration data is stored in flash. Finally, the maximum working 

frequency of this processor is 194.621 MHz, according to the synthesizer. 
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Fig 42.   The Top Side of Xilinx Spartan-3 

 

   
 

Fig 43. The Bottom Side of Xilinx Spartan-3 

 

5.2.  Java Benchmark Programs 

In this research, we use three small Java benchmark programs, which contain a 
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synthetic benchmark (Sieve of Eratosthenes) and two application benchmarks, Kfl and 

UDP/IP. [14] We describe them in the following subsection. 

 

5.2.1.  Sieve of Eratosthenes 

This program will produce a list of prime numbers. The algorithm is proposed by 

Erastosthenes. His method is as following. First, write down a list of integers. Then mark 

all multiples of 2. The next step is, move to the next unmarked number, in here is 3, and 

mark all its multiples. Continue to mark all multiples of the next unmarked number until 

there are no new unmarked numbers. The numbers which survive from this marking 

process (the Sieve of Eratosthenses) are primes. 

 

5.2.2.  Kfl 

Kfl is adopted from a real-time application which is taken from one of the nodes of a 

distributed motor control system. The motor control system is a solution to rail cargo. 

During loading and unloading goods from wagons, a large amount of time is spent due to 

the obstacle of contact wires. Balfour Beatty Austria developed and patented a technical 

solution called Kippfahrleitung to tilt up the contact wire. An asynchrony motor on each 

mast is used for this titling. However, it has to be done synchronously on the whole line. 

[23] 

Each motor is controlled by an embedded system. This system also measures the 

position and communications with a base station. We show the mast with the motor and the 

control system in down and up positions in Fig 44 (see [14]). The base station need to 

control the deviation of individual positions during the tilt. It also includes the user 

interface for the operator. In technical term, this is a distributed, embedded real-time control 
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system, communication over an RS 485 network. 

A simulation of both the environment (sensors and actors) and the communication 

system (commands from the master station) forms part of the benchmark, so as to simulate 

the real-time workload. 

 

Fig 44. Pictures of a Kippfahrleitung Mast in Down and Up Position 

 

5.2.3.  UDP/IP          

UDP/IP benchmark is composed of a tiny TCP/IP stack (Ejip) for embedded Java. 

This benchmark contains two UDP server/clients, exchanging message via a loopback 

device. 
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5.3.  Experiment Results 

We simulated our dynamic code optimization scheme on Spartan-3. The percentage of 

logic utilization increment is less than 1%, but we have made a big improvement in both 

execution time and power consumption. Now we are going to discuss in these two aspects. 

 

5.3.1.  Execution Time 

We synthesize our JDCO system with comparisons to DCO (no frequency check) and 

the original JOP system. The execution time is listed in Table 7 and shown in Fig 45. In the 

table, we can see that the average speedup of our system is 13.8%, and compare to DCO 

system, we also have 7.1% execution time speedup. 

Considering the execution time of each benchmark, we find an interesting phenomena. 

Let us focus on the results of UDP/IP benchmark. In our JDCO system, it has 9.7% speedup 

compared to DCO system, while other two benchmarks only have 6.0% and 5.6% speedup. 

The reason is that the UDP/IP benchmark has many initialization and executed-only-once 

code, so our JDCO system can make a big improvement by avoid that cases. Actually, the 

performance of this system is dependent on the Java program behavior. 

0.9290.8620.9295615.06029.76448.3average

0.9030.8680.961417946274813UDP/IP
0.9440.8400.890228424192719Kfl
0.9400.8790.935103821104311813Sieve

JDCO/DCOJDCO/JOPDCO/JOPJDCODCOJOP
benchmark

system

Unit: millisecond  

Table 7.  Execution Time 
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Fig 45.  Execution Time 

 

5.3.2.  Power consumption 

To estimate the power consumption savings, we can analyze the microcode execution 

cycles and the external memory access times. We discuss the two aspects in the following 

subsections. 

 

5.3.2.1. Microcode Execution Cycles 

As we know that the less microcode execution cycles, the less power consumption will 

be. We analyze the microcode execution cycles of each bytecode and separate them by the 

number occurrences. The analyzed data is in listed in Table 8. 

Because we have different microcode execution cycles in different number of 

occurrences, we should know the total execution times of the modified bytecodes of each 

benchmark separating by the number of occurrences, which is listed in Table 9. But these 

are the sum of the four modified bytecodes (putfield, getfield, invokevirtual, and 

invokeinterface), we should know the percentages of each of them. By analyzing the 

benchmark programs, we assume the percentages of the bytecodes as following: 
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 180 : 181 : 182 : 185 =  40 : 20 : 20 : 1 

For DCOFor JDCO

110131110131118invokeinterface

9811998119106invokevirtual

1036103623putfield

73373320getfield

second and laterfirstthird and latersecondfirst bytecodes

# occurences

Unit: cycles  

Table 8.  Microcode Execution Cycles of Each Bytecode 

 

We can calculate the microcode execution cycles by the following formulation: 

∑ ∑
occurrence bytecode

PcyclesT
#

)))*((*(  

T is the execution times in Table 9, and P is the percentage of bytecodes. For example, 

P of getfield is 40 / (40+20+20+1). The principle of this formulation is to calculate the sum 

of the execution cycles multiply the execution times. The execution cycles are calculated 

according to the percentage of each bytecode. Note that the microcode execution cycles of 

original JOP are always the same as the first time of JDCO. 

For JOPFor DCOFor JDCO

167571541513421428711281342UDP/IP

145141338511291238410011129Kfl

209281905418741746215921874Sieve

allsecond and laterfirstthird and latersecondfirstbytecodes

# occurences

 

Table 9. Execution Times of Bytecodes 180. 181. 182. 185 

 

We still calculate the execution cycles of our JDCO system with comparison to DCO 

and original JOP system. The experimental results are listed in Table 10 and shown in Fig 
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46. Because we only calculate on the modified bytecodes, we need to know the percentage 

of them of all bytecodes. By analyzing the benchmark programs, we get that the roughly 

percentage is 1/2. That is, 
2
1  all  185) 182  181  (180 =÷+++ . 

 As in Table 10, our JDCO has average 20.8% less execution cycles for the modified 

bytecodes, so for the all bytecodes, we have 10.4% less execution cycles than the original 

system. However, our JDCO has a little more microcode execution cycles than DCO 

system. This can be easily explained. By comparing between our JDCO and DCO system, 

we have less execution cycles for the executed-only-once bytecodes, but the needless first 

time overhead is happened to all the other bytecodes. 

1.0200.7920.776595359.0583546.5751407.8average

1.0190.7890.775571107.3560687.6723654.1UDP/IP

1.0210.7900.773494864.1484812.7626789.8Kfl

1.0210.7970.780720105.5705139.2903779.6Sieve

JDCO/DCOJDCO/JOPDCO/JOPJDCODCOJOPbenchmark
system

Unit: cycles

 

Table 10.  Microcode Execution Cycles of Bytecodes 180. 181. 182. 185 
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Fig 46. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185 
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5.3.2.2. External Memory Access Times 

In addition to the microcode execution cycles, there is another important factor of 

power consumption. That is the external memory access times. Like the microcode 

execution cycles, the less external memory accesses, the more power consumption saving. 

The calculation is similar to the microcode execution cycles. We also list the external 

memory access times of each bytecode and separate them by the number occurrences as in 

Table 11, in which we calculate the sum of memory read and memory write. The times 3 or 

5 is based on the number of address we modified because an address is of 32 bits. For 

example, if the address of modified bytecode is “42 1 2 181”, we should modify the next 

address because it contains the operand of bytecode 181. For calculating, we use the 

average 4. Use this information and the total execution times of the modified bytecodes of 

each benchmark separating by the number occurrences in Table 9, we can calculate the 

external memory access times by the following formulation: 

∑ ∑
occurrence bytecode

PtimesT
#

)))*((*(  

For DCOFor JDCO

56+3/556+3/56invokeinterface

34+3/534+3/54invokevirtual

12+3/512+3/52putfield

12+3/512+3/52getfield

second and laterfirstthird and latersecondfirst bytecodes

# occurences

Unit: times  

Table 11.  External Memory Access Times of Each Bytecode 

 

The experiment results are listed in Table 12 and showed in Fig 47. Our JDCO system 

has 22.2% less external memory access times of the modified bytecodes, so for the system 

of total bytecodes, we have 11.1 % less external memory access. If comparing to DCO 
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system, we still have a little more external memory access times. The reason is as we 

mentioned in the previous subsection. 

1.0120.7780.76934501.334093.044251.0average

1.0080.7710.76432841.632569.642616.6UDP/IP

1.0170.7730.76028532.128043.136912.2Kfl

1.0110.7920.78342130.341666.353224.3Sieve

JDCO/DCOJDCO/JOPDCO/JOPJDCODCOJOP
benchmark

system

Unit: times

 

Table 12.  External Memory Access Times of Bytecodes 180. 181. 182. 185 
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Fig 47. External Memory Access Times of Bytecodes 180. 181. 182. 185 
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6. Conclusion and Future Work 

In this thesis, we propose a dynamic code optimization scheme which can 

significantly improve the efficiency of Java program execution and cut down on the power 

consumption for a hardware/software co-designed Java VM. As we mentioned above, 

typical dynamic code optimization can save method lookup and constant pool searching time 

using the runtime information at the first time a bytecode is executed. However, in the 

embedded system such as DVB-MHP terminal, code modification and saving of the runtime 

information is very expensive due to the overhead of external memory accesses. By 

analyzing the execution frequency of Java code segment, we can dynamically decide if the 

dynamic code optimization is needed. This JDCO architecture can make Java execution 

more efficient and more suitable to the DVB-MHP terminal due to less power consumption. 

We implement this architecture based on the Java Optimized Processor (JOP) and 

verified the design on a Xilinx Spartan-3 development board. It is shown by our 

experimental results that the proposed dynamic code optimization scheme for Java VM 

hardware/software co-design has 13.8% average speedup of execution time. Furthermore, 

the power consumption of the proposed system can be reduced due to 10.4% less microcode 

execution cycles and 11.1% less external memory accesses compared to the original system. 

Future researches can improve on recognizing the pattern of the relationship between 

frequency code and non-frequency code (maybe can learn from HotSpot). By doing this, 

the overhead of needless first time searching as describe in subsection 5.3.2 can be avoided. 

It may give a great improvement in power consumption. Then the format of other bytecodes 

will be designed and implemented for target systems that do not use JCC. In the future, the 

proposed system will be port to other more powerful developing board, such as the Xilinx 
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ML 310. It can be expected to have better performance for the Java VM. 
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