=
FFJ . Flm J

F & ¥y DVB-MHP T 5 ¢ endicaf B fe 2K 3
Java VM zudsss, s Fh i i 1Y

Dynamic Code Optimization for JavaVM Hardware/Software

Co-design of a Highly Upgradeable DVB-MHP Terminal

iAo

g EEC 2 En #4

A& S o o P45 A F

B BV 35 v+ DVB-MHP = 5 F endic s R84 e 3K 3H
Java VM z_ & iy 5B & i3 1t
Dynamic Code Optimization for Java VM Hardware/Software
Co-design of a Highly Upgradeable DVB-MHP Terminal

o4 iR Student : Chun-Ling Lin

hERE I FE -3 W Advisor : Chun-Jen Tsai, Suh-Yin Lee

A Thesis
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

PEARAY e &R

B REVFFH LM DVB-MAP = 5} endged #15 F3k 3t
Java WM 2_ & ig.ﬁnﬁ%&li fL

i
Job
\—\\
ok
e
#
T,
| -

g4 . K25 P

R~ FFAIRE 5 (F79) L5

p 2
54 qm pr T 5 (MHP) 2.4 Digital- Video Broadcasting(DVB)#7#%
D FL I E TGN W T A e i OB RE > SR T S

Java 5 1 & a2383F 7 > 0 Java B EAS BV § F 4258 eni@ (54 (7 o 3%
Feht R Java R R L G B R T e o

e
B
o)
2
Fi
;ﬁ
&%

BRFF S 7’3"%—7? 2009 Java 32 A Boamed h §5;m @ g i S
FH B i 1V BRART LA - dE R T A A R e iE kS T
A AE S BRARELA BT TR AiRREHY Y o A PR
L - S TRUE N SRS | el e T B T

f’f’g_g";(sbg J\ J\ E”i’]#;?k—ﬂ ’ j:’»_‘g i J,z"_v é’i’]’é{ <z o i\: [Fa %w%{mt/z_ Ff‘_"_ Java

-

Optimized Processor(JOP)} ® % Xilinx = Spartan-3 % & = * #-
BALE R %R B S PR I ie R R AL T R e 13, 8
Bt R oo A7 s 10, d%enpicdy £ 3408 2 11 1end

Dynamic Code Optimization for Java VM Har dware/Software
Co-design of a Highly Upgradeable DVB-MHP Terminal

Student: Chun Ling, Lin Advisors: Dr. Chun Jen, Tsai
Dr. SuhYin, Lee

Institute of Computer Science and Information Engineering
National Chiao-Tung University

ABSTRACT

Multimedia Home Platform (MHP) is the open middleware system for interactive
televison and related interactive -home entertainment designed by the Digital Video
Broadcasting (DVB) project. They use Java as'the-.common programming language and
embed the Java Virtual Machine (VM) that provides a stable and cross-platform java
runtime environment in the system softwarelayer. A hardware/software co-design approach
makes Java VM more flexible and powerful, butit still suffers from the inefficiency of java
system. Typical dynamic code optimization can save method lookup and constant pool
searching time using the runtime information known in the first time we execute it.
However, in such kind of embedded system, it is very expensive due to the overhead of
external memory modification. In this thesis, we propose a new hardware/software
co-design dynamic code optimization schema for this kind of approach that can
significantly improve the efficiency of Java program execution. By analyzing the execution
frequency of Java code segment, we can dynamically decide if the dynamic code
optimization is needed. This approach can aso cut down the power consumption with less
microcode execution cycles and less external memory access. We implement this
architecture on Java Optimized Processor (JOP) and simulate on Xilinx Spartan-3
developing board. Experiment Result shows that this proposed dynamic code optimization
schema for Java VM hardware/software co-design of DVB-MHP terminal has 13.8%
average speedup, 10.4% less microcode execution cycles and 11.1% less external memory

access than the original system.

[£y

Thw e et B A R R BRF A HA DR e g AL R
e A chdp R A HE RO EE R AF L FH O LY
LOoRAFIFILEEnm F v a7 W2 BirE2 flHH2 D
Gk o B BBBRA - A LI P BEE L ES L A
HenA e dp Ed 5 o B¥F LR H JOP i T4 Martin - @ B aE - %

27

THPF P RF O FAET PR

Z

@Eﬂ?/\ g s R ’l‘i‘fé.”;/,av ;—n-’?
H 3 FIAfRAARN P FIEE o L B A REAT €T FAet B o B
FLOEALRHREIN ARG AL EF AT RE BLOE YRS T &%

FnE B AGRAF hfed 1 B E O HN AL R R R R L

a\

4 3'%*?’{%!)% g F o AT BET SOy 4P Y o
?°&@’ﬂﬁﬁﬁwi%ﬁﬁﬁﬁuawiw,£g{#g@,ga%
P E R R AT AETER D cn§T et oA s 3
B BT o5 d eraf £ APRA T f1 4 4 G s AN L

R A o HPTE M AR L R R o e

Table of Content

B R [
ABSTRACT ..ttt b e bbbt bt b et e et e bbbt n s ii
5 SRS i
= 01X o) B @0 01 = o | PSP v
S oo 1 - SR Vi
S 0 =0 =SSR Vil
SR 1 01 18 o1 o o ST USRPT 1
11. Why Dynamic Code Optimization (DCO)ccecvreererienieneeseeee e 1
1.1.1. Dynamically Typed Object-Oriented Languages..........cccevevververeeeenne 2

11.2. Dynamic MesSsage Sendingcocceeeieererieneeneeee e e 2

1.2. DCO for JavaVM Using HW/SW Co-design Approachccccceveevveneeennn. 4

13 Advantages of DCO & HW/SW Co-design for DVB-MHPApplications.....5

14 Overview Of thiISTRESIS. ..o 6

2. REEEAWOIK ...ttt re e ne e 7
2.1. Previous DCO MEChaNiSMScoiiiiiiiire s 7
21.1 Lookup Cache Mechanism in Smalltalk-80...........ccccovviiinveninnieieenen. 7

2.1.2. Inline Cache Mechanismin Smalltalk-80cccoeiivinininiiiinins 9

2.1.3. Polymorphic Inline Cache in SELF System.........ccccocvvvviiieveiecennn 10

2.1.4. JavaVirtual Machine Reference Implementationccccccevvevieennne 13

2.1.4.1. Sun’sJavaVirtua Machine Reference Implementation............... 14

2.1.4.2. Sun’'sKVirtual Machine Reference Implementation................... 18

2.2. Java Platform ... BT e e 20
221, JavaExecutionFlOWChart.....ut e 22

222, JavaClass File Format e 22

2.2.3. JavaVirtua Maching (VM) ..o 24

224, JVM INSITUCLION SEL.....ccueiiiiieieeie et 25

2.3. ImplementationS Of IVIMcociii e 29
23.1 INEEIPIELEN ... e 30

2.3.2. Just-IN-Time (JIT) COMPIEN......cccirierieeeeeere e 31

2.3.3. HOtSPOL tECHNOIOGYcoveeeeiieeie e 32

2.3.4. JAVB PrOCESSONceeieiiieesiie ettt 34

3. Problem FOrMUIGLTON.cooiie e s 37
3.1 INEFOTUCTION ...ttt b e 37

3.2. Java Optimized ProCessor - JOP.........c.ooiiiiiinieiere e 38
3.21. Software Layer Stack Of JOP........cccccevieviniere e 40

3.2.2. System Architecture Of JOP..........cccoveriinieenee e 41

3.2.3. Datapath Of JOP........ccociiiriririeiee e 42

3.2.4. Hardware/Software Co-design of JOPccceveiiieenenieneenieeee s 43

4. Proposed Dynamic Code Optimization SYyStemcccccvieereeiiesieeseese e seese e 45
4.1. Data Structure Using in Our Dynamic Code Optimization.............c.c.......... 45
4.1.1. Data Arrangement in the External Memorycccveveeieieienennn 45

4.1.2. MELhOd CaCE........oieiieici s 48

4.1.3. RUNtIME Data SIFUCLUIE ...t 49

4.1.31. SACK Frame....cociceeieeesiesie et 49

4.1.3.2. Da@LAYOULcceeiiieieiieitieee e 51

4.1.3.3. RUNIIME Class SITUCLUINE.....cooeeenenees 51

4.2. The Proposed Dynamic Code Optimization Scheme.........ccccccoevevvveenennen. 52
4.2.1. Analysisof Bytecode Execution FreQUENCY.........coccereevereeniesienneennns 52

4.2.2. Access Time of Externa Memory & Interna Memory.........c.cccceeueee. 55

4.2.3. ArChiteCture OVEIVIBWc.coeeiieeiiieeiee et 57

4.3. Implementation DELaIlScccoceeiieiececeee e 59
4.3.1. Hardware Implementation ModuI€sS............cccceeiiiiiieneniicieneeeeene 60

4.3.2. Software Implementation MOAUIESccevveieieere e 62

5. Performance SHUYccoooiiiiiieiee e e 64
5.1. Xilinx Spartan-3 Developing Board...........cccceveveeenienecie e 64

5.2. Java Benchmark Programs ... s 65
521 Sieve Of EralOStNENES........ccoiiiiiiiesereeeee et 66

5.2.2. K et re s 66

5,23, UDPYIP ettt b 67

5.3. EXPeriment RESUILS.........cocuoiiiiee e 68
53.1L EXECULION TIME...c.eiiiiieiriieieee e 68

5.3.2 POWEN CONSUMPLION ...ttt 69

5.3.2.1. Microcode Execution CyCIES........ccccovevereeieeiesieneere e 69

5.3.2.2. Externa Memory ACCESS TIMES......cccvceererrieneenieeie e sieseeseeneens 72

6. Conclusion and FULUrE WOTKccueiiiiirieririeriesie et 74
REFERENGCESoctiiieieesie sttt sttt sttt e s ae st saesbesseese e st e e e nseeeneennas 76

List of Figures

Fig 1. Indirect ACCESS EXAMPIE.......c.ooiiiiieeeeee e 2
Fig 2. Polymorphic Operations EXample.........cccccviieieeiiciee e 4
Fig 3. DVB — MHP Functional BIOCKcccceviiininiieeeeeeeee e 5
Fig 4. Selection Mechanism of Lookup Cache...........ccccoooeveeie e 8
FIg 5. ININECACNE ... 9
Fig 6. Polymorphic Inline Cache (PIC)coeoiioeieeeeceeeceee e 10
Fig 7. Inlining a Small Method into Polymorphic Inline Cache............cccceceeueee. 12
Fig 8. Impact of Polymorphic Inline Cache...........cccccevveiieiecice e, 12
Fig 9. Inline Cache MiSS RELIOScceiuireeieieriesie s 13
Fig 10. Original Execution FIOWChartcccccvevieiieieccecee e 15
Fig 11. JAVA ClIasS File.......ooiiee s 17
Fig 12. Execution with Fast BYtECOUES..........cccccveeeieeieeecee e 18
Fig 13. Java 2™ Edition (Source: http:/java.sun.Com)...........cc..ovweemvenrenresneenne. 19
Fig 14. Javalnstruction Format Using DCO.........cccccveveiieiece e 20
Fig 15. Java Platform (Source: http://java.Sun.Com)cccecevererenereseseneenes 21
Fig 16. Java Execution FIOWChartcccveiiiieiicie e 22
Fig 17. Structure of Java Class File.........oooieiiiieeeee e 23
Fig 18. Components of Java RuNtime System...........ccccoveveveevecvecee e 25
Fig 19. Implementations Of IV M . i e 30
o 2 O 01 (= 1 o[GO 31
Fig 21. Just-1N-Time COMPIEF .oliliih. it i 32
FiQ 22. HOLSPOL ... oo e etee e s aiiatannn eeeedaasseeeesseesseesesseesseeseesseenseensesseensesneesnes 33
Fig 23. JAVA PrOCESSOI ws ... s bttt st e ettt 34
Fig 24. Software Architecture of Jazelle Chip..........ccccoovvveeveece e 36
Fig 25. Java Optimized Processor Runtime Environment...........cccoceveeiveenneenne 38
Fig 26. Software Layer Stack of JOPccoooe i 41
Fig 27. Block Diagram Of JOPcooeiiiiiiiiee e 42
Fig 28. Datapath and Data FIow Of JOP...........cccveeieeiiceene e 43
Fig 29. Data Arrangement in the External Memorycccocceverveveenecnnsceesiene 46
Fig 30. Method Table SITUCLUNE..........coveeieeeceee e 47
Fig 31. Stack Change on Method INVOCELIONcoeeveeiinieneeie e 50
Fig 32. ODJECE FOIMEL.........eieeeeeii et sre s 51
Fig 33. Array FOMMELcoiiiiieeeieeeeee e e 51
Fig 34. RUNtime Class SITUCIUNE.........ccocveieeie e 52
Fig 35. Transmeta Code Morphing Software Control Flow............ccooceeiiiennnne 53
Fig 36. Distribution of Bytecode Execution Frequencycccoceevveeeeseeseeeeenne 55
Fig 37. Microcode Sequence of External Memory Readccccveveeieiienienne 56
Fig 38. Microcode Sequence of External Memory Write.........ccccceveveveevvceeseene 56
Fig 39. Our IDCO ArchiteCture OVEIVIEWcccereereeiieeiesieeseesee e 58
Fig 40. Java Bytecode Fetch Stage of Our JIDCOcccoceeveeceeveereececeese e 60
Fig 41. Block Diagram of The Proposed JDCO.........ccccoveerernneenienie e 61
Fig 42. The Top Side of Xilinx Spartan-3..........ccccceverieneerecie e 65
Fig 43. The Bottom Side of Xilinx Spartan-3cccooeieriinnninieeeneeeeeeee 65
Fig 44. Pictures of a Kippfahrleitung Mast in Down and Up Position................. 67
Fig 45. EXECULTON TIME ..c.eeiiiiiiieie ettt sttt 69
Fig 46. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185............... 71
Fig 47. External Memory Access Times of Bytecodes 180. 181. 182. 185.......... 73

vi

List of Tables

Table 1. Fast Bytecodes in Sun’'s JavaVM Reference Implementation............... 14
Table 2. Support Data Type of JAVaVMccccovcieiiciecesece e 26
Table 3. The Providing Types of VM OpPCOUES..........ccccerereeieeneenenenenieeeeeeeas 27
Table 4. A Comparison of Different Implementations of imulcccceeeen. 44
Table 5. The Number of Bytecodes under the Given Execution Freguency. 54
Table 6. Our Designed JDCO Bytecodes & Their Formats...........cocevveveevenueenee. 63
Table 7. EXECULION TIME......c.eeiiieieeeeesieeie et e e ee sttt ee e nneeneas 68
Table 8. Microcode Execution Cycles of Each Bytecode...........cccccceveevveieennnnen. 70
Table 9. Execution Times of Bytecodes 180. 181. 182. 185..........cccccevcevveeneenen. 70
Table 10. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185........... 71
Table 11. Externa Memory Access Times of Each Bytecode...........ccccccvveiinene 72

Table 12. External Memory Access Times of Bytecodes 180. 181. 182. 185...... 73

Vi

1. Introduction

DVB-MHP provides an open standard for interactive digital television and home
entertainment. In DVB-MHP, the DVB-J functional block uses Java VM to construct a
cross-platform Java runtime environment. However, this Java VM technology also makes
the system less efficient.

In this Chapter, we first presented a popular method called dynamic code optimization
(DCO) for speeding up Java VM. Using DCO in a hardware/software co-design approach is
examined in section 2. In section 3, we list the advantages of DCO and hardware/software
co-design for DVB-MHP applications. Finaly, the overview of this thesis is given in

section 4.

1.1. Why Dynamic Code Optimization (DCO)

Code optimization for dynamically typed object-oriented languages is more difficult
than statically typed object-oriented languages. Research shows that the main bottleneck is
in the unpredictability of dynamic message sending, which is determined at runtime for
dynamically typed object-oriented languages.

In this section, we first illustrate the differences between statically and dynamically
typed object-oriented languages, and then we focus on dynamic message sending.
Optimizing code dynamically on this topic will significantly improve the efficiency of the

system.

1.1.1. Dynamically Typed Object-Oriented Languages

Dynamically typed object-oriented languages, such as Smalltalk and Java, are much
slower than statically typed languages like C++. The reason is that the reference variables
in dynamically typed languages may potentially reference to any objects in the program at
runtime. Therefore type checking of the references can only be done a runtime.
Furthermore, the addresses of the dynamic objects are also unknown at compile time. As a
result, indirect access must be used, which is again very expensive at runtime. [4]

Consider the Java program segment in Fig 1, integer i is alocal variable in method
m(B), and f is an object field in class B. Object cc is sent to method m(B), and the field f of
object cc is retrieved and assigned to local variable i. Because the address of object cc is
unknown at compile time, the address resolution of cc.f must be done at runtime. When
executing the statement i = cc. f; the address 'of object cc is retrieved first, and then the
address of field f is calculated based on the address of the object cc. As aresult, there are
two indirect accesses in order to get thewvalueof cc.f. These accesses cause the inefficiency

of executing dynamically-typed object-oriented programs.

classA {
public void m(B cc) {
inti;
= cc.f;
}
}
Fig 1. Indirect Access Example

1.1.2. Dynamic Message Sending

In object-oriented languages, message sending is the most frequent operations. When

we invoke a method, a message is sent to a class or an object, which selects the method to

be executed. Message sending is also called method invocation in some languages.

Polymorphic operations from dynamic binding and inheritance make it easy for
object-oriented language programmers to develop well-designed systems, but also result in
the difficulty of efficient execution of these programs. Because the address of the method
can only be determined at runtime. To perform a message sending we must extract the name
of the method, use it as a key to find the method in the current class (or in the superclass
that this method is inherited), continue in this way up the class hierarchy until we find the
corresponding method or the top of the inheritance hierarchy is reached.

In Fig 2, we will show how the polymorphic operations make the execution of
object-oriented programs more difficult.

Class A is the superclass of class B, and the m1() method of class B override the m1()
method of class A. mO(A) is a methad of class A, and m1() method isinvoked init. m2() is
also amethod of class A, which method isjust.directly inherited in class B. Note that in the
main program, the two statements x.m0{y)-and-x.m0(z) will invoke a.m1() while execute
method mO(A). In the first message sending,.the'class of y is A, so the statement a.m1() will
invoke the m1() of class A. While in the second message sending, the class of z is B, so the
statement a.m1() will invoke the m1() of class B. Inheritance property also makes it difficult
to determine the access addresses in object-oriented programs. Consider the statement z.m2()
in Fig 2. The class of z is B, but we can not find the method m2() in class B, so we try to
look it up in the superclass of B, i.e., class A. The address of method m2() in class A is then
retrieved in order to execute this statement. From this example, one can realize that the
dynamic message sending is the crucial property of dynamicaly typed object-oriented
languages.

By anadyzing the message sending behavior, we can develop dynamic code

optimization techniques to improve the efficiency of the language systems. Using the

caching mechanism, some duplicated method lookup procedure can be prevented. In this
thesis, an adaptive dynamic code optimization mechanism for a java virtual machine is
developed. By modifying the runtime behavior, method invocation can be more efficient

and the extra memory required for this technique is limited.

ClassA {
public void mO(A a) {
a.ml();
}

public void m1() {

}
public void m2() {

}
}

Class B extendsA{
public void m1() {

}
}

main(){
A x=new A();
Ay =newA();
B z=new B();

X.mO(y);
x.m0(2);
z.m2();

Fig 2. Polymor phic Oper ations Example

1.2. DCO for Java VM Using HW/SW Co-design Approach

Java is aso a dynamically-typed pure object-oriented language developed by Sun

Microsystems in the early 1990. It has many features of modern programming languages,

such as simple, object-oriented, robust, secure, architecture neutral, automatic garbage
collection, dynamic linking, multi-threaded, and portability. However, it loses the efficiency.
Slow execution speed makes Java incapable of handling multimedia applications efficiently
without resort to native code or hardware accelerator.

Pure hardware implementation approach, such as java processor, can improve the
execution speed greatly. The disadvantages are high design cost and low upgradeability.
Hardware/software co-design takes the advantages of both approaches: low cost, flexibility
and efficiency, but the execution speed can not be as fast as the pure hardware approach.
DCO can significantly improve the system efficiency, which makes this HW/SW co-design

approach more useful and powerful.

1.3. Advantages of DCO & :HW/{SW Co-design for DVB-MHP

Applications
Local Interoperable Delegated
- MHP/Java (DVB-J) ADD. A Delegated
Application N Data PP.
(and libraries)|| AAPplication . App. B
(And libraries) Plus-in A
- - - - - = 7 T 7 7 7 MHP-API
SUN | pAvi || DAvIC]| DvB
Application
pRIeaion || Transport || 38 || ApIs || APIs || APIs | |pius-in
anager APls
. Protocols B
(Navigator)

Java Virtual Machine

QDrivers, Graphics,D

System Software

Fig 3. DVB — MHP Functional Block

In 2000, the Digital Video Broadcasting (DVB) organization proposed an open
middleware system standard called Multimedia Home Platform (MHP), which is designed
for interactive television and related interactive home entertainment applications. Java
programming language is chosen as the common language of this platform, which isin the
DVB-Jfunctional block asthe dark region in figure 3 (see [10]).

The underneath Java Virtual Machine plays an important role in DVB-MHP System. It
provides a stable and cross-platform Java runtime environment. Java APl devel opers do not
need to know the underlying system software information so they can put more efforts on
the libraries themselves. Because of the interactive and real-time demand, the execution
speed is the crucia factor of DVB-MHP termina. Using DCO and hardware/software
co-design approach can make Java execution more efficiency. Furthermore, it can cut down

the power consumption, which isagreat contribution to such kind of embedded system.

1.4. Overview of thisThesis

The rest of this thesis is organized as follows. In chapter 2, several related works are
listed and reviewed. Previous DCO mechanisms are also discussed here. In chapter 3, we
formul ate the problem, and introduce our target hardware/software co-design system — Java
Optimized Processor (JOP) and the target developing board. The main ideas of the
proposed dynamic code optimization scheme are presented in chapter 4. In chapter 5, the
simulation result is shown and discussed. Finaly, the conclusion and future work are given

in chapter 6.

2. Related Work

In this chapter, we first list some papers and systems about dynamic code optimization.
Then we introduce the Java platform including Java execution flow, Java class file format,
JVM and itsinstruction set. In the next section, popular implementation approaches of VM
are discussed, including Java interpreter, Just-In-Time compiler, HotSpot, and Java

processor.

2.1. Previous DCO Mechanisms

In this section, we will discuss several dynamic code optimization mechanisms for
various dynamically typed object-oriented programming language systems. This concept
was first proposed in 1983 [1], with implementation of the smalltalk-80 system. It is called
lookup cache. In 1984, an efficient implementation of the Smalltalk-80 system that used a
modified cache mechanism (called inline cache) was presented by Deutsch and Schiffman
[2]. The inline cache concept now is adapted into many object-oriented language systems.
One classical example is polymorphic inline cache, which is implemented in SELF system
[3]. Another famous implementation is in the Java programming language. The Java virtual
machine and K virtual machine of Sun’s reference implementation which adopts this

mechanism will be discussed in the end of this chapter.

2.1.1. Lookup Cache Mechanism in Smalltalk-80

The Smalltalk definition specifies that the source code is translated into a sequence of

primitive operations called byte codes. Smalltalk-80 was originally run on virtual machines

which implemented the byte codes in microcode. Early implementations of Smalltalk-80 on
hardware interpreted the byte code in software, which led to poor performance [5]. Ungar
and Patternson proposed a lookup cache mechanism that can improve the performance of
message sending for Smalltalk. [1]

Lookup caches are used to cache the previous lookup result. Method addresses are
retrieved from the lookup cache, a hash table of the most recently used method addresses,
viathe pair (receiver class, message selector) as the key. The receiver classis the class that
the called object belongs to, and the message sel ector selects the method to be executed. Fig
4 illustrates the selection mechanism of the lookup cache. When a method is invoked, the
pair (receiver class, message selector) is used as a key to the lookup cache. If it hits this
hash table, the message address will be extracted and the method lookup procedure can be
avoided. Otherwise, the method lookup routine will.be processed. And then the new address

information will be kept in the lookup cache for next method invocation.

Lookup Cache
I |
se ector/ / class / Rey A dress

Update || Lookup
Cache routine

Fig4. Seection Mechanism of Lookup Cache

Lookup cache is very effective in reducing the lookup overhead. Berkeley Smalltalk
[1], for example, would have been 37% slower without a cache. Furthermore, if the hit ratio

of the lookup cache is high, this advancement will be more observable.

2.1.2. Inline Cache Mechanism in Smalltalk-80

The inline cache mechanism proposed in 1984 [2] predicts the method addresses and
places them in the message send site. Even with a lookup cache, sending a message till
takes considerably longer than calling a simple procedure because the cache must be probed
for every message sent. However, send operations can be sped up further by the observation
that the class of the receiver at a given call site rarely varies, that is, if amessage is sent to
an object of class X at a particular call site, it is very likely that the next time the send is
executed will also have areceiver class X.

This locality of receiver class usage can be exploited by caching the most recently
look-up method address at the call site (e.g. by overwriting the call instruction). Fig 5 (see
[5]) shows the modification using this technique. Subsequent executions of the sent code
jump directly to the cached method, compleétely. avoiding any lookup. Of course, the class
type of the receiver could have changed, so the calling method procedure must verify that
the receiver class is correct and call therlookup-routine if the type test fails. After updating
the method code of the receiver class, it may be matched and the method lookup cost can be
saved next time. This form of caching proposed by Deutsch and Schiffman is called inline

cache since the target address is stored at the sent point. [2]

System Implementation
Method (a.bb) |__al | Lookup Execute | ofbb method
Before Routine code of object a
After object a Implementation
Method (X.bb) —— - of bb method
code of object a

not
object &

System Implementation
Lookup .| of bb method
call Routine |Execute code of object x

Fig 5. Inline Cache

Inline caching is surprisingly effective, with a hit ratio of 95% for Smalltalk code [2].
SOAR, a Smalltalk implementation for a RISC processor, would be 33% slower without
inline cache [6]. Nowadays all compiled implementations of Smalltalk that we know is

integrated with inline cache mechanism.

2.1.3. Polymorphic Inline Cache in SELF System

Inline cache mechanism is effective only if the receiver class remains relatively
constant at a call site. Although it works very well for the majority of sends, it does not
speed up a polymorphic call site with several equally likely receiver classes because the call
target switches back and forth between different methods. Worse, inline cache mechanism
may even slow down these sends because of the éxtra overhead associated with inline cache
Mi SSes.

Based on the inline cache technigue, Polymorphic Inline Cache (PIC) caches dl
method addresses, if the degree of polymorphism'is less than ten [3]. The examplein Fig 6

(see[3)) illustrates this.

Code to display

PIC a rectangle
a% rectangle display
rectangle Call display | If class = rectangle method

circle > jump to method
triangle If class = circle .
' .. Code to display
ump to method >
e address a circle
List Element else call lookup circle display
method
System
» Lookup
Routine

Fig 6. Polymor phic Inline Cache (PIC)

10

Suppose that the method display is sent to al classes in the list, the polymorphic inline
cache mechanism will handle this method invocation. First, the list element is a rectangle
class. Similar to the normal inline cache, the method address will be extracted and the
calling code will jump to the direct method code to display arectangle. It is the same with
the class circle. Following the type test, a triangle class is passed. When the system finds
that it is a new receiver class type that does not exist in current cache the Polymorphic
Inline Cache handler will call the method lookup routine and construct a new branch
routine for the display method to rebind the receiver class triangle. Next time the receiver
classtriangle is called, it can just branch to the corresponding code of the method.

If the cache misses again, the Polymorphic Inline Cache will smply be extended to
handle the new case. Eventually, the Polymorphic Inline Cache handler will contain all
cases seen in practice, and there will:be no more cache misses or method lookup procedures.
Thus, a Polymorphic Inline Cache.is not a fixed-sized cache similar to a hardware data
cache; rather, it should be viewed as:an-extensible cache in which no cache item is ever
displaced by another newer item.

Since many methods are very short, the Polymorphic Inline Cache can be modified to
be more effective and more space can be saved. At polymorphic call sites, short methods
could be integrated into the Polymorphic Inline Cache handler instead of being called by it.
For example, suppose the lookup routine finds a method that just loads the receiver’sx field.
Instead of using the stored method address to call this method from the handler, its code can
be copied directly into the handler, eliminating the calling and return procedure. The figure
inFig 7 (see[3]) explains this example.

The hit ratio of the Polymorphic Inline Cache depends on the runtime behavior of the
programs. In [3], this mechanism is implemented for SELF, a typica dynamically-typed

pure object-oriented language. In SELF, all operations including variable accesses and basic

1

arithmetic operations are implemented by dynamically bound procedure calls.

return receiver.x

PIC
triangle display
rectangle Call display | If class = triangle method
circle > return receiver.x
jump to method | Code to display
address a circle
List Element else call lookup circle display
method
System
» Lookup
Routine

Fig7. InliningaSmall Method into Polymorphic Inline Cache

Fig 8 (see [3]) shows the individual execution time with several benchmark
programs. PolyTest is an artificial benchmark with only 20 lines that is designed to show
the highest possible speedup with Polymorphic inline Cache while all the others are
produced by software in order to cover a variety of programming styles. The median
speedup for the benchmark programs (without PolyTest) is 11%. And the space overhead of

Polymorphic Inline Cacheis very low, typically less than 2% of the compiled code.

Execution Time (normalized to base system)

PolyTest

Richards

PathCache

PrimMaker

|
|
Ul ‘
|

Parser |

0% 20% 40% 60% 80% 100%

Fig8. Impact of Polymorphic Inline Cache

12

This research also found an interesting observation. In Fig 9 (see [3]), there is no
direct correlation between cache misses and the number of polymorphic call sites. For
example, in these benchmark programs, one receiver type dominates at most call sites in
PathCache, while the receiver class frequently changes in Parser’s Inline Caches. Thus,

ordering a Polymorphic Inline Cache Mechanism may win with programs like Parser.

12%
* PrimitiveMaker

10% * Parser

8% [

6% [®

PathCache

4 L # Richards

Inline Cache miss ratio

2%

* UL

0%
0% 10% 20% 30% 40% 50% 60% 70% 80%

Polymorphic sends

Fig 9. “InlineCache Miss Ratios

2.1.4. Java Virtual Machine Reference | mplementation

The Java programming language relies on the simulated machine, known as Java
Virtual Machine (JVM). JVM dlows the computer programmer to communicate with the
virtual machine instead of the real hardware system. Thisis advantageous, because it allows
for portability. If the individual JVM are installed on two completely different machines,
the Java programs should work well on both machines without any code modification,
because it relies on the VM and not the hardware system it is running on.

Sun Microsystems developed this powerful language system, and this language
becomes very popular nowadays. Various Java VM were constructed by different teams that
conform to the Java Virtua Machine Specification [7] but have independent

implementations. For a reference implementation, Sun Microsystems also develop a Java

13

Virtual Machine and a K Virtual Machine for a part of the Java 2 Micro Edition (J2ME)
called Connected Limited Device Configuration (CLDC) [8]. Dynamic code optimization
Is also used in these reference implementations to improve the efficiency of Java VM

execution.

2.1.4.1. Sun’s Java Virtual Machine Reference Implementation
In Sun’s version of the Java Virtual Machine, compiled java Virtual Machine code is
modified at runtime for better performance. This optimization takes the form of a set of
pseudo-instructions that are distinguishable by the suffix _quick in theilr mnemonics. These
are variants of normal Java Virtua Machine instructions that take advantage of information

learned at runtime to do less work than the original instructions.

203.}-1dc_quick

204 | Idcaw | iquick

205 | Ide2 wquick

206 | getfield quick

207 | putfield_quick

208 | getfield2-quick

209 1. putfield2_guick

210 | getstatic ‘quick

211 | putstatic_static

212 | getstatic2_quick

213 | putstatic2 static

214 | invokevirtual _quick
215 | invokenonvirtual _quick
216 | invokesuper gquick

217 | invokestatic_quick

218 | invokeinterface quick
219 | invokevirtualobject_quick
221 | new_quick

222 | anewarray _quick

223 | multianewarray quick
224 | checkcast_quick

225 | instanceof quick

226 | invokevirtual _quick w
227 | getfield _quick w

228 | putfield _quick_w

Tablel. Fast Bytecodesin Sun’sJavaVM Reference | mplementation

14

To learn from inline cache mechanism [2], the Reference Implementation (RI) of
Sun’s VM also uses the concept of caching the previous method lookup information and
stores them in the instruction space. Only standard java bytecode instructions numbered
from O to 201 may be generated by the java compiler. The optimization works by
dynamically replacing occurrences of certain instructions by the reserved instructions (in
the range of 202-255) after the first time they are executed. These new instructions listed in
Table 1 have been loaded and linked the first time the associated regular instruction is

executed.

Note that these new instructions (referred to as fast bytecodes) are not specified in the
Java Virtual Machine Specification [7]. However, for the implementation of Java Virtual

Machine the adoption of the fast bytecodeshas been proven to be an effective optimization

technique.
Source code:
Constant pool
DbgSerial() { P
walitHs = w;
} No. Type Value
1 Methodref Class:6; NameAndType:20
2 Fieldref Class:5; NameAndType:21
At any time: putfield 00 02 5 | Class Name:25
return pointer | yes uti8 ‘waitHs”
to the data has been utfs wpn
structure resolved? resolving
21 NameAndType Name:7; type: 8
_no can be 3
throw) resolved2—" "
exception
l ves 25 | utis “util/DbgSerial”
return pointer to the

Fig 10 shows the origina execution flowchart if we do not enable fast bytecodes.

data structure;
Save in the run-
time constant pool

Fig 10.

15

Original Execution Flowchart

Consider the assignment instruction waitHs = w in Function DbgSerial (). A sequence of
java bytecodes will be generated after compilation, and putfield 00 02 is the core instruction
of this assignment. When Java VM fetches this instruction for execution, first it will check
that if this constant pool component, indexed by 2 in this case, has been resolved. The java
constant pool inside the java class file format (as the second block in Fig 11, which we will
illustrate it in subsection 2.2.2) is designed to support dynamic linking. When the Java
Virtual Machine encounters a use of a constant pool entry for the first time (e.g., when you
first use the new statement to create a new object of aclass, or in the first use of getfield to
get afield), the constant pool entry isresolved [9].

The actions the JVM performs to resolve a constant pool entry depend on its type.
Resolution of an entry involves two basic steps. checking that the item you are trying to
access exists (possibly loading or creating it if it doesn’'t already exist), and checking that
you have the right permissions to access the item (i.e., making sure that you don’t access
private fields in other classes, etc.). In Fig-10-the constant pool of the class DbgSerial is
listed. The Java VM checks that the index. 2 points to a field that belongs to the class
util/DbgSerial (index 25), its name is waitHs (index 7), and its type is an integer (“Z” in
index 8). If any illegal situation happens, an exception will be thrown by the Java VM.
After the entry is resolved, the address of this constant pool item will be returned for
execution of the Java VM. At the same time, this address will be stored in the runtime
constant pool of that class. Next time this constant pool is used, the Java VM will find that

it has been resolved and use the direct address in the runtime constant pool.

16

For Example: DbgSerial.class

Version Number: 49.0

of Constant : 32-1
Constant Pool

rooﬁ Access Flags: SUPER+PUBLIC

This Class: Constant 5

Super Class: Constant 6

4
4

(o]0}

e
=2
-
rﬁt
>z

05, 00 | 06 00 o1 #of Interface: 1

Interface Table

of Field: 1

Field Table

#of Method : 4

25 Method Table

of Attribute: 1

Attribute Table

Figll. JavaClassFile

If fast bytecode is enabled; many duplicated subroutines can be avoided. A flowchart
in Fig 12 shows the modification.

At the first execution of the Java instruction, the Java VM resolves the item address or
gets the constant pool item address from run-time constant pool if it has been resolved.
JVM then overwrites the instruction with the _quick or _quick_w pseudo-instruction listed
in Table 1 with corresponding new operands which may be one byte or two bytes
determined by the length of the item address. The instructions putstatic, getstatic, putfield,
and getfield each have two _quick versions, chosen depending on the type of the field being
operated upon (i.e., putstatic2_quick if the type is long or double). From this point on, the
subsequence execution of that instruction instance is always the _quick variant and can be
execute directly without any check and runtime constant pool consulting.

The operands of these new instructions are invisible outside of the Java Virtual

Machine. Sun Microsystems provides a possible solution, but the decisions such as the

17

format of operands are left up to the implementer. Just remember that the operands of the
_quick pseudo-instruction must fit within the space alocated for the original instruction’s

operands.

With this dynamic code optimization, a significant amount of time is thus saved on all

subsequent invocations of the pseudo-instruction.

gﬁgrs?ri;%d{e' Constant pool
waitHs = w; No. Type Value
: 1 Methodref Class:6; NameAndType:20
l 2 Fieldref Class:5; NameAndType:21

At the first time:

putfield 00 02

5 Class Name:25
no
Get address has been PR
from run-time resolved? —"resolving 7 Uit waiths
constant pool 8 | utfg “z

throw no can ?e 3
exception resoNg

21" |*NameAndType Name:7; type: 8

25 | utis | “utiDbgSerial

Address :one
I overwrite Qr twolbytel
putfield_quick offset unused ’ ovehirite
next time: ‘ putfield_quick_w offsetBytel offsetBytezy

Fig12. Execution with Fast Bytecodes

2.1.4.2. Sun’s K Virtual Machine Reference Implementation
Recognizing that one size does not fit al, Sun Microsystems has grouped its Java
technologies into three editions as in Fig 13, and each of them aimed at a specific area of
today’s vast computing industry. Java 2 Enterprise Edition (J2EE) is for enterprises needing
to serve their customers, suppliers, and employees with solid, complete, and scalable
Internet business server solutions. While Java 2 Standard Edition (J2SE) is for the familiar

and well-established desktop computer market. The Java 2 Micro Edition (2ME), targeted

18

at two broad categories of products: CDC (Connected Device Configuration) and CLDC
(Connected, Limited Device Configuration), is specified for the consumer and embedded
device manufacturers, service providers, and content creators.

For these three different Java editions, the underneath Virtual Machine aso have
different execution speed and ability. The K Virtual Machine (KVM) is developed for
CLDC in Java 2 Micro edition, which is a compact, portable Java Virtua Machine
specifically designed from the ground up for small, resource-constrained devices. The
high-level design goal for the KVM was to create the smallest possible complete Java
virtual machine that would maintain all the central aspects of the Java programming
language, but would run in aresource-constrained device with only afew hundred kilobytes

total memory budget.

"
.f o

]

S?,e u;,lgke Sun's WM RI, but _fast suffix is
.-' -'f-ﬁ-"' i

In Sun’s Reference Implementﬁlon 'T/namfgpode optimization is also used in the K

Profile Profile

Set top box
net TV

Source: Sun

Java 2
Enterprise Communicatg
Edition Standard Riiile
(J2EE) Edition Device Profile

(32SE)

Java 2 Micro Edition (J2ME)

Mobile Information

Smart
GSM
I PCrgfri(lie Profile

Java Programming Language

Java HotSpot ™ Java Virtual Machine (JVM

Fig13. Java 2" Edition (Source: http://java.sun.com)

19

As the restrictions of DCO in Java VM, the KVM implementers also need to assure
that the executed javainstructions are stored in RAM or other memory types that the stored
data can be modified at runtime. The other important restriction is, the operands of the _fast
pseudo-instruction must fit within the space allocated for the original instruction’s operands.
Instead of just saving the corresponding address, KVM provides a second technique to save
more execution time. Some instructions need much information to be executed, such as
invokevirtual, which instruction will invoke a method of an object instance. The
information (e.g. parameter, method's return type, etc) now can be stored in an externa
memory called inline cache, and an index to the inline cache is used in the instruction
operands. The new instruction format isillustrated in Fig 14.

This additional dynamic code optimization techniquein Sun's KVM RI requires about
100 Kbytes extra memory, but it has been provento be very efficient. The execution time
with fast bytecodes enabled is two or.three times faster than without it. Because using inline
cache to execute method invocation, the performance of Sun's KVM RI is much better than

the VM RI.

Code before optimization:

| opcode [operand I
After optimization
Type 1: I opcode_quick |affset I

TYPE 2: opcode_quick | inline cache
(only KVM RI) index

Inline
cache

Such as invokevirtual

Fig14. Javalnstruction Format Using DCO

2.2. Java Platform

Fig 15 illustrates the layer structure of the Java Platform, which consists of six layers.
The first underneath layer is Platforms layer. Sun provides implementations of Java

20

Development Kit (JDK) and Java Runtime Environment (JRE) for Microsoft Windows,
Linux, and the Solaris operating systems. In addition, they can aso run in any user-defined
platforms if they have their own Java Virtual Machine, which is the second layer. Java
Virtual Machine (VM) simulates the execution behaviors like areal machine, and it has its
own instruction set. Java bytecodes can be executed by Java VM without knowing which
platform behind it, so do the native programs. Up this structure, Java APIs and JNI provide
basic features and fundamental functionalities for the Java platform. The fourth layer is
development technologies, which enables applications written in other technologies and
gives an integrated solution for that. Development Tools & APIs provide many useful tools
such as Java compiler (javac), Java executer (java), document generator (javadoc), and etc.

This structure provides the Java Programming Language a complete execution

environment.
- Java Language
Development Tools & APIs
[Development Technologies (Java Plug-in...)
JDK < Java APlIs
Java Native
JRE
< Interface (INI) User _Clas_s _Cor(_a
Interfaces||Libraries|| Libraries
N Java Virtual Machine
Platforms

Fig15. JavaPlatform (Source: http://java.sun.com)

In following subsections, we will give a detailed introduction to Java execution
flowchart, Java class file format, Java Virtua Machine, and its instruction set. These

knowledge are very important for the design of DCO.

21

2.2.1. Java Execution Flowchart

To understand the Java runtime system, the Java execution flowchart must be
discussed first (see Fig 16). Java source programs are compiled by javac into Java
bytecodes, and these bytecode sequences are organized into class files. Each class file
contains exactly one class bytecodes and information including methods, fields and
interface of this class. These class files are then loaded either from local storage or through

data network into the Java Virtual Machine for execution.

.
Jjava _ *
javac .Cclass
ource - Bytecodes
Code Compiler

Java Virtual Machine

Fig16. Java Execution Flowchart

2.2.2. Java Class File Format

We have mentioned the Java class file in subsection 2.1.4.1. Now let us look into
more detail at the Java classfile format. A format structurein Fig 17 illustratesiit.

Java class files are structured in linear and record-based organization. Each class file
contains seven sections in order: File Header, Constant Pool, Class Descriptor, Interface

Table, Field Table, Method Table, and Attribute Table. File Format includes the magic

22

number, which is a signature that can be verified to make sure that it's a Java class file, and

the verson number. The version number indicates that which version of Java VM can

execute it.
File Signature H Version
Header
| Constant Methodref
—> (0] 0]
InterfaceMethodref NameAndType
Class Access || This || Super
Descriptor Flags Class Class
L_| Interface ~
Table
Count Length Source
Field File
Table
> Index Data
Method
Table
Line
Table

Fig 17. ©. Sructure of Java Class File

The Constant Pool acts as the symbol table of this class. It has eleven types. Utf8,
Integer, Float, Long, Double, String, Class, Fieldref, Methodref, InterfaceM ethodref, and
NameAndType. First the count of this constant pool itemsis given. The items have variable
length, and all multibyte data are in Big-Endian byte order. Java class files are written using
the Unicode character encoding [11] which is a worldwide encoding standard. All stringsin
the constant pool are stored in the UTF-8 formats [12] in which Unicode characters are
packed into bytes to reduce space usage.

The Class Descriptor section contains the Access Flags of this class, this class and
super class. Next to the Class Descriptor are four tables. Interface Table, Field Table,

Method Table, and Attribute Table. These tables contain all the information about interface,

23

field, method, and attribute. (e.g. count, length, index, data, code, and etc.)

Symbols and values presented in Class Descriptor, Interface Table, Field Table,
Method Table, and Attribute Table are actually indexes which point to the constant pool.
When the class file is loaded into Java VM, these symbols and values must be resolved
from the constant pool before execution. Java uses this delayed symbolic resolution before
execution to achieve dynamic binding. This binging is happened after class files are loaded
into Java VM and before they are executed, but this also makes the inefficiency of VM so

we will improveit in this research work.

2.2.3. Java Virtual Machine (JVM)

Java Virtual Machine is an abstract, programmable computing machine with an
instruction set called bytecode. It.can be ported.to different platforms to provide hardware
and operating system independence.

Java VM is defined by the:Java Virtual-“Machine Specification [7], which gives the
details of the design such as Java class file format and the semantics of each instruction.
Concrete implementations of Java VM specification are required to support these semantics
correctly, and these implementations are known as Java runtime systems. Fig 18 (see [9])
shows the components in atypical Java runtime system.

Applet or application class files are loaded via loca memory storage or network into
Java VM. Dynamic Class Loader will handle the loading behavior and do the verifier, and
then pass it to the Execution Engine with the standard-specified build-in Java classes.
Execution Engine is the heart of any runtime system, which has many kinds of
implementations. They can be hardware implementation, software implementation, or both
of them. We will go deeply into it in section 2.3. Bytecodes are executed by Execution

Engine with the ssmulated memory areas. Garbage collecting and other supporting codes

24

(e.g. Exceptions, Threads, Security, and etc.) are integrated into Execution Engine to
enhance the ability of Java VM. If the programs use native programs, the native methods

will linked by Native Method Linker and acted like libraries for Java programs to be

executed.

e The Java Runtime System _

Support Code:

Garbage Exceptions

e) Dynamic Collected IR
e o \ Class Heap Security
application]

Loader =
class files _/ and

Verifler I

Mative

Mative Methods Method |
(.dl or .sq files) \\ Linker '
Operating System

L A
. P &
Fig18. Com its of Java Runtime System

k4

w

Execution Engine

w

2.2.4. JVM Instruction Set

JVM is a stack-based machine. It defines 201 standard instructions. Each instruction
IS represented by an 8-bit value, and this is the reasons that the JVM instructions are called
bytecodes.

JVM supports 9 primitive dada types, which can be divided into two categories. One
is numerical type, and the other is address type. Table 2 lists the 9 primitive data types and

their respective lengths. [4]

25

Data Type

Length
(Byte)

int

long

float

double

byte

char

short

reference

returnAddress

Bl BN O] M OO &

Table2. Support Data Type of JavaVM

reference and returnAddress are address types, and others are numerical types. char is
unsigned, while byte, short, int, and long are signed. The floating-point types float and
double represent single-precision 32-bit and double-precision 64-bit format |EEE 754 value.
The values of reference types are pointers to class instances or fields. Arithmetic operations
can not be applied to referencetypes; sodorreturnAddress types, which are pointers to

opcode of VM instructions. This type isused by jump instructions of JVM, and it is not

corresponding to any data types in Java programming language.

There is one thing must be mentioned about the supported data types of VM.
Although Java programming language provides boolean data types, but JVM does not have

boolean primitive data types. Instead, VM uses int types to represent boolean values, and

boolean arrays are represented by byte arrays.

26

int long float double | byte | char short reference
?2c 12
22d i2d 12d f2d
29i 12i 2i d2i
22f iof 12f d2f
29| i2l 2l d2l
?2s i2s
2add iadd ladd fadd dadd
?aload iaload laload faload daload baload caload saload aaload
?and iand land
?astore iastore lastore fastore dastore bastore | castore sastore aastore
?cmp lcmp
?2cmp{g|l} femp{g|l} demp{g|l}
?const_<n> iconst_<n> | Iconst_<n> | fconst_<n> | dconst_<n> sconst_<n>
2div idiv Idiv fdiv ddiv
?inc iinc
?push bpush spush
?load iload lload fload dload
?2mul imul Imul fmul dmul
?neg ineg Ineg fneg dneg
?newarray anewarray
20r ior lor
2rem irem Irem frem drem
2return ireturn Ireturn fretuen dreturn areturn
2shl ish Ish
?2shr ishr Ishr
?2store istore Istore fstore dstore astore
?sub isub Isub fsub dsub
?throw athrow
?2ushr iushr lushr
?2Xor ixor Ixor

JVM instruction set is not orthogonal. In other words, operations provided for one
data type are not necessarily provided for other data types. This lack of orthogonally is
because each instruction is 8-bit opcode, so there are not enough opcode to offer the same

support to al java's runtime types. The providing types of VM opcodes are listed in Table

3.19]

Table3. TheProviding Typesof JVM Opcodes

27

The instructions of VM are variable-length, and they depend on the instructions. We
can categorize the instructions of JVM into 9 groups. The following paragraphs describe
them briefly. [4]

1. Load and Store

This group of instructions is responsible for the data movement between the operand
stack and local variable area. Besides, there are instructions for loading constants onto the
operand stack.
2. Arithmetic

Type specific arithmetic instructions are supported by JVM instruction set as mentioned
in the previous paragraph. We can see that there is no arithmetic instruction for byte, short
and char types. If we want to do arithmetic operations, we should first cast them to int types
and use integer arithmetic instructionsto performwhat we want to do.
3. TypeConversion

JVM provides several instructions—te—de. numeric data type conversion. These
instructions can be divided into two categories. One is widening the data length. For
example, the i2l instruction converts 4-byte integer to 8-byte integer. The other category is
narrowing the data length. The I2i instruction acts like that.
4. Object Creation and Manipulation

This group of instructions deals with object-related operations. For example, create
class instances, create array objects, access object variables, access array elements, and
check object types.
5. Operand Stack Manipulation

As mentioned before, VM is a stack-based machine, so there are instructions for
manipulating the data in operand stack. This instruction group includes push, pop,

duplication of top element, and swap of top two elements instructions.

28

6. Flow Control

Except conditional branch and unconditional branch instructions, VM aso provides
two compound conditional instructions: tableswitch and lookupswitch. These two
compound conditional instructions are used to choose an address out of alist of addresses
according to specific conditions.
7. Exception

Java provides exception handling mechanism. An exception is occurred by athrow
instructions thrown by JVM.
8. Synchronization

Because Java is a multi-threaded programming language, there are synchronization
problems. Two instructions, monitorenter and monitorexit, are provided to support
method-level and block-level synchronization.
9. Method Invocation and Return

JVM provides 4 different Method. inveeation instructions. invokevirtual, invokestatic,
invokeinterface and invokespecial, ‘and. 6. different method return instructions: return,

ireturn, Ireturn, freturn, dreturn, and areturn.

2.3. Implementations of JVM

JVM is the key point to platform-independence. Once there is an implementation of
JVM on a plaiform, al Java programs can be run on this platform without any
recompilation. So there is a slogan of Java technology: Write Once, Run Anywhere.

Fig 19 shows the four kinds of implementations. The first kind is Interpreter, and this
is also the original version implementation of VM. Then the second kind is Just-In-Time

(JIT) compiler. The technology using dynamic compiler is called HotSot. Finally, the fourth

29

kind is Java processor, which is also our basic target implementation. We will introduce

these four implementations in the following subsections.

Java Program (*.java)

< Java Compiler (javac) >

Java Bytecodes (*.class)

JIT ™~
Interpreter Compiley Dynamic
Machire || Compiler| || Java _
Binary Operating
1] System
Operating System
< fperaingystem | |
(Non-Java CPU] (3 Java
rocessor
1 2 3 4

Fig 19. I mplementations of JVM

2.3.1. Interpreter

The first VM implementation is interpreter, which includes a big loop in that every
instruction is read and executed in order. Fig 20 illustrates the flowchart of the interpreter.
This kind of implementation is very simple, but it suffers from inefficiency. Consider aloop
code section. If this loop executes 100 times, this code should be interpreted 100 times and
executed 100 times. Compared with fully compiled codes, 99 out of 100 interpretations are

actually overhead.

30

iy
Java javac * class

é?)\;?ce Java éava d
i ytecodes
Code Compiler

Java Virtual Machine

| Fetch Instruction |

|Execute Instruction|

Fig 20. - Intexrpreter

2.3.2. Just-In-Time (JIT) Compiler

Just-In-Time (JIT) compiler takes the bytecodes and compiles them into native code
for the machine that you are running on before the first time you execute it. Thisis shown
in Fig 21. The native machine codes exist only in the memory. When the program
terminates, the native machine codes are destroyed rather than restored for next execution.
Compilation must be done for each execution to ensure that the Java bytecodes are portable.
Thisisthe key difference between JIT compiler execution and fully-compiled execution.

Because JIT compiler trandates the whole programs into native machine codes before
executing, it can do some optimization of the entire programs. A Java program usually runs
50 times faster on the JIT compiler than on the interpreter. [4] However, the start-up time of

JT is very long. They should wait for the whole program loaded and compiled. If some

31

optimization option is adjusted, the start-up time will even longer. Nevertheless, JT may
spend a lot of time on useless optimizations, such as the instruction that is only executed

one time. Nowadays, Many research works study on this topic to make JIT more efficient.

iy
Java javac * class

%?J\l/ﬁce Java éava d
i ytecodes
Code Compiler

Native
Machine
Code

Java Virtual Machine

Fig2l. Just-In-Time Compiler

2.3.3. HotSpot technology

HotSpot is a dynamic compiler that integrates a compiler with an interpreter. The
concept of dynamic compilation is based on the research done over the past 10 years at
Standford University and the University of Californiam Santa Barbara (UCSB).

Fig 22 illustrates the architecture of HotSpot. Java bytecodes are first loaded into
HotSpot and executed by the interpreter. During the execution, the profiler keeps the
runtime information and determines which method to be compiled into native machine

codes and optimizes them. The control component links the other four together, and

32

provides the shared information. An apparent important function of the control component
isthat it must keep whether a method has a native version or not, and their addresses.

The dynamic compiler can perform some tasks to improve the performance of
program execution that a normal static compiler can not perform. The first is optimistic
compilation. Compilation during execution is very expensive, so we can choose which ones
are needed to be compiled and others remained to the interpreter. (e.g. the code section that
is executed only one time) By ignoring these cases, the dynamic compiler makes significant
performance improvement with only a small investment in optimizing time. The second
advantage is the run-time information can be taken into account for compilation and
optimization. For object-oriented programs, runtime information is more useful than static
information. The other advantage is that dynamic compilation can perform inlining the

frequently-invoked methods according to the runtime information.

* java javac *.class

Java Java Java
Source [T Compiler Bytecodes
Code

Compiler
Native :
. Virtual
Machine 4@@ Machine
Code
Profiler

Fig22. HotSpot

33

HotSpot is implemented in Java Virtual Machine by Sun in 1998. The details of the

internal workings are not open to the programmers, but many experiments show that

HotSpot has a great improvement of the execution efficiency of VM.

2.3.4. Java Processor

Java Processors are primarily used in embedded system [14]. The native programming

language of such systems is Java, and all operating system related code, such as devices

drivers, are implemented in Java. Java processors are also stack-based machines with their

own instruction set, which bytecode will trandate to and be executed in directly. As aresult,

this pure hardware implementation has the best performance of the four. Fig 23 shows the

flowchart of Java programs that execute on the Java processor.

* java

Java
Source
Code

L [Java Java
Compiler Bytecodes

: *
javac .class

Java
Chip

Operating
System

Fig23. Java Processor

picoJavais the most well-known Java processor developed by Sun. It always serves as

the reference for new Java processors and as the basic for research into improving various

34

aspects of a Java processor. The first version of picoJavais presented by Sun in 1997 [15].
This processor was targeting at the embedded systems market as a pure Java processor with
restricted support of C programming language. PicoJava-l contains four pipeline stategs. A
redesign followed in 1999, known as picoJava-1l. picoJava-Il now is freely available with a
rich set of documentation. In the following, we will briefly introduce four famous Java
processors or Java chips.
1. Zucotto

Zucotto Wireless Inc. is a new company, which established in 1999. The target market
of this company aims wireless communication. Their mainly product is Zucotto XC-100.
Zucotto X C-100 implements the Garbage Collector into their hardware architecture, so they
can manage the memory usage more powerfully. The lower power consumption is aso the
main advantage of Zucotto XC-100, which is'designed a power saving mode that idle
blocks can enter in.
2. ARM Jazdlle

Jazelle is a Java Chip technology:of ARM. Based on the RISC architecture, Jazelle

executes bytecodes directly using the translated microcode sequences. Now it can support
95% bytecodes. Besides the two basic instruction set of ARM processor, ARM 32 hits
instructions and ARM 16 bits Thumb instructions, Jazelle adds a third instruction set, that is
Java Bytecode ingtruction set. These three can switch while needed. The software

architecture of Jazelle chip is shown in Fig 24 (see [16]).

35

Java Application

Java APls

Network

Graphics

Rem

Methods

Native
Methods

ote

Native
Application

Standard Java Environment: KVM, CVM...

Verifier

Class
Loader

Garbage

Manager

Process | | Memory

Manger

Collector

Jazelle Support Code

Native
oS

Jazelle Accelerated ARM Processor

Fig 24.

3. TinyJ

TinyJ is developed by Advancel Logic Corporation. The advantage of TinyJ is the
support of cryptographic technology, so'they especially suited the JavaCard and e-business
devices. The derivations of Tinyd are very practical product, shch as TinyJDSP processor

that integrates TinyJ and DSP Core, and Tiny2J that 1s designed for Java Card and Smart

Card.

4. MOON

MOON is a Java specified chip developed by Vulcan Machines. The basic
architecture of MOON is a traditional Von Neumann machine, so their instruction set and
data are stored in the same address space. MOON core size is very small and it has a good

performance. The only disadvantage of Moon is that the Garbage Collection must be

Software Architecture of Jazelle Chip

implemented in software, which makes it weak than others.

36

3. Problem Formulation

In this chapter, we first formulate our problem. Then we will give an overview to the
open source system, Java Optimized Processor (JOP), upon which our proposed system is
built. The software layer stack, system architecture, datapath, and hardware/software

co-design of JOP will be discussed in section 3.2.

3.1. Introduction

In order to make the DVB-MHP system stable and condensable, we choose JOP as
our code base of Java VM in DVB-J functional, block. JOP is an hardware/software
co-design system, which we will state in the next. section. As we mentioned before,
although interpreter is the most suitable kind-of-embedded Java VM implementation due to
its simplicity and low resource requirément, it‘has a big problem in efficiency. Typical
dynamic code optimization (Sun’'s VM RI described in subsection 2.1.4.1) can speed up
the execution of this approach, but it suffers from the overhead of external memory access.
Furthermore, it sometimes is dispensable because the modified codes will never be
executed again.

In this research, we want to design a new hardware/software co-processing dynamic
code optimization scheme that is more suitable for embedded system. Our goal is to make

the JavaVVM more efficient and significantly cut down on the power consumption.

37

3.2. Java Optimized Processor - JOP

Java is seldom used in embedded systems. Actually, many features of Java, such as
thread support in the language, could greatly simplify development of embedded systems.
Based on this concept, Java optimized Processor (JOP), which is part of a Ph.D. thesis at
the Technical University of Viennain Austria, is developed by Martin Schoberl In Oct 2001.
[14]

JOP is basically a hardware implementation of VM with predictable execution time
for embedded real-time systems. The goal of this development is a smple and small Java
processor optimized to execute Java bytecodes. Due to the small size of this processor, it
can be implemented in a low cost FPGA. The flexibility of an FPGA can be of more

importance for low volume systems compared to conventional Java processors.

LY o R
e | o aly at ;
= | GE| B W)
=t — N, TR
. == :C| o T
= N = il i ~ -

/ The Java Runtime System \

A Support Code:
R - \ Exceptions
Applet or 3 Threads
application i LS i?rclgﬂw
lass fil 4 Pport
class files , ,ff # i
ke Linker (byrecode)
Loader
>
Execution Engine
* jop (VHDL code, in FPGA)
(in SRAM)

\ ﬂ

Fig25. Java Optimized Processor Runtime Environment

JOP is one way to use a configurable Java processor in small embedded real-time

38

systems. It shall help to increase the acceptance of Java for these systems. However, it
suffers from the restrictions of embedded systems. Because of the memory limitation and
security concerns, JOP is compatible with the Java Virtual Machine but has following
restrictions:

» No support for floating point data types (float and double).

* No support for the Java Native Interface (INI).

* No user-defined, Java-level class loaders.

* No reflection features.

 No support for thread groups or daemon threads.

* No support for finalization of class instances.

» No weak references.

* Limitations on error handling:

The simplified Java Runtime System is tliustrated in Fig 25. Compared to the typical
Java Runtime Systems in Fig 18, we:can-see-that there are no Java Native Interface and
dynamic class loader and verifier support.. Furthermore, garbage collection is not allowed
because it is not suitable for such real-time systems.

The important step of executing Java programs on JOP is JavaCodeCompact (JCC),
which is also known as the class prelinker, preloader or ROMizer. This utility allows Java
classes to be linked directly in the VM and reduces VM startup time considerably.
Bytecodes of Java programs and Java APIs including support codes that are used in this
program do the JavaCodeCompact and output a file to be stored in external memory. Then

execution engine starts to execute this program. [8]

39

3.2.1. Software Layer Sack of JOP

In Java 2™ platform we mentioned in subsection 2.1.4.2, JOP is targeted at the Java 2
Micro Edition (J2ME). 2ME isafour-layered structure. Upon the operation system and Java
Virtual Machine, configuration and profile are presented. A J2ME configuration defines a
minimum platform for a“horizontal” category or grouping of devices, each with similar
requirements on total memory budget and processing power. A configuration defines the
Java language and virtual machine features and minimum class libraries that a device
manufacturer or a content provider can expect to be available on all devices of the same
category, such as Connected Device Configuration (CDC) and Connected, Limited Device
Configuration (CLDC). On the other hand, a J2ME profile is layered on top of (and thus
extends) a configuration. A profile addresses the specific demands of a certain “vertical”
market segment or device family.-The main/goal.of & profile is to guarantee interoperability
within a certain vertical device family or domain by defining a standard Java platform for
that market. Profiles typically include-class fibraries.that are far more domain-specific than
the class libraries provided in a configuration. The most famous profile that we know is
MIDP (Mobile Information Device Profile). [8]

Due to the features of embedded system, JOP must have its own configuration
and profile. Fig 26 digests the configuration and profile that JOP are compatible. Small
Embedded Devices Configuration (SEDC) is intended for small embedded devices with a
16-bit (or even 8-bit) microprocessor and alow memory budget (below 128 kB). The VM
restrictions of SEDC are similar to CLDC 1.0 but smaller than. SEDC use JCC to simplify
the application with preverified and preloaded mechanisms. Threads are not part of SEDC,
and there are no stream input/output facilities. [17] Ravenscar Tasking Profile is designed in
the concept of the ADA Ravenscar Profile [19]. It resembles the ideas from [18] and [20]

but is not compatible with the RTSJ. This profile addresses the same devices as SEDC. Java

40

language run on this profile and configuration also called Ravenscar Java.

» JOP layer stack: » J2ME software layer stack:

Ravenscar Java
Not compatible i MIDP. FP.PP...
g, with the RTSJ Profiles I
Tasking Profile

N . CDC. CcLDC
Configuration

Small Embedded JVM restrictions are
Devices Configuration similar to CLDC 1.0
4 Java Virtual Machine JVM. KVM ...

Java Optimized Processor

vt

Host Operating System

Fig26. SoftwareLayer Stack of JOP

3.2.2. System Architecture of ,JOP

A typical configuration of JOP contains the processor core, a memory interface, a
number of 10 devices, and the modul e extension which provides the link between processor
core, memory and 10 modules. Block diagram of JOPisillustrated in Fig 27 (see[14]).

The processor core contains four pipeline stages. bytecode fetch, microcode fetch,
decode and execute, which we will discuss in next subsection. As we see, there is no direct
connection between the processor core and the external world. The memory interface
provides a connection between the main memory and the processor core. It also contains
the bytecode cache, which caches the whole method code of one method. The I/O interface
controls peripheral devices, such as the system time, the timer interrupt, a serial interface

and application-specific devices.

4

BC Address | Memory Interface
BC Data '

Bytecode

Bytecode
Cache
A

Fetch

Data E Control
Fetch Control)
Extension
Data
<
R - -
Decode A Multiplier

Data E Control

Stack
e

Fig27. Block Diagram of JOP

The division of this processor ihto'those four modules greatly simplifies the
adaptation of JOP for different applicat"i o domains or hardware platforms. For example, in
order to port JOP to a different FPGA device, one only needs to modify the memory

module alone, but not the processor core.

3.2.3. Datapath of JOP

In previous subsection, we said that JOP uses a four-stage pipeline architecture and
every instruction in JOP is exactly executed in one single cycle. Look at Fig 28 (see [14]).
Bytecode is fetched in order by pc register, and then looks it up in the jJump table to get the
start address of the translated microcode sequence. This is done in the first stage. In the
second pipeline stage, JOP uses the start address to jump to the corresponding microcode.

It is decoded and executed until the nxt instruction in next two pipeline stages.

42

bytecode branch

branch
Bytecode Microcode Microcode Execute
Fetch, translate 1| Fetch and [:\/,\ Decode
and branch branch
\ next bytecode \T micrpcode branch condition
\ N\
\ bytecode branch conVition spill,
\ fill
\ \
Stack Stack
\ L
\ N Address
\ dsneration RAM
L N
A
Java \ Jump \)
bytecode < table 4 JOP microcode

aaload
iload_2
idiv

wait

Fig 28.

&dmul
&idiv
&ldiv
&fdiv

iadd: add nxt

isub: sub nxt

idiv: stm b
stm a

[dm c nxt

Datapath and Data:Flow of JOP

This stack architecture allows for a short pipeline, which results in short branch delays.

Two branch delay slots are available after a conditional microcode branch. All the needed

memory while execution, such as the method cache (bytecode cache), microcode ROM,

and stack RAM, are implemented with single cycle access in the FPGA's internal

memories. [14]

3.2.4. Hardware/Software Co-design of JOP

JOP is a hardware/software co-design Java processor. Moving functions between

hardware and software is very easy, and this feather is resulting in a highly configurable

design. If the execution speed is the important issue, more functions are realizes in

43

hardware; if the cost is the primary concern, these functions are moved to software and a
smaller FPGA can be used.

There are three implementations of bytecodes. They can be VHDL code
implementation, microcode implementation, and Java code implementation. Bytecodes that
are not implemented in VHDL or microcode result in a static Java method call from a
specia class. The additional overhead for this implementation is a call and return with
method cache refills. A comparison of resource usage and execution time for the three
implementations of imul is listed in Table 4. We can see that the implementation in Javais
slower than the microcode implementation and consequently VHDL implementation as the

Java method isloaded from main memory into the bytecode cache.

Hardware | Microcode Time
(LC) (Byte) (cycle)
VHDL 156 10 35
Microcode 0 73 750
Java 0 0 2300

Table4. A Comparison of Different.fmplementations of imul

4. Proposed Dynamic Code Optimization System

Due to the demand of efficiency in DVB-MHP applications, we need to further
improve the performance of the JOP system. By analyzing the execution frequency, we
observed an important feature and use it to design our new dynamic code optimization
scheme.

In this chapter, we first discuss the data structure using our framework. Then we
analyze the bytecode execution frequency and give an overview to our scheme. Finally, the

hardware and software modules of our design are respectively illustrated.

4.1. Data Structure Using in-Qur Dynamic Code Optimization

In this section, the data structure-using dynamic code optimization is given. These
include the data arrangement in the external-memory, method cache and each of the runtime

data structure.

4.1.1. Data Arrangement in the External Memory

The application programs are compiled into Java class files by the Java compiler
(avac), with al the linked library programs recompiled, and then passed to
JavaCodeCompact (JCC).

In conventional class loading, javac is used to compile Java source files into Java
class files, which are loaded into a Java system, either individually, or as part of a jar

archive file. Upon demand, the class loading mechanisms resolve references to other class

45

definitions. JCC provides an alternative means of program linking and symbol resolution.
First the multiple input class files will be combined, and JCC will determine the layout and
size of an object instance. Only the designated class members will be loaded and linked
with the Java Virtual Machine in order to reduce JVM’s bandwidth and memory
requirements. Resolution of symbols is also performed in this stage, which reduces the
start-up time of VM.

The output of JCC isaC file and its format can be arranged by the user-defined writer.
In JOP system, the writer is redesigned to have JCC output a data layout file like the data
arrangement in the external memory (SRAM in Spartan-3) and loaded it directly to the

external memory. An illustration of it is shown in Fig 29.

0 Address-of Special Pointer

All'Method’s:-Bytecode

Special Pointer

String Table
| __ Static Fields____
_Class Information _
All
Classes Method Table :

(a method use 2 address)

Interface Table

Fig29. DataArrangement in the External Memory

All of datain this output file are united in 32 bits of an address. This means that the

address 0 has 32 bits data, and the 33" bit is the first bit in address 1. After collected all the

46

designated method bytecodes, JCC has the bytecode size in 32-bits. The JOPWriter writes
this size added one in the first address, and then all the designated method bytecodes.
Finished all the writing of bytecodes, the next writing address must be the data saved in
address O, because it is the size of bytecodes added one.

Then we save four speciad pointers. a pointer to boot code, a pointer to first
non-object method structure of class VM, a pointer to first non-object method structure of
class IVMHelp, and a pointer to main method structure. We can easily get special pointers
by using the data in address 0, because it is also the address of first special pointer. For
example, the datain address O adds three is the address of main method structure.

The next areais the string table area, followed by the all-class data area. The all-class
data area contains the static fields, class information, method table, constant pool, and
interface table if this class has interfaces. In thisarea, the data related to all the classes are
listed one after another.

All of the information in the output fite-(the same as in external memory) will be used
while execution. The method table (Fig 30).of ‘aclass is the key data structure to get the
address to other class information. Note that a method table occupies two address space,

and an address is 32 hits.

Start Address Method Length

Constant Pool | Local Count Arg. Count

0 22 27 31

Fig30. Method Table Sructure

The highest 10 bits in the first address of method table are the length of method

bytecodes with 32 bits a unit. By shifting right 10 bits of the first address we can get the

47

method bytecodes’ start address that points to the second block in Fig 29. The start address
has 22 bits and it is in Big-Endian byte order. The second address stores the constant pool
pointer in 22 bits, the number of local variablesin 5 bits, and the number of argumentsin 5

bits.

4.1.2. Method Cache

Method cache is also called bytecode cache which we had mentioned in subsection
3.2.2. Because the fetch of external memory is very expensive, the concept of method cache
is created in JOP. During one external memory fetch, the whole bytecodes of one executing
method are fetched and loaded to the method cache, which is usually a memory area
synthesized on FPGA. The externalsmemory feteh time can be smaller than fetching one
address a time. For example, assume that we fetch one address in externa memory takes 3
microseconds (= 10 ™ -6 seconds). We will“spend 30 microseconds if we want to fetch a
method with 10 units (32 bits a unit) address bytecodes. However, if we fetch all bytecodes
of that method (10 units address) one time, we may just spend 22 microseconds in fetching
external memory.

Method cache is designed to cache just one method bytecodes. Consider this example
program [14]:

Foo () {
AQ;

B();

We will have the following cache loads:

48

1. method Foo isload on invocation of Foo()

2. method A isload on invocation of A()

3. method Foo isload on return from A()

4. method B isload on invocation of B()

5. method foo isload on return from B()

It should refill the method after returned from its internal method. This is the main
drawback of the method cache. But by that we can almost make sure that the method cache
will reload when executing the same method next time. As a result, we do not need to
reflash the method table when we modified the executing method bytecodes in our dynamic

code optimization scheme. This also saves much time in doing optimization.

4.1.3. Runtime Data Sructure

As we mentioned before,-memory-is addressed as 32 bits data, so the memory
pointers are incremented for every four bytes. No'single or 16 bits access is necessary in
our JOP system. The reference data type is a point to memory that represents the object or
an array, which is pushed on the stack before an instruction operating on it. A null reference
is represented by the value 0 [14].

In the following we are going to see each runtime data structure.

4.1.3.1. Stack Frame
First we look into the stack frame. On a method invocation, the information of the
invoker is saved in a newly allocated frame on the stack. It is restored when the method
returns. The information consists of five registers. SP (Stack Pointer), PC (Program

Counter), VP (Variable Pointer), CP (Constant Pool Pointer), and MP (Method Table

49

Pointer).

SP, PC and VP are registers in JOP while CP and MP are local variables of VM. Fig
31 (see [14]) provides an example of the stack change before and after invoking a method.
The caller has two arguments and the called method has two local variables. The arguments
that we want to pass into the invocated method can be accessed in the same way as local
variables. Asin this example, the argumentsarg_0 and arg_1 will become var_0 and var_1

with the original var_0 and var_1 shifted to var_2 and var_3. The start address of the frame

can be calculated with the information from the method table:

Frame address = VP + Arg. Count + Local Count

VP —

var_ 0
var_ 1
var_2

Previous SP
Previous PC
Previous VP
Previous CP
Previous MP

Operand Stack

SP—

arg_0
arg_1

Fig 31.

Old <

Frame

var_ 0
var_1
var 2

Previous SP
Previous PC
Previous VP
Previous CP
Previous MP

Operand Stack

VP —

var_0
var 1
var_2
var_3

This —
Frame

SP —

Previous SP
Previous PC
Previous VP
Previous CP
Previous MP

A

50

Sack Change on Method Invocation

4.1.3.2. Data Layout

In JOP, objects are stored in memory during runtime in the Fig 32 (see [14]) format.
Note that the object reference points directly to the first reference of the object to speedup.

We can access the class information pointer by object reference subtracted one.

Class Method Pointer

Object = —— Instance Variable 1
Reference Instance Variable 2

Instance Variable n

Fig32. Object Format

The array layout in memory is just like an object. We showed the array format in Fig

33 (see [14]). Also, if we want, to access the array length, just take object reference

subtracted one.

Array Length

Array — Element 1
Reference Element 2
Element n

Fig33. Array Format

4.1.3.3. Runtime Class Structure

The runtime class structure of JOP is shown in Fig 34 which had discussed in 4.1.1 as
all classes' information. This class structure is stored in the external memory. For indicating

the pointers in previous data structure, we drew this class structure again with pointers

Class Reference, Class Method Pointer, MP. and CP.

51

subsection.

Class Reference
Class Method

Class Variable 1
Class Variable 2

Instance Size

A4

Interface Table

Pointer

Current Method (MP) —

v

Method Structure O
Method Structure 1

Class Reference

Constant Pool (CP) —— Constant Pool Length

Fig 34.

Constant 1
Constant 2

Interface Reference 0
Interface Reference 1

Runtime.Class Sructure

4.2. The Proposed Dynamic Code Optimization Scheme

In this section, we propose our dynamic code optimization scheme. First we analyze
the bytecode execution frequency, from which we get the new idea of improvement. Then
we compare the access time of the external memory and the internal memory. By reducing
the number of dynamic code modifications that do not improve the performance, we can

make the system more efficient. The architecture overview is illustrated in the last

4.2.1. Analysis of Bytecode Execution Frequency

In subsection 2.3.3, we have mentioned that Hotspot uses optimistic compilation

52

which can dynamically choose which instructions needs to be compiled and the rest are
executed by the interpreter. The decision is based on the execution frequency. This concept
iIs used in many systems. For example, the famous code morphing processor from
Transmeta also uses execution frequency to decide whether the code is to be interpreted or
to trandated. As Fig 35 (see [22]), the trandation threshold is decided by the code
execution frequency. When the number of executions of a section of x86 machine code

reaches a certain threshold, its address is passed to the trand ator.

Interpreter Translator

Translate Region
Store in Tcache

Exceed
Translation
hreshold 2

A

Yes

A4

Interpret

Next Rollback Y| - CXECUte .
Instruction fault Translation | chain
from Tcache

Not s
foun

Find Next
Instruction
in Tcache?

Found

Fig35. Transmeta Code Morphing Software Control Flow

We analyze the bytecode execution frequency using the three benchmark programs
described in section 5.2. The distribution of bytecode execution frequency is listed in Table
5 and Fig 36 shows the diagram. The number of bytecodes is counted under the given

execution frequency. Consider the following analysis data. When executing the UDP/IP

53

program, there are 385 bytecodes that are executed 9 times and 210 bytecodes are executed

13 times. For the same bytecodes (e.g. aload_0), they are different in different methods or

sequences.
frequency Renehmark] sieve Kl UDP/IP
1 487 267 292
2 1 2 0
3 0 5 3
4 24 1
5 15 13 8
6 129 65 72
7 283 142 69
8 145 259 141
9 382 284 385
10 425 378 287
11 622 241 342
12 319 389 356
13 386 165 210
14 245 121 368
15 77 242 224
16 164 86 165
17 231 69 82
18 89 32 114
19 54 44 32
20 32 3 46
= 2 0 15
22 17 2 3
23 0 0 0
= 1 0 2
25 2 0 0
all 4132 | 2809 3217

Table5. TheNumber of Bytecodes under the Given Execution Frequency.

54

Look at the curves in Fig 36. We observe a very important rule. The bytecodes are
almost executed exactly once or much more than twice. This observation is the critical

point in our design.

700
600
g 1‘ --¢--Sieve
% 400 [\,1 —X— Kﬂ
B | —-&--UDP/IP
s 300
O
: .
Z 200 !
100) X 'Xé\
/,,/A‘ \xj%’“$~
0 Axs&ng)@lx’\ I L \\\xj:QLg!t_K.J;ﬁA_KJ
1 2345678 91011121314151617 18192021 22 232425
Execution Frequency

Fig 36. Distribution of Bytecode Execution Frequency

4.2.2. Access Time of External Memory & Internal Memory

Aswe mentioned before, typical dynamic code optimization (Sun’s VM RI described
in subsection 2.1.4.1) can speed up the execution of embedded Java VM, but it suffers from
the overhead of external memory accesses.

Consider the JOP system. The clock frequency of both FPGA and SRAM is 50MHz,
so the clock timeis calculated as following.

1l 0% -002x10° = 2x10®seconds
50M 50

55

The interna memory access only needs 1 cycle. But if it is the externa memory, it
needs 5 cycles for memory read and 7 cycles for memory write on JOP because JOP is

designed for various developing boards. The microcode sequence of external memory read

isshownin Fig 37.

stmra
nop
wait
wait
[dmrd

Fig37. Microcode Sequence of External Memory Read

Upon execution of a memory read, the,address is stored and the processor waits for
the value to arrive and then pushed the value to. the top of the operand stack asin Fig 31.
Each microcode executes in a single cycle, so the external memory read needs 5 cycles. For

the microcode sequence of external memory-write shown in Fig 38, it needs 7 cycles.

stmwa
nop
stmwd
nop
wait
wait
nop

Fig38. Microcode Sequence of External Memory Write

As aresult, if we can reduce the number of dynamic code modifications that do not
give us any advantages, e.g. the codes that are exactly executed once, we can make a big
improvement of execution time and cut down the power consumption. In next subsection

we are going to introduce the design of our dynamic code optimization module.

56

4.2.3. Architecture Overview

In subsection 4.2.1, we knew that bytecodes are almost executed exactly one time or
much more than two times. Then in subsection 4.2.2, we analyzed the memory access time,
and found that the access time of external memory is a big overhead of the traditional
dynamic code optimization scheme. Based on these two observations, we designed the new
dynamic code optimization architecture called JDCO.

To speed up the execution and cut down the power consumption, we only modify the
codes when it is necessary. That is, if the code is executed exactly one time, we do not do
the dynamic code optimization — constructing a new bytecode to replace the original
bytecode and storing the field or method offset/in the operand of new bytecode. Because
the method bytecodes are stored in external memory in most embedded system and also our
JOP system (described in subsection 4.1.1), thisnew modul e can execute the Java programs
with dynamic code optimization in‘amore efficient'way.

However, if the execution frequency can not be determined upon the first encounter of
a bytecode (unless we do a “fast-forward” to check whether the bytecode will be executed
again, which has unacceptable overhead). Another possible way is to perform a pre-pass
counting of the execution of the bytecodes, but this is aso very expensive. We proposed a
simple algorithm that reduces unnecessary modifications with very low overhead. The
proposal is as follows. A small memory is synthesized in the FPGA to count the number of
execution of each bytecode during execution. For the first execution, no dynamic code
modification is performed. The DCO is only done at the second time the code is executed,
because we assume that it will be executed again and again base on the observation of

subsection 4.2.1. For third execution and above, we can directly use the operand of new

57

bytecode to speed up the performance and cut down the power consumption.

bytecode branch

l branch |
Bytecode Microcode Microcode N Execute
Fetch, translate Fetchand [] ll: Decode — V]
and branch branch
‘ T next bytecode | \T microcode branch condition ‘
v N
s bytecode branch conditiofy,
\ N\ spill,
\ fill
‘ Stack Stack
< —,\
‘ >\ Address _‘/
Neration RAM
\ N\
b\
aaload . jadd: add nxt | JOP
Java pc . JOP pc » iadd: add nx
iload_2 &_d'f”UI T isub: sub nxt microcode
idiv &idiv . ¢ idiv: stm b
walit &ldiv Original | stm a
&fdiv w
Java Jump
bytecode . Table Idm ¢ nxt
v‘ 4 J
Can not be
optimized
JDCO bytecodes
> implementation
Can be
optimized
Il Hardware
&putfield E
&getfield i »| JDCO_Java
&invokevirtual [Naw JOP pc : LRES > -
&invokeinterface Jump
Table

Fig 39.

Our JDCO Architecture Overview

The flowchart of our JDCO architecture is shown in Fig 39. We mark our new

modules in colored background with distinguishing hardware and software implementation

58

modules. In the beginning of the first stage, bytecode fetch, a bytecode is pointed by Java
pc to be executed. The bytecode will passto a JDCO check module, which will check if this
bytecode can be optimized or not. For example, if the bytecode has the information that can
be recorded for speeding up the next execution (e.g. getfield. putfield. etc.), we say that it
can be optimized. If the answer of JDCO check is yes, our system will further check if itis
the first time to execute this bytecode to decide whether we should perform DCO or not. If
it is not the first time of execution, the new JDCO optimization will look up the bytecode in
our new jump table to get the JOP pc, which points to our new JDCO module in the second
stage, microcode fetch. JDCO will execute this bytecode and get the runtime information
depending on the specific bytecode. It may be the offset of an object field, or of the class
method that will not change when next time we execute the same bytecode. The runtime
information will be passed to a JIDCO Java program.which will construct a new bytecode to
replace the original bytecode in external memery, and store the runtime information in the
operand of this new bytecode.

If the answer of the JDCO checkis.no, or- It is yes but this is only the first time of
execution of the byte code, our architecture will follow the original procedure. Looking up
in the jump table, the JOP pc is retrieved for execution. The corresponding bytecode
implementation is executed whether it is a newly implemented bytecode that we
constructed or not. The implementation of the bytecode may be the VHDL implementation,

microcode implementation, or Java Code implementation.

4.3. Implementation Details

In this section, we are going to look into more details of the implementation. The

description is divided into two parts. hardware implementation modules and software

59

implementation modules, which distinguished in Fig 39.

4.3.1. Hardware Implementation Modules

In our design, a hardware module is needed for first time of execution checking. We
need to synthesis a small on-chip memory that can count the execution times of each

bytecodes, and then decide to do the origina bytecode implementation or the JDCO

module.
External Counting
Memory Memory
Address 8k * 1 bit
’ ipe
> Bytecode RAM
—
A—»
— Translation | jpaddr
: addr data q table .
. jpcbr
—i + <
opd opd jinstr
high | _ low

Fig 40. Java Bytecode Fetch Sage of Our JDCO

We have mentioned in subsection 3.2.3 that JOP has four pipeline stages. In the first

pipeline stage as in Fig 40, the Java bytecodes are fetched from the internal memory

60

(Bytecode RAM). The bytecode is mapped through the trandation table into the address
(jpaddr) for the microcode RAM in next stage.

We synthesize an 8K * 1 bit memory called Counting Memory, in which one bit map
to an address of method bytecode in external memory (see Fig 29). When Java bytecodes
are fetched from the internal memory, we use its start address of method as an index to see
if the bit in Counting Memory is set or not. If it is set, we know that it is the second time
executed. Then the address of the modified bytecode implementation (e.g. putfield_modify
in next subsection) is mapped through the trandlation table and passed to next stage. If the
bit is zero, then the address of original bytecode (e.g. putfield) is mapped and passed.

Finally the corresponding bit in Counting Memory is set.

Busy
JOP Core (-~ torass "] Memory Interface
< BC Data
Bytecode ﬁ— Bytecode <::‘/I\
owa
Dat 1 Control
Fetch Control - :
_ Data | EXtension
B
Decode . — Multiplier
— -
ﬁData E Control
Stack '
 Interrupt —:> __________ I/O Interface <:>

Fig4l. Block Diagram of The Proposed JDCO

The block diagram of JOP has been shown in Fig 27. The main modification isin the

Bytecode Fetch stage of JOP core. But we do not have the method start address of external

61

memory because method bytecodes are fetched from the bytecode cache missing the
original address in external memory. So we need to map this port (external memory address)
from memory interface to JOP core, and map to the Bytecode Fetch stage. We summarize

our modification and redraw thisasin Fig 41.

4.3.2. Software I|mplementation Modules

In bytecode level, first we should figure out what bytecodes are needed to do our
JDCO. Based on Sun’s VM Reference Implementation, we may have 25 bytecodes (Table
1) that can be considered. But most operands of them are not modified. The new bytecodes
of these bytecodes just indicate that they have been resolved. In section 3.2, we have
introduced that all bytecodes are passed to JavaCodeCompact (JCC) first, and then the
output is loaded into the external memory:in - JOP-system. In other words, al method
bytecodes in external memory have beenresolved, and the DCO is not useable for these. As
a result, we only have four bytecodes needed to do JDCO: getfield (180), putfield (181),
invokevirtual (182) and invokeinterface (185).

To fulfill our IDCO modules, two bytecodes need to be constructed for one bytecode
without changing the instruction length. We list the new bytecodes of our architecture with
their format in Table 6.

Upon the first time of executions, we will executed the original bytecodes. Modified
bytecodes are used in the second executions and above, and replaced itself in the new
bytecodes. The offset of object field or class method will be stored in the operand of the

new bytecodes for next execution.

62

bytecode format
180 getfield indexbytel | indexbyte2
Original 181 putfield indexbytel | indexbyte2
(nift::;::(: d) 182 invokevirtual indexbytel | indexbyte2
185 invokeinterface indexbytel | indexbyte2 | nargs
228 getfield_modify indexbytel | indexbyte2
229 putfield_modify indexbytel | indexbyte2
230 invokevirtual_modify indexbytel | indexbyte2
Our JDCO 231 invokeinterface_modify | indexbytel | indexbyte2 [nargs
Bytecodes 233 getfield_new offserbytel | offsetbyte2
234 putfield_new offserbytel | offsetbyte2
235 invokevirtual_new offserbytel | offsetbyte2
236 invokeinterface_new offserbytel | offsetbyte2 | nargs
Table6. Our Designed JDCO Bytecodes & Their Formats

63

5. Performance Study

In this chapter, we first introduce our development environment — Xilinx Spartan-3
Developing Board, and then we state the Java benchmark used in this research. Finaly, the
experiment results are shown and discussed. We analyze the performance on both execution

time and power consumption.

5.1. Xilinx Spartan-3 Developing Board

The Xilinx Spartan-3 Developing Board is used for the development of the proposed
Java VM accelerating algorithm. The top_side and-bottom side of the board are shown in
Fig 42 and Fig 43 (these figures aretaken directly from the user guide. [21]).

The equivalent gate counts.of. the target-Spantan-3 device are 200,000 gates, and the
logic utilization of JOP on the FPGA'is 64 percent. The data path of Spartan-3 is 32 bits
with an 8-bit memory interface. Shift instruction can be computed in exactly one single
cycle. The external memory devices of JOP on Spartan-3 is a 32-bit SRAM blcok of 1M
bytes and an 8-bit flash of 2M bits. Java program is compacted by JCC to *.jop file which
is loaded into SRAM. Configuration data is stored in flash. Finally, the maximum working

frequency of this processor is 194.621 MHz, according to the synthesi zer.

64

A1 Expanslon Connector f A2 Expanslon Connector

AL FCULBLIC CRL LR UL VLR B Voot AU OB WLOC BB
= @ 91{

e
ey 24 bit
PiatbormFash

.

E'iIIII]IIIIIIIIIIII[I

XILINX
XC35200
FPGA
0

B1 Expansion Connector

: llﬂl
NO0Ea0n0 &

Fig42. TheTop Sideof Xilinx Spartan-3

Fig 43. The Bottom Side of Xilinx Spartan-3

5.2. Java Benchmark Programs

In this research, we use three small Java benchmark programs, which contain a

65

synthetic benchmark (Sieve of Eratosthenes) and two application benchmarks, Kfl and

UDP/IP. [14] We describe them in the following subsection.

5.2.1. Sieve of Eratosthenes

This program will produce a list of prime numbers. The algorithm is proposed by
Erastosthenes. His method is as following. First, write down a list of integers. Then mark
all multiples of 2. The next step is, move to the next unmarked number, in here is 3, and
mark all its multiples. Continue to mark all multiples of the next unmarked number until
there are no new unmarked numbers. The numbers which survive from this marking

process (the Sieve of Eratosthenses) are primes.

522. Kifl

Kfl is adopted from a real-time application which is taken from one of the nodes of a
distributed motor control system. The motor control system is a solution to rail cargo.
During loading and unloading goods from wagons, a large amount of time is spent due to
the obstacle of contact wires. Balfour Beatty Austria developed and patented a technical
solution called Kippfahrleitung to tilt up the contact wire. An asynchrony motor on each
mast is used for this titling. However, it has to be done synchronously on the whole line.
[23]

Each motor is controlled by an embedded system. This system also measures the
position and communications with a base station. We show the mast with the motor and the
control system in down and up positions in Fig 44 (see [14]). The base station need to
control the deviation of individua positions during the tilt. It also includes the user
interface for the operator. In technical term, thisis a distributed, embedded real -time control

66

system, communication over an RS 485 network.
A simulation of both the environment (sensors and actors) and the communication
system (commands from the master station) forms part of the benchmark, so as to simulate

the real-time workload.

Fig 44. Pictures of a Kippfahrleitung Mast in Down and Up Position

5.2.3. UDP/IP

UDP/IP benchmark is composed of atiny TCP/IP stack (Ejip) for embedded Java.
This benchmark contains two UDP server/clients, exchanging message via a loopback

device.

67

5.3. Experiment Results

We simulated our dynamic code optimization scheme on Spartan-3. The percentage of
logic utilization increment is less than 1%, but we have made a big improvement in both

execution time and power consumption. Now we are going to discuss in these two aspects.

5.3.1. Execution Time

We synthesize our JDCO system with comparisons to DCO (no frequency check) and
the original JOP system. The execution timeislisted in Table 7 and shown in Fig 45. In the
table, we can see that the average speedup of our system is 13.8%, and compare to DCO
system, we also have 7.1% execution time speedup.

Considering the execution time of each-benchmark, we find an interesting phenomena.
Let usfocus on the results of UDP/IP benchmark. In our JDCO system, it has 9.7% speedup
compared to DCO system, while other two benchmarks only have 6.0% and 5.6% speedup.
The reason is that the UDP/IP benchmark has many initialization and executed-only-once
code, so our JDCO system can make a big improvement by avoid that cases. Actualy, the

performance of this system is dependent on the Java program behavior.

¥**" 30p | pco | aoco | bcowor | apcoor| spcomeco
benchmark
Sieve | 11813 | 11043 | 10382 | 0.935 0.879 0.940
Kfl 2719 | 2419 | 2284 0.890 0.840 0.944
UDPIP | 4813 | 4627 | 4179 0.961 0.868 0.903
average | 64483 | 60207 | 56150 | 0.929 0.862 0.929

Unit: millisecond

Table7. Execution Time

68

UDP/IP B JOP

4 DCO

g JIDCO
=

ae

2]

E

Sieve
0 5000 10000 15000

Execution Time (milisecond)

Fig 45. Execution Time

5.3.2. Power consumption

To estimate the power consumption savings; we.can anayze the microcode execution
cycles and the external memory:access times. We discuss the two aspects in the following

subsections.

5.3.2.1. Microcode Execution Cycles

Aswe know that the less microcode execution cycles, the less power consumption will
be. We analyze the microcode execution cycles of each bytecode and separate them by the
number occurrences. The analyzed dataisin listed in Table 8.

Because we have different microcode execution cycles in different number of
occurrences, we should know the total execution times of the modified bytecodes of each
benchmark separating by the number of occurrences, which is listed in Table 9. But these
are the sum of the four modified bytecodes (putfield, getfield, invokevirtual, and
invokeinterface), we should know the percentages of each of them. By analyzing the

benchmark programs, we assume the percentages of the bytecodes as following:

69

180:181:182:185= 40:20:20:1
{occurences For JDCO For DCO
bytecodes first second third and later first second and later
getfield 20 33 7 33 7
putfield 23 36 10 36 10
invokevirtual 106 119 98 119 98
invokeinterface 118 131 110 131 110

Unit: cycles

Table8. Microcode Execution Cycles of Each Bytecode

We can cal cul ate the microcode execution cycles by the following formul ation:

> (T *(> (cycles

occurrence

bytecode

* P)))

T isthe execution times in Table 9, and-P.is the percentage of bytecodes. For example,

P of getfield is 40/ (40+20+20+1)."The principle of this formulation is to calculate the sum

of the execution cycles multiply“the execution-times. The execution cycles are calculated

according to the percentage of each bytecode. Note that the microcode execution cycles of

original JOP are aways the same as the first time of JDCO.

occurences

For JDCO For DCO For JOP
bytecodes first second third and later first second and later all
Sieve 1874 1592 17462 1874 19054 20928
Kfl 1129 1001 12384 1129 13385 14514
UDP/IP 1342 1128 14287 1342 15415 16757

Table 9. Execution Times of Bytecodes 180. 181. 182. 185

We still calculate the execution cycles of our IDCO system with comparison to DCO

and original JOP system. The experimental results are listed in Table 10 and shown in Fig

70

46. Because we only calculate on the modified bytecodes, we need to know the percentage

of them of al bytecodes. By anayzing the benchmark programs, we get that the roughly

percentageis 1/2. Thatis, (180 + 181 + 182 +185) = all = >

1

As in Table 10, our JDCO has average 20.8% less execution cycles for the modified

bytecodes, so for the all bytecodes, we have 10.4% less execution cycles than the original

system. However, our JDCO has a little more microcode execution cycles than DCO

system. This can be easily explained. By comparing between our JIDCO and DCO system,

we have less execution cycles for the executed-only-once bytecodes, but the needless first

time overhead is happened to all the other bytecodes.

benchmareYteml Jop DCO JDCO DCO/JOP | JDCO/JOP | JDCO/DCO
Sieve 903779.6 705139.2 720105.5 0.780 0.797 1.021
Kfl 626789.8 484812,7 494864.1 0.773 0.790 1.021
UDP/IP 723654.1 5606876 571107.3 0.775 0.789 1.019
average 751407.8 583546.5 595359.0 0.776 0.792 1.020
Unit: cycles
Table10. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185

B JOP
DCO
JDCO

Java Benchmark

0 200000 400000 600000 800000 1000000
Microcode Execution Cycles of Bytecodes 180. 181. 182. 185

Fig 46. Microcode Execution Cycles of Bytecodes 180. 181. 182. 185

71

5.3.2.2. External Memory Access Times

In addition to the microcode execution cycles, there is another important factor of
power consumption. That is the external memory access times. Like the microcode
execution cycles, the less external memory accesses, the more power consumption saving.

The calculation is similar to the microcode execution cycles. We also list the external
memory access times of each bytecode and separate them by the number occurrences asin
Table 11, in which we calculate the sum of memory read and memory write. The times 3 or
5 is based on the number of address we modified because an address is of 32 bits. For
example, if the address of modified bytecode is “42 1 2 181", we should modify the next
address because it contains the operand of bytecode 181. For calculating, we use the
average 4. Use this information and the total execution times of the modified bytecodes of
each benchmark separating by the‘number occurrences in Table 9, we can calculate the

external memory access times by-the followingformulation:

> (To=) /(times * P)))

occurrence bytecode
{£oceurences For JDCO For DCO
bytecodes first second third and later first second and later
getfield 2 2+43/5 1 2+3/5 |
putfield 2 2+3/5 1 2+3/5 1
invokevirtual 4 4+3/5 3 4+3/5 3
invokeinterface 6 6+3/5 5 6+3/5 5

Unit: times

Table11l. External Memory Access Times of Each Bytecode

The experiment results are listed in Table 12 and showed in Fig 47. Our JDCO system
has 22.2% less external memory access times of the modified bytecodes, so for the system

of total bytecodes, we have 11.1 % less external memory access. If comparing to DCO

72

system, we still have a little more external memory access times. The reason is as we

mentioned in the previous subsection.

system| jop DCO JDCO DCO/JOP | JDCO/JOP | JDCO/DCO
benchmark

Sieve 532243 41666.3 42130.3 0.783 0.792 1.011

Kfl 36912.2 28043.1 28532.1 0.760 0.773 1.017

UDP/IP 42616.6 32569.6 32841.6 0.764 0.771 1.008

average 44251.0 34093.0 34501.3 0.769 0.778 1.012

Unit: times

Table12. External Memory Access Times of Bytecodes 180. 181. 182. 185

Java Benchmark

Sieve

EJOP

DCO
JDCO

0 10000

20000
External Memory Access Times of Bytecodes 180.181.182.185

30000 40000 50000 60000

Fig 47. External Memory Access Times of Bytecodes 180. 181. 182. 185

73

6. Conclusion and Future Work

In this thesis, we propose a dynamic code optimization scheme which can
significantly improve the efficiency of Java program execution and cut down on the power
consumption for a hardware/software co-designed Java VM. As we mentioned above,
typical dynamic code optimization can save method |ookup and constant pool searching time
using the runtime information at the first time a bytecode is executed. However, in the
embedded system such as DVB-MHP terminal, code modification and saving of the runtime
information is very expensive due to the overhead of external memory accesses. By
analyzing the execution frequency of Java code segment, we can dynamically decide if the
dynamic code optimization is needed. This JDCO architecture can make Java execution
more efficient and more suitableto the DVB-MHP terminal due to less power consumption.

We implement this architecture based on-the Java Optimized Processor (JOP) and
verified the design on a Xilinx “Spartan-3 .development board. It is shown by our
experimental results that the proposed dynamic code optimization scheme for Java VM
hardware/software co-design has 13.8% average speedup of execution time. Furthermore,
the power consumption of the proposed system can be reduced due to 10.4% less microcode
execution cycles and 11.1% less external memory accesses compared to the original system.

Future researches can improve on recognizing the pattern of the relationship between
frequency code and non-frequency code (maybe can learn from HotSpot). By doing this,
the overhead of needless first time searching as describe in subsection 5.3.2 can be avoided.
It may give agreat improvement in power consumption. Then the format of other bytecodes
will be designed and implemented for target systems that do not use JCC. In the future, the

proposed system will be port to other more powerful developing board, such as the Xilinx

74

ML 310. It can be expected to have better performance for the JavaVM.

75

REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

David Ungar and David Patternson, “Berkeley Smalltalk: Who Knows Where the Time
Goes? " In Smalltalk-80: Bits of History, Words of advice, Addison-Wesley, Reading, MA, 1983.

Peter Deutsch and Alan M. Schiffman, “Efficient implementation of the Smalltalk-80 system,”
In Conference Record of the Eleventh Annual ACM Symposium on Principles of Programming
Languages, pages 297-302, ACM Press, January 1984.

Urs Holzle, Craig Chambers, and David Ungar, “Optimizing Dynamicaly-Typed
Object-Oriented Languages With Polymorphic Inline Caches,” In Proceeding America, editor,
Proceedings ECOOP ’91, LNCS 512, pages 2138, Geneva, Switzerland, July 15-19 1991.

Springer-Verlag.

Ming Chan, Lin, “Runtime Profiling and Analysis of Java Program Execution,” Master Thesis,
Computer Science and Information Engineering, National Chiao-Tung University, Taiwan,
June 1998.

Anders Dellian, “Dynamic Code Optimization for Statically Typed OO Languages in An
Integrated Incremental System,” In Proceeding of NWPER’94, Nordic Workshop on

Programming Environment Research, Lund, Sweden, June 1994.

David Ungar, “The Design and Evaluation of a High Performance Smalltalk System,” In MIT
Press, Cambridge, MA, 1986.

Sun Microsystems Inc., “The Java Virtua Machine Specification,” [Onlineg] Available:
http://java.sun.com.

Sun Microsystems Inc, “The K Virtual Machine White Paper,” [Onling] Available:
http://java.sun.com , June 1999.

Jon Meyer and Troy Downing, “Java Virtual Machine,” published by O’REILLY, 2000.

[10] DVB project, “Digital Video Broadcasting (DVB): Multimedia Home Patform (MHP)

76

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Specification 1.1.1,” [Online] Available: http://www.mhp.org, Jun 2003.

“The Unicode Standard: Worldwide Character Encoding, “ [Onling] Available:
http://unicode.org

“UCS Transformation Format 8 (UTF-8), ! [Online] Available;
http://www.stonehand.com/uni code/standard/wg2n1036.html

Eric Armstrong, “HotSpot: A New Breed of Virtua Maching” [Onling] Available:
http://www.javaworld.com/jw-03-1998/jw-03-hotspot.html, 1998.

Martin Schoberl, “ JOP: A Java Optimized Processor for Embedded Real-Time Systems”,
Vienna, Jan 2005.

JMichael O'Connor and Marc Tremblay, “picoJaval: The Java Virtual Machine in
Hardware,” In IEEE Micro, 17(2):45-53, 1997.

ARM, “ARM Jazelle Technology,” [Onling] Available:
http://www.arm.com/products/sol utions/Jazelle.html

M. Schoeberl, “Restricitons of Javafor Embedded'Real-Time Systems, “ In Proceeding of the
7th IEEE International Symposium on"“Object-Oriented Real-Time Distributed Computing,
ISORC 2004, Austria, Vienna, May 2004.

P. Puschner and A.J. Wellings, “A Profile for High Integrity Real-Time Java Programs,” In
Proceeding of the 4™ IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC), 2001

A.Burns and B. Dibbing, “The Ravenscar Tasking Profile for High Integrity Real-Time
Programs,” In Proceeding of the 1998 annual ACM SIGAda intertional conference on Ada,
pp.1-6, Washington, USA, 2002.

JKwon, A. Wellings and S. King, “Ravenscar-Java: a High Integrity Profile for Real-Time
Java,” In Proceeding of the 2002 joint ACM-ISCOPE conference on Java Grande, pp.
131-140, Seattle,Washington, USA, 2002.

Xilinx, “ Spartan-3 Starter Kit Board User Guide”, Jul 2004.

77

[22] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler,
Alexander Klaiber, and Jim Mattson, “The Transmeta Code Morphing Software: Using
Speculation, Recovery, and Adaptive Retranglation to Address Real-Life Challenges,” In
Proceeding of the First Annual IEEE/ACM International Symposium on Code Generation and
Optimization, San Francisco, California, 27-29 March 2003.

[23] Martin Schoeberl, “Using a Java Optimized Processor in a Real World Application,” In

Proceeding of the First Workshop on Intelligent Solutions in Embedded Systems (WISES
2003), pages 165176, Austria, Vienna, June 2003.

78

