

國 立 交 通 大 學

資訊工程系

博 士 論 文

行動無線感測網路下的佈建、

派遣、與封包排程之議題研究

The Deployment, Dispatch, and Packet-scheduling

Issues of Mobile Wireless Sensor Networks

研 究 生：王友群

指導教授：曾煜棋 教授

中 華 民 國 九 十 五 年 十 月

行動無線感測網路下的佈建、派遣、與封包排程之議題研究

The Deployment, Dispatch, and Packet-scheduling
Issues of Mobile Wireless Sensor Networks

研 究 生：王友群 Student：You-Chiun Wang

指導教授：曾煜棋 Advisor：Yu-Chee Tseng

國 立 交 通 大 學
資 訊 工 程 系
博 士 論 文

A Dissertation
Submitted to Department of Computer Science

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Computer Science

October 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年十月

��������	
��

�Æ
����������

�� :��� ���	 :
��
�

Æ�����������
��

� �

��������	
��
�Æ������������������ !

������"#$%��&'()��*+,-&'./012345678�

9:;<=��>!?@AB+���CDEFG������H�IJ8KL8

MNOPQRSTU�*+(V�FG������W�"��+XYZ"[X�

\]/0^G��>!_`�a�IJ�TUbc"DEde
-Ifgh�ij

klmnop���qrs*IJt'�uvw-ghxyj
]z{r|��q

(}~�89�����/0����KL�TU�"��ij0���PFG�

�q��_l�t'��FǱ�y��uvw�FG��q(�0��p���p

|������J����8Z"FG��q�������NOPQ�TU�"

EAij ¡�¢��qo£�¤¥�uv¦c�§�7¨©ª|«¬89*­®

§�7¨�¯°±²|�³!

´µIJ�TU���¶·¸¹
º=»�IJ¼½�¾wº¼½¿ÀIfg

h��ÁyÂ89*+{�OÃ³ÄÅ���(¸¹�IJ¼½ÇÈÀ��q�=

7ÉÊË��ÉÊ{rÌÂ�¾w]"|rÍ�BÎ(ÏÐ�!���IJ¼½·

"Ñ£Ifgh�ÁÒrs��q�=7ÉÊM��ÉÊÓÔÕ�Ö×Ø'mno

p���qÓt'�²���ÙKL��q�w�t'�*+KL�¼ÚÛÜÝÞ

Ǳ�_l��ßàáÓ�âão�ä#w-¼Ú����IJ¼½C{r��ÓÍ

BÎ�åæ�µIJÓTU��çè���!

?@AB+���é
ê��ijIJ
-/0%¦}~�������¾w

-%¦}~��"À%�������ë»Zìl(Ûc�íî!´µw-IJï

U���Ç¸¹ð
º=»�¼½��ÈÀyÂÔÕ���q=7ÉÊM��É

Ê���(¸¹�IJ¼½{ru»ñn���q�òó���ô¸¹ðõºö÷

Ú���qKL¼ø�ìù���IJ!

´µKL�TU���¸¹ð
-��qKL¼ø{r0��PFG��q�

�©ú�ûüý��]���(¸¹�KL¼ø{rÈÀ©úop�FG��qr

i

sûü�]�wºKL¼ø©þ{rÿ�FG��q�^GÉÊ��9���p�

�����p�ä#w-¼Ú���C�?FG��q0å�p�åæH��p«

�FG��q�u»�å!

´µNOPQ�TU���¸¹õº��NO��PQ�×ø�TD-FQMMR-

FQ!TD-FQ?PQNO��p�6	
�_���ä#de§��6	
ñ��

�·
r�Æ*«¬���²¾�±�³[�6	
¯°����!MR-FQ��p

-ñ�����¯°23�*+��q{rÑ£�Í¯°���ÁÒ���*¯

°���MR-FQ{rÑ£6	
�Í�¯°��ÁÒrs*�«Q������¯

°���ä#w-¼Ú�MR-FQ{rú��³6	
¯°����rs¸����

����!

?@AB+���Ç��ð
º�	 iMouse���FG��q� �wº��

�!ð�������23�"�>rs#$���r%&v23+¦c67�'

§=¥(��)ò iMouse��{r��¯�*7#$���ö+,-�?@AB

+���C./ iMouse��?01 /2�3�[u»4�ë»!

Ô56����8}~�8KL8��788FGÖ×8FG��q8��I

J8NO��PQ89�:; ¡8#$ë»8<=$æ8������!

ii

The Deployment, Dispatch, and Packet-scheduling

Issues of Mobile Wireless Sensor Networks

Student: You-Chiun Wang Advisor: Dr. Yu-Chee Tseng

Department of Computer Science

National Chiao Tung University

ABSTRACT

Wireless sensor networks have become one emerging technology that greatly enrich our

life. Such a network consists of many tiny, wireless devices that can gather information

from the environment and communicate with each other. In this dissertation, we will

study the deployment, dispatch, and packet-scheduling issues of a mobile wireless sensor

network, in which some or all nodes in the network have a mobile capability. In particular,

the deployment issue discusses how to determine the minimum number of sensors and their

locations to be placed in the region of interest so that every point in the region can be

covered by sensors and the network is connected. The dispatch issue addresses how to

efficiently schedule mobile sensors to reach certain locations to perform some missions so

that their energies can be conserved as much as possible. After the network is constructed

or mobile sensors arrive at their destinations, the packet-scheduling issue considers how

to manage the messages reported from sensors so that the delays of important real-time

messages can be bounded while other non-real-time messages will not be starved.

For the deployment issue, we first propose a general deployment solution that allows

the deployed region to be arbitrary-shaped and possibly contain obstacles. Our solution

also allows an arbitrary relationship of sensors’ communication distances rc and their

sensing distances rs, which is ignored by previous works. Our solution first computes

the positions to place the least number of sensors according to the condition of deployed

region and the relationship of rc and rs. Then we dispatch sensors to these locations

under certain constraints of energy consumptions. In this way, our solution can relax the

limitations of previous works and is more complete to the deployment problem.

In this dissertation, we further investigate how to deploy a sensor network for multi-

level coverage, which is an essential assumption required by many applications and proto-

cols in wireless sensor networks. For this deployment problem, we also propose a general

solution in which the relationship of rc and rs can be arbitrary. Our solution can use

iii

fewer sensors compared with other schemes. In addition, we also propose two distributed

dispatch schemes to help deploy sensors.

For the dispatch issue, we propose an efficient dispatch method for mobile sensors to

visit event locations in a hybrid sensor network. Our dispatch method is general in which

the numbers of event locations and mobile sensors can be arbitrary. Our dispatch method

can balance the moving distances of mobile sensors while preserve their energies as much

as possible during each round of dispatch. In this way, we can maximize the system time

for mobile sensors to perform their missions with their limited energies.

For the packet-scheduling issue, we propose two wireless packet fair scheduling algo-

rithms, Traffic-Dependent wireless Fair Queuing (TD-FQ) and Multi-Rate wireless Fair

Queuing (MR-FQ). TD-FQ takes traffic types of flows into account when scheduling pack-

ets. It gives a higher priority for real-time flows to alleviate their queuing delays, but still

guarantees the fairness among all flows. MR-FQ considers a more complicated multi-rate

environment in which sensors can adopt different modulation techniques to transmit their

packets under different channel conditions. MR-FQ adjusts a flow’s transmission rate

according to the flow’s channel condition and its lagging degree, so that both fairness and

system performance can be taken care of.

In this dissertation, we also implement a mobile sensor platform, called the integrated

mobile surveillance and wireless sensor (iMouse) system. The iMouse system integrates

the context-aware capability of wireless sensor network into surveillance system so that

the real critical information in the environment can be retrieved and immediately send

to users. In this way, the overheads of traditional visual surveillance systems can be

reduced. We demonstrate the iMouse system with a home/office security scenario in this

dissertation.

Keywords: connectivity, coverage, dispatch, fair queuing, mobile computing, mo-

bile sensors, network deployment, packet fair scheduling, QoS management, surveillance

applications, topology control, wireless sensor networks.

iv

� �

>?�@��WABCDEFGHwI���JKWA�rs0(?LM4�N

OMPQ�R���ST��wUAB�Vó�ô#W�@XBYGH?dispatch

wXY�NZrs[\�Â]�ú�ô^�@��_`abcdeBC8fg·h

(�8ijkBC8lm�BC8noBC8rspqrbyµswUAB�J

T�m���c�@HSCC�t3+,-Duvûw��b�R�?����x+

vr:;yz�9{wÀ%|}��~!

c�@�(�?�%ð�?ò�>��@�(�0�
y�

c�� s�=S��2006�!

v

Contents

�� i

Abstract iii

�� v

Contents vi

List of Figures x

List of Tables xv

1 Introduction 1

1.1 Background and Motivations . 1

1.2 Contributions of the Dissertation . 4

1.3 Organization of the Dissertation . 8

2 Preliminaries 10

2.1 Deployment Issue . 10

2.1.1 Related Computation Geometric Problems 10

2.1.2 Placements of Wireless Sensor Networks 13

2.1.3 Self-deployments with Mobile Sensors 16

2.2 Dispatch Issue . 20

2.3 Packet-scheduling Issue . 26

2.3.1 Algorithms with Error-free Reference Models 27

2.3.2 Algorithms with Explicit Compensation Mechanisms 29

2.3.3 Algorithms with Weight Adjustment Mechanisms 33

2.3.4 Algorithms that Consider Traffic Types of Flows 34

2.4 Implementations of Mobile Sensor Platforms 36

vi

3 Deployment of a Wireless Sensor Network for Single-level Coverage 41

3.1 Problem Statement . 42

3.1.1 The Sensor Placement Problem . 42

3.1.2 The Sensor Dispatch Problem . 42

3.2 Solutions to the Sensor Placement Problem 44

3.2.1 Partitioning the Sensing Field . 46

3.2.2 Placing Sensors in Single-row Regions 47

3.2.3 Placing Sensors in Multi-row Regions 47

3.2.4 Adapting to the Probabilistic Sensing Model 50

3.3 Solutions to the Sensor Dispatch Problem 52

3.3.1 A Centralized Dispatch Solution . 53

3.3.2 A Distributed Dispatch Solution . 57

3.4 Experimental Results . 58

3.4.1 Effectiveness of the Proposed Placement Schemes 58

3.4.2 Evaluations of the Proposed Dispatch Schemes 59

3.5 Summary . 59

4 Deployment of a Wireless Sensor Network for Multi-level Coverage 63

4.1 Problem Statement . 64

4.2 k-Coverage Sensor Placement Schemes . 65

4.2.1 A Naive Duplicate Scheme . 65

4.2.2 An Interpolating Placement Scheme 65

4.3 Distributed Sensor Dispatch Schemes . 68

4.3.1 A Competition-based Dispatch Scheme 69

4.3.2 A Pattern-based Dispatch Scheme 72

4.4 Experimental Results . 74

4.4.1 Evaluations of the Proposed Placement Schemes 74

4.4.2 Performances of the Proposed Dispatch Schemes 76

4.4.3 Effect of Seed Locations on the Pattern-based Scheme 78

4.5 Summary . 78

5 Dispatch of Mobile Sensors with Energy-efficient Consideration 80

5.1 Problem Statement . 82

5.2 The Mobile Sensor Dispatch (MSD) Method 84

5.2.1 Case of |S| ≥ |L| . 84

5.2.2 Case of |S| < |L| . 88

5.3 Experimental Results . 89

5.3.1 Performance of the MSD Method 90

vii

5.3.2 Effect of the Clustering Scheme . 92

5.3.3 Analysis on the Coefficient α . 93

5.4 Summary . 93

6 Packet Scheduling for Data Aggregators in a Wireless Sensor Network 95

6.1 The TD-FQ Algorithm . 96

6.1.1 System Model . 96

6.1.2 Scheduling Policy . 97

6.1.3 Gradual Degradation Scheme . 100

6.1.4 Compensation Scheme . 101

6.1.5 Lag Redistributing Scheme . 103

6.2 The MR-FQ Algorithm . 104

6.2.1 System Model . 104

6.2.2 Service Fairness vs. Time Fairness 104

6.2.3 Scheduling Policy . 105

6.2.4 Rate Selection Scheme . 108

6.2.5 Multi-rate Compensation Scheme 108

6.3 Theoretical Analyses on Fairness and Delay Bounds 110

6.3.1 Analyses of TD-FQ . 110

6.3.2 Analyses of MR-FQ . 112

6.4 Experimental Results . 114

6.4.1 Performance Evaluation of TD-FQ 114

6.4.2 Performance Evaluation of MR-FQ 117

6.5 Summary . 121

7 Implementation of a Mobile Sensor Platform: the iMouse System 122

7.1 Motivation . 122

7.2 The System Architecture . 123

7.3 Design of the iMouse System . 126

7.3.1 System Operations and Control Flows 126

7.3.2 Implementation Details and User Interface 128

7.4 Experimental Results . 131

7.5 Summary . 133

8 Conclusions and Future Directions 135

8.1 Conclusions . 135

8.2 Future Directions . 137

Appendices 139

viii

A Theoretical Analyses of TD-FQ 139

A.1 Fundamental Lemmas . 139

A.2 Fairness Properties . 142

A.3 Delay Bounds . 146

B Theoretical Analyses of MR-FQ 151

B.1 Fundamental Lemmas . 151

B.2 Fairness Properties . 154

B.3 Delay Bounds . 159

Bibliography 163

Curriculum Vitae 174

Publication List 176

ix

List of Figures

2.1 An example of triangulating a polygon and painting its vertices. Guards

will be placed in the vertices marked with c. 11

2.2 Two possible methods to pack equal circles in a 2D plane: (a) the square

packing method and (b) the hexagonal packing method. 12

2.3 Two examples of optimal coverings with n equal circles in a unit square:

(a) n = 5, where the minimum radius r5 is approximate to 0.32616 and (b)

n = 7, where the minimum radius r7 is approximate to 0.27429. 13

2.4 The minimum-cost sensor placements in the sensing field with a 4×4 grid-

size under different values of coverage level k: (a) k = 1 and cost = �550,

(b) k = 2 and cost = �950, and (c) k = 3 and cost = �1400. 15

2.5 A complete covered and discriminated sensing field. There are six sensors

placed on the grid points 2, 5, 6, 10, 11, and 14. 15

2.6 The sensor placement with a strip-by-strip fashion proposed in [62]. 16

2.7 The k-covered placement scheme proposed in [111]: (a) k = 1, (b) k = 2,

and (c) k = 3. 17

2.8 An example of virtual forces with four sensors. 18

2.9 The Voronoi diagram. 19

2.10 Two examples of (a) the VOR strategy and (b) the Minimax strategy. . . . 19

2.11 An examples of the grid-quorum. 21

2.12 Examples of (a) the direct movement and (b) the cascade movement. . . . 21

2.13 An ideal example of balancing the numbers of sensors in each grid: (a)

the initial case, (b) balancing the numbers of sensors in each row, and (c)

balancing the numbers of sensors in each column. 21

2.14 Achieving a biconnected network by node movement: (a) the initial network

topology and (b) the network becomes biconnected after moving node a. . 22

2.15 An example of the block movement algorithm: (a) decomposition of a net-

work into cutvertices and biconnected components, (b) the corresponding

block tree, (c) the movement of blocks, and (d) the final network topology

after block movement. 23

x

2.16 The isolated islands are connected by mobile sensors. 24

2.17 Navigation of the mobile sensor: (a) building up the navigation field and

(b) calculating the moving distance of the mobile sensor. 26

2.18 An example of SBFA using the round-robin scheduling policy. 31

2.19 An example of the Havana scheduling, where Qi = 80, Qj = 120, αi = 1/2,

and αj = 1/4. 32

2.20 The architecture of the ELF scheduler. 33

2.21 The design architecture of AC-FQ. 34

2.22 The system architecture of mobile robots proposed in [68]. 36

2.23 The system architecture of Mobile Emulab. 38

2.24 Constructing a routing path from the sink to each static sensor. 39

2.25 Navigation of a mobile sensor by the received signal strength: (a) the

turning point and (b) the moving steps of a mobile sensor from the sink to

a static sensor. 40

3.1 Assumptions on connectivity and coverage: (a) si and sj are connected,

(b) the obstacle disconnects si and sj, (c) coverage with a large obstacle,

and (d) coverage with a small obstacle. 43

3.2 An example of sensor deployment in an office environment: (a) sensing

coverage and (b) network connectivity. 43

3.3 Two possible sensor placements: (a) considering the coverage property first

and (b) considering the connectivity property first. 45

3.4 Partitioning a sensing field: (a) expanding the boundary of field inwardly

by a distance of
√

3rmin, (b) the eight single-row regions found by tak-

ing projections from obstacles, and (c) the six multi-row regions found by

excluding the single-rows regions. 45

3.5 The pseudo code of the partition algorithm. 46

3.6 Three examples of finding bisectors of single-row regions and their corre-

sponding sensor placements when rc = rs. 47

3.7 Placing sensors in a simple 2D plane: (a) the case of rc < rs, (b) the case

of rc = rs, (c) the case of rs < rc <
√

3rs, and (d) the case of rc ≥
√

3rs. . . 49

3.8 Placing sensors along the boundaries and obstacles: (a) uncovered areas

along the boundaries and obstacles and (b) placing extra sensors to fill with

these uncovered areas and to maintain the network connectivity. Note that

this example assumes that rc = rs. 51

3.9 Finding a collision-free path from si to (xj , yj). Note that not all edges of

H are shown in the figure. 55

xi

3.10 Six types of sensing fields used in the simulations: (a) a rectangle, (b)

a circle, (c) a non-convex polygon, (d) a H-shaped region, (e) the office

example in Fig. 3.2, and (f) the arbitrary-shaped region in Fig. 3.4. Note

that the unit of length is in meter. 60

3.11 Comparison of numbers of sensors required under different sensing fields. . 61

3.12 Comparison of different dispatch methods: (a) the total energy consump-

tion due to movement when using Eq. (3.1) as the objective function, and

(b) the average remaining energy of sensors when using Eq. (3.2) as the

objective function. 62

4.1 A 1-coverage sensor placement scheme: (a) the case of rc <
√

3rs and (b)

the case of rc ≥
√

3rs. 66

4.2 The interpolating placement scheme for the case of rc ≤
√

3
2

rs. 67

4.3 The interpolating placement scheme for the case of
√

3
2

rs < rc ≤ 2+
√

3
3

rs:

(a) the placement for k = 2 and (b) the placement for k = 3. 68

4.4 An example to show that the connectivity between a new’ row and its

adjacent rows is guaranteed. 68

4.5 The state transition diagram of each sensor si in the competition-based

dispatch scheme. 69

4.6 The patterns in the interpolating placement, where δ =
√

r2
s − r2

c

4
: (a) the

case of rc ≤
√

3
2

rs and (b) the case of
√

3
2

rs < rc ≤ 2+
√

3
3

rs. 73

4.7 Comparison on numbers of sensors required by the duplicate and interpo-

lating placement schemes: (a) the case of rc ≤
√

3
2

rs and (b) the case of
√

3
2

rs < rc ≤ 2+
√

3
3

rs. 75

4.8 Comparison on numbers of sensors required by the duplicate and hexagon-

like placement schemes, where rc ≥ 2rs. 76

4.9 Comparison on average moving distances of sensors under different scenar-

ios: (a) the hollow scenario and (b) the concentrated scenario. 77

4.10 Effect of seed locations on the average moving distance of sensors in the

pattern-based dispatch scheme: (a) the hollow scenario and (b) the con-

centrated scenario. 79

5.1 Comparison of different dispatch methods: (a) the energy consumption

for a mobile sensor to move to each location, (b) the dispatch method by

maximizing the total remaining energy during each one-round dispatch,

and (c) the load-balancing method. Note that each mobile sensor has to

spend an energy of five units to conduct the sensing and communication

jobs after it arrives at the event location. 82

xii

5.2 An example to execute the MSD method when |S| ≥ |L|: (a) the edge

weights and preference lists of event locations, (b) P = {(sb, l1), (sc, l2)}, (c)

P = {(sb, l3), (sc, l2)}, (d) P = {(sb, l3), (sc, l1)}, and (e) P = {(sb, l3), (sc, l1), (sd, l2)}. 87

5.3 An example to group event locations into four clusters: (a) the initial

topology, (b) the cluster result after adopting K-means, where the total

cost is 159, (c) the cluster result after splitting cluster A and merging

clusters C and D, where the total cost is 115, and (d) the cluster result

after splitting cluster D and merging clusters A2 and B, where the total

cost is 97. 90

5.4 Comparison on system lifetimes of the proposed MSD method and the

iteratively-maximizing method. 91

5.5 Comparisons on energy consumption of mobile sensors under the proposed

MSD method and the iteratively-maximizing method: (a) the average of

energy consumption and (b) the standard deviation of energy consumption. 92

5.6 The effect of our clustering scheme on the average of energy consumption

of mobile sensors, where the number of mobile sensors is set to 50. 93

5.7 The effect of coefficient α on the number of redundant iterations and the

energy consumption of mobile sensors, where both the numbers of event

locations and mobile sensors are set to 50. 94

6.1 The system architecture of TD-FQ. 97

6.2 The scheduling policy of TD-FQ. 99

6.3 The set-based weight compensation (SWC) scheme. 101

6.4 The system architecture of MR-FQ. 105

6.5 The tradeoff between service fairness and time fairness. 106

6.6 The scheduling policy of MR-FQ. 107

6.7 The mapping of lagging degrees to allowable transmission rates (indicated

by check marks) in the Rate Selection Scheme. 108

6.8 Dispatching additional services in the Multi-rate Compensation Scheme. . 109

6.9 Packet dropping ratios of real-time flows. 116

6.10 Average queuing delays of real-time flows. 116

6.11 Throughput of (a) real-time flows CBR1 and CBR2 and (b) non-real-time

flows greedy1 and greedy2. 117

6.12 Packet dropping ratios of real-time flows. 119

6.13 Average queuing delays of real-time flows. 119

6.14 Average throughput of non-real-time flows. 119

6.15 Total services received by the two greedy flows: (a) MR-FQ and (b) MR-FQ

without considering time fairness. 120

xiii

6.16 Total medium time used by the two greedy flows: (a) MR-FQ and (b)

MR-FQ without considering time fairness. 120

7.1 The system architecture of the proposed iMouse system. 124

7.2 The mobile sensor in our iMouse system. 125

7.3 The procedure executed by the static sensors. 127

7.4 The procedure executed by the mobile sensors. 129

7.5 The approximate traveling-salesman algorithm APPROX-TSP-TOUR. . . 129

7.6 A 6 × 6 grid-like sensing field in prototyping system. 130

7.7 The user interface at the control server. 131

7.8 Experimental results of our current prototyping system: (a) total dispatch

time of mobile sensors and (b) average waiting time of emergency sites. . . 132

7.9 Total dispatch time of mobile sensors under different sizes of sensing fields:

(a) 30 × 30 grid-size, (b) 60 × 60 grid-size, (c) 90 × 90 grid-size, and (d)

120 × 120 grid-size. 134

xiv

List of Tables

2.1 The minimum radius rmin to cover a unit square by n equal circles reported

in [89]. 13

3.1 Coordinates of the six neighbors of a sensor si located at (x, y) in a multi-

row region. 50

5.1 Summary of notations used in Chapter 5. 84

6.1 Summary of notations used in TD-FQ. 100

6.2 Traffic specification of the flows used in the first experiment in Section 6.4.1.115

6.3 Traffic specification of the flows used in the second experiment Section 6.4.1.116

6.4 Traffic specification of the flows used in the first experiment in Section 6.4.2.118

6.5 Traffic specification of the flows used in the second experiment in Sec-

tion 6.4.2. 120

7.1 Decision of whether to report a status-change message. 127

xv

Chapter 1

Introduction

1.1 Background and Motivations

Recently, the remarkable advances in both embedded micro-sensing MEMS1 and wireless

communication technologies have promoted the development of wireless sensor networks.

A wireless sensor network is composed of many tiny, low-power devices that integrate sens-

ing units, transceivers, actuators, and possible mobilizers with limited on-board process-

ing and wireless communication capabilities [3]. These devices are deployed in a region

of interest to gather information from the environment, which will be reported to nearby

data aggregators or a remote sink. In the past, sensors are connected with wire-lines

[12, 57, 70, 74]. Nowadays, by combing with the novel ad hoc networking technology

to assist in inter-sensor communications [88, 93, 107], the installing and configuring of a

sensor network become more flexible. In the recent years, a large amount of research ac-

tivities and studies have focused on wireless sensor networks, from investigating physical

(PHY) and media access control (MAC) layers [104, 109, 122, 124] to designing rout-

ing and transport protocols [20, 78, 91, 125]. Many applications and scenarios have also

been practiced by wireless sensor networks, such as surveillance, biological detection, and

traffic, pollution, habitat, and civil infrastructure monitoring [4, 21, 49, 77, 113].

Among these various researches of wireless sensor networks, sensor deployment is

one of the most important issues because it decides the network’s construction cost and

ability to monitor the environment. A good sensor deployment should consider both

sensing coverage and network connectivity [79, 114, 128]. In particular, given a region

of interest to be deployed with sensors, the sensing coverage requires that every point

inside the region can be monitored by sensors, while the network connectivity requires

that the network is not partitioned in terms of sensors’ communication capability. Note

1Micro-Electro-Mechanical Systems

1

that coverage is affected by sensors’ sensitivity, while connectivity is decided by sensors’

communication ranges. In addition, to reduce the cost to construct the network, the

number of sensors used should be as few as possible.

In the literature, several computational geometric problems [58, 108, 121] also address

the similar issue, but their solutions cannot be applied to the sensor deployment problem

because of their assumptions or objectives. Therefore, a large amount of schemes have

been proposed to address the sensor deployment issue. For example, references [19, 29, 71]

model the sensing field as grid points and discuss how to place sensors on some of these

grid points to satisfy certain coverage requirements. The work [62] suggests to deploy

sensors strip by strip to ensure coverage and connectivity of the network. In [111], a

deployment scheme to construct a sensor network for multi-level coverage is proposed.

However, most existing works consider only the ideal case in which they deploy sensors

on a simple 2D plane without boundaries and obstacles. Thus, their solutions cannot be

applied to the regions containing obstacles, such as the areas in buildings or on bridges.

Besides, these works do not address the relationship between communication distances

and sensing distances of sensors, which limits their applications.

Several studies consider that sensors have a mobile capability. They assume that

sensors are randomly dropped in the sensing field and propose different strategies to

make these mobile sensors “self-deploy” to form a network. For example, references

[50, 118, 132] discuss how to move sensors to enhance coverage of the sensing field by

using the Voronoi diagram or attractive/repulsive forces between sensors. In [119, 123],

the sensing field is partitioned into grids, and sensors will be moved from high-density

grids to low-density ones so that the number of sensors in each grid can be balanced. As

can be seen, the objective of these works is to achieve a more uniform coverage of the

sensing field. However, they may not guarantee to satisfy the coverage and connectivity

requirements of the deployed network. In addition, they neither address the relationship

of sensors’ communication distances and their sensing distances.

Therefore, in this dissertation we consider a more general deployment problem in a

mobile wireless sensor network. In particular, we allow the sensing field to be arbitrary-

shaped and possibly contain arbitrary-shaped obstacles. Besides, the relationship of sen-

sors’ communication distances and their sensing distances can be also arbitrary. We

address two related sub-problems: sensor placement and sensor dispatch. The sensor

placement problem asks how to place the least number of sensors in the region of inter-

est to achieve desire coverage and connectivity properties. The sensor dispatch problem

assumes that sensors are mobilized and the goal is to delegate sensors to move to the des-

ignated locations inside the region according to the solutions of the placement problem

such that certain objective functions can be satisfied.

2

In the literature, the design of mobile robots have been widely discussed in the field of

robotics [37, 55, 67, 68]. Recent studies [61, 101, 103] have also reported their design and

implementation of mobile sensors. Such mobile platforms are controlled by embedded

computers and mounted with sensors. With these platforms, we can dispatch sensors

to move to some locations to perform certain missions. This motivates us to further

investigate the dispatch problem of mobile sensors. In particular, we consider a hybrid

sensor network consisting of static and mobile sensors. The static sensors are deployed in

the region of interest to monitor the environment, while the mobile sensors are dispatched

to the event locations reported by static sensors to perform more advanced actions (such

as conducting more in-depth sensing of events). Since mobile sensors also use small

batteries for their operations, one important research issue is to conserve their energies

when dispatching these mobile sensors.

In the literature, some studies also address to move sensors for different purposes. For

example, the work in [9] suggests to move some nodes to enhance the network connec-

tivity. The studies [14, 15] discuss how to move sensors to the event locations while still

maintaining complete coverage of the sensing field. The works [33, 131] consider to add

several mobile sensors to help improve the network topology of an existing static sensor

network. In [117], a navigation scheme is proposed to guide mobile sensors to the event

locations. As can be seen, none of these works consider to save energies of mobile sensors

when dispatching them.

Therefore, in this dissertation we further investigate how to efficiently dispatch mobile

sensors so that their lifetimes can be prolonged. Specifically, we consider how to assign

mobile sensors to visit event locations so that during each round of dispatch, the moving

distances of mobile sensors can be balanced while their energies can be preserved as much

as possible. In this way, we can maximize the lifetimes of mobile sensors to perform their

missions under the constraints of their limited energies.

After constructing the network, sensors will periodically report their sensing data or

send real-time notifications to the data aggregators once they detect important events.

Besides, mobile sensors arriving at event locations will also report their analyzed data.

Based on the types and emergency of these reports, we can classify them into real-time

flows and non-real-time flows. For example, events reported from sensors or analyzed data

sent by mobile sensors are classified into real-time flows because events may disappear

soon later, while periodical sensing reports from sensors will be classified into non-real-

time flows. Among these flows, if we let sensors compete to transmit their reports, real-

time flows may miss their delay constraints and thus important messages will expire. On

the contrary, if we allow real-time flows always to preempt non-real-time flows, the latter

will be starved. Therefore, this motivates us to investigate how to manage these messages

3

reported from sensors so that the delays of real-time flows can be bounded while the

fairness among flows’ transmissions can be guaranteed.

In wire-line networks, many packet fair scheduling algorithms [43, 44, 92, 127] have

been proposed to bound delays and guarantee fairness of packet transmissions. However,

wireless channels are characterized by the following features that distinguish themselves

from wire-line networks: (1) serious bursty errors, (2) location-dependent errors, and (3)

multi-rate communication capability. Bursty errors may break continuous services of a

flow, while location-dependent errors may allow error-free flows to receive more services

than they deserve, thus violating the fairness and bounded-delay requirements. A wire-

less channel may provide different transmission rates to different terminals depending on

channel qualities. Due to these reasons, existing wire-line solutions may not be suitable

for the wireless networks [10, 16]. Therefore, many wireless fair scheduling algorithms

have been proposed to address the features (1) and (2) of wireless networks. For example,

in IWFQ [75], each packet is associated with a finish tag and the scheduler always serves

the error-free packet with the smallest finish tag. In CIF-Q [86], fairness is achieved by

transferring the services allocated to error flows to those error-free flows, and then com-

pensating these error flows later according to their weights. In SBFA [95], a fraction of

bandwidth is reserved particularly to compensate those error flows. Unfortunately, most

of these works do not consider the traffic types of flows so that the delay constraints of

real-time flows may not be satisfied. Besides, feature (3) of wireless networks is not well

addressed. In particular, these works assume that a wireless channel is either in a good

state or a bad state. Transmissions in a good state will succeed, but fail in a bad state.

In fact, the situation is not so pessimistic because different modulation techniques can be

used to adapt to different channel conditions. In this way, the system performance can

be greatly improved.

Therefore, in this dissertation we propose wireless packet fair scheduling algorithms

for data aggregators to manage the messages reported from sensors. In particular, our

scheduling algorithms should consider the traffic types of flows in a way that the queuing

delays of real-time flows can be alleviated while non-real-time flows will not be starved. In

addition, the proposed scheduling algorithms should utilize the multi-rate communication

feature of wireless channels so that the overall system performance can be improved.

1.2 Contributions of the Dissertation

In this dissertation, we study the deployment, dispatch, and packet-scheduling issues of

a mobile wireless sensor network. For the deployment issue, we first consider a general

sensor deployment problem in a sensing field possibly with obstacles, and then discuss how

4

to deploy a sensor network for multi-level coverage by mobile sensors. For the dispatch

issue, we investigate how to efficiently dispatch mobile sensors to visit event locations so

that their lifetimes can be prolonged. For the packet-scheduling issue, we propose two

wireless packet fair scheduling algorithms for data aggregators to manage the messages

from sensors. Finally, we also implement a mobile sensor platform used for a surveillance

application. The contributions of this dissertation are detailed as follows:

• We have considered a more general sensor deployment problem in this dissertation.

Specifically, given an arbitrary-shaped sensing field possibly with arbitrary-shaped

obstacles, we are asked to deploy the least number of sensors in the field to achieve

both sensing coverage and network connectivity. The solution must be applied for

any relationship between the communication distance rc and the sensing distance

rs of sensors. In this dissertation, we have addressed two related sub-problems:

sensor placement and sensor dispatch. The former asks how to place the least

number of sensors in a field to achieve sensing coverage and network connectivity,

while the latter asks how to determine from a set of mobile sensors a subset of

sensors to be moved to an area of interest with certain objective functions such

that the coverage and connectivity properties can be satisfied. Our solution to the

placement problem allows an arbitrary-shaped sensing field possibly with arbitrary-

shaped obstacles and an arbitrary relationship of rc and rs, and thus significant

relaxes the limitations of existing results. Our approach first partitions the sensing

field into smaller sub-regions according to the obstacles and boundaries of the field.

In each sub-region, we arrange sensors row by row such that each row guarantees

continuous coverage and connectivity and that adjacent rows ensure continuous

coverage. Finally, columns of sensors are added to ensure connectivity between

rows. Simulations results have shown that our approach requires fewer sensors

to ensure complete coverage of the sensing field and connectivity of the network as

compared with other schemes. In addition, we have also discussed how to adjust the

aforementioned placement solution when a probabilistic sensing model is adopted,

where the detection probability of a sensor decays with the distance from the sensor

to the object. For the dispatch problem, our solutions include a centralized one and a

distributed one. The centralized solution is based on adopting the former placement

results and converting the dispatch problem to the maximum-weight maximum-

matching problem with the objective of minimizing the total energy consumption

to move sensors or maximizing the average remaining energy of sensors after the

movement. Designed in a similar way, the distributed solution allows sensors to

determine their moving directions in an autonomous manner. In particular, sensors

can select their destinations according to the objective function and then compete

5

to move to these locations.

• We have further investigated the k-coverage sensor deployment problem to ensure

multi-level (k) coverage of the sensing field in this dissertation. We also deal with

this problem by two related sub-problems: k-coverage sensor placement problem and

distributed sensor dispatch problem. The k-coverage placement problem asks how

to determine the minimum number of sensors required and their locations in the

sensing field to guarantee that the field is k-covered and that the deployed network

is connected. Given that there are sufficient sensors and these sensors are randomly

dropped in the sensing field, the distributed dispatch problem asks how to determine

the schedule of sensors’ movements to the designated locations according to the

result computed by the placement solutions such that the total energy consumption

due to movement can be minimized. For the k-coverage problem, we allow an

arbitrary relationship between sensors’ communication distance and their sensing

distance, thus relaxing the limitations of existing results. We have proposed two

methods to the k-coverage placement problem. The first method adopts an intuitive

duplication idea in which we first determine a good 1-coverage placement scheme

and then duplicate k sensors on each location computed by the placement scheme.

The second method is based on a more complicated interpolating idea and thus can

save the number of sensors required. For the dispatch problem, we have proposed

two distributed schemes. The first scheme assumes that sensors have the knowledge

of all target locations in the sensing field and these sensors can then compete with

each other for moving toward their closest locations. The second scheme relaxes

the above assumption by making sensors deriving the target locations on their own,

according to several known locations and the patterns in our placement methods.

Therefore, the server only needs to generate several seed locations in the beginning,

and then sensors can construct the remaining part of the network in a distributed

manner.

• We have designed an efficient dispatch method for mobile sensors to prolong their

lifetimes. In particular, we consider a hybrid sensor network consisting of static

and mobile sensors, where the former is deployed to detect events, while the latter

equipped with more resources such as sensing capability and computation power

is dispatched to the event locations to conduct more advanced analysis. In this

dissertation, we investigate how to efficiently dispatch mobile sensors to visit these

event locations with the purpose of maximizing the system lifetime, which is defined

as the time duration until there are some event locations that cannot be reached

by any mobile sensor due to lack of energy. We have pointed out that simply

6

maximizing the total remaining energy of mobile sensors in each one-round dispatch

cannot guarantee to maximize the system lifetime since some mobile sensors may

early exhaust their energy and thus burden other still alive ones, which results

in shortening the system lifetime. Based on the aforementioned observation, we

have proposed an efficient dispatch method that takes the load-balance issue into

consideration when scheduling mobile sensors to visit event locations. Our dispatch

method is general in which the numbers of event locations and mobile sensors can

be arbitrary. When the number of event locations is no larger than that of mobile

sensors, we transform the dispatch problem to a maximum matching problem in a

weighted bipartite graph. However, instead of finding a matching with a maximum

edge weight, we use a preference list and a bound to select the matching, where the

former helps assign an event location with a suitable mobile sensor, while the latter

avoids selecting edges with extreme weights so that loads among mobile sensors can

be balanced. When the number of event locations is larger than that of mobile

sensors, we have developed efficient clustering schemes to group event locations into

clusters, whose number is equal to the number of mobile sensors, so that the above

matching approach can be adopted. When a mobile sensor is assigned with a cluster,

it can use the traveling-salesman approximate algorithm to reach all event locations

in that cluster. Simulation results have shown that by exploring the load balancing

of mobile sensors, our proposed dispatch method can prolong the system lifetime.

• To help data aggregators manage the messages reported from sensors, we have de-

veloped two packet fair scheduling algorithms for a single-rate wireless environment

and a multi-rate wireless environment. In a single-rate environment, sensors trans-

mit their packets in a fixed rate and the wireless channels may switch between a

good state and a bad state. Packet transmissions in a good state are assumed to

be able to succeed but to fail in a bad state. With the above assumptions, we have

proposed a Traffic-Dependent wireless Fair Queuing (TD-FQ) algorithm that take

traffic types of flows into account when scheduling packets. TD-FQ benefits real-

time flows by giving them higher priorities over non-real-time flows. In this way, the

queuing delays of real-time flows can be alleviated. However, TD-FQ still guaran-

tees the fairness among flows so that non-real-time flows will not be starved under

the scheduling policy of TD-FQ. In this dissertation, we have further considered a

multi-rate environment in which sensors can adopt different modulation techniques

to transmit their packets under different channel conditions. Specifically, sensors

can transmit their packets using a higher rate when the channel is good but they

can still use a lower rate for transmission when the channel becomes bad. With

this assumption, we have proposed a Multi-Rate wireless Fair Queuing (MR-FQ)

7

algorithm. MR-FQ addresses both the service fairness and time fairness issues

arisen from such a multi-rate environment. MR-FQ adjusts a flow’s transmission

rate according to the flow’s channel condition and its lagging degree. In particular,

a flow is allowed to transmit using a lower rate only if it is lagging to a certain

degree. Besides, the more serious a flow is lagging, the lower rate the flow is allowed

to use. Such differentiation can take care of both service fairness and time fairness.

In this way, MR-FQ not only maintains the fairness properties and bounded delays

of flows, but also improves the overall system performance. In this dissertation, we

have analytically derived the fairness properties and delay bounds of the proposed

TD-FQ and MR-FQ algorithms. Simulation results have also been presented to

verify their effectiveness.

• We have designed and implemented a mobile sensor platform, called the integrated

mobile surveillance and wireless sensor (iMouse) system in the dissertation. The

objective of this iMouse system is to study the feasibility of integrating the context-

aware capability of mobile wireless sensor networks into surveillance systems. The

iMouse system consists of a large number of static sensors and a small number

of more powerful mobile sensors. The former is used to monitor the environment

while the latter can move to event locations to conduct more in-depth analyses. In

the iMouse system, each mobile sensor is equipped with a processing platform, a

Lego car, a Mote, a WebCam, and an IEEE 802.11 WLAN card, so that they can

move to the event locations, exchange messages with other sensors, take snapshots

of event scenes, and transmit pictures and analyzed data to the remote server.

In this way, the iMouse system combines mobile wireless sensor networks with the

surveillance systems and thus the overheads of traditional visual surveillance systems

can be reduced because the real critical information can be retrieved and proactively

sent to the users. The iMouse system is thus a mobile, context-aware surveillance

system. We have demonstrated our current prototyping system for home/office

security applications.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we surveys the studies

in the literature that address the deployment, dispatch, and packet-scheduling issues.

Besides, we also survey several works related to the design of mobile sensor platforms.

In Chapter 3, we solve the sensor deployment problem in a sensing field with boundaries

and obstacles. In Chapter 4, we discuss how to deploy a sensor network for multi-level

coverage by mobile sensors. In Chapter 5, we investigate how to efficiently dispatch mobile

8

sensors in a hybrid sensor network. In Chapter 6, we propose the two wireless packet fair

scheduling algorithms, TD-FQ and MR-FQ, for data aggregators. In Chapter 7, we report

the design and prototyping experience of our mobile sensor platform, the iMouse system.

In Chapter 8, we give the conclusions and future directions of this dissertation.

9

Chapter 2

Preliminaries

In this chapter, we first survey some studies in the literature that address the issues

of deployment, dispatch, and packet-scheduling, followed by the works that address the

design of mobile sensor platforms.

2.1 Deployment Issue

In this section, we discuss the related works addressing the deployment issue. We first

study three relevant computational geometric problems, and then survey several works

that discuss how to place sensors to form a network. Finally, we survey some works that

discuss how to self-deploy a network by mobile sensors.

2.1.1 Related Computation Geometric Problems

Art Gallery Problem

The art gallery problem [58, 102] was first proposed by Victor Klee in 1973. This problem

asks what is the minimum number of guards that would be needed at the corners of an

art gallery to guarantee that every point in the gallery is always in sight of at least one

guard, assuming that a guard can watch a point as long as a line-of-sight exists. It has

been proven that at least �n
3
� guards are needed if the gallery can be modeled by a simple

polygon1 with n vertices on a 2D plane [22, 39]. This can be done by triangulating the

polygon P and then painting the vertices of P with three different colors in such a way

that each triangle has a vertex of each color. Since there are n vertices, there is one color c

that is used for at most �n
3
� vertices. Then we can place guards on these vertices painted

1A simple polygon is a polygon with the constraint that non-consecutive edges do not intersect.

10

a

b

a

b

c

a

c

b

Figure 2.1: An example of triangulating a polygon and painting its vertices. Guards will

be placed in the vertices marked with c.

with color c to guarantee that every point inside P is watched by at least one guard.

Fig. 2.1 gives an example, where we can place two guards on vertices marked with c.

In the literature, there are many variations of the art gallery problem. For example,

the studies [7, 90] consider how to use the minimum number of mobile guards to monitor

a polygon, where a mobile guard is allowed to patrol either along edges of the polygon or

along straight lines wholly contained within the polygon. In [52, 98], the issue of how to

place guards in a polygon with holes is addressed. Although both the art gallery problem

and the sensor deployment problem ask how to place the least number of guards/sensors

to monitor a region, the solutions to the art gallery problem cannot be applied to the

sensor deployment problem because of the following two reasons. First, guards in the

art gallery problem are assumed to have an infinite viewpoint unless there is an obstacle.

On the contrary, the monitoring ranges of sensors in fact are limited by their sensing

distances. Second, the sensor deployment problem needs to consider the connectivity

between sensors while this issue is ignored in the art gallery problem.

Circle Packing Problem

The circle packing problem [34, 108] asks how to make an arrangement of circles inside a

given boundary such that no two circles overlap and some (or all) of them are mutually

tangent. For example, Fig. 2.2 shows two possible packing ways of equal circles in a plane.

In the literature, there are myriad of variations of the circle packing problem. References

[18, 112] discuss how to make the densest packing of equal circles in a square. Different

shapes of the bounded space have also been studied, for example, packing n equal circles

in a circular region [40, 42, 46, 81], or packing circles in an equilateral triangle [45, 83].

The issue of packing different sizes of circles has also been addressed in [41].

11

(a) (b)

Figure 2.2: Two possible methods to pack equal circles in a 2D plane: (a) the square

packing method and (b) the hexagonal packing method.

The circle packing problem can be applied to several applications such as estimation

the size of a wire bundle in electric systems [110]. However, it cannot solve the sensor

deployment problem because of their different objectives. In particular, the objective of

circle packing problem is to find out the densest arrangement of circles in a region while

the sensor deployment problem attempts to use the fewest number of sensors to cover a

region. In addition, the arrangement of circles in the circle packing problem will leave a

lot of uncovered holes in the region, which violates the coverage requirement of the sensor

deployment problem.

Circle Covering Problem

The third relevant problem in computational geometry is the circle covering problem [121].

This problem asks how to arrange equal circles in a polygon such that this polygon can

be fully covered by these circles. Given the number of circles, the objective is to minimize

the radius of a circle. This issue has been widely studied for covering a unit square in the

works [51, 82, 89]. Reference [51] discusses how to optimally arrange with less than or

equal to five circles and seven circles. For example, the optimal coverings of five and seven

circles are given in Fig. 2.3. The solutions have been extended to six, eight, and eleven

circles in [82]. Table 2.1 summarizes the minimum radius rmin to cover a unit square with

n ≤ 30 equal circles. The details of arrangements can be found in [89].

The circle covering problem has also been addressed in different shapes of polygons

such as equilateral triangles [80]. However, it is very limited to apply these solutions to

the sensor deployment problem because the sensing distance of sensors has to be restricted

to certain constants.

12

r7

r5

(a) (b)

1

1

Figure 2.3: Two examples of optimal coverings with n equal circles in a unit square: (a)

n = 5, where the minimum radius r5 is approximate to 0.32616 and (b) n = 7, where the

minimum radius r7 is approximate to 0.27429.

n rmin n rmin n rmin

1 0.707106781· · · 11 0.212516016· · · 21 0.148953789· · ·
2 0.559016994· · · 12 0.202275889· · · 22 0.143693177· · ·
3 0.503891109· · · 13 0.194312371· · · 23 0.141244822· · ·
4 0.353553390· · · 14 0.185510547· · · 24 0.138302883· · ·
5 0.326160584· · · 15 0.179661759· · · 25 0.133548706· · ·
6 0.298727062· · · 16 0.169427051· · · 26 0.131746875· · ·
7 0.274291885· · · 17 0.165680929· · · 27 0.128633534· · ·
8 0.260300105· · · 18 0.160639663· · · 28 0.127317553· · ·
9 0.230636927· · · 19 0.157841981· · · 29 0.125553507· · ·

10 0.218233512· · · 20 0.152246811· · · 30 0.122036881· · ·
Table 2.1: The minimum radius rmin to cover a unit square by n equal circles reported in

[89].

2.1.2 Placements of Wireless Sensor Networks

Since the solutions to the traditional computational geometric problems cannot be directly

applied to the sensor deployment problem, many researchers have proposed their methods

to solve the sensor deployment problem by determining the locations to place sensors.

In the literature, several studies [19, 29, 71] consider to model the sensing field as

grid points and then determine the placement of sensors on some of these grid points to

satisfy certain coverage requirements. Reference [19] considers that there are two types

of sensors with different costs and sensing ranges to be deployed. The objective is to find

13

an assignment of sensors to grid points such that every grid point is covered by at least

k ≥ 1 sensors and the total cost of the sensors can be minimized. For example, Fig. 2.4

illustrates the minimum-cost sensor placements for a 4 × 4 sensing field with different

values of k, where a type-A sensor has a cost of �150 and one unit of sensing range and

a type-B sensor has a cost of �200 and two units of sensing range. The work [19] then

solves this problem by using a linear programming. In [29], sensors are also placed at

grid points. It is assumed that a sensor at grid point i can detect a target at grid point j

with a probability pij = e−α|ij|, where the parameter α is used to model the quality of the

sensor and the rate at which its detection probability diminishes with distance. Clearly,

pij = 1 if i = j and pij = pji because of symmetry. However, pij = 0 if there is an obstacle

in the line of sight from grid point i to grid point j. Based on the above conditions, the

objective of the sensor placement is to determine the minimum number of sensors and

their locations such that every grid point is covered with a minimum confidence level.

To achieve this goal, the work [29] proposes a greedy algorithm that determines the best

placement of sensors one by one, where each time the placement of the sensor can help

reduce the most miss probabilities of grid points. Such iteration will be repeated until

either a present upper limit on the number of sensors is reached, or sufficient coverage of

the grid points is achieved. The work in [71] discusses how to place sensors in a grid-based

sensing field to achieve complete coverage and discrimination. In [71], a power vector is

defined for each grid point i to indicate the set of sensors that can cover i. The sensing

field is called completely covered if any grid point in the sensor field can be covered by at

least one sensor. In a completely covered sensing field, if every grid point can be identified

by a unique power vector, the sensing field is said to be completely discriminated. Fig. 2.5

gives an example, where the power vector of grid point 8 is (0, 1, 0, 0, 1, 0) corresponding to

whether the sensors 2, 5, 6, 10, 11, and 14 cover the grid point 8. Note that a completely

discriminated sensing field may not be constructed because of resource limitations. Thus,

the work [71] formulates such sensor placement problem as a combinatorial optimization

problem for minimizing the maximum distance error, which is defined as the Euclidean

distance between two indistinguishable2 grid points, when the complete discrimination is

impossible.

The aforementioned schemes limit sensors to be placed on predefined grid points to

achieve desired coverage. Several studies relax such limitation and propose non-grid place-

ments of sensors. The work in [62] assumes that sensors have a sensing/communication

distance of r. Sensors are then placed strip by strip, where a strip is a string of sensors

placed along a line such that the distance between any two adjacent sensors is r. Clearly,

the sensors in a strip will form a connected component. To cover a 2D plane, two adjacent

2Two grid points are called indistinguishable if their power vectors are the same.

14

(a) (b) (c)

type-A sensor type-B sensor grid point

Figure 2.4: The minimum-cost sensor placements in the sensing field with a 4×4 grid-size

under different values of coverage level k: (a) k = 1 and cost = �550, (b) k = 2 and cost

= �950, and (c) k = 3 and cost = �1400.

1

2

3

5

6

8

9

7 10

11

12

13

14

sensing range

sensor

grid point

15

4

Figure 2.5: A complete covered and discriminated sensing field. There are six sensors

placed on the grid points 2, 5, 6, 10, 11, and 14.

15

strip

2 3

2
r

�

r

additional sensors to connect strips

Figure 2.6: The sensor placement with a strip-by-strip fashion proposed in [62].

strip is separated by a distance of 2+
√

3
2

r and shifted by a distance of r
2
. Note that addi-

tional sensors should be placed between two adjacent strips to guarantee the connectivity

of the network. Fig. 2.6 presents an example.

Reference [111] proposes a sensor placement strategy that can result in multi-level

coverage, where every point in the sensing field can be covered by at least k sensors and

k is a given parameter. It is assumed that the communication distance is no less than

twice of the sensing distance, so that the coverage of the sensing field can also guarantee

the connectivity of the network [128]. In [111], placements with k ≤ 3 are addressed and

the traditional hexagon placement is adopted. When k = 1, each sensor is separated by a

distance of
√

3rs, where rs is the sensing distance. When k = 2, two 1-covered placements

are combined to form a 2-covered placement. When k = 3, the distance between two

adjacent sensors is shrunk to r to generate 3-coverage overlaps. A placement with k > 3

can be generated by combing these three basic placements. Fig. 2.7 shows such placements

when k ≤ 3.

2.1.3 Self-deployments with Mobile Sensors

Instead of deciding where to place sensors, some works consider to make sensors deploy

by themselves. These works assume that sensors have mobile capability and can obtain

16

3 sr

(a) (b) (c)

rs

Figure 2.7: The k-covered placement scheme proposed in [111]: (a) k = 1, (b) k = 2, and

(c) k = 3.

their physical locations by the global positioning system (GPS) [53] or other schemes [13].

They consider to randomly deploy sensors initially and then to move sensors with different

strategies to enhance the coverage of the sensing field.

In [132], the concept of virtual force is introduced to move sensors. Each sensor si

is assumed to be exerted by three kinds of forces: the attractive (positive) force
−→
FiA by

the areas of preferential coverage, the repulsive (negative) force
−→
FiR by all obstacles, and

the force
−→
Fij between sensors si and sj. Therefore, the total force

−→
Fi on sensor si can be

expressed as

−→
Fi =

−→
FiA +

−→
FiR +

n∑
j=1,j �=i

−→
Fij ,

where n is the number of sensors. The force
−→
Fij is expressed in polar coordinate notation

(r, θ), where r is the magnitude and θ is the orientation of the vector
−→
Fij . Thus,

−→
Fij can

be derived as

−→
Fij =

⎧⎪⎪⎨⎪⎪⎩
(wA(dij − dth), θij), if dij > dth

0, if dij = dth

(wR(1
dij

), θij + π), otherwise

,

where dij is the Euclidean distance between sensors si and sj, dth is a threshold distance,

θij is the orientation (angle) of a line segment from si to sj, and wA/wR is a measure of

the attractive/repulsive force. Note that the threshold dth controls how close sensors get

to each other. Fig. 2.8 shows an example, where there are four sensors and dth is set to

d12. In Fig. 2.8, s2 exerts no force on s1, s3 exerts an attractive force
−→
F13 on s1, and s4

exerts a repulsive force
−→
F14 on s1 because d12 = dth, d13 > dth, and d14 < dth, respectively.

The sensor s1 is thus moved by the compound force
−→
F1.

The idea of repulsive force is also adopted in the work [50], where each sensor is treated

as an electron and will be repulsed by other sensors. The force corresponding to higher

17

X

Y

s1

s2

s3

s4

F14

F13

F1

Figure 2.8: An example of virtual forces with four sensors.

local density is greater than the force corresponding to lower local density, and the force

from a node that is closer is greater than that from a node that is farther. In [50], a force

function f(·) is defined to satisfy the following conditions:

• f(dij) ≥ f(dik) if dij ≤ dik, where dij is the distance between sensors i and j.

• f(0+) = fmax, where fmax is the maximum force.

• f(d) = 0 if d is larger than the communication distance of a sensor.

Sensors will be moved step by step. In each step k, the force on sensor i by another sensor

j in its communication range is calculated to be a repulsive force as

f i,j
k =

Di
k

μ2
(rc|pi

k − pj
k|)

pj
k − pi

k

|pj
k − pi

k|
,

where Di
k is the local density of sensor i at step k, μ is the expected density (after the

final deployment), rc is the communication distance of a sensor, and pi
k is the location of

sensor i at step k. When a sensor moves less than a threshold distance for a specified

time period, it is considered to have reached the stable status and thus stops moving.

Reference [118] uses the Voronoi diagram to find out potential coverage holes and then

moves sensors to cover these holes. Given a set of nodes on a 2D plane, the Voronoi dia-

gram [6, 32] is formed from perpendicular bisectors of lines that connect two neighboring

nodes, as shown in Fig. 2.9. The Voronoi diagram can represent the proximity information

18

Figure 2.9: The Voronoi diagram.

u

v

(a)

S
i

u

v

S
a

S
b

S
c

S
d

S
e

(b)

S
i

S
a

S
b

S
c

S
d

S
e

Figure 2.10: Two examples of (a) the VOR strategy and (b) the Minimax strategy.

about a set of geometric nodes. Every point in a Voronoi polygon is closer to the node in

this polygon than to any other node. In [118], after initial deployment, each sensor will

calculate the Voronoi polygon with the location information of its neighbors. Then three

strategies, naming vector-based (VEC), Voronoi-based (VOR), and Minimax algorithms,

are proposed to move sensors. The VEC strategy also adopts the idea of virtual force.

Two sensors si and sj will be pushed to move a distance of (davg − dij)/2 away from each

other, where davg is the average distance between two sensors when the sensors are evenly

distributed in the sensing field. However, if a sensor can completely cover its Voronoi

polygon, it should not be moved. In the VOR strategy, if a sensor detects the existence

of a coverage hole, it will move toward its farthest Voronoi vertex. Fig. 2.10(a) gives an

example, where point u is the farthest Voronoi vertex of sensor si. si will move to the

point v, where |uv| is equal to the sensing distance of a sensor. In the Minimax strategy, a

sensor si will choose the point v inside its Voronoi polygon whose distance to the farthest

Voronoi vertex u is minimized to move, as shown in Fig. 2.10(b).

Some studies use a grid structure to perform sensor relocation. They partition the

19

sensing field into grids and then move sensors from high-density grids to low-density

grids. In [119], the grid-quorum and cascaded movement schemes are proposed to find

the redundant sensors and to relocate sensors to the target locations, respectively. In

the grid-quorum scheme, the sensing field is divided into grids and each grid elects a

grid-head to maintain the grid’s information. The grid-head of a high-density grid will

send an advertisement message in its row, while the grid-head of a low-density grid will

send a request message to its column. Due to the grid structure, there will be a grid that

can receive both the advertisement and request messages. Fig. 2.11 presents an example,

where the grid (1, 2) has redundant sensors and the grid (3, 0) needs extra sensors. The

grid (3, 2) will receive both advertisement and request messages from these two grids. By

adopting this scheme, only O(
√

N) messages are needed to be exchanged, where N is the

number of grids. After identifying redundant sensors and requesting grids, sensors are

moved using the cascaded movement rather than the direct movement to prevent these

moving sensors from wasting too much energy, as shown in Fig. 2.12. In the cascaded

movement scheme, each sensor si is associated with a tolerable delay Ti, during which its

successor must move to its original location. Thus, a sensor sj can become a successor of

si if

dji

ν
− (ti − tj) ≤ Ti,

where ν is the moving speed of a sensor and ti is the departure time of sensor si. In [119],

the cascading sensor nodes will be selected to minimize the different between the total

energy consumption and the minimum remaining energy of moving sensors.

Reference [123] also partitions the sensing field into grids. The objective is to balance

the number of sensors in each grid. This can be done by two rounds of balancing, one for

each grid and one for each column. Fig. 2.13 shows an example.

2.2 Dispatch Issue

In this section, we survey several works that address the dispatch issue of mobile wireless

sensor networks. These works consider to move sensors to improve the network topology

or to perform other missions. The work in [9] discuss how to move mobile nodes to result

in a stronger network. Specifically, the objective is to form a biconnected network such

that the total moving distance of nodes can be minimized. A network is called biconnected

if it is not partitioned after removing any of its nodes. Each such node is referred to as

a cutvertex. Fig. 2.14 shows an example, where node c is a cutvertex and we can form a

biconnected network by moving node a. Based on this observation, the work [9] proposes

a block movement algorithm to remove all the cutvertices from the network by moving

20

(0,0)

(0,1)

(0,2)

(0,3)

(0,4) (1,4) (2,4) (3,4) (4,4)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(4,0)

(4,1)

(4,2)

(4,3)

grid-head sensor

Figure 2.11: An examples of the grid-quorum.

S
j

target

location

target

location

(b)

S
i

S
k

S
j

S
i

S
k

(a)

Figure 2.12: Examples of (a) the direct movement and (b) the cascade movement.

3

3

5

17

10

7

5

3

11

27

5

14

9

6

23

18

7

20

32

5

32

1

8

9

20

13

6

9

15

17

13

6

9

15

17

13

6

9

15

17

13

6

9

15

17

13

6

9

15

17

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

(a) (b) (c)

Figure 2.13: An ideal example of balancing the numbers of sensors in each grid: (a)

the initial case, (b) balancing the numbers of sensors in each row, and (c) balancing the

numbers of sensors in each column.

21

certain of nodes to new locations. In particular, given a graph G that describes the

network topology, the biconnected components (also called blocks) of G are first identified

along with its cutvertices, and then the graph G can be translated to a block tree [30].

Note that a block can have between 0 and n nodes, where n is the total number of nodes

in the network. If two cutvertices are directly connected by an edge, the corresponding

block contains no nodes. In the block tree, we can select the block with the maximum

number of nodes as its root. Fig. 2.15(a) and (b) give an example, where five blocks

(including the empty block B3) and two cutvertices C1 and C2 are identified. The block

B1 is selected as the root of the block tree and the blocks B2, B4, and B5 are the leaf

nodes. The block movement algorithm will execute the following iteration until the graph

becomes biconnected:

• Move the leaf block toward the nearest node in its parent block, by the distance

that exactly one new edge appears.

• If the parent block contains no node, we move the leaf block to the upstream cutver-

tex of its parent block.

Fig. 2.15(c) illustrates an example, where the block B2 will move toward the node v of

the block B1 and the blocks B4 and B5 will move toward the cutvertex C2 because their

parent block B3 is empty. The final network topology is shown in Fig. 2.15(d).

a

b

c

d

e

f

cutvertex a

b

c

d

e

f

(b)(a)

Figure 2.14: Achieving a biconnected network by node movement: (a) the initial network

topology and (b) the network becomes biconnected after moving node a.

The works in [33, 131] consider to add mobile sensors into an existing stationary

sensor network to adjust the network topology so that the coverage and connectivity of

the original network can be improved. In [33], there are M mobile sensors added to

improve the network topology. For these M mobile sensors, λM of them are used to

increase the sensing coverage while the rest (1 − λ)M of them are used to improve the

routing and connectivity, where 0 < λ < 1. To increase the sensing coverage, two schemes

22

B1

B2

B4

B5

B3

C2

C1 C2

C1

B5

B4

B2

B1

B3root

B1

B2

B4

B5

B3

C2

C1

v

(a) (b)

(c) (d)

Figure 2.15: An example of the block movement algorithm: (a) decomposition of a network

into cutvertices and biconnected components, (b) the corresponding block tree, (c) the

movement of blocks, and (d) the final network topology after block movement.

are proposed. The first scheme is to partition the sensing field into small equal-sized

cells. The sink then counts the number of stationary sensors in each cell. Cells with

the number of sensors less than the average are considered as under-covered and the

mobile sensors will be dispatched to these under-covered cells. Another scheme is to place

a mobile sensor on the center point of the line segment connecting the pair of sensors

with the longest distance. This procedure will continue until all λM mobile sensors are

dispatched. After dispatching λM mobile sensors, the remaining mobile sensors are used

to improve the routing and connectivity of the network. In particular, when the energy

of a sensor s is under a certain threshold, it will check if its neighbors can help cover

the area after the sensor s exhausts its energy. If most of the area cannot be covered,

the sensor s will broadcast a Help message to search for mobile sensors. A mobile sensor

receives such message will move to s’s location to perform packet relay and sensing task.

However, it is possible that the network is partitioned into several isolated components

due to sensors’ failure. In this case, the mobile sensors have to move actively to connect

23

these components. In particular, if the sink does not receive any message from a certain

area for a long time, it will ask nearby mobile sensors to roam to that area for maintaining

connectivity of the network.

The work in [131] considers that randomly-deployed stationary sensors are not distrib-

uted evenly so that these sensors may form several isolated groups, each called an island.

These islands cannot connect with each other so that we have to add mobile sensors to

connect them, as shown in Fig. 2.16. Thus, a three-step algorithm is proposed in [131] to

dispatch mobile sensors to fix the partitioned network. The first step is to search islands

by grouping stationary sensors. The second step is to calculate the least number of mobile

sensors MA,B needed to connect two islands A and B:

MA,B = �dA,B

rc
− 1	,

where dA,B = min{distance(s, t)}, s ∈ A, t ∈ B is the shortest distance between two

islands A and B. The last step uses a dynamic programming to find the optimal set of

islands to be connected. Specifically, let CG be the coverage of an island G and W (G, m)

is the optimal island set starts from island G, using m mobile sensors. We can obtain

that

W (G, m) = max{CG∪H + W (G ∪ H, m − MG,H)},

where H is an island to be connected with G. The above equation can be divided down

and thus solved by the dynamic programming. Note that for each island G, if the left x

mobile sensors cannot allow it to connect any other island, we will let W (G, x) = 0. After

identifying the optimal set of islands, mobile sensors will be placed along the lines that

connect these islands and the concept of virtual force is adopted to make these mobile

sensors to achieve maximum coverage. Fig. 2.16 gives an example.

island A

island B

island Cmobile sensors

Figure 2.16: The isolated islands are connected by mobile sensors.

Some studies consider to move sensors close to the event locations so that there can be

more sensors (possibly with stronger capabilities) used to detect the events. References

[14, 15] consider a sensor network consisting of only mobile sensors and suggest to move

24

more sensors close to the event locations while still maintaining the network coverage.

Two event-based movement schemes are proposed to aggregate sensors near the event

locations. The first one allows each sensor to react to an event by moving according to a

function f(d), where d is the distance between the sensor and the event. Note that this

function should satisfy the following three criteria:

0 ≤ f(d) ≤ d, ∀d,

f(∞) = 0, and

f(d1) − f(d2) < d1 − d2, ∀d1 > d2.

In [15], f(d) is suggested to be set to the form as αdβe−γd for values of parameters α, β,

and γ such that αe−γd(βdβ−1−γdβ) > 1 for all possible d. The second scheme maintains a

small amount of event history to analyze the distribution of events. Each sensor calculates

the cumulative distribution (CDF) of the scaled event distribution, which describes what

fraction of the sensors should be to the left of each point. The sensor then finds the point

in the scaled CDF corresponding to its initial position, and moves to that location. In

order to maintain the network coverage, the Voronoi diagram is constructed to determine

whether a sensor can move or not. Specifically, each sensor calculates the motion of

every other sensor and uses this information to compute its Voronoi polygon after each

movement. If any part of the sensor’s Voronoi polygon is farther away than its sensing

distance, it knows that no other sensor is closer to this point, and it should not move

away from that point.

The work in [117] considers a hybrid sensor network comprising of static and mobile

sensors, where the former is used to monitor the environment and to guide mobile sensors

to event locations, while the latter is equipped with more resources such as sensing ca-

pability and computation power and can move to event locations for providing advanced

detection. When the static sensors detect an event, they will elect a leader [35, 94] to

broadcast a weight request packet (WREQ) to the network. A mobile sensor receives such

WREQ packet will reply its weight, which is calculated as follows:

weight =
Voronoi area × distance

energy
,

where Voronoi area is used to measure the impact (i.e., the size of coverage hole) when

this mobile sensor leaves. After receiving the replies from multiple mobile sensors, the

leader will select the one with the minimum weight and then broadcasts an advertisement

packet (ADV) to build up the navigation field for guiding the mobile sensor. In particular,

the leader sets the highest credit value C1 for itself and inserts C1 into the ADV packet.

Other static sensors receiving such ADV packet will set their credit values as C2, where

C2 < C1. Then only those static sensors that have relayed the reply message from the

25

mobile sensor will broadcast an ADV packet containing C2. Other static sensors receiving

such ADV packet set their credit values as C3, where C3 < C2. This procedure will be

repeated until the ADV packet reaches the mobile sensor. Then the mobile sensor will

move toward the static sensor with higher credit values. Fig. 2.17 illustrates an example.

mobile sensor

leader

region of the event

C1

C2
C2

C2

C3

C3

C3

C4

C4

A
D

V

A
D

V

A
D

V

Csmall

Clarge

Clarge

Cmedium

Cmedium

moving direction

(a) (b)

navigation field

Figure 2.17: Navigation of the mobile sensor: (a) building up the navigation field and (b)

calculating the moving distance of the mobile sensor.

2.3 Packet-scheduling Issue

In this section, we survey several packet fair scheduling algorithms designed for wireless

networks, which are classified into four categories. The first category of algorithms adopt

the rules of wire-line scheduling algorithms, but they will swap the channel access between

those backlogged flows that encounter channel errors and those backlogged flows that do

not. The second category of algorithms provide explicit mechanisms to compensate those

flows who receive less services due to channel errors. The third category of algorithms

dynamically adjust a flow’s weight according to its channel’s and queue’s conditions. The

scheduling algorithms in the last category consider some application-specific issues, such

as traffic types of flows and handoff between base stations.

26

2.3.1 Algorithms with Error-free Reference Models

The scheduling algorithms in this category define an ideal fair service model that assumes

no channel errors. This error-free service model usually adopts the rules of a wire-line

scheduling algorithm, and it can provide a reference for channel allocation. Specifically,

the scheduler can know how much service that a flow should receive in an ideal case

(i.e., no channel errors occur), and then compensate those flows that receive less services

because of channel errors. In this section, we discuss two representative algorithms, IWFQ

(Idealized Wireless Fair Queuing) [75] and CIF-Q (Channel-condition Independent Fair

Queuing) [86].

Idealized Wireless Fair Queuing (IWFQ)

IWFQ adopts a wire-line scheduling algorithm WFQ (Weighted Fair Queueing) [127] as

its reference error-free model to help determine the service sequence of packet flows. A

flow is said to be leading, lagging, or in sync if its queue size in the real error-prone

system is smaller than, larger than, or the same as the queue size in the reference error-

free system, respectively. In IWFQ, each packet pi
n of a flow i is associated with a start

tag si
n and a finish tag f i

n, which are computed followed the rules in WFQ:

si
n = max{v(tin), f i

n−1}, (2.1)

f i
n = si

n +
Li

n

wi

, (2.2)

where tin is the physical arrival time of the packet pi
n, v(tin) is the system virtual time at

time tin defined in IWFQ, f i
n−1 is the finish tag of the previous packet, Li

n is the packet

size of pi
n, and wi is the weight of flow i.

In IWFQ, the scheduler always selects the packet with the smallest finish tag for

service. However, when the selected packet cannot be transmitted due to channel errors,

the scheduler will try to select the packet with the next smallest finish tag for service.

This process will continue until the scheduler finds a packet that can be transmitted.

Since the finish tags of packets will never be changed, a flow that loses its services due to

errors may accumulate many packets with small finish tags after exiting from errors. In

order to prevent these packets from starving other flows, IWFQ sets two bounds:

• Bounds on lag : The total lag kept by all flows is bounded by a constant of B bits.

A lagging flow i with a weight wi is allowed to compensate no more than bi bit,

where

bi = B × wi∑
k∈F wk

,

27

and F is the set of all flows. In particular, for any lagging flow i, the total length of

those packets with finish tags less than the current system virtual time is bounded

by bi bits. All other such packets will be deleted.

• Bounds on lead : A leading flow is allowed to keep its lead by a maximum length of

li bits. Specifically, for each leading flow i, if the start tag si
HOL of the head-of-line

packet is greater than the current system virtual time v(t) by more than li/wi, then

its start and finish tags will be updated as:

si
HOL = v(t) +

li
wi

,

f i
HOL = si

HOL +
Li

HOL

wi
,

where Li
HOL is the length of the head-of-line packet. The tags of other packets in

flow i will be also updated by Eqs. (2.1) and (2.2) accordingly.

The IWFQ scheduler checks every queue after it transmits a packet. If the scheduler

finds that a queue violates the above bounding principles, it adjusts that queue following

the aforementioned two rules to guarantee the delay bound and throughput of flows.

Channel-condition Independent Fair Queuing (CIF-Q)

In CIF-Q, four principles that a wireless packet scheduling algorithm should obey are

proposed:

1. Delay and throughput guarantees: Delay bound and throughput for error-free flows

should be guaranteed and should not be affected by other flows that encounter

channel errors.

2. Long-term fairness: After a flow exits from channel errors, as long as it has enough

service demands, it can get back all of its “lost” services during channel errors.

3. Short-term fairness : The difference between the normalized services received by

any two error-free flows that are continuously backlogged and are in the same state

(leading, lagging, or satisfied) during any time interval should be bounded.

4. Graceful degradation: A leading backlogged flow should be guaranteed to receive at

least a minimum fraction of its services when it is error-free.

The proposed CIF-Q algorithm is developed according to the aforementioned prin-

ciples. CIF-Q adopts the start-time fair queuing (SFQ) [44] as its reference error-free

system to determine the service order. It maintains a virtual time vi for each flow i to

keep track of the normalized services that the flow receives in the reference error-free

28

system, and a parameter lagi is used to record the difference between the services that

are actually received by flow i in the real error-prone system and the services that are

expected to be received by flow i in the reference error-free system. When a flow i is

selected and transmits a packet with length lp, its vi is then increased by lp/wi. However,

when the selected flow i cannot transmit packets due to channel errors, the scheduler will

choose another flow j to serve. At this time, vi is still increased by lp/wi, but lagi and

lagj are increased and decreased by lp, respectively. Therefore, according to lagi, we can

determine the state of a flow i. In particular, flow i is called leading if lagi < 0, called

lagging if lagi > 0, and called satisfied otherwise. Note that
∑

i∈A lagi should be always

zero since CIF-Q is work-conserving, where A is the set of all active flows. In addition,

to satisfy the graceful degradation principle, an extra parameter α is used to define the

minimal fraction of services that can be received by a leading flow. Specifically, a leading

flow i is allowed to continue receiving services at an average rate of α · ri so that it will

not be starved.

The scheduling process of CIF-Q is summarized as follows:

• The scheduler always selects a flow i with the smallest vi for service. The selected

flow i cannot transmit if either one of the following cases occurs:

– Flow i suffers from channel errors.

– Flow i is leading and has received more than α · ri amount of services.

In the latter case, flow i has to give up its transmission opportunity to other lagging

flows.

• When a flow i is selected but it cannot transmit packets, the scheduler will choose

another flow j to serve. Such services obtained from flow i are called additional

services.

• When there are additional services available, lagging flows always have a higher

priority to receive such services. The additional services are then distributed among

lagging flows proportional to their service weights.

• If no lagging flow can receive the additional services provided by an error flow, the

scheduler distributes these services among leading and satisfied flows proportional

to their weights.

2.3.2 Algorithms with Explicit Compensation Mechanisms

This category of algorithms use a server (or several counters) to compensate those flows

that receive less services due to channel errors. When a flow suffers from errors and cannot

29

be served, the scheduler will record the lost services of that flow in the server. After this

flow recovers from channel errors, the scheduler will compensate this flow with the amount

of services recorded in the server. Here we introduce two representative schemes, SBFA

(Server Based Fairness Approach) [95] and Havana [96].

Server Based Fairness Approach (SBFA)

The basic idea of SBFA is to reserve part of network’s bandwidth for compensation. This

reserved part can be achieved by the long-term fairness server (LTFS). In particular,

LTFS is a virtual data flow created for the compensation purpose. Although it is a

virtual flow, LTFS still shares the bandwidth and is scheduled by the system.

In SBFA, each data flow (except for LTFS) is associated with a packet queue (PQ)

and a slot queue (SQ). When a packet of flow i arrives, it is inserted into PQi. At the

same time, an abstract entity called slot is created in SQi with a tag Si. In SBFA, any

wire-line packet scheduling algorithm can be used, and the scheduling policy is applied

to the slot queues. Specifically, when a slot in SQi is selected, the head-of-line packet in

the corresponding PQi is transmitted as long as flow i is error-free. In this case, both

the slot in SQi and the packet in PQi will be removed. However, if flow i suffers from

channel errors, only the slot in SQi is removed but it will be inserted into LTFS for future

compensation.

Here we use an example to demonstrate how the SBFA works, as shown in Fig. 2.18.

The scheduling policy used in this example adopts a simple round-robin scheme. Consider

that there are two flows i and j in the system. Flow i suffers from channel errors during

time [0, 1], but flow j is always error-free. At time 0 (refer to Fig. 2.18(a)), the scheduler

turns to serve flow i, but it finds that flow i suffers from channel errors. Thus, the

scheduler dequeues a slot from SQi and inserts the slot into LTFS. Then the scheduler

changes to serve flow j and transmits Pj1 in PQj of flow j. Also, a slot in SQj is removed

(refer to Fig. 2.18(b)). At time 1, by the round-robin policy, the scheduler will turn to

serve flow j. This will succeed, so the first entry in both PQj and SQj will be removed.

At time 2, the scheduler will turn to serve LTFS. Since it finds that the head-of-line slot

in LTFS has a tag of Si, the scheduler goes to serve flow i (refer to Fig. 2.18(c)). At this

time, only the packet Pi1 in PQi is removed. Note that if flow i is still in error state

at time 2, the slot Si will be kept in LTFS and the scheduler will turn to select another

error-free flow to serve. In this way, flow i can still be compensated at next time.

In summary, LTFS provides a mechanism to record which flows should be compensated

in the future. Note that there can be more than one LTFS in SBFA, and the number of

LTFS depends on the requirements of the flows sharing the wireless link. SBFA suggests

that it is better to assign flows with similar requirements to the same LTFS.

30

Pi2Pi3

SiSi

Pi1

Si

Pj1

PQ
i

SQ
i

PQ
j

SQ
j

LTFS

channel error

(a) Time 0

Pj2Pj3

SjSjSj

Pi2Pi3

Si

Pi1

Si

Pj2

LTFS

(b) Time 1

Pj3

SjSj

Pi2Pi3

Si

Pi1

Si

Pj3

LTFS

(c) Time 2

Sj

Si

Si

packet

scheduler

packet

scheduler

packet

scheduler

PQ
i

SQ
i

PQ
j

SQ
j

PQ
i

SQ
i

PQ
j

SQ
j

switch

switch

Figure 2.18: An example of SBFA using the round-robin scheduling policy.

Havana

In Havana, a modified version of Deficit Round Robin (DRR) [105] scheduler is used to

credit and compensate flows in response to potential unfairness experienced by mobile

stations due to different channel conditions. In DRR, every flow has its own queue.

The scheduler serves queues in a round-robin fashion. During each round, the number of

packets served in each queue i is determined by two parameters: quantum (Qi) and deficit

counter (DCi). Specifically, Qi accounts for the quota given to flow i in each round, while

DCi keeps track of the credit already accumulated by flow i. A round is the process of

visiting each queue once by the scheduler. At the beginning of each round, a credit of Qi

is added to DCi. When the scheduler turns to serve flow i, the scheduler will transmit

the first k packets of queue i such that their total size does not exceed DCi and k is the

31

largest possible integer. After the transmission, DCi is deducted by the exact amount of

data being transmitted. If the scheduler finds that there is no backlogged packet in flow

i, DCi is reset to zero.

To compensate the flows that lose their services due to channel errors, Havana main-

tains an extra compensation counter (CCi) to keep track of the amount of lost services of

each flow i. If the scheduler defers transmission of an error flow i, the corresponding DCi

is decreased by the Qi, but CCi is increased by Qi. At the beginning of each round, an

amount of αi · CCi credits is added to DCi, and CCi is decreased by the same amount,

where 0 < αi ≤ 1. The value of αi represents the fraction of the compensation credit

actually given to flow i during this round.

Here we give an example to demonstrate how the Havana works, as shown in Fig. 2.19.

There are two flows i and j in the system with the parameters Qi = 80, Qj = 120,

αi = 1/2, and αj = 1/4. The status of flows (i.e., their queues and parameters) at the

beginning of round k is shown in Fig. 2.19(a). The number in each packet represents its

size. Assume that flow j is error-free but flow i suffers from channel errors at round k.

Then in round k, the transmission of flow i is deferred and that of flow j will proceed.

Fig. 2.19(b) shows flows’ status at the end of round k. DCi is decreased by Qi(= 80) and

CCi is increased by Qi. DCj is decreased by the size of the head-of-line packet (= 100)

and CCj is unchanged. At the beginning of round k + 1 (refer to Fig. 2.19(c)), flow i’s

DCi is increased by the value of Qi +αi ·CCi = 80+ 1
2
×260 = 210, and CCi is decreased

by αi · CCi = 1
2
× 260 = 130. The similar updates will be also applied to flow j.

120

140

70

80

flow i

flow j

(a) Beginning of round k

DCi = 200

DCj = 150

CCi = 180

CCj = 160

flow i

flow j

(b) End of round k

DCi = 120

DCj = 70

CCi = 260

CCj = 160

flow i

flow j

(c) Beginning of round k + 1

DCi = 330

DCj = 230

CCi = 130

CCj = 120

error

error 120 70

120 70

140

140

Figure 2.19: An example of the Havana scheduling, where Qi = 80, Qj = 120, αi = 1/2,

and αj = 1/4.

Note that to avoid unbounded compensation, upper limits are imposed on deficit

32

counters. In particular, the credit accumulated in DCi should not exceed an upper bound

DCmax
i at any time.

2.3.3 Algorithms with Weight Adjustment Mechanisms

Up to now, the scheduling algorithms that we have reviewed all consider that the weights of

flows are “static”. Specifically, once the weight of a flow is decided, it will not be changed

during the whole scheduling process. Several algorithms take a different viewpoint. In

particular, they dynamically adjust flows’ weights according to different conditions. In this

section, we discuss two such algorithms, Effort-Limit Fair (ELF) [36] and Fair Queuing

with Adaptive Compensation (AC-FQ) [120].

Effort-Limit Fair (ELF)

ELF is proposed to extend the wire-line scheduling algorithm WFQ with a dynamic

weight-adjustment mechanism. In particular, the ELF scheduler will adjust each flow’s

weight in response to the error rate of that flow, up to a maximum weight defined by

that flow’s power factor, which is provided by the admission control module (refer to

Fig. 2.20). Specifically, assume that there are n flows sharing a wireless channel. Each

flow i maintains a weight wi and a power factor pi. Also, let flow i experience an error

rate ei, where 0 ≤ ei < 1. Then ELF defines the adjusted weight ai of flow i as

ai = min

{
wi

1 − ei
, pi × wi

}
.

Intuitively, for an error flow i, the ELF scheduler scales its weight wi to make up its loss

due to channel errors, but we limit the adjustment to a factor pi. By this dynamic weight

adjustment, ELF can control the scheduler’s behavior in the presence of channel errors.

user

requests

administrative

control

ELF

scheduler

MAC

protocol

power

factors
weights

...packet

flows

packets
transmit

effort/outcome

admission control

&

loss policy

Figure 2.20: The architecture of the ELF scheduler.

33

Fair Queuing with Adaptive Compensation (AC-FQ)

AC-FQ is proposed based on the observation in [59], which indicates that CIF-Q may

cause the services of error-free flows becoming deteriorated. AC-FQ modifies the way

how leading flows give up their services for compensating other lagging flows in CIF-Q.

The design architecture of AC-FQ is shown in Fig. 2.21. In AC-FQ, when a flow becomes

leading, it is divided into two sub-flows: transmission flow and compensation flow. A

leading flow can receive a fraction of services through its transmission flow, and provide

part of bandwidth to other lagging flows through its compensation flow. To achieve this,

each flow i maintains three different weights wi, wH
i , and wL

i , where wi > wH
i > wL

i .

When a leading flow i has a longer queue length, the weights of its transmission flow

and compensation flow are set to wH
i and wi − wH

i , respectively. In this way, flow i can

keep more services and its queuing delay can be thus alleviated. Otherwise, the weights

of its transmission flow and compensation flow are set to wL
i and wi − wL

i , respectively.

In this case, flow i has to give up more services to compensate other lagging flows. In

summary, AC-FQ alleviates the queuing delays of leading flows by dynamically changing

their weights according to their queue lengths.

select the flow with the minimum virtual time to serve

tran
sm

issio
n

flo
w

co
m

p
en

satio
n

flo
w

tran
sm

issio
n

flo
w

co
m

p
en

satio
n

flo
w

o
rig

in
al

flo
w

receiv
e

co
m

p
en

satio
n

leading flows lagging flows

... ...

... ...

transmit the head-of-line packet by the MAC protocol

o
rig

in
al

flo
w

satisfied

flows

o
rig

in
al

flo
w

receiv
e

co
m

p
en

satio
n

select a lagging

flow for

compensation

Figure 2.21: The design architecture of AC-FQ.

2.3.4 Algorithms that Consider Traffic Types of Flows

An inherent limitation of wire-line scheduling algorithms is that the delay observed by

the packets of a flow is tightly coupled with the fraction of the channel given to the

34

flow (i.e., their weights) among all backlogged flows [76]. Thus, those wireless scheduling

algorithms that modify wire-line scheduling algorithms without considering traffic types

of flows may also suffer from this limitation. Therefore, several scheduling algorithms

have been proposed to take traffic types of flows into consideration and thus decouple

the delay and bandwidth requirements of flows. Here we discuss two related scheduling

algorithms, Wireless Fair Service (WFS) [76] and Handoff Compensation Scheme (HCS)

[69], in this section.

Wireless Fair Service (WFS)

WFS assigns each flow i with a rate weight ri and a delay weight di, and associates each

packet pi
k with a start tag S(pi

k) and a finish tag F (pi
k):

S(pi
k) = max

{
V (A(pi

k)), S(pi
k−1) +

Li
k−1

ri

}
,

F (pi
k) = S(pi

k) +
Li

k

di
,

where Li
k is the size of the kth packet pi

k of a flow i, A(pi
k) is the arrival time of pi

k, and

V (t) is the virtual time at time t. Essentially, flow i is drained into the scheduler according

to the rate weight ri, but served according to the delay weight di. In addition, at each

time t, the WFS scheduler transmits the packet with the minimum finish tag among those

packets whose start tags are not greater than V (t) +
, where
 provides a measure of

the number of packets over which the scheduler can locally switch the schedule of packets

without disrupting the long-term rate. By varying
, WFS can provide different levels of

delay-bandwidth decoupling.

Handoff Compensation Scheme (HCS)

In HCS, a compensation scheme to handle the channel errors and handoff situation is

proposed. This compensation scheme is designed based on a priority swapping and a

compensation flow. A flow experiencing channel errors will defer its transmission by

swapping the resources to other error-free flows, and this flow will receive additional

resources when it recovers from channel errors. A compensation flow is a virtual flow with

a pre-assigned weight wCS. It participates in the scheduling process and redistributes its

resources to active flows according to the state of flows. In HCs, all flows are classified

into four groups: poorer, poor, normal, and rich. A flow is said to be poor if it receives

less services than it expects. When a poor flow transmitting real-time traffic is about

to drop packets due to long waiting time, this flow is changed to a poorer flow. When

there are additional services available, the poorer flows always have the highest priority

to receive such services, so the queuing delays of real-time flows can be alleviated. For the

35

handoff flows, HCS uses the compensation flow to give/receive weights to/from handoff

flows. Specifically, when a flow i handoffs into a cell, it can be given a weight wi from the

compensation flow if α ·wCS ≥ wi, where 0 < α ≤ 1. On the contrary, when flow i leaves

a cell, it returns its service share to the scheduler by increasing wCS with its weight wi,

so other flows can share these unused services left by flow i.

2.4 Implementations of Mobile Sensor Platforms

In this section, we survey some works that discuss the implementations of mobile sensor

platforms. One similar issue, mobile robots, has been widely discussed in the field of

robotics [37, 55, 67, 68]. These works consider to make the robot move automatically in

a space, in which there may be static obstacles or humans (i.e., moving obstacles). To

achieve this goal, they install cameras on walls or the robot to identify obstacles or humans

in the environment, and this information will be used to guide the robot to detour around

these obstacles. The visual information obtained from cameras can also help locate the

robot. For example, the robot proposed in [68] has four color bars, each painted with

three different colors, as shown in Fig. 2.22. By identifying the color bars and the angle

θwr, the system can obtain the current location and direction of the robot and thus can

help navigate the robot.

robot

Xw2 Xw1

Xw3 Xw4

wr�

(Xr,Yr)

camera
X

Y

Z

Y

X

Z

referred
coordinate

translate

Figure 2.22: The system architecture of mobile robots proposed in [68].

Several studies have proposed their design and implementations of mobile sensors. In

[101], Sharp et al. implement the pursuer-evader problem [28] by using a hybrid sensor

network. In the pursuer-evader problem, there are two mobile nodes, called pursuer and

36

evader, in the field. The evader node will roam in the field while the pursuer node attempts

to intercept the evader node by using the information obtained from the environment.

In [101], the pursuer and evader nodes are implemented by ground robots, which are

essentially mobile off-road laptops equipped with GPS devices. Each robot runs Linux

on a 266 MHz Pentium2 CPU with 128 MB of RAM, and is equipped with an IEEE

802.11 wireless radio, all-terrain off-road tires, a motor-controller subsystem, and a GPS

device. In addition, a static sensor network is deployed in the sensing field to obtain the

information of the evader node. Such information will be sent to the pursuer node so that

it can catch up with the evader node. More details of this system can be found in [101].

Mobile Emulab [61], a robotic wireless and sensor network testbed, is proposed for

researchers to evaluate their proposed mobility-related network protocols, applications,

and systems. In this testbed, robots carry single-board computers and sensors (so that

they can be treated as “mobile sensors”) through a fixed indoor field, all running the

user’s selected software. In real-time, interactively or driven by a script, remote users

can position and control these robots. Mobile Emulab is composed of three components,

including video cameras, robots (or mobile sensors), and fixed sensors. The cameras

are mounted on the ceiling to overlook the sensing field and to track robots. The mobile

sensors, which use Acroname Garcia robots [2] as their mobile platforms, carry an XScale-

based Stargate [26] small computer running Linux, a MICA2 mote [24], and an IEEE

802.11b WLAN card for computing, communicating, and controlling purposes. Finally,

the fixed sensors are used to detect events in the sensing field. The system architecture

of Mobile Emulab is illustrated in Fig. 2.23. The user can control robots or query data

through the robot backend. When a robot motion request is received, the robotd subsystem

will translate it into low-level motion commands to control the robots. Besides, the visiond

subsystem will periodically track the positions of robots through the cameras and feedback

this information to the robotd subsystem so that it can revise the motions of robots.

Reference [103] considers a hybrid sensor network that consists of both static and

mobile sensors, where the mobile sensors can move to the locations of some static sensors

to perform certain applications such as node replacement. Unlike the previous work,

a mobile sensor is navigated by the received signal strength rather than by the location

information or image processing technologies. Specifically, the sink will construct a routing

path to each static sensor by flooding a message, as shown in Fig. 2.24. These routing

paths are used as navigation paths of mobile sensors. In particular, when the mobile

sensor wants to visit a static sensor s, the sensor s will send a packet containing its ID to

the sink. Static sensors on the routing path will also add their IDs in the packet so that

a navigation path can be constructed. Fig. 2.24 shows an example, where sensor a is the

target node and a packet containing IDs abcde that indicates the reverse navigation path

37

Figure 2.23: The system architecture of Mobile Emulab.

will be sent to the sink. After receiving such packet, the sink will dispatch a mobile sensor

to the target node. The mobile sensor will move to the next static sensor by continuously

monitoring the signal strength of the beacons sent from the static sensor at the next hop.

To approach a specified static sensor, the mobile sensor will go forward and detect the

change of received signal strength. If the strength is increasing, it means that this mobiles

sensor is approaching a turning point, which is defined as the midpoint of a line segment

that the mobile sensor can receive the strongest signal strength, as shown in Fig. 2.25(a).

Otherwise, the mobile sensor is moving away from the target and it will immediately

reverse its current moving direction. When the mobile sensor arrives at the turning point,

it knows that the target is either in the right or left side of its moving direction. In

this case, the mobile sensor will turn right3 to seek for the target. By repeating this

3If the target is in the left side, the signal strength received by the mobile sensor will become weaker

as it moves away from the target. In this case, the mobile sensor will reverse its direction.

38

procedure, the mobile sensor can eventually arrive to the final destination. Fig. 2.25(b)

gives an example to show the moving steps of a mobile sensor.

Figure 2.24: Constructing a routing path from the sink to each static sensor.

39

Figure 2.25: Navigation of a mobile sensor by the received signal strength: (a) the turning

point and (b) the moving steps of a mobile sensor from the sink to a static sensor.

40

Chapter 3

Deployment of a Wireless Sensor Network

for Single-level Coverage

Sensor deployment is a critical issue because it affects the cost and detection capability of

a wireless sensor network. In this chapter, we aim at the planned deployment of sensors in

the environments such as in buildings or known fields. We address two related problems:

sensor placement and sensor dispatch. The placement problem asks how to place the

least number of sensors in a field to achieve desired coverage and connectivity properties,

where coverage is to guarantee that every location in the sensing field is monitored by

at least one sensor and connectivity is to ensure that there are sufficient routing paths

between sensors. Note that coverage is affected by sensors’ sensitivity, while connectivity

is decided by sensors’ communication ranges. The dispatch problem assumes that sensors

are mobilized and the goal is, given a set of mobile sensors and an area of interest inside

the sensing field, to choose a subset of sensors to be delegated to the area of interest with

certain objective functions such that coverage and connectivity properties are satisfied.

In this chapter, we propose more general solutions to the sensor placement problem

than existing results. Our approach allows an arbitrary relationship between a sensor’s

communication distance and its sensing distance. The sensing field is assumed to be a

polygon of any shape in which there may be arbitrary-shaped obstacles. So the results

can model an indoor environment. Our approach first partitions the sensing field into

smaller sub-regions. In each sub-region, we arrange sensors row by row such that each row

guarantees continuous coverage and connectivity and that adjacent rows ensure continuous

coverage. Finally, columns of sensors are added to ensure connectivity between rows. The

result requires fewer sensors compared to other schemes. For the sensor dispatch problem,

we have proposed a centralized and a distributed schemes based on the former placement

results. Both schemes attempt to minimize the total energy consumption to move sensors,

41

or to maximize the average remaining energy of those sensors that are moved into the

area of interest. The first scheme converts the dispatch problem to the maximum-weight

maximum-matching problem, whose optimal solution can be found in polynomial time.

With a greedy strategy, the second scheme is distributed in that sensors will select the

most suitable locations as their destinations and compete with each other to move to

these locations.

3.1 Problem Statement

3.1.1 The Sensor Placement Problem

We are given a sensing field A to be deployed with sensors. Each sensor has a commu-

nication distance rc and a sensing distance rs. Sensors are homogenous, but we allow an

arbitrary relationship of rc and rs. The sensing field A is modeled by an arbitrary 2D

polygon. Obstacles may exist inside A, which are also modeled by polygons of arbitrary

shapes. However, these obstacles do not separate A into non-connected sub-regions. Oth-

erwise, it wouldn’t be possible to maintain the network connectivity. With the presence

of obstacles, we consider two sensors si and sj as connected if |sisj| ≤ rc and the line

segment sisj does not cross any obstacle or boundary of A; otherwise, they are discon-

nected. Fig. 3.1(a) and (b) present two examples. Obstacles may also diminish a sensor’s

coverage. We define that a point can be monitored by a sensor if it is within a distance

of rs and line-of-sight exists with the existence of obstacles. Fig. 3.1(c) and (d) give two

examples. Note that here we adopt the binary sensing model [50, 62] of sensors, where

a location can be either monitored or not monitored by a sensor. In Section 3.2.4, we

will discuss how to adjust our placement solution to adopt to the probabilistic sensing

model [23, 29, 133], where a location will be monitored by a sensor with some probability

function.

Our objective is to place sensors in A to guarantee both sensing coverage (in the sense

that every point inside A can be monitored by sensors) and network connectivity (in the

sense that no sensor gets disconnected) using as few sensors as possible. The concepts of

coverage and connectivity in an office environment are illustrated in Fig. 3.2. Note that

we assume rc = rs in this example.

3.1.2 The Sensor Dispatch Problem

We are given a sensing field A, an area of interest I inside A, and a set of mobile sensors

S resident in A. The sensor dispatch problem asks how to find a subset S ′ ⊆ S of sensors

to be moved to I such that after the deployment, I satisfies our coverage and connectivity

42

(a) (b)

obstacle

si sj

rc

rs

(c) (d)

obstacle

si sj

rc

rs

obstacle obstacle

covered

region
line-of-sight

Figure 3.1: Assumptions on connectivity and coverage: (a) si and sj are connected, (b)

the obstacle disconnects si and sj, (c) coverage with a large obstacle, and (d) coverage

with a small obstacle.

(a) (b)

sink sink

Figure 3.2: An example of sensor deployment in an office environment: (a) sensing cov-

erage and (b) network connectivity.

43

requirements and the movement cost satisfies some objective function. Here we consider

two functions. The first one is to minimize the total energy consumption to move sensors,

i.e.,

min
∑
i∈S′

Δm × di, (3.1)

where Δm is the unit energy cost to move a sensor in one step and di is the distance that

sensor i has to be moved. The second one is to maximize the average remaining energy

of sensors after the movement, i.e.,

max

∑
i∈S′ (ei − Δm × di)

|S ′| , (3.2)

where ei is the initial energy of sensor i. Note that the calculation of di should take the

existence of obstacles into account.

3.2 Solutions to the Sensor Placement Problem

To start with, we first consider two possible placements. The first one attempts to reduce

the number of sensors by minimizing the overlapping coverage. The result would be

as shown in Fig. 3.3(a), where neighboring sensors are evenly separated by a distance

of
√

3rs. This scheme is efficient when rc ≥ √
3rs since connectivity is automatically

guaranteed. However, when rc <
√

3rs, extra sensors need to be added to maintain

network connectivity. It is inefficient because the whole sensing field has been covered

and these newly-added sensors will not make any contribution to coverage. The second

possible placement is to meet the connectivity requirement first. This placement would

be as shown in Fig. 3.3(b), where neighboring sensors are evenly separated by a distance

of rc. This scheme is efficient when rc ≤ √
3rs because coverage can be automatically

guaranteed. However, when rc >
√

3rs, extra sensors need to be added to maintain

coverage. It is inefficient because the overlapping coverage could be large.

Our placement has the following features. First, it avoids the dilemma in the above

placements by taking both rc and rs into account. Second, our solution is more general

as it allows an arbitrary shape of sensing field A and possibly obstacles in A. Our scheme

works in two steps. First, it partitions A into a number of regions. Regions are classified

into single-row regions and multi-row regions. A single-row region is a belt-like area with

width no larger than
√

3rmin, where rmin = min(rc, rs), so a row of sensors is sufficient to

fully cover the region while maintaining connectivity. A multi-row region is perceivably

larger and can be covered by several rows of sensors. Fig. 3.4 gives an example, where

the sensing field is partitioned into eight single-row regions and six multi-row regions.

44

rs

3rs

rc

(a) coverage-first placement (b) connectivity-first placement

3rs

3rs

Figure 3.3: Two possible sensor placements: (a) considering the coverage property first

and (b) considering the connectivity property first.

(a)

(b) (c)

obstacle

obstacle

min3r

obstacle

obstacle

h

a

c

obstacle

123

4 5
6

g

d

e

f

b

expanded
parallel lines

min3r

min3r

min3r

min3r

min3r

u

v

u

v

,

,

cut-off area O

Figure 3.4: Partitioning a sensing field: (a) expanding the boundary of field inwardly by

a distance of
√

3rmin, (b) the eight single-row regions found by taking projections from

obstacles, and (c) the six multi-row regions found by excluding the single-rows regions.

45

algorithm Partition

Input: A: the sensing field

B: the set of boundaries of A and perimeters of obstacles

Output: single-row and multi-row regions

1: for each uv /* find out all single-row regions */

2: expand a parallel line by a distance of ;

3: if cuts off a partial region, say, O of an obstacle

4: then take a projection P from O to uv ;

5: if P overlaps with an existing single-row region P'

6: then merge P and P' into one single-row region;

7: else

8: make P a new single-row region;

9: end for

10: exclude all single-row regions from A and the rest of the regions are multi-row regions;

min3r

B�

' 'u v

' 'u v

Figure 3.5: The pseudo code of the partition algorithm.

3.2.1 Partitioning the Sensing Field

Fig. 3.5 illustrates our partition algorithm. The idea is to first identify all single-row

regions. After excluding single-row regions, the remaining regions are multi-row regions.

To identify single-row regions, we expand the boundaries of A inward and perimeters

of obstacles outward by a distance of
√

3rmin. If there is a single-row region between one

obstacle and the line segment uv of A’s boundary, the expanded parallel line u′v′ must

cut off a partial region, say, O of the obstacle or A (the area outside A). Then we can

take a projection from O to uv to obtain the single-row region. Fig. 3.4(a) shows how to

find single-row regions for the boundary, where the dotted lines are the expanded parallel

lines of A’s boundaries. After taking projections, we can obtain six single-row regions a,

b, d, e, f , and h in Fig. 3.4(b). Then we can perform the same steps for each obstacle.

Note that a single-row region obtained from one obstacle may have overlapping with those

obtained earlier (due to different projections). In this case, we can simply merge those

with overlappings into one single-row region. This guarantees that our partition algorithm

will produce a unique output. Fig. 3.4(b) shows all obtained single-row regions.

The aforementioned step may obtain several single-row regions. Excluding such re-

gions, the remaining areas of A are multi-row regions. An example is given in Fig. 3.4(c).

Note that there could be still obstacles inside a multi-row region (e.g., the region 6).

46

obstacle

obstacle

obstacle

obstacle

case

(b)

(c)

single-row regions bisectors sensor placements

min3width r�

min3width r�

(a)

o
b

sta
cle

obstacle

min3width r�

min3width r�

bisector

triangulation

midpoint

Figure 3.6: Three examples of finding bisectors of single-row regions and their correspond-

ing sensor placements when rc = rs.

3.2.2 Placing Sensors in Single-row Regions

For a single-row region, we can find its bisector and then place a sequence of sensors along

the bisector to satisfy both coverage and connectivity. A bisector can be found by doing

a triangulation on that region, as shown in Fig. 3.6, and then connecting the midpoints of

all dotted lines. Following the bisector, we can place a sequence of sensors each separated

by a distance of rmin to ensure coverage and connectivity of that region, as shown in

Fig. 3.6. Note that we always add an extra sensor at the end of the bisector for ensuring

connectivity to neighboring regions.

3.2.3 Placing Sensors in Multi-row Regions

Multiple rows of sensors will be placed in such regions. Next, we first consider how to

place sensors in a simple 2D plane without boundaries and obstacles. Then we extend

the results to a region with boundaries and obstacles.

47

A Simple 2D Plane

Given a 2D plane without boundaries and obstacles, we will place sensors row by row.

The basic concept is to place a row of sensors that can guarantee continuous coverage

and connectivity. Then adjacent rows should guarantee continuous coverage of the whole

area. Finally, we may place some columns of sensors between adjacent rows, if necessary,

to ensure the connectivity of the whole network. According to the relationship of rc and

rs, we separate our discussion into two cases.

• Case of rc <
√

3rs: In this case, sensors on each row will be separated by a distance

of rc to ensure the connectivity of that row. Since rc <
√

3rs, each row of sensors

can cover a belt-like area whose width is 2 ×
√

r2
s − r2

c

4
. Adjacent rows will be

separated by a distance of rs +
√

r2
s − r2

c

4
and shifted by a distance of rc

2
. With such

an arrangement, the coverage of the whole area can be guaranteed. Fig. 3.7(a) – (c)

present three possible subcases. Note that in this case, we have to place a column of

sensors between two adjacent rows, each separated by a distance no larger than rc,

to connect them. More columns of sensors can be added to strengthen the network

connectivity.

• Case of rc ≥ √
3rs: In this case, the aforementioned method will waste a large

amount of sensors since a small rs will make two adjacent rows too close to each

other. Therefore, when rc ≥
√

3rs, we suggest to place sensors in a typical hexagon

manner such that adjacent sensors are regularly separated by a distance of
√

3rs.

In this way, both coverage and connectivity can be guaranteed.

Multi-row Regions with Boundaries and Obstacles

In the following, we modify the aforementioned solution to place sensors in a region with

boundaries and obstacles. Observe that in our solution, sensors are placed with regular

patterns. So we can transform it into an incremental approach where sensors are added

into the field one by one. In Table 3.1, we list the coordinates of the six neighbors of

a sensor. We can decide the location to place the first sensor inside the region. From

the first sensor, the six locations that can potentially be added with sensors are then

determined. These locations are inserted into a queue Q. We then enter a loop in which

each time an entry (x, y) is dequeued from Q. If (x, y) is not outside the region and

not inside any obstacle, a sensor will be placed at the location (x, y). Similarly, the six

neighboring locations of (x, y) in Table 3.1 will be inserted into Q if they have not been

checked before. This process is repeated until Q becomes empty.

48

rs

rc

rs
rc rs

rc
2

rc
2

n5

n4

n3 n2

n1

n6

(a) (b)

(c) (d)

si

2
2

4
cr

s sr r� �

2
2

4
2 cr

sr� �

rs

rc rc

2 3

2
sr

�

rc

rc
2

2
2

4
cr

s sr r� �

3 srrc

Figure 3.7: Placing sensors in a simple 2D plane: (a) the case of rc < rs, (b) the case of

rc = rs, (c) the case of rs < rc <
√

3rs, and (d) the case of rc ≥
√

3rs.

49

Table 3.1: Coordinates of the six neighbors of a sensor si located at (x, y) in a multi-row

region.

neighbor rc <
√

3rs rc ≥
√

3rs

n1 (x + rc, y) (x +
√

3rs, y)

n2 (x + rc

2
, y − (rs +

√
r2
s − r2

c

4
)) (x +

√
3rs

2
, y − 3rs

2
)

n3 (x − rc

2
, y − (rs +

√
r2
s − r2

c

4
)) (x −

√
3rs

2
, y − 3rs

2
)

n4 (x − rc, y) (x −√
3rs, y)

n5 (x − rc

2
, y + (rs +

√
r2
s − r2

c

4
)) (x −

√
3rs

2
, y + 3rs

2
)

n6 (x + rc

2
, y + (rs +

√
r2
s − r2

c

4
)) (x +

√
3rs

2
, y + 3rs

2
)

There are three minor issues left in the above solution. First, some areas close to the

region’s boundaries or obstacles may be still uncovered. Second, when rc <
√

3rs, we have

to add some extra sensors between adjacent rows to connect them. Third, connectivity

between neighboring regions should also be maintained. Fig. 3.8(a) presents an example.

These problems can be solved by sequentially placing sensors along the boundaries of the

region and obstacles, as shown in Fig. 3.8(b). There are two cases to be considered. When

rc <
√

3rs, since the maximum width of the uncovered area does not exceed rc, sensors

should be separated by a distance of rc. When rc ≥ √
3rs, the maximum width of the

uncovered area does not exceed
√

3rs, so sensors should be separated by a distance of√
3rs. In this case, the connectivity between these extra sensors and the regularly-placed

sensors can be also guaranteed.

Note that we can reduce the number of sensors in the last step by carefully selecting

the first sensor’s position in each multi-row region. In particular, for each multi-row

region, we can place the first sensor near its longest boundary with a distance of δ, where

δ =
√

r2
s − r2

c

4
if rc <

√
3rs and δ = rs

2
otherwise. This will make the first row of sensors

fully cover the longest boundary of the region and thus we do not have to add extra sensors

in the last step. In addition, if the distance between a row of sensors and a boundary of

the region (or an obstacle) is no larger than δ, we can also skip the last step. For example,

some boundaries in Fig. 3.8(b) are not added with extra sensors.

3.2.4 Adapting to the Probabilistic Sensing Model

Up to now, our placement solution is based on the assumption of binary sensing model.

In some cases, however, the detection probability of a sensor will decay with the distance

from the sensor to the object. For example, references [29, 133] suggest that the detection

50

uncovered areas

(a)

2
2

4
cr

sr� 	 �
connectivity

(b)

obstacle obstacle

extra sensors along the boundaries

�

�

��

��

Figure 3.8: Placing sensors along the boundaries and obstacles: (a) uncovered areas along

the boundaries and obstacles and (b) placing extra sensors to fill with these uncovered

areas and to maintain the network connectivity. Note that this example assumes that

rc = rs.

51

probability of a location u by a sensor si can be modeled by:

pu
si

=

{
e−αd(si,u), if d(si, u) ≤ rs

0, otherwise
,

where α is a parameter representing the physical characteristics of the sensor and d(si, u)

is the distance between si and u. Thus, when an object located at u is within the sensing

ranges of a set Ŝ of sensors, the detection probability can be evaluated as

p(u) = 1 −
∏
si∈Ŝ

(1 − pu
si
).

It can be observed that in our placement solutions, for any combination of rc and rs,

there must exist a location which is covered by only one sensor and has a distance of rs

to that sensor. The detection probability for such a location is thus e−αrs . Therefore, our

placement solutions can guarantee a detection probability of at least e−αrs in any location

of the sensing field. On the other hand, if we want to guarantee that every point in the

sensing field has a detection probability no smaller than a given threshold pth, we can

compute a virtual sensing distance r′s by

e−αr′s = pth ⇒ r′s = − ln pth

α
.

According to the above argument, if we replace rs by r′s when running our placement

solutions, it is guaranteed that every point in the sensing field has a detection probability

of at least pth.

3.3 Solutions to the Sensor Dispatch Problem

Given a set of sensors already deployed in A and an area of interest I that has to be

monitored intensively, the dispatch problem will be solved by the following steps:

1. Based on our placement results, we first compute the locations to be placed with

sensors in I and then select some sensors to be moved to these locations.

2. In order to correctly report sensed data in I to the sink, we need to connect sensors

in I and the sink. We then place a row of sensors, each separated by a distance of

rc, from I to the sink.

3. After dispatching sensors in steps 1 and 2, the remaining sensors can be deployed

uniformly in the region of A− I to ensure that the coverage of A− I is not reduced

too much.

52

The above step 2 can be achieved easily. Step 3 can be done by applying the solutions

using repulsive forces between sensors [50, 132] on A−I. As a result, we will only focus on

the design of step 1 below. Two solutions are proposed. The centralized solution converts

the dispatch problem to the maximum-weight maximum-matching problem, while the

distributed solution is based on a greedy strategy.

3.3.1 A Centralized Dispatch Solution

Given a set S of sensors in A and an area of interest I, our solution involves the following

five steps:

1. Run the sensor placement algorithm in Section 3.2 on the area I to determine the

locations in I to be placed with sensors. Let the set of locations be L = {(x1, y1),

(x2, y2), . . ., (xm, ym)}. If m ≤ |S|, go to step 2; otherwise, we are short of sensors

and the algorithm terminates.

2. For each sensor si ∈ S, determine the energy cost c(si, (xj , yj)) to move si to each

location (xj, yj), j = 1...m. We define c(si, (xj , yj)) = Δm × d(si, (xj , yj)), where

d(si, (xj , yj)) is the shortest distance from si’s current position to (xj , yj) considering

the existence of obstacles.

3. From S and L, we construct a weighted complete bipartite graph G = (S∪L, S×L)

such that the vertex set contains S (all sensors) and L (all locations to be placed

with sensors) and the edge set contains all edges from every element si ∈ S to every

element (xj , yj) ∈ L. The weight of each edge (si, (xj , yj)) can be defined either as

w(si, (xj , yj)) = −c(si, (xj , yj)),

if Eq. (3.1) is the objective function, or as

w(si, (xj , yj)) = ei − c(si, (xj , yj)),

if Eq. (3.2) is the objective function.

4. Solve the maximum-weight maximum-matching problem on graph G. In particular,

we construct a new graph Ĝ = (S ∪ L ∪ L̂, S × {L ∪ L̂}) from G, where L̂ is a set

of |S| − |L| elements, each called a virtual location. The weight of each edge in Ĝ

that also appears in G remains the same as that in G, and the weight of each edge

from si ∈ S to (xj , yj) ∈ L̂ is set to wmin, where

wmin = min
si∈S, (xj ,yj)∈L

{w(si, (xj , yj))} − 1.

53

Intuitively, a virtual location is a dummy one. Its purpose is to make the two sets S

and {L∪L̂} of the bipartite graph Ĝ to have equal sizes. This allows us to transform

the problem to the maximum-weight perfect-matching problem on graph Ĝ, whose

purpose is to find a perfect matching M in Ĝ with the maximum total weights of

edges in M . Note that the value of wmin is set in such a way that selecting an edge

incident to a virtual location has no impact to a solution to the maximum-weight

perfect-matching problem.

5. For each edge (si, (xj , yj)) in M such that (xj , yj) /∈ L̂, we move sensor si to location

(xj , yj) via the shortest path. However, if there is any edge (si, (xj , yj)) ∈ M such

that (xj , yj) /∈ L̂ and ei − c(si, (xj , yj)) ≤ 0, it means that we do not have sufficient

energy to move sensors to all locations in L because M is the optimal solution. Thus

the algorithm terminates.

Computing the Shortest Distance d(si, (xj, yj))

Our goal is to find the shortest collision-free path from si’s current position to (xj , yj),

considering the existence of obstacles. Specifically, the movement of si should not collide

with any obstacle. Several studies have also addressed this issue [27, 73, 130]. Here we

propose a modified approach of [73].

Considering its physical size, a sensor si can be modeled as a circle with a radius r.

Intuitively, si has a collision-free motion if its center always keeps at a distance of r or

larger away from every obstacle and A’s boundaries. This can be done by expanding

the perimeters of all obstacles outwardly and A’s boundaries inwardly by a distance

of r and preventing si from moving into these expanded areas. The problem can be

translated to one of finding a shortest path from si to (xj, yj) in a weighted graph H =

(si ∪ (xj , yj) ∪ V, E), where V contains all vertices v of the polygons representing the

expanded areas of obstacles and A’s boundaries such that v is not inside other expanded

areas, and E contains all edges (u, v) such that u, v ∈ {si ∪ (xj , yj) ∪ V } and uv does

not pass any expanded area of obstacles or A. The weight of (u, v) ∈ E is length of uv.

Fig. 3.9 gives an example, where double circles are vertices of H . Nodes g and h are

not vertices because they are inside obstacles 2’s and 3’s expanded areas, respectively.

Edges (a, c), (a, d), (b, c), and (b, d) ∈ E, but (b, e) and (b, f) /∈ E because they pass the

expanded area of obstacle 2.

Finding the Maximum-Weight Perfect-Matching M

Recall that given the bipartite graph Ĝ = (S ∪ L ∪ L̂, S × {L ∪ L̂}), the goal is to find a

perfect matching M in Ĝ with the maximum total weights of edges in M . In this section,

54

obstacle 1

si

obstacle 2

(xj, yj)

r

r obstacle 3

r

a

b

c

d

e

f

g

h

vertice of H

edge of H

expanded area

shortest path

r

Figure 3.9: Finding a collision-free path from si to (xj , yj). Note that not all edges of H

are shown in the figure.

we discuss how to use the Hungarian method [64] to solve this problem.

Definition 1. Given Ĝ = (S ∪L∪ L̂, S × {L∪ L̂}), a feasible vertex labeling of Ĝ is

a real-valued function f on {S ∪ L ∪ L̂} such that for all si ∈ S and (xj , yj) ∈ {L ∪ L̂},

f(si) + f((xj, yj)) ≥ w(si, (xj , yj)).

Definition 2. Given a feasible vertex labeling of Ĝ, an equality subgraph Ĝf = (S ∪
L∪ L̂, Ef) is the subgraph of Ĝ in which Ef contains all edges (si, (xj , yj)) in Ĝ such that

f(si) + f((xj, yj)) = w(si, (xj, yj)).

Theorem 3.1. Let f be a feasible vertex labeling of Ĝ and M be a perfect matching of

Ĝf , then M will be a maximum-weight perfect matching of Ĝ.

Proof. We show that no other perfect matching M ′ in Ĝ can have a total edge weight

larger than M .

w(M ′) =
∑

(si,(xj ,yj))∈M ′
w(si, (xj , yj)) (si ∈ S and (xj , yj) ∈ {L ∪ L̂})

≤
∑

(si,(xj ,yj))∈M ′
f(si) + f((xj , yj)) (∵ From the definition of feasible vertex labelings)

=
∑

(si,(xj ,yj))∈M

f(si) + f((xj , yj)) (∵ Total labelings are the same in any matching)

=
∑

(si,(xj ,yj))∈M

w(si, (xj, yj)) (∵ M is a perfect matching in Ĝf)

= w(M),

so M has the maximum total weights of edges. �

55

The Hungarian method is based on the observation from Theorem 3.1. It first assigns

an arbitrary feasible vertex labeling for the graph Ĝ, and then adjusts the labels of vertices

until it can find a perfect matching M in the equality subgraph Ĝf . One possible feasible

vertex labeling is to set f((xj , yj)) = 0 for all (xj , yj) ∈ {L ∪ L̂} and to set f(si) to the

maximum of the weights of the edges adjacent to si for all si ∈ S. Specifically,⎧⎨⎩ f((xj, yj)) = 0, for (xj , yj) ∈ {L ∪ L̂}
f(si) = max

(xj ,yj)∈{L∪L̂}
{w(si, (xj , yj))}, for si ∈ S

.

The complete procedure of the Hungarian method is stated as follows:

Step 1: Find a maximum matching M in Ĝf . If M is perfect, we find out the solution

and the method finishes. Otherwise, there must be an unmatched vertex si ∈ S.

We then assign two sets A = {si} and B = ∅.

Step 2: In the graph Ĝf , if NĜf
(A) �= B, where NĜf

(A) is the set of vertices in {L∪ L̂}
that are adjacent to the vertices in A, then go to step 3. Otherwise, we set

α = min
si∈A, (xj ,yj)∈{L∪L̂}−B

{f(si) + f((xj, yj)) − w(si, (xj , yj))},

and construct a new labeling f ′ for Ĝ by

f ′(v) =

⎧⎪⎪⎨⎪⎪⎩
f(v) − α for v ∈ A

f(v) + α for v ∈ B

f(v) otherwise

.

Then we replace f by f ′, reconstruct the equality subgraph Ĝf ′, and go to step 1.

Note that we have to satisfy the conditions of α > 0 and NĜf ′ (A) �= B; otherwise,

we need to reselect another α value that can satisfy the above conditions.

Step 3: Choose a vertex (xl, yl) in NĜf
(A) but not in B. If (xl, yl) is matched with

sk ∈ S in M , then we update A = A ∪ {sk} and B = B ∪ {(xl, yl)}, and go back to

step 2.

Note that each time when we relabeling the graph Ĝ, we may introduce new edges into

the new equality subgraph Ĝf , until all edges in Ĝ are included. Therefore, the Hungarian

method can always find a perfect matching in Ĝf since Ĝ is a complete bipartite graph.

Time Complexity Analysis

Next, we analyze the time complexity of our sensor dispatch solution. Let |S| = n,

|L| = m, and k be the number of vertices of the polygons of all obstacles and A. In step

56

2, there are O(nm) pairs of (si, (xj , yj)). To compute the energy cost of each pair, we

construct a graph of O(k) vertices. Finding a shortest path on such graph can use the

Dijkstra’s algorithm [31], which takes O(k2) time. So the total time complexity of step

2 is O(mnk2). The conversion in step 3 takes O(nm) time. In step 4, constructing the

graph Ĝ from G takes O(n(n−m)) time since it needs to add n−m vertices and n(n−m)

edges. Running the Hungarian method on Ĝ has a time complexity of O(n3). Finally, it

takes O(n) time in step 5 to check all edges in M . Therefore, the total time complexity is

O(mnk2) + O(nm) + O(n(n − m)) + O(n3) + O(n) = O(mnk2 + n3).

3.3.2 A Distributed Dispatch Solution

The aforementioned solution is optimal but centralized. Here we propose a distributed

solution based on a greedy strategy. The solution involves the following steps:

1. The sink executes the sensor placement algorithm in Section 3.2 on the area I to

obtain a set of locations L = {(x1, y1), . . . , (xm, ym)} to be occupied by sensors. The

sink then broadcasts L to all sensors.

2. On receiving the table L, a sensor will keep a copy of L and mark each location

(xj , yj) as unoccupied, where j = 1, . . . , m.

3. Each sensor si then chooses an unoccupied location (xj, yj) from L as its destination.

The selection of (xj , yj) is dependent on our objective function.

• If Eq. (3.1) is the objective function, si will choose the location (xj , yj) as its

destination such that the moving distance d(si, (xj , yj)) is minimized.

• If Eq. (3.2) is the objective function, si will choose the location (xj , yj) as its

destination such that after moving to (xj, yj), its remaining energy is maxi-

mized.

Sensor si then marks (xj , yj) as occupied and starts moving to (xj , yj).

4. On si’s way moving toward its destination, it will periodically broadcast the status

of its table L, its destination, and its cost to move to that destination. Note that

the cost is based on which objective function is used. On sensor sj receiving si’s

broadcast, the following actions will be taken:

• For all locations marked as occupied by si, sj will also mark them as occupied.

• If both si and sj are moving toward the same destination, they will compete

by their costs. The one with a lower cost will win and keep moving toward

57

that destination. The one with a higher cost will give up moving toward that

destination and go back to step 3 to reselect a new destination. (Note that if

sj has arrived at its destination, it will have a cost of zero. In this case, si will

lose in the competition.)

5. Each sensor will repeat the above steps until it reaches its destination or loses to

another sensor and finds that all locations in L have been marked as occupied. In

the former case, the sensor will execute its monitoring job at the designated location.

In the latter case, the sensor will continue to support the remaining steps 2 and 3

mentioned in the beginning of Section 3.3 (to connect I and the sink or to monitor

the area A − I).

3.4 Experimental Results

In this section, we present some experimental results to verify the effectiveness of our

proposed schemes. The evaluation includes two parts. First, we measure the numbers of

sensors required by different placement schemes. Second, we estimate the performances

of our proposed dispatch schemes.

3.4.1 Effectiveness of the Proposed Placement Schemes

The first experiment evaluates the number of sensors required to be placed in a sensing

field. In this experiment, six types of sensing fields with different shapes are considered, as

shown in Fig. 3.10. Sensors are assumed to have omnidirectional sensing capability (such

as acoustic sensors). The communication distance rc is set to 10m (which is close to that

specified in IEEE 802.15.4 [66] in an indoor environment). To reflect the relationships

of rc < rs, rc = rs, rs < rc ≤ √
3rs, and rc >

√
3rs, we set the sensing distance rs to

12m, 10m, 7m, and 5m, respectively. We compare our result against the coverage-first

and connectivity-first methods discussed in the beginning of Section 3.2.

Fig. 3.11 shows the number of sensors required in different sensing fields. When rc ≤ rs,

the connectivity-first method uses more sensors because it is dominated by the value of

rc and the overlapping in coverage could be large. On the contrary, when rs < rc <
√

3rs,

the coverage-first method uses more sensors because it has to add a large amount of extra

sensors to maintain connectivity between originally-placed sensors. When rc ≥
√

3rs, the

connectivity-first method becomes very inefficient because the overlapping in coverage is

very large. Our proposed method requires less sensors because it can adjust the distances

between sensors based on the relationship of rc and rs. Note that when rc ≥ √
3rs, our

method works the same as the coverage-first method in each individual region, so they

58

will use the same number of sensors.

3.4.2 Evaluations of the Proposed Dispatch Schemes

The second experiment evaluates different dispatch schemes. The sensing field A is a

900m × 900m square. The region of interest I is a 300m × 300m square located at

the center of A. Sensors are randomly scattered in the region of A − I. With the set-

ting of (rc, rs) = (28, 16), (23.5, 13.45), (21, 12), (19.5, 11.05), (17.5, 10.1), (16.5, 9.45), and

(15.5, 8.9), we will need 150, 200, 250, 300, 350, 400, and 450 sensors, respectively, to

be dispatched to I, according to our sensor placement algorithm. To fairly compare the

centralized and the distributed schemes, the number of sensors is intentionally set to

the required number of sensors in I. Sensors’ initial energies are randomly selected from

[1000, 1500] units, and we set moving cost Δm = 1 energy unit per meter. For comparison,

we also design a random method, where we arbitrarily select a sensor to move to each

location in a centralized manner. Fig. 3.12 shows the simulation results under different

numbers of sensors required in I. From Fig. 3.12(a), we can observe that our centralized

method (using Eq. (3.1) as the objective function) consumes the least energy compared

to other methods. This is a result of our maximum matching approach. The distributed

method consumes more energy than the centralized method since our greedy strategy can

make local decisions. The similar result can be observed from Fig. 3.12(b), where the

centralized method (using Eq. (3.2) as the objective function) can achieve the highest

average remaining energy of sensors in I. From Fig. 3.12(b), we can observe that the av-

erage remaining energy decreases as the number of sensors increases when the distributed

method is adopted. This is because when the number of sensors increases, the probability

that two sensors select the same destination also increases. In this case, sensors have to

reselect new destinations, and thus consume more energy. Note that under both objective

functions, the random method always consumes the most energy, even though sensors are

selected in a centralized manner. This reflects the importance of the dispatch issue since

blindly moving sensors will lead to shorten the network lifetime.

3.5 Summary

In this chapter, we have proposed systematical solutions for sensor placement and dis-

patch. Our solution to the sensor placement problem allows a sensing field of shape as

an arbitrary polygon with possible existence of obstacles. Thus, the result can be used

for an indoor environment. Our solution also allows an arbitrary relationship of sensors’

communication distances and their sensing distances. It is verified that the proposed

schemes require fewer sensors to ensure full coverage of the sensing field and connectivity

59

(a) (b)

(c) (d)

(e) (f)

5

300

400

200

400

150

150

300

400

200

80

100

300

400

5

40 120

20

30

80

60

5
18080

5
5

5
20

40

20 10

100

400

240

300 160

180

200

60

60

80

120 60

80

Figure 3.10: Six types of sensing fields used in the simulations: (a) a rectangle, (b) a

circle, (c) a non-convex polygon, (d) a H-shaped region, (e) the office example in Fig. 3.2,

and (f) the arbitrary-shaped region in Fig. 3.4. Note that the unit of length is in meter.

60

789
900960

2072

1645 1677

3100

1315
1103

2183

1698

0

500

1000

1500

2000

2500

3000

3500

n
u

m
b

er
o

f
se

n
so

rs
re

q
u
ir

ed

562
655

929

716
801

1466

1147 1152

2221

1599

1253

0

500

1000

1500

2000

2500

3000

3500

n
u
m

b
er

o
f

se
n
so

rs
re

q
u
ir

ed

c sr r�
c sr r	 3s c sr r r� � 3c sr r� c sr r�

c sr r	 3s c sr r r� � 3c sr r�

368 429
608

488 547

1010

789 789

1491

1036

789

0

500

1000

1500

2000

2500

3000

3500

n
u
m

b
er

o
f

se
n

so
rs

re
q
u
ir

ed

447 509

746

502
614

1141
949 968

1762

1241

968

0

500

1000

1500

2000

2500

3000

3500

n
u
m

b
er

o
f

se
n

so
rs

re
q
u
ir

ed

583
704

823
940

1867

2800

1063

1889

14241424 1424

0

500

1000

1500

2000

2500

3000

3500

n
u
m

b
er

o
f

se
n

so
rs

re
q
u

ir
ed

our scheme

coverage-first scheme

connectivity-first scheme

628
754

876

1956

1508 1540

2938

2075

1163
1024

1540

0

500

1000

1500

2000

2500

3000

3500

n
u
m

b
er

o
f

se
n

so
rs

re
q
u
ir

ed

c sr r�
c sr r	 3s c sr r r� � 3c sr r�

c sr r�
c sr r	 3s c sr r r� � 3c sr r� c sr r�

c sr r	 3s c sr r r� � 3c sr r�

c sr r�
c sr r	 3s c sr r r� � 3c sr r�

(a) rectangle (b) circle

(c) non-convex polygon (d) H-shape

(e) office (f) arbitrary shape

Figure 3.11: Comparison of numbers of sensors required under different sensing fields.

61

(a)

(b)

2

4

6

8

10

12

14

16

18

20

150 200 250 300 350 400 450

number of sensors in I

to
ta

l
m

o
v

em
en

t
en

er
g
y

centralized

distributed
random

820

840

860

880

900

920

940

960

980

1000

1020

150 200 250 300 350 400 450

number of sensors in I

av
er

ag
e

re
m

ai
n

in
g

en
er

g
y

centralized
distributed
random

(
1

0
0

0
0
)

Figure 3.12: Comparison of different dispatch methods: (a) the total energy consumption

due to movement when using Eq. (3.1) as the objective function, and (b) the average

remaining energy of sensors when using Eq. (3.2) as the objective function.

of the network as compared to the coverage-first and connectivity-first schemes in various

types of sensing fields. In addition, a new sensor dispatch problem is defined and two

energy-efficient dispatch algorithms are presented to move sensors to the target locations

determined by our sensor placement scheme.

62

Chapter 4

Deployment of a Wireless Sensor Network

for Multi-level Coverage

This chapter considers the k-coverage sensor deployment problem to ensure multi-level

(k) coverage of the region of interest. In particular, given a region of interest, we say

that the region is k-covered if every point in the region can be monitored by at least k

sensors, where k is a given parameter. Many applications and protocols may impose the

requirement of k > 1. For example, positioning protocols using triangulation [85, 87, 100]

require at least three sensors (i.e., k ≥ 3) to monitor each location where an object may

appear. Military applications with a strong monitoring requirement may impose that

k ≥ 2 to avoid leaving uncovered holes when some sensors are destroyed. To conduct

data fusion and to minimize the impact of sensor failure, some strategies [63, 111] are

based on the assumption of k ≥ 3. Also, to prolong a sensor network’s lifetime, sensors

are divided into multiple sets, each of which can cover the whole area, to work in shifts

[17, 106, 114]. This also requires that k > 1.

In this chapter, we consider the sensor deployment problem by assuming that

• multiple-level coverage of the area of interest is required.

• connectivity of sensor nodes (in terms of communications) should be maintained.

• the area of interest may change over time.

• sensor nodes are autonomous and mobile and thus can move to desired locations as

instructed by one’s deployment strategy.

Our general goals are to reduce the number of sensor nodes and to minimize the energy

consumption due to movement.

In this chapter, we deal with the k-coverage sensor deployment problem by two sub-

problems: k-coverage sensor placement problem and distributed sensor dispatch problem.

63

The placement problem asks how to determine the minimum number of sensors required

and their locations in I to ensure that I is k-covered and that the network is connected.

Assuming that there are sufficient sensors and sensors are arbitrarily placed in the sensing

field, the goal of the dispatch problem is to determine the schedule of sensors’ movements

to the designated locations according to the result computed by the placement strategy

such that the total energy consumption for movement is minimized. For the placement

problem, we allow an arbitrary relationship between sensors’ communication distance and

their sensing distance. We propose two solutions to the placement problem. The first one

is based on an intuitive duplication idea. The second one is based on a more complicated

interpolating idea and thus can save the number of sensors required. For the dispatch

problem, we propose two distributed approaches. The first approach assumes that sensors

have the knowledge of all target locations in the area of interest; sensors will then compete

with each other for moving toward their closest locations. The second approach relaxes

the above assumption in a way that sensors can derive other target locations based on

several known locations, according to the patterns in our placement strategies. Therefore,

the server only needs to generate several seed locations in the beginning, and then sensors

can extend their range based on the placement pattern in a distributed manner.

4.1 Problem Statement

We are given a sensing field A, a region of interest I inside A, and a set of mobile sensors

S resident in A. Each sensor has a communication distance rc and a sensing distance

rs. Two sensors can communicate with each other if their distance is no larger than rc.

A point in A is k-covered if it is within k sensors’ sensing regions, and an area in A

is k-covered in a similar sense, where k is a given integer. We assume that sensors are

homogenous, but the relationship of rc and rs can be arbitrary.

Given an integer k, the k-coverage sensor deployment problem has two sub-problems:

k-coverage sensor placement problem and distributed sensor dispatch problem. The objec-

tive of the placement problem is to determine the minimum number of sensors required

and their locations in the area of interest I to ensure that I is k-covered and that the

network is connected. Assuming that mobile sensors are arbitrarily placed in A and that

there are sufficient sensors, the dispatch problem asks how to move some sensors to des-

ignated locations in a distributed manner according to the result computed by the above

placement strategy such that the total energy consumption for movement is minimized,

i.e.,

min
∑
i∈S

Δm × di, (4.1)

64

where Δm is the energy cost to move a sensor in one unit-distance and di is the total

distance that sensor i is moved. Clearly, Eq. (4.1) can be treated as minimizing the total

moving distance of sensors.

4.2 k-Coverage Sensor Placement Schemes

In this section, we propose two solutions to the placement problem. The first one is based

on a simple duplication idea. The second one is based on a more complicated interpolating

idea.

4.2.1 A Naive Duplicate Scheme

The basic idea of this scheme is to use a good sensor placement scheme to determine

the locations of sensors to ensure 1-coverage and connectivity in the region of interest I,

and then duplicate k sensors on each designated location. For the 1-coverage placement,

we adopt the method mentioned in Section 3.2.3, which suggests to place sensors row by

row, where each row of sensors will guarantee continuous coverage and connectivity and

adjacent rows will guarantee continuous coverage of the area. Recall that according to the

relationship of rc and rs, we separate the discussion into two cases, as shown in Fig. 4.1.

When rc <
√

3rs, sensors on each row are separated by a distance of rc, so the connectivity

of sensors in each row can be guaranteed. Since rc <
√

3rs, each row of sensors can cover

a belt-like area of width 2 ×
√

r2
s − r2

c

4
. Adjacent rows will be separated vertically by a

distance of rs +
√

r2
s − r2

c

4
and shifted horizontally by a distance of rc

2
. This guarantees

the coverage of the whole area. When rc ≥
√

3rs, the aforementioned placement will use

too many sensors, so a typical hexagon placement in which adjacent sensors are regularly

separated by a distance of
√

3rs should be adopted.

After determining the 1-coverage placement, we can duplicate k sensors in each loca-

tion to ensure k-coverage. Note that in the case of rc <
√

3rs, since the distance between

adjacent rows is larger than rc, it is necessary to add a column of sensors, each separated

by a distance no larger than rc, to connect adjacent rows.

4.2.2 An Interpolating Placement Scheme

The previous duplicate scheme may result in some sub-regions in I that have coverage

levels much higher than k. Intuitively, the following interpolating placement scheme will

try to balance the coverage levels of sub-regions. Observe that in Fig. 4.1(a), a large

amount of sub-regions in a row are more than 1-covered. So we can “reuse” these sub-

regions when generating a multi-level coverage placement. Based on this observation, the

65

rc

rc
2

rs2
3

rs2
3

rs

1-covered
region

rs3

rc

rs

rs + rcrs -
2

2

4

(a) (b)

Figure 4.1: A 1-coverage sensor placement scheme: (a) the case of rc <
√

3rs and (b) the

case of rc ≥
√

3rs.

interpolating placement scheme will first find out those insufficiently covered sub-regions

and then place the least number of sensors to cover these regions. Note that these newly-

added sensors should remain connected with the formerly placed sensors. According to

the relationship of rc and rs, we separate the discussion into three cases.

Case (1): rc ≤
√

3
2

rs. From Fig. 4.1(a), we can observe that the insufficiently covered

sub-regions (i.e., only 1-coverage) are located between adjacent rows (marked by gray).

If we add an extra row of sensors between each pair of adjacent rows in Fig. 4.1(a), as

shown in Fig. 4.2, the coverage level of the sensing field will directly become three. Here

each extra row is placed above the previous row by a distance of rs, and neighboring

sensors in each extra row are still separated by a distance of rc. To summarize, the

duplicate scheme uses 3x rows of sensors to ensure 3-coverage of a belt-like area of width

(x− 1)rs + (x + 1) ·
√

r2
s − r2

c

4
, while this interpolating scheme uses 2x + 1 rows of sensors

to ensure 3-coverage of the same region.

In general, for k > 3, we can apply �k
3
� times of the above 3-coverage placement and

apply (k mod 3) times of the 1-coverage placement to achieve k-coverage of I. There-

fore, while the duplicate placement requires kx rows of sensors to cover a region, this

interpolating placement only requires
(�k

3
�(2x + 1) + (k mod 3) · x) rows of sensors.

Note that in this case, since rc ≤
√

3
2

rs, the distance between two adjacent rows may

be larger than rc. Thus, we have to add a column of sensors between two adjacent rows,

each separated by a distance no larger than rc, to connect them.

Case (2):
√

3
2

rs < rc ≤ 2+
√

3
3

rs. In this case, if the desired k is 2, we can directly

66

rs

rc

old (1)

rs -
2 rc

2

4

new (1)

old (2)

old (3)

rs

new (2)

new (3)

new (4)

3-covered

area

Figure 4.2: The interpolating placement scheme for the case of rc ≤
√

3
2

rs.

apply the same placement as in case 1. The result is as shown in Fig. 4.3(a). However,

because the sensing distance is relative smaller (as opposed to case 1) in the placement in

Fig. 4.3(a), there are some sub-regions that are only 2-covered, but not 3-covered (marked

by gray in Fig. 4.3(a)). Therefore, if the desired k is 3, we need to add one extra row of

sensors between each old row i and new row i, as shown in Fig. 4.3(b), marked as new’.

Note that the extra rows are shifted horizontally by a distance of rc

2
from the previous

rows and neighboring sensors are separated regularly by a distance of 2rc. To summarize,

the duplicate scheme uses 3x rows of sensors to ensure 3-coverage of a belt-like area of

width (x − 1)rs + (x + 1) ·
√

r2
s − r2

c

4
, while this interpolating scheme uses 2.5x + 1 rows

of sensors to ensure 3-coverage of the same region (the third addition of rows only needs

half of sensors compared with earlier ones).

In general, for k > 3, we can also apply �k
3
� times of the above 3-coverage place-

ment and apply (k mod 3) times of the 1-coverage placement to achieve k-coverage of I.

Therefore, while the duplicate placement requires kx rows of sensors to cover a region, this

interpolating placement only requires
(�k

3
�(2.5x + 1) + (k mod 3) · x) rows of sensors.

Note that with this placement, sensors on new’ rows can communicate with their

neighbors in the adjacent old and new rows, as shown in Fig. 4.4. In particular, since

d =

√(rs

2

)2

+
(rc

2

)2

<
1

2

√(
2rc√

3

)2

+ r2
c < rc,

the sensor sn on a new’ row can communicate with its four neighbors sa, sb, sc, and sd in

the adjacent rows.

67

(a) (b)

rc

rs

new (1)

old (1)

old (2)

old (3)

rs

rs -2 rc
2

4

new (2)

new (3)

new (4)

new (1)

old (1)

old (2)

old (3)

new (2)

new (3)

new (4)

2rc

rcrs + rs -
2

2

4

new (1)
,

new (2)
,

new (3)
,

Figure 4.3: The interpolating placement scheme for the case of
√

3
2

rs < rc ≤ 2+
√

3
3

rs: (a)

the placement for k = 2 and (b) the placement for k = 3.

old

new

new
,

sn

sa sb

sc sd

rc

rs

d

Figure 4.4: An example to show that the connectivity between a new’ row and its adjacent

rows is guaranteed.

Case (3): rc > 2+
√

3
3

rs. In this case, this interpolating placement will not save sensors

compared with the duplicate placement, so we adopt the duplicate scheme in this case.

4.3 Distributed Sensor Dispatch Schemes

After determining the locations to be placed with sensors, the next issue is how to move

existing sensors in the sensing field A to the designated locations in I such that the energy

consumption due to movement is minimized. In this section, we assume that sensors are

mobile and thus autonomous solutions are desired. Two distributed dispatch schemes are

then proposed.

68

4.3.1 A Competition-based Dispatch Scheme

We assume that there is an external server, which will compute the locations in I to be

deployed with sensors and broadcast the designated locations to all mobile sensors. On

receiving the notification, sensors will compete with each other to move to these locations.

This scheme involves the following rules:

Rule 1: The server first computes the set L = {(x1, y1, n1), (x2, y2, n2), · · · , (xm, ym, nm)}
according to the placement scheme in Section 4.2, where each element (xj , yj, nj),

j = 1..m, means that nj sensors need to be deployed on location (xj , yj). The server

then broadcasts L to all sensors.

Rule 2: On receiving L for the first time, each sensor si constructs an array OCC[1..m]

such that each entry OCC[j] = {(sj1, dj1), (sj2, dj2), . . . , (sjα, djα)} , α ≤ nj, contains

the set of sensors that have already moved into, or are still on their ways moving

toward, location (xj , yj) and their corresponding distances to (xj , yj). Specifically,

entry (sjβ
, djβ

), β = 1..α, means that sensor sjβ
has chosen to cover location (xj , yj)

and its current estimated distance to (xj , yj) is djβ
. When djβ

= 0, it means that

sensor sjβ
has already arrived at (xj , yj). Initially, OCC[j] = ∅ for all j = 1..m.

To simplify the presentation, we say that a location (xj, yj) is covered if a sufficient

number nj of sensors have committed to move toward (xj, yj) (i.e., |OCC[j]| = nj);

otherwise, (xj , yj) is uncovered. A sensor si is engaged if it has chosen to move to,

or already moved into, any location in L; otherwise, it is free or terminated. The

initial state of each sensor is free. A free sensor will try to become engaged and

move toward a destination. When it finds that there is no location that it can cover,

it will enter the terminated state. Fig. 4.5 illustrates the state transition diagram

of a sensor.

free engaged

terminated

init
s

i
selects (x

j
, y

j
) as

its destination

(s
i
, d

i
) is removed

from OCC[j]
s

i
cannot find

any location

s
i
arrives at (x

j
, y

j
)

Figure 4.5: The state transition diagram of each sensor si in the competition-based dis-

patch scheme.

69

Rule 3: When the state of a sensor si is free, it will select a location in L to be its

destination as follows:

• The first priority is to consider uncovered locations. Specifically, if there is a

location (xj , yj) such that |OCC[j]| < nj, then (xj , yj) will be considered first.

If multiple locations are qualified, then the (xj , yj) such that d(si, (xj , yj)) is

minimized will be selected, where d(si, (xj , yj)) is the distance between si’s

current position to (xj , yj). In this case, si will add an entry (si, d(si, (xj, yj)))

in its OCC[j] and enter the engaged state.

• If all locations are already covered, then si will select a location (xj , yj) such

that there exists an entry (sk, dk) ∈ OCC[j] and d(si, (xj , yj)) < dk. If multiple

locations are qualified, then the (xj , yj) such that d(si, (xj, yj)) − dk is maxi-

mized will be selected. In this case, si will replace the entry (sk, dk) ∈ OCC[j]

by a new entry (si, d(si, (xj, yj))) in OCC[j] and enter the engaged state.

If si becomes engaged, it will begin moving toward that location. Otherwise, si will

enter the terminated state since it does not need to cover any location.

Rule 4: For maintenance purpose, each sensor si will periodically perform the following

two actions:

• Broadcasting its current status to its direct neighbors, including its ID, its

OCC[1..m] array, and its current location and state.

• Updating its OCC[1..m] array as follows. For each (sjβ
, djβ

) ∈ OCC[j], j =

1..m, decrease djβ
by the expected moving distance of sjβ

during the past period

of time, until djβ
= 0.

The above actions can be controlled by setting two timers Tbroadcast and Tupdate OCC .

Also note that the update of the OCC[1..m] array is based on the assumption that

sensors all move in the same constant speed (if this assumption is not valid, then

djβ
is only an estimated distance to (xj , yj) and it is not hard to make such an

extension).

Rule 5: When a sensor si receives an update message from a sensor sk, two actions will

be taken.

• First, it has to update its OCC[1..m] array as follows. Let us denote by

OCCi[1..m] and OCCk[1..m] the arrays of si and sk, respectively. Specifically,

for each j = 1..m, we will calculate the union:

Uj = OCCk[j] ∪ OCCi[j].

70

If |Uj | ≤ nj , we will replace OCCi[j] by Uj . Otherwise, it means that there are

too many mobile sensors that are scheduled to cover (xj , yj), in which case we

will truncate those entries in Uj that have longer moving distances, until the

size |Uj| = nj . Then we will replace OCCi[j] by the truncated Uj. The above

merge of two sets may lead to a special case that si was in the original OCCi[j],

but is not in the new OCCi[j] (which means that si has been replaced by some

other sensors with a shorter distance to (xj , yj)). If so, si should change its

state from engaged to free and execute Rule 3.

• After the above merge, if si remains engaged, say, with (xj , yj) as its destina-

tion, then we will do the following optimization. We will check if

d(si, (xl, yl)) + d(sk, (xj , yj)) < d(si, (xj , yj)) + d(sk, (xl, yl)),

where (xl, yl) is the destination of sk. If so, it means that the total moving

distance of si and sk can be reduced if we exchange their destinations. If so,

si will communicate with sk for this trade (which is not hand to realize, so we

omit the details). Once the trade is confirmed, si will replace the entries (si, di)

and (sk, dk) in OCCi[j] and OCCj[l] by the new entries (sk, d(sk, (xj, yj))) and

(si, d(si, (xl, yl))), respectively.

In the above steps, if any entry in OCCi[1..m] array has been changed, si will

broadcast the content to its direct neighbors.

Rule 6: When a sensor si is in the engaged state, it will keep moving toward (xj , yj).

However, in case that si is removed from its current OCCi[j] set as specified in Rule

5, it will stop moving and change its state to free.

Rule 7: When an engaged sensor si arrives at its destination (xj , yj), it will change

its state to terminated and begin its monitoring job at the designated location.

Meanwhile, it will still execute the maintenance actions in Rule 4, until the server

commands it not to do. Since the server will eventually see that I is k-covered (by

receiving sensing reports from sensors), it can notify all sensors to exit from this

dispatch algorithm.

To verify the correctness of this competition-based scheme, we have to show that every

location (xj , yj) in L will eventually be covered by nj sensors. Rule 6 guarantees that

an engaged sensor si will eventually arrive at the location (xj , yj) if the entry (si, di)

remains in si’s OCC[j]. If (si, di) is removed during si’s movement toward (xj , yj) (by

Rule 5), then it means that either another sensor sk trades (xl, yl) with si or si loses the

competition. In the former case, locations (xj, yj) and (xl, yl) are covered by sk and si,

71

respectively. In the latter case, it means that (xj, yj) has been committed by more than

nj sensors, so it is safe to remove (xj , yj). In this case, si has to execute Rule 3 to reselect

a destination. If si finds that |OCC[j]| = nj for all j = 1..m, then every location in L

has been committed by sufficient sensors. Thus all locations will be eventually covered

by nj sensors. So the competition-based dispatch scheme can work correctly when there

are sufficient sensors.

4.3.2 A Pattern-based Dispatch Scheme

The aforementioned competition-based scheme requires that each sensor have the knowl-

edge of all target locations in the region of interest. In this section, we propose a pattern-

based scheme that allows sensors to derive their target locations based on some known

locations, thus relaxing the above assumption.

Observe that our placement schemes in Section 4.2 actually deploy sensors with some

regular patterns. In the duplicate placement scheme, sensors will be placed in a hexagon-

like fashion. Thus, each sensor at location (x, y) can derive its potential six neighbors’

positions according to Table 3.1. When the interpolating placement scheme is adopted,

the pattern will be changed according to the relationship of rc and rs. There are three

cases to be discussed:

• rc ≤
√

3
2

rs. Recall Fig. 4.2. There are two patterns 1 and 2, which will repeat in

each new row and old row, as shown in Fig. 4.6 (a). Thus, a sensor si located at

(x, y) can derive its five neighbors’ positions according to its pattern. Moreover, si

can also derive the patterns of its neighbors depending on its own pattern (indicated

by the numbers inside circles in Fig. 4.6(a)).

•
√

3
2

rs < rc ≤ 2+
√

3
3

rs. In this case, if the desired coverage level k is 2, we can directly

apply the patterns in the previous case. However, when k ≥ 3, there is an extra

row (marked as new’) between each old and new rows in Fig. 4.3(b). This will

result in four deployment patterns, as shown in Fig. 4.6(b), depending on a sensor’s

location and its neighbors’ locations. Thus, a sensor si located at (x, y) can derive

its neighbors’ positions according to its pattern. Moreover, si can also derive the

patterns of its neighbors depending on its own pattern (indicated by the numbers

inside circles in Fig. 4.6(b)). Note that we do not derive the pattern for sensors at

the extra new’ rows (although this is feasible, deriving these patterns will complicate

the problem a lot). That’s why sensors marked by double circles are not assigned

with any pattern number.

• rc > 2+
√

3
3

rs. In this case, since the duplicate placement scheme is adopted, a sensor

can compute its neighbors’ positions according to Table 3.1.

72

2

31

42

3

1

13

424

pattern 1 pattern 2

3
(x, y)

2

(x, y)

(x, y)

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1 1
2 2

(,)c sx r y r� �

r
s

r
s

(,)cx r y� (,)cx r y�

(,)sx y r�

(,)cx r y� (,)cx r y�

(,)cx r y� (,)cx r y�

(,)sx y r�

(,)sx y r�

1 3

2 4

1
(x, y)

4

(,)cx r y� (,)cx r y�

(,)sx y r�

3 1

4 2

pattern 3 pattern 4

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1

11

2221
(x, y)

2

(x, y)

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

1
2

(,)cx r y �� �

r
s

r
s

(,)cx r y� (,)cx r y�

(,)sx y r�

(,)cx r y� (,)cx r y�

(,)sx y r�

1 1

2 2

pattern 1 pattern 2
(a)

(b)

Figure 4.6: The patterns in the interpolating placement, where δ =
√

r2
s − r2

c

4
: (a) the

case of rc ≤
√

3
2

rs and (b) the case of
√

3
2

rs < rc ≤ 2+
√

3
3

rs.

To summarize, the above observations allow a sensor to derive its direct neighbors as

well as the patterns to be used by them. This property allows us to expand from a partial

deployment to a full deployment of sensors in I.

Based on the aforementioned observations, the pattern-based dispatch scheme works as

follows. The server first computes a set of seed locations L′ = {(x1, y1, n1, p1), (x2, y2, n2, p2),

· · · , (xα, yα, nα, pα)}, which is a partial list of locations to be deployed with sensors, where

73

pj is the pattern used by the sensor at location (xj , yj) (intuitively, L′ can be considered

as a subset of L). Then the server broadcasts L′ to all sensors. Note that these seed

locations in L′ should be sparsely distributed in the region of interest. On receiving L′,

each sensor executes the competition-based scheme to compete for their closest locations

in L′. However, Rules 3 and 7 in the competition-bases scheme should be modified as

follows:

• Revised Rule 3: When a free sensor si cannot find any available location from

its current OCC[·] array, it will compute some new locations based on the known

locations in OCC[·]. Then si will re-execute Rule 3 and try to find a new destination.

However, if si cannot derive any new location from its current L′ (which means that

L′ = L), then si will enter the terminated state since it does not need to cover any

location.

• Revised Rule 7: When an engaged sensor si arrives at its destination, it will derive

some new locations from its current L′ and add the corresponding new entries in its

OCC[·] array.

Since a sensor can either derive new locations by itself (according to new Rule 3) or learn

new locations from other sensors (by Rule 4), the complete information of L can thus be

propagated throughout the network. Thus, the pattern-based scheme can work correctly

when there are sufficient sensors.

4.4 Experimental Results

In this section, we present some experimental results to verify the effectiveness of our

proposed schemes. The evaluation includes three parts. First, we measure the numbers of

sensors required by different placement schemes. Second, we estimate the performances

of our dispatch schemes. Finally, we will study the effect of seed locations on the pattern-

based dispatch scheme.

4.4.1 Evaluations of the Proposed Placement Schemes

The first experiment measures the number of sensors required by different placement

schemes. We design a region of interest I as a 1000 × 1000 square region to be deployed

with sensors. To observe the effects under different relationships of rc and rs, we set

the values of (rc, rs) as (5, 6) and (5, 5), which correspond to the case of rc ≤
√

3
2

rs and
√

3
2

rs < rc ≤ 2+
√

3
3

rs, respectively. Fig. 4.7 illustrates the numbers of sensors required

by the duplicate and interpolating schemes when the desired coverage level k increases

74

from two to eight. When k = 2, the interpolating scheme requires slightly more sensors

compared with the duplicate scheme, because the former needs to add an extra row of

sensors to ensure 2-coverage of I’s boundary. However, when k ≥ 3, the interpolating

scheme can save approximately 20% ∼ 33% and 10% ∼ 16% sensors as opposed to the

duplicate scheme in the case of rc ≤
√

3
2

rs and
√

3
2

rs < rc ≤ 2+
√

3
3

rs, respectively.

5.27

7.02

8.77

10.53

12.28

14.03

3.51 3.53 3.53

5.28

7.03 7.05

8.80

10.56

0

3

6

9

12

15

2 3 4 5 6 7 8
desired coverage level (k)

n
u

m
b
er

o
f

se
n
so

rs

duplicate scheme
interpolating scheme

(a)

6.47

8.62

10.78

12.94

15.09

17.25

4.31 4.33
5.41

7.57

9.72
10.83

12.98

15.14

0

3

6

9

12

15

18

2 3 4 5 6 7 8

desired coverage level (k)

n
u
m

b
er

o
f

se
n

so
rs

duplicate scheme
interpolating scheme

(b)

(
1

0
0
0

0
)

(
1

0
0
0

0
)

Figure 4.7: Comparison on numbers of sensors required by the duplicate and interpolating

placement schemes: (a) the case of rc ≤
√

3
2

rs and (b) the case of
√

3
2

rs < rc ≤ 2+
√

3
3

rs.

We also compare our placement schemes with other k-coverage placement scheme

proposed in [111], namely the hexagon-like scheme (refer to Fig. 2.7). To satisfy the as-

sumption in [111] (as discussed in Section 2.1.2), we set rc = 5 and rs = 2.5. Fig. 4.8 shows

the numbers of sensors required by the duplicate scheme and the hexagon-like scheme.

We can observe that the proposed duplicate scheme requires fewer sensors compared with

the hexagon-like scheme proposed in [111]. Note that in this case, since rc > 2+
√

3
3

rs, the

interpolating scheme works the same as the duplicate scheme, so we omit its performance.

75

12.26

18.39

24.53

30.66

36.79

42.92

49.05

12.39

18.55

24.72

30.88

37.10

43.27

49.43

0

10

20

30

40

50

60

2 3 4 5 6 7 8
desired coverage level (k)

n
u
m

b
er

o
f

se
n
so

rs
(x

1
0
0
0
0
) duplicate scheme

hexagon-like scheme

Figure 4.8: Comparison on numbers of sensors required by the duplicate and hexagon-like

placement schemes, where rc ≥ 2rs.

4.4.2 Performances of the Proposed Dispatch Schemes

The second experiment estimates the average moving distances of sensors when the

competition-based and pattern-based dispatch schemes are adopted. We design a sensing

field A as a 600× 600 square region. The region of interest I is a 300× 300 square region

located at the center of A. Two scenarios, namely hollow and concentrated, are consid-

ered. In the hollow scenario, sensors are randomly placed inside the region of A−I, while

in the concentrated scenario, sensors are randomly placed inside a 150 × 600 rectangle

region located at the right-hand side of A − I. With the setting of (rc, rs) = (34.7, 20.0),

(24.1, 13.9), (19.3, 11.1), (16.7, 9.62), (14.9, 8.6), (13.4, 7.71), and (12.5, 7.16), we can ob-

tain 100, 200, 300, 400, 500, 600, and 700 locations to be placed with sensors inside I,

respectively, according to the interpolating placement scheme (in case 3). We set the

desired coverage level k = 3, so that there will be 300, 600, 900, 1200, 1500, 1800, and

2100 sensors needed to be dispatched to I. The moving speed of each sensor is set to

one unit-distance per second. The two timers Tbroadcast and Tupdate OCC in both dispatch

schemes are set to five seconds. In the pattern-based scheme, the server randomly selects

10%, 20%, and 30% target locations in I as the seed locations to be broadcasted for all

sensors.

Fig. 4.9 presents the average moving distances of sensors under both scenarios. The

competition-based scheme has a shorter average moving distance compared with the

pattern-based scheme because sensors have the full knowledge of target locations inside

I. However, the average moving distance of the patter-based scheme can decrease as

we increase the number of seed locations. In this case, sensors can have more choices

when selecting their destinations, and thus the number of competitions can be reduced.

From Fig. 4.9, we can observe that the average moving distance is almost irrelative to

76

the number of sensors in the competition-based scheme. This is because sensors have

already known every target locations inside I. Thus, a sensor losing the competition can

immediately find another uncovered location as its new destination. However, the average

moving distance of the pattern-based scheme in the concentrated scenario will increase

as the number of sensors increases. Since sensors are initially placed on the right-hand

side of region A − I, most of them will select the right-most seed locations inside I as

their destinations. This will cause a large number of competitions and thus most sensors

have to reselect their destinations many times. So each sensor will have a longer moving

distance. This situation will become worse as the number of sensors becomes larger.

140

150

160

170

180

190

200

210

220

300 600 900 1200 1500 1800 2100

number of sensors

av
er

ag
e

m
o
v

in
g

d
is

ta
n

ce

pattern-10%
pattern-20%
pattern-30%
competition

240

250

260

270

280

290

300

310

320

300 600 900 1200 1500 1800 2100

number of sensors

av
er

ag
e

m
o
v

in
g

d
is

ta
n
ce

pattern-10%
pattern-20%
pattern-30%
competition

(a)

(b)

Figure 4.9: Comparison on average moving distances of sensors under different scenarios:

(a) the hollow scenario and (b) the concentrated scenario.

77

4.4.3 Effect of Seed Locations on the Pattern-based Scheme

In this section, with the same simulation setup, we evaluate the effect of seed locations

on the average moving distance of sensors in the pattern-based dispatch scheme.

Simulation results are shown in Fig. 4.10. As can be seen, the average moving distance

of sensors in the pattern-based scheme can be significantly reduced when we increase the

number of seed locations. However, when there are more than 40% target locations

selected as the seed locations, the improvement becomes quite limited in both scenarios.

Therefore, the optimal value of seed locations in the pattern-based scheme is suggested

to be 40% of target locations inside I. In this case, both the average moving distance of

sensors and the number of seed locations broadcasted by the server can be minimized.

Note that when the percentage of seed locations is 100%, the pattern-based scheme will

perform as better as the competition-based scheme since all target locations are known

by every sensor in the beginning.

4.5 Summary

In this work, we have proposed systematical solutions to the k-coverage sensor placement

and dispatch problems. Our solutions to the placement problem allows an arbitrary rela-

tionship of sensors’ communication distance and their sensing distance. It is verified that

the interpolating scheme requires fewer sensors to ensure k-coverage of the sensing field

and connectivity of the network as compared with the duplicate scheme. Our solutions to

the dispatch problem are based on a competitive nature of a distributed network. Simula-

tion results shows that the competition-based scheme works better than the pattern-based

scheme, but the latter can significantly improve its performance by selecting 40% target

locations as the seed locations.

78

230

240

250

260

270

280

290

300

10 20 30 40 50 60 70 80 90 100

percentage of seed locations (%)

av
er

ag
e

m
o

v
in

g
d

is
ta

n
ce

sensor num: 300
sensor num: 900
sensor num: 1500

140

150

160

170

180

190

200

210

10 20 30 40 50 60 70 80 90 100

percentage of seed locations (%)

av
er

ag
e

m
o

v
in

g
d

is
ta

n
ce

sensor num: 300
sensor num: 900
sensor num: 1500

(a)

(b)

Figure 4.10: Effect of seed locations on the average moving distance of sensors in the

pattern-based dispatch scheme: (a) the hollow scenario and (b) the concentrated scenario.

79

Chapter 5

Dispatch of Mobile Sensors with Energy-

efficient Consideration

A wireless sensor network is composed of many small devices used to monitor the en-

vironment. Due to their small sizes, these sensor nodes are usually simple [3] and may

roughly describe the events occurred in the environment. Take a security application as

an example. We may deploy a large amount of sensors that can detect noise in a region

to check if somebody intrudes this region. However, these sensors can only report that

something happens in the region when they have detected unusual sound. They cannot

tell you what intrudes this region. In addition, some background noises such as winds will

make these sensors generate false alarms. To solve these problems, we may use more so-

phisticated (and thus more expensive) sensors such as cameras to recognize the intruding

object. However, it is unlikely to mount cameras on most sensor nodes because of their

large number. Alternatively, a better way is to mount these sophisticated sensors on few

mobile platforms, and then dispatch these mobile sensors to move to event locations to

conduct more advanced analyses.

In this chapter, we thus consider a hybrid sensor network consisting of static and mobile

sensors. The former is deployed in the sensing field to monitor the environment, while the

latter is equipped with more resources such as computation power and sensing capability

and can be dispatched to the event locations to conduct more in-depth analysis. Because

mobile sensors use small batteries for their operations, one critical issue is to conserve the

energy of mobile sensors. In particular, the energy cost due to movement is the dominated

factor of energy consumption of mobile sensors. Thus, we focus on investigating how to

efficiently dispatch mobile sensors to move to event locations such that the system lifetime,

which is defined as the time period until some event locations cannot be reached by any

mobile sensor due to lack of energy, can be maximized.

80

To solve this problem, one intuitive solution is to maximize the total remaining energy

of mobile sensors in each one-round dispatch. Unfortunately, this method may cause some

mobile sensors early to exhaust their energies, which results in shortening the system

lifetime. In particular, we consider an example in Fig. 5.1, where there are two mobile

sensors sa and sb located at l1 and l2, respectively. Both mobile sensors initially have an

energy of 1000 units. Fig. 5.1(a) shows the energy consumption to visit each location,

and we assume that a mobile sensor has to spend an energy of five units to conduct the

sensing and communication jobs in the event location. Consider that there are two events

occurring at locations l3 and l4 (respectively, l1 and l2) during each odd (respectively,

even) round. Fig. 5.1(b) illustrates the execution of the aforementioned method. In order

to maximize the total remaining energy, sa and sb are scheduled to move between the

pair of locations (l1, l3) and (l2, l4), respectively. This will result in a minimum cost of

196 units during each round. However, after eight rounds, sa exhausts its energy. In this

case, sb has to move to both locations l4 and l3 and thus remains 196 units of energy

in the ninth round. Finally, in the tenth round, no mobile sensor can reach the event

location l2, so that the system lifetime is totally nine rounds. From Fig. 5.1(b), we can

observe that maximizing the total remaining energy of mobile sensors during each one-

round dispatch could make some mobile sensors early to exhaust their energy and thus

burden other still alive ones. Alternatively, we can “balance” the loads of mobile sensors

when dispatching them. Fig. 5.1(c) gives an example, where sa and sb are scheduled to

move between the pair of locations (l1, l4) and (l2, l3), respectively. Although this load-

balancing method spends more energy (i.e., 200 units) during each round, it can extend

the system lifetime to ten rounds. From Fig. 5.1, we can conclude that simply maximizing

the remaining energy of mobile sensors during each one-round dispatch cannot guarantee

to maximize the system lifetime since unbalanced loads of mobile sensors will cause some

mobile sensors fast to exhaust their energy, and thus greatly increase the loads of other

still alive ones. Such a chain-reaction will make the system lifetime become shorter.

Based on the aforementioned observation, we thus propose an efficient dispatch method

that takes the load-balance issue into consideration when scheduling mobile sensors to visit

event locations. Our dispatch method is general in which the numbers of event locations

and mobile sensors can be arbitrary. When the number of event locations is smaller than

or equal to that of mobile sensors, we convert this dispatch problem to the problem of

finding a maximum matching in a weighted bipartite graph. However, instead of finding

a matching with a maximum edge weight, we adopt a preference list [1] and a bound to

select the matching, where the former helps assign an event location with a suitable mobile

sensor, while the latter prevents the matching from including those edges with extreme

weights so that the loads of mobile sensors can be balanced. When the number of event

81

sa

(a)

sb

1000

1000 l1

l2 l4

l3
120

66

160
160

95

95

(b)

rounds 1-8

(1-round cost: 196)
round 9

(cost: 236)

round 10

(cost: 125 + 165)

sb

(c)

rounds 1-10

(1-round cost: 200) round 11

sb

l1

l2 l4

l3

66

160

sb

196

432

sb

71 l1

l2 l4

l3

120

160

sb

196

can
n
o
t

reach

sa

sb

l1

l2 l4

l3
120

66

sa

1000

1000 l1

l2 l4

l3

95

95

sa

sb

0

0 l1

l2 l4

l3

sa

01000

1000

sb

Figure 5.1: Comparison of different dispatch methods: (a) the energy consumption for a

mobile sensor to move to each location, (b) the dispatch method by maximizing the total

remaining energy during each one-round dispatch, and (c) the load-balancing method.

Note that each mobile sensor has to spend an energy of five units to conduct the sensing

and communication jobs after it arrives at the event location.

locations is larger than that of mobile sensors, we first group event locations into clusters,

where the number of cluster is the same as that of mobile sensors, and then adopt the

aforementioned matching approach to assign mobile sensors to visit these clusters. After

a mobile sensor arrives at the assigned cluster, it can adopt the approximate solution of

traveling-salesman problem to reach all event locations in that cluster.

5.1 Problem Statement

We are given a hybrid sensor network that consists of static and mobile sensors. Static

sensors are assumed to fully cover the region of interest and form a connected network,

82

so that they can completely monitor the region. When there are events reported from

static sensors, a set of n mobile sensors S = {s1, s2, . . . , sn} can be dispatched to the event

locations to provide sensing results of higher quality. We assume that sensors can know

their current locations, which are achieved by the global positioning system (GPS) [53]

or other localization techniques [13, 56].

The mobile sensor dispatch problem is stated as follows. We consider that there is a

set of event locations L = {l1, l2, . . . , lm} reported from static sensors. Each location is to

be visited by a mobile sensor. We allow an arbitrary relationship between the numbers

of event locations (m) and mobile sensors (n). The objective of this dispatch problem is

to calculate a dispatch schedule DSi for each mobile sensor si such that every location in

L can be visited by one mobile sensor exactly once. Each schedule DSi is a sequence of

event locations, and the jth location to be visited in the schedule is denoted as DSi[j].

Let ei be the current energy of a mobile sensor si and c(DSi) be the energy required to

finish si’s visit schedule, we can obtain

c(DSi) = emove ×
⎛⎝d(si, DSi[1]) +

|DSi|−1∑
j=1

d(DSi[j], DSi[j + 1])

⎞⎠+ ejob × |DSi|,

where emove is the energy cost for a mobile sensor to move one-unit distance, d(·, ·) denotes

the Euclidean distance between two locations, and ejob is the energy cost for a mobile

sensor to conduct its jobs (such as sensing and communication actions) when it arrives at

the event location. Obviously, the schedule needs to satisfy the condition of ei ≥ c(DSi).

To efficiently dispatch mobile sensors, we attempt to maximize the total remaining

energy of mobile sensors after they finish their dispatch schedules, i.e.,

max
∑
si∈S

(ei − c(DSi)). (5.1)

In addition, to balance the loads of mobile sensors, we also have to minimize the standard

deviations of sensors’ energy consumptions.

Note that the aforementioned modeling takes only single round of sensors’ dispatch

schedules into consideration. In general, multiple rounds of schedules need to be deter-

mined. In particular, we have to handle those events being detected over a fixed amount of

time, and the objective is to prolong the lifetimes of mobile sensors to cover the maximum

number of rounds, where the length of a round depends on users’ real-time constraints.

Because event locations are unexpected, we only focus on the solution of each round.

Table 5.1 summarizes the notations used in this chapter.

83

Table 5.1: Summary of notations used in Chapter 5.

notations definition

L set of event locations reported in each round; |L| = m

S set of mobile sensors; |S| = n

DSi the dispatch schedule of a mobile sensor si

c(DSi) energy consumption of si to perform DSi

emove energy cost to move a sensor one-unit distance

ejob energy cost for a mobile sensor to conduct its jobs at the event location

ei current energy of a mobile sensor si

PLj the preference list of an event location lj

Bj the bound of an event location lj

ΔB increasing level of the bounds

ĉk a cluster of event locations

5.2 The Mobile Sensor Dispatch (MSD) Method

Our dispatch solution depends on the numbers of mobile sensors and event locations.

When |S| ≥ |L|, we convert the dispatch problem to the problem of finding a maximum

matching in a weighted bipartite graph. When |S| < |L|, we group the event locations

in L into |S| clusters so that each mobile sensor will need to visit one cluster of event

locations. Then the maximum matching approach in the case of |S| ≥ |L| can be applied

again.

5.2.1 Case of |S| ≥ |L|
We first construct a weighted complete bipartite graph G = (S ∪ L, S × L), where the

vertex set contains all mobile sensors and all event locations while the edge set includes

all edges (si, lj) from each si ∈ S to each lj ∈ L. The weight of each edge (si, lj) is defined

as w(si, lj) = emove ×d(si, lj), which is the energy cost to move si to lj . Then the problem

can be formulated as one of finding a matching P in G such that the following objectives

can be satisfied:

• The number of matches (i.e., non-adjacent edges) in P is maximal.

• Mobile sensors can remain the maximum energy after they are dispatched to event

locations according to the matches in P .

• The standard deviation of edge weights of P is as small as possible.

84

Note that under this formulation, the first objective is a must, while the other two objec-

tives are desirable, but the result does not necessarily have the minimum values among

all possible matchings.

Below, we present our solution to find the matching P .

1. For each lj ∈ L, we associate with it a preference list PLj, which ranks each si ∈ S

by the corresponding edge weight w(si, lj) in an increasing order. When the weights

are equal, sensors’ IDs can be used to break the tie.

2. To achieve the third objective (i.e., minimizing the standard deviation of edge

weights of P), we adopt a bound Bj for each lj ∈ L to limit the mobile sensors

that lj can match with. Initially, the value of each bound Bj is set to the average

of the minimum weights of all edges incident to each event location, i.e.,

B1 = B2 = · · · = Bm =
1

m

m∑
j=1

min
∀i,(si,lj)∈S×L

{w(si, lj)}.

With bound Bj , location lj only considers a mobile sensor si as a candidate if

w(si, lj) ≤ Bj .

3. Construct a queue Q which contains all event locations in L.

4. Dequeue an event location, say lj, from Q. We then select si from the candidate

mobile sensors in PLj such that after moving to lj , si can remain the maximum

energy, i.e., ei − w(si, lj) can be maximized. We then check if si can be matched

with lj according to the following rules:

(i) If si is unmatched yet, we can include the pair (si, lj) into P .

(ii) Otherwise, si must have been matched with another location, say lk. In this

case, lj will compete with lk for si by their bounds Bj and Bk. In particular,

lj can win the competition if one of the following conditions is satisfied:

• Bj > Bk. In this case, since there is a higher risk that the standard

deviation of P will be increased, we will prefer matching si with lj to

matching si with lk.

• Bj = Bk and w(si, lj) < w(si, lk). Since si can remain more energy as it

moves to lj , we thus match si with lj.

• Bj = Bk and si is the only candidate in PLj but not in PLk. In this case,

if si is not matched with lj, the bound Bj has to be increased, but the

bound Bk may not have to be increased. So we match si with lj.

85

If lj wins, we will replace the pair (si, lk) in P by the new pair (si, lj), remove

si from PLk, and enqueue lk into Q. Otherwise, si is removed from PLj since

lj will not consider si any more.

If lj cannot find a match in (i) and (ii) and there are still unvisited candidates in

PLj , lj will examine the sensor that can remain the most energy in PLj and repeat

steps (i) and (ii) again, until there are no more candidates.

5. If lj cannot be matched with any mobile sensor in the above step 5, we will increase

bound Bj by an amount of ΔB and go back to step 5, until a match is found for lj .

6. The above steps 5 and 6 will be repeated until the queue Q becomes empty.

The above procedure must terminate since |S| ≥ |L|. Note that we should carefully

select the value of ΔB to control the number of candidates to be considered in each

iteration. This relates to the maximum and the minimum weights of edges incident to

each mobile sensor, and the total number of possible matches (i.e., mn) between S and

L. So we recommend ΔB to be set as follows:

ΔB =
α

mn
×
(

m∑
j=1

max
∀i,(si,lj)∈S×L

{w(si, lj)} −
m∑

j=1

min
∀i,(si,lj)∈S×L

{w(si, lj)}
)

, (5.2)

where α is an adjustable coefficient.

Fig. 5.2 gives an example with α = 2. The energies of mobile sensors are all set

to 500 units. Initially, B1 = B2 = B3 = B4 = 1
3
× (106 + 79 + 94) = 93 and ΔB =

2
4×3

× ((217 + 231 + 215)− (106 + 79 + 94)) = 64. Let Q = (l1, l2, l3, l4) and we start with

l1. Since there is no candidate mobile sensor in PL1 with weight smaller than or equal to

B1, B1 will be increased to 93 + 64 = 157. In this case, since there are three candidates

sa, sb, and sc, l1 will be matched with sb (because sb can remain the maximum energy

after it arrives at l1). In the next iteration, the pair (sc, l2) will be matched, as shown

in Fig. 5.2(b). However, when examining l3, it will find that the only candidate sb has

been matched with l1. Thus, l3 will compete with l1 for sb. Since B3 = B1 = 157 and

w(sb, l3) < w(sb, l1), (sb, l1) will be replaced by (sb, l3) as shown in Fig. 5.2(c) and then l1

will be put into Q. Following the procedure, (sc, l2) will be replaced by (sc, l1) as shown

in Fig. 5.2(d), and finally a match (sd, l2) will be found, as shown in Fig. 5.2(e).

Below, we analyze the time complexity of our MSD method when |S| ≥ |L|. In the

MSD method, we first construct a complete bipartite graph G, which requires O(mn)

time because we need to assign the weight of each edge. Then calculating the preference

lists for all event locations in L takes O(mn lg n) time because we have to sort the mobile

sensors in S. The worst case to match an event location with a mobile sensor is O(n)

because the event location has to go through its whole preference list. So it takes O(mn)

86

PL
1

= {s
b
, s

c
, s

a
, s

d
}

PL
2

= {s
c
, s

d
, s

b
, s

a
}

PL
3

= {s
b
, s

a
, s

d
, s

c
}

(a)

w(si,lj) sa sb sc sd

l1 154 106 127 217

l2 231 138 79 99

l3 181 94 215 181

sd

500

l1 l2

l3

sa sb

sc

sd

500

500

500

500

l1 l2

l3

sa sb

sc

500
500

500

B1

B2

l1 l2

l3

sa sb

sc

sd

500

500

500

500500

B3

B1

l1 l2

l3

sa sb

sc

sd

500

500

500

500

B1

B2

B2

(b) (c)

(d) (e)

l1

l2

l3sd

sc

sb

sa

Figure 5.2: An example to execute the MSD method when |S| ≥ |L|: (a) the edge weights

and preference lists of event locations, (b) P = {(sb, l1), (sc, l2)}, (c) P = {(sb, l3), (sc, l2)},
(d) P = {(sb, l3), (sc, l1)}, and (e) P = {(sb, l3), (sc, l1), (sd, l2)}.

time to compute the maximum matching P . Therefore, the total time complexity of the

87

MSD method will be O(mn + mn lg n + mn) = O(mn lg n).

5.2.2 Case of |S| < |L|
When event locations are more than mobile sensors, we will cluster L into n groups, each

to be visited by one mobile sensor. The following method is built on top of the MSD

method discussed in the previous section.

1. We first classify the event locations into n = |S| clusters according to their inter

distances. (How to cluster will be discussed later.)

2. Then we define an approximated cost function φ(ĉj) for each cluster ĉj, which rep-

resents the energy cost required to visit all event locations in ĉj. (The definition of

φ(·) will be given later.) We then repeatedly split and merge some clusters in a way

such that the number of clusters remains unchanged and the total cost
∑n

j=1 φ(ĉj)

is minimized.

3. Let the final set of n clusters be Ĉ = {ĉ1, ĉ2, · · · , ĉn}. We define the energy cost

c(si, ĉj) for each sensor si ∈ S to visit each member ĉj ∈ Ĉ as:

c(si, ĉj) = emove × (d(si, l̂i,j) + φ(ĉj)) + ejob × |ĉj|,

where l̂i,j is the event location in ĉj which is closest to si. Specifically, the total

energy consumption includes moving si to l̂i,j and then to all other event locations

in ĉj , and the energy cost to conduct jobs at each event locations in ĉj. We then

construct a weighted complete bipartite graph G′ = (S ∪ Ĉ, S × Ĉ) such that the

vertex set contains all mobile sensors and all clusters and the edge set contains

the edge (si, ĉj) from each si ∈ S to each ĉj ∈ Ĉ. The edge weight is defined as

w(si, ĉj) = c(si, ĉj).

4. With G′, we execute the MSD method in Section 5.2.1 to find a matching P ′ of G′.

5. For each (si, ĉj) ∈ P ′, we dispatch mobile sensor si to l̂i,j, and then to all other

event locations in ĉj . The way to traverse from l̂i,j to all other locations in ĉj

can be calculated by any solution to the traveling salesman problem (TSP) [11] by

minimizing the total traversing length.

In step 1, the clustering of L can be done by the classical K-means method [48].

In this method, event locations are first randomly separated into n non-empty clusters

ĉ1, ĉ2, · · · , ĉn. Then for each cluster ĉi, we can calculate the fulcrum f̂i of the event

locations in ĉi. We then dissolve the current clustering and allow each event location to

pick one of the n fulcrums that is closet to it. All event locations picking the same fulcrum

88

will then form a new cluster. With these new n clusters, we can repeat the above process

by calculating their fulcrums and re-cluster all locations. This can be repeated until there

is no event relocation.

To evaluate the cost of each cluster in step 2, we define φ(ĉk) of each cluster ĉk as

φ(ĉk) =
∑

(si,lj)∈MST (ĉk)

w(si, lj),

where MST (ĉk) is the minimum spanning tree in ĉk. For example, in Fig. 5.3(b), φ(A) =

79, φ(B) = 14, φ(C) = 11, and φ(D) = 55.

Since K-means may not ensure minimizing the total cost of the derived clusters,

especially when there are several event locations far away from others, we have to adjust

the cluster result by properly splitting and merging clusters. Intuitively, those clusters

containing sparse event locations should be split. However, in order not to change the

number of clusters, we have to merge two clusters when splitting a large one. In particular,

let us denote wintra max as the maximum edge weight among edges in all clusters and

winter min as the minimum edge weight among edges between clusters. When wintra max >

winter min, we can split the cluster with the edge whose weight is wintra max (by removing

that edge) and then merge the two corresponding clusters by adding the edge whose weight

is winter min. This procedure will be repeated until wintra max ≤ winter min. In this way, we

can prevent some clusters from containing too large costs and thus reduce the total cost

of clusters. Fig. 5.3 gives an example. In Fig. 5.3(b), wintra max = 60 (in cluster A) and

winter min = 16 (between clusters C and D). So we split cluster A into two clusters A1

and A2, and then merge clusters C and D into single one cluster, as shown in Fig. 5.3(c).

Following the same procedure, we can further split cluster D and then merge two clusters

A2 and B to reduce the total cost of clusters. The final result is shown in Fig. 5.3(d).

5.3 Experimental Results

In this section, we present several experiment results to verify the effectiveness of our

proposed MSD method. We design a sensing field as a 450m × 300m rectangle, on which

there are 400 static sensors (used as the event locations) uniformly deployed. In addition,

there are some mobile sensors randomly distributed over the sensing field. Each mobile

sensor has an initial energy of 3960J (joule). The energy consumption for a mobile sensor

to move one-unit distance is set to 8.27J1.

1To observer the effect of dispatch, we ignore the energy cost ejob in the experiments.

89

(a)

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

60

19

25

14

50

11

16

12

43
l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

60

19

25

14

50

11

16

12

43

(b)

cluster A

cluster B

cluster C

cluster D

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

60

19

25

14

50

11

16

12

43

(c)

cluster A2

cluster B

cluster D

cluster A1

l10

l9

l8

l7

l6

l5

l4

l3

l2

l1

60

19

25

14

50

11

16

12

43

(d)

cluster B

cluster D2

cluster A1

cluster D1

Figure 5.3: An example to group event locations into four clusters: (a) the initial topology,

(b) the cluster result after adopting K-means, where the total cost is 159, (c) the cluster

result after splitting cluster A and merging clusters C and D, where the total cost is 115,

and (d) the cluster result after splitting cluster D and merging clusters A2 and B, where

the total cost is 97.

5.3.1 Performance of the MSD Method

In this experiment, we evaluate the system lifetimes of our proposed MSD method and

the dispatch method by simply maximizing the remaining energy of mobile sensors during

each one-round dispatch (In the following, we call this method as iteratively-maximizing

method for short). In the experiment, there are 10 to 15 events randomly generated in

each round, and there are 50 mobile sensors to be dispatched to these event locations2. We

compare the ratio of survived mobile sensors under these two dispatch methods in each

round. When the number of survived sensors becomes fewer than that of event locations,

the proposed clustering scheme is applied to cluster event locations. The system lifetime

2In our experiments, an event location is represented by a static sensor’s location.

90

is referred as the round when the ratio decreases as zero (in the sense that all mobile

sensors exhaust their energies).

The system lifetimes of these two dispatch methods are shown in Fig. 5.4. We can

observe that our proposed MSD method can have a longer system lifetime compared with

the iteratively-maximizing method. This is because the latter does not consider to balance

the loads of mobile sensors, which makes some mobile sensors fast to exhaust their energy.

The death of these exhausted sensors will burden the remaining survived ones with heavy

loads. The situation will become worse as the number of mobile sensors run out of their

energies. On the contrary, our MSD method not only attempts to make mobile sensors

remain more energy but also balances their loads, so that it will have a longer system

lifetime.

0

10

20

30

40

50

60

70

80

90

100

30 33 36 39 42 45 48 51 54 57 60

number of rounds

su
rv

iv
ed

m
o
b
il
e

se
n
so

rs
(%

)

MSD method

iteratively-maximizing method

Figure 5.4: Comparison on system lifetimes of the proposed MSD method and the

iteratively-maximizing method.

In the next experiment, we measure the degree of load-balance under these two dis-

patch methods. In particular, we evaluate the averages and standard deviations of energy

consumption of mobile sensors. In the experiment, we increase the number of events from

20 to 160. The number of mobile sensors is set as equal to that of event locations, so that

each mobile sensor will be assigned with exactly one event location.

Fig. 5.5(a) shows the average of energy consumption of mobile sensors. Because the

iteratively-maximizing method always tries to keep the most energy of mobile sensors,

it will have a smaller average of energy consumption compared with our MSD method.

However, the standard deviation of the iteratively-maximizing method is almost twice

than that of our MSD method as shown in Fig. 5.5(b), which indicates that the iteratively-

maximizing method will result in seriously unbalance loads among mobile sensors, and

thus shortening the system lifetime.

91

12 12

9
11

8 7

28 27

21 21
19 20

14
12

16 16

5

10

15

20

25

30

35

20 40 60 80 100 120 140 160

number of event locations

st
an

d
ar

d
d

ev
ia

ti
o

n
o

f

en
er

g
y

co
n

su
m

p
ti

o
n

(J
)

MSD method

iteratively-maximiaing method

56

48
45

36
34

30

23
20

18
20

27
2929

37
39

49

15

25

35

45

55

65

20 40 60 80 100 120 140 160

number of event locations

av
er

ag
e

o
f

en
er

g
y

co
n

su
m

p
ti

o
n

(J
)

MSD method

iteratively-maximizing method

(a)

(b)

Figure 5.5: Comparisons on energy consumption of mobile sensors under the proposed

MSD method and the iteratively-maximizing method: (a) the average of energy consump-

tion and (b) the standard deviation of energy consumption.

5.3.2 Effect of the Clustering Scheme

When event locations are more than mobile sensors, we will first cluster event locations

and then dispatch mobile sensors to visit these clusters. In this experiment, we study the

effect of our clustering scheme on the average of energy consumption of mobile sensors.

From Fig. 5.6, we can observe that when the clustering scheme is adopted, mobile sensors

can consume less energy. This is because our clustering scheme groups event locations

according to their inter distances, and thus the mobile sensors will not travel around

locations far away from each other.

92

82

114
131

165
183

196

232

277

258

215

173
157

117

136

50

100

150

200

250

300

60 75 90 105 120 135 150

number of event locations

av
er

ag
e

o
f

en
er

g
y

co
n
su

m
p
ti
o
n

(J
)

adopt the clustering scheme

without clustering

Figure 5.6: The effect of our clustering scheme on the average of energy consumption of

mobile sensors, where the number of mobile sensors is set to 50.

5.3.3 Analysis on the Coefficient α

In the last experiment, we analyze the effect of the coefficient α on the increasing level

ΔB in Eq. (5.2). The value of α affects both the computation time and result of our

MSD method, as shown in Fig. 5.7. In particular, we adopt the number of redundant

iterations that an event location has to continuously repeat Eq. (5.2) to find candidate

mobile sensors as the metric to measure the computation time. In addition, we adopt

the product of average and standard deviation of energy consumption of mobile sensors

to evaluate the result of the MSD method. Obviously, a smaller product means a better

result because mobile sensors can consume less energy while have a more balanced load.

Fig. 5.7 presents the effect of coefficient α on the number of redundant iterations and the

energy consumption of mobile sensors. We can observe that a smaller δ will cause more

redundant iterations while a larger δ will make mobile sensors consume more energy and

become unbalanced. From Fig. 5.7, we recommend the optimal value of coefficient δ as

2.0 since both the redundant iterations and the product can be minimized.

5.4 Summary

In this chapter, we have developed an efficient dispatch method to schedule mobile sensors

to visit event locations in a hybrid sensor network. Our dispatch method can balance the

moving distances of mobile sensors while conserve their energies as much as possible, and

thus avoiding the early-exhausted mobile sensors burdening other still alive ones. Our

dispatch method is general in which the numbers of event locations and mobile sensors

can be arbitrary. When the number of event locations is smaller than or equal to that

93

0

200

400

600

800

1000

1200

1400

1600

1800

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

coefficient á

n
u
m

b
er

o
f

re
d
u
n
d
an

t
it

er
at

io
n
s

0

200

400

600

800

1000

1200

p
ro

d
u
ct

o
f

av
er

ag
e

an
d

st
an

d
ar

d

d
ev

ia
ti

o
n

o
f

en
er

g
y

co
su

m
p
ti

o
n

iterations
product

Figure 5.7: The effect of coefficient α on the number of redundant iterations and the

energy consumption of mobile sensors, where both the numbers of event locations and

mobile sensors are set to 50.

of mobile sensors, we convert the dispatch problem to a maximum matching problem in

a weighted bipartite graph. When the number of event locations is larger than that of

mobile sensors, we propose efficient clustering schemes to cluster event locations so that

the previous matching approach can be applied again. Simulation results have shown

that our proposed dispatch method can extend the system lifetime as compared with the

iteratively-maximizing method.

94

Chapter 6

Packet Scheduling for Data Aggregators in

a Wireless Sensor Network

After constructing a wireless sensor network, sensors will report their sensing data peri-

odically or transmit emergency notifications to the data aggregators (or the sink) when

they detect a predefined event. In addition, mobile sensors that have arrived at event

locations will also send back their analyzed information to the data aggregators. Accord-

ing to the types and time-constraints of these reported data, we can classify them into

real-time flows and non-real-time flows. For example, events reported from static sensors

and analyzed data sent from mobile sensors are classified into real-time flows since events

may disappear soon latter, while periodical sensing reports by static sensors are classified

into non-real-time flows. Among these flows, if we make sensors compete to transmit

their reports to the data aggregators, real-time flows may miss their delay constraints and

thus important messages may be dropped. On the contrary, if we allow real-time flows

always to preempt non-real-time flows, the latter will be starved. Moreover, since wireless

channels are characterized by more serious bursty errors and location-dependent errors,

the aforementioned delay-missing and starving situations will become more worse.

To solve these problems, in this chapter we propose two packet fair scheduling algo-

rithms for data aggregators to manage the messages reported from sensors. We consider

two wireless environments: a sing-rate environment and a multi-rate environment. In a

single-rate environment, sensors can transmit their packets in a fixed rate and the wireless

channels can be either in a good (error-free) state or in a bad (error) state. Transmissions

in a good state will succeed but completely fail in a bad state. Under these assump-

tions, we propose a Traffic-Dependent wireless Fair Queuing (TD-FQ) algorithm that

takes traffic types of flows into consideration when scheduling packets. TD-FQ gives a

higher priority for real-time flows to alleviate their queuing delays, but it still maintains

95

the fairness among flows so that non-real-time flows will not be starved.

In this chapter, we further consider a multi-rate environment in which sensors can

adopt different modulation techniques to transmit their packets under different channel

conditions. In particular, A simpler modulation (and thus a higher data rate) can be

used when the signal-to-noise ratio (SNR) is sufficiently high, while a more complicated

modulation (and thus a lower rate) can still be used under a bad channel [99]. Adopting

multi-rate transmissions poses several challenges:

• There is a mismatch between the amount of service that a sensor receives and the

amount of time that the sensor actually be served. To transmit the same amount

of data, a sensor using a lower rate will take a longer time than one using a higher

rate. Thus the concept of virtual time in fair scheduling algorithms may need to be

redefined.

• When a flow that suffered from a bad channel exits from errors, it may take a

different amount of time for the system to compensate the flow depending on its

channel condition, thus making the design of compensation difficult.

• The overall system performance may be degraded if there are too many low-rate

flows.

In this chapter, we propose a fair scheduling algorithm called Multi-Rate wireless Fair

Queueing (MR-FQ) that addresses the aforementioned issues. MR-FQ can adjust a flow’s

transmission rate according to its channel condition and lagging degree. A flow is allowed

to transmit at a lower rate to alleviate its lags only if it is lagging up to a certain degree.

Specifically, the more serious a flow is lagging, the lower rate the flow is allowed to use.

Such differentiation can take care of both fairness and system performance. Lower rate

flows thus will not prolong other flows’ delays. In this way, MR-FQ can satisfy the delay-

sensitive property of real-time flows, while still maintaining fairness and bounded delays

for all flows.

6.1 The TD-FQ Algorithm

In this section, we propose our TD-FQ algorithm used in a single-rate wireless environ-

ment.

6.1.1 System Model

We consider a part of the wireless sensor network as in Fig. 6.1. There is a data ag-

gregator responsible for collecting data reported from nearby sensors. Packets arriving

96

Figure 6.1: The system architecture of TD-FQ.

at the data aggregator are classified into real-time traffic and non-real-time traffic and

the data aggregator maintains a set of virtual flow queues to record the physical queues’

conditions of sensors. The TD-FQ scheduler then schedules these flow queues and notifies

the corresponding sensor to send its packets to the data aggregator via the MAC protocol.

The channel state monitor provides information about the channel state of each sensor.

(There are different alternatives to obtain or predict queues’ conditions and channel states

of sensors, but these issues are out of the scope of this chapter). For simplicity, we assume

that the data aggregator has immediate and accurate knowledge of queues’ conditions and

channels’ states of sensors.

In this section, we focus on the design of TD-FQ scheduler. Sensors may suffer from

bursty and location-dependent channel errors. However, error periods are assumed to be

sporadic and short relative to the whole lifetime of flows so that long-term unfairness

would not happen.

6.1.2 Scheduling Policy

In TD-FQ, each flow i is assigned a weight wi to represent the ideal fraction of bandwidth

that the system commits to it. However, the real services received by flow i may not match

exactly its assigned weight. Thus we maintain a virtual time vi to record the nominal

services received by it, and a lagging level lagi to record its credits/debits. The former

is to compete with other flows for services, while the latter is to arrange compensatory

97

services. The actual normalized service received by flow i is vi − lagi

wi
. Flow i is called

leading if lagi < 0, called lagging if lagi > 0, and called satisfied if lagi = 0. Further,

depending on its queue content, a flow is called backlogged if its queue is nonempty,

and called unbacklogged otherwise. A flow is considered as active if it is backlogged or

unbacklogged but leading. Note that TD-FQ will only choose active flows to serve. When

an unbacklogged but leading flow (i.e., an active flow) is chosen, its service will actually be

transferred to another flow for compensation purpose. In addition, when a flow i transits

from unbacklogged to backlogged, its virtual time vi is set to max{vi, minj∈A{vj}}, where

A is the set of all active flows.

Fig. 6.2 outlines the scheduling policy of TD-FQ. First, the active flow i with the

minimum virtual time vi is selected. If flow i is backlogged and its channel condition

is good, the head-of-line packet of flow i can be transmitted if flow i is non-leading. In

this case, the service is called a normal service (NS). We then update the virtual time

vi as vi + lp
wi

, where lp is the length of the packet. In case that flow i has to give up its

service because of an empty queue or a bad channel condition, the service will become an

extra service (ES). On the other hand, if flow i is over-served (i.e., leading), the Gradual

Degradation Scheme will be invoked to determine if flow i is still eligible for the service. If

flow i has to give up its service, the service will be transferred to a compensatory service

(CS). In both cases of CS and ES, the Compensation Scheme will be triggered, trying

to select another flow j to serve. If the Compensation Scheme cannot select any flow,

this service is wasted, called a forsaken service (FS). If the Compensation Scheme still

chooses flow i to serve, we update vi and transmit its head-of-line packet. If a flow j (�= i)

is selected, flow j’s packet will be transmitted and the values of vi, lagi, and lagj will be

updated as follows:

vi = vi +
lp′

wi
, (6.1)

lagi = lagi + lp′ , (6.2)

lagj = lagj − lp′, (6.3)

where p′ is the packet being sent. Note that in this case we “charge” to flow i by increasing

its virtual time vi, but “credit” (respectively, debit) to lagi (respectively, lagj) of flow i

(respectively, j).

When the scheduler serves the head-of-line packet of any flow i, it has to check the

queue size of flow i. If it finds that flow i’s queue is empty, it will invoke the Lag

Redistributing Scheme to adjust flow i’s lag, if necessary.

Below, we introduce the Gradual Degradation Scheme, Compensation Scheme, and

Lag Redistributing Scheme in TD-FQ. Table 6.1 summarizes the notations used in TD-

FQ.

98

backlogged &

channel = good ?

select the active flow i with the minimum virtual time vi

lagi < 0 ?

Yes

i can send

No

No

skip this slot

j = NULL

Yes

send the head-of-line packet

of flow i and update vi

send the head-of-line packet of flow j and

update vi, lagi, and lagj by Eqs. (6.1), (6.2), and (6.3), respectively

j = i

execute the Lag Redistributing Scheme

n
o
rm

a
l

service
(N

S
)

fo
rsa

k
len

service
(F

S
)

compensatory

service (CS)

ex
tra

service
(E

S
)

j i

start

execute the Gradual Degradation

Scheme to determine if flow i can send

select another flow j to transmit

by the Compensation Scheme

i cannot send

Figure 6.2: The scheduling policy of TD-FQ.

99

Table 6.1: Summary of notations used in TD-FQ.

notations definition

wi weight of flow i

vi virtual time of flow i

lagi credits/debits of flow i

gi gradual degradation service index of flow i when lagi < 0

αR, αN gradual degradation ratios for real-time and non-real-time flows

δ the threshold to distinguish seriously/moderately lagging flows

LR, LN , LS
R, sets of lagging flows (defined in SWC)

LM
R , LS

N , LM
N

WR, WN , W S
R , weights of lagging flows LR, LN , LS

R, LM
R , LS

N , and LM
N , respectively

W M
R , W S

N , W M
N

VR, VN , V S
R , normalized amounts of ES/CS received by LR, LN , LS

R, LM
R , LS

N ,

V M
R , V S

N , V M
N and LM

N , respectively

B bound of differences of services (used in SWC)

cS
i , cM

i normalized amounts of ES/CS received by flow i when
lagi

wi
≥ δ and 0 < lagi

wi
< δ, respectively

fi normalized amount of ES received by flow i when lagi ≤ 0

6.1.3 Gradual Degradation Scheme

When a leading flow i is selected by the scheduler, the Gradual Degradation Scheme

will be invoked to check flow i’s leading amount. A leading flow is allowed to receive

an amount of additional service proportional to its normal services. Specifically, when a

flow i transits from lagging/satisfied to leading, we set up a parameter gi = α · vi, where

0 < α < 1 is a system-defined parameter. Later on, flow i’s virtual time will be increased

each time when it is selected by the scheduler. Let v′
i be flow i’s current virtual time when

it is selected. We will allow flow i to be served if gi ≤ αv′
i. If so, gi is updated as gi + lp

wi
,

where lp is the length of the packet. Intuitively, flow i can enjoy approximately α(v′
i − vi)

of its services.

Further, to distinguish real-time from non-real-time flows, we substitute α by a pa-

rameter αR for real-time flows, and by αN for non-real-time flows. We set αR > αN to

distinguish their priorities.

100

LR

M

W R W N

LN

M

LR

real-time set

LN

non-real-time set

LR

S

seriously

lagging set

moderately

lagging set

seriously

lagging set

LN

S

moderately

lagging set

extra service (ES) & compensation service (CS)

W
R

S

W R

M

W N

S
W N

M

traffic

type

lagging

degree

lagging flows

Figure 6.3: The set-based weight compensation (SWC) scheme.

6.1.4 Compensation Scheme

When the selected flow i suffers from channel errors or it cannot satisfy the gradual

degradation condition, the Compensation Scheme will be invoked to arrange another flow

to receive this additional service (reflected by ES and CS in Fig. 6.2). In this case, lagging

flows should always have a higher priority over non-lagging flows to receive such services.

Next, we first discusses how to choose a lagging flow to receive ES/CS. Then we deal with

the case when all lagging flows are experiencing errors.

Dispatching ES and CS to Lagging Flows

The Compensation Scheme first tries to dispatch ES/CS to lagging flows. Here we propose

a Set-based Weight Compensation (SWC) scheme, as illustrated in Fig. 6.3. SWC first

classifies lagging flows into a real-time set LR and a non-real-time set LN . These two

sets are each further classifies into a seriously lagging set and a moderately lagging set.

Individual flows are at the bottom. The concept of weight is used to dispatch services to

these sets.

In order to dispatch ES/CS to LR and LN , we assoicate them with a weight WR

and WN , respectively. Normally, we would set WR > WN . In addition, a variable VR

(respectively, VN) is used to record the normalized ES/CS received by LR (respectively,

101

LN). When both LR and LN contain error-free flows, the service will be given to LR if

VR ≤ VN , and to LN otherwise. When only one of LR and LN contains error-free flows,

the service will be given to that one, independent of the values of VR and VN . When LR

receives the service, VR is updated as

VR = min

{
VR +

lp
WR

,
WNVN + B

WR

}
, (6.4)

where lp is the length of the transmitted packet, and B is a system parameter to bound

the difference between VR and VN . Similarly, when LN receives the service, VN is updated

as

VN = min

{
VN +

lp
WN

,
WRVR + B

WN

}
. (6.5)

Note that to prevent the cases of VR � VN or VN � VR, which may cause LR or LN to

starve when the other set recovers from errors, we set a bound |WRVR − WNVN | ≤ B.

This gives the second term in the right-hand side of Eqs. (6.4) and (6.5).

The flows in LR are further classified into a seriously lagging set LS
R and a moderately

lagging set LM
R . We assign a real-time lagging flow i to LS

R if lagi

wi
≥ δ, where δ is a

system parameter. Otherwise, flow i is assigned to LM
R . Similarly, the flows in LN are also

classified into a seriously lagging set LS
N and a moderately lagging set LM

N . Again, services

are dispatched to sets LS
R, LM

R , LS
N , and LM

N according their weights W S
R , W M

R , W S
N , and

W M
N , respectively. To benefit seriously lagging flows, we set W S

R > W M
R and W S

N > W M
N .

Services are then dispatched to these sets similar to the earlier case (i.e., the service

distribution to LR and LN). We use V S
R , V M

R , V S
N , and V M

N to record the services received

by these sets. Again a bound B is set to limit the differences between V S
R and V M

R and

between V S
N and V M

N .

At the bottom of SWC are four groups of individual flows of the same properties

(traffic types and lagging degrees). Here we dispatch ES/CS proportional to flows’ weights.

Specifically, for each flow i, we associate it with two compensation virtual times cS
i and

cM
i , which keep track of the normalized amount of ES/CS received by flow i when lagi

wi
≥ δ

and 0 < lagi

wi
< δ, respectively. When the scheduler chooses the seriously lagging set (LS

R

or LS
N), it selects the error-free flow i with the smallest cS

i in the set to serve. Similarly,

when the scheduler chooses the moderately lagging set (LM
R or LM

N), it selects the error-

free flow i with the smallest cM
i in the set to serve. When a lagging flow i receives such a

service, its compensation virtual times are updated as{
cS
i = cS

i + lp
wi

, if lagi

wi
≥ δ

cM
i = cM

i + lp
wi

, otherwise
.

When a flow i newly enters one of the sets LS
R, LM

R , LS
N , and LM

N or transits from one

set to another, we have to assign its cS
i or cM

i as follows. If flow i is seriously lagging (i.e.,

102

lagi

wi
≥ δ), we set

cS
i =

{
max{cS

i , cSR
min}, if flow i is real-time

max{cS
i , cSN

min}, if flow i is non-real-time
.

Otherwise, we set

cM
i =

{
max{cM

i , cMR
min}, if flow i is real-time

max{cM
i , cMN

min}, if flow i is non-real-time
,

where cSR
min (respectively, cSN

min) is the minimum value of cS
j such that j ∈ LS

R (respectively,

j ∈ LS
N), and cMR

min (respectively, cMN
min) is the minimum value of cM

j such that j ∈ LM
R

(respectively, j ∈ LM
N). One exception is when the set LS

R/LS
N/LM

R /LM
N is empty, in which

case cSR
min/cSN

min/cMR
min/cMN

min is undefined. If so, we set cSR
min/cSN

min/cMR
min/cMN

min to the value of

cS
j /cM

j of the “last flow” j that left the set LS
R/LS

N/LM
R /LM

N .

In summary, SWC compensates more services to real-time flows and seriously lagging

flows, thus alleviating the queuing delays of these flows. In addition, SWC does not starve

other lagging flows since these flows can still share a fraction of ES/CS.

Dispatching ES to Non-lagging Flows

If there is no lagging flow selected in the previous stage (due to errors), the service will be

dispatched according to its original type. If the service comes from CS, it will be returned

back to the originally selected flow. Otherwise, the service (i.e., ES) will be given to

a non-lagging flow. The scheduler dispatches ES proportional to the non-lagging flows’

weights. In particular, each flow i is assigned with an extra virtual time fi to keep track

of the normalized amount of ES received by flow i when it is non-lagging (i.e., lagi ≤ 0).

When a backlogged flow i becomes error-free and non-lagging, fi is set to

fi = max{fi, min{fj | flow j is error-free, backlogged, and non-lagging; j �= i}}.

The scheduler selects the flow i with the smallest fi value among all error-free, backlogged,

and non-lagging flows to serve. When flow i receives the service, fi is updated as fi + lp
wi

.

An exception occurs when there is no selectable non-lagging flow, in which case this time

slot will simply be wasted.

6.1.5 Lag Redistributing Scheme

After a flow is served, if its queue state changes to unbacklogged and it is still lagging,

we will distribute its credit to other flows that are in debet and reset its credit to zero.

This is because the flow does not need the credit any more [126]. This is done by the Lag

Redistribution Scheme.

103

The scheme examines the flow i that is actually served in this round. After the service,

if flow i’s queue becomes empty and lagi > 0, we will give its credit to other flows in debet

proportional to their weights. Specifically, for each flow k such that lagk < 0, we set

lagk = lagk + lagi × wk∑
lagm<0 wm

.

Then we reset lagi = 0.

6.2 The MR-FQ Algorithm

In this section, we propose our MR-FQ algorithm used in a multi-rate wireless environ-

ment.

6.2.1 System Model

The architecture of MR-FQ (refer to Fig. 6.4) is similar to that discussed in Section 6.1.1,

except that there is a MAC and transmission module that can transmit at n rates Ĉ1, Ĉ2,

· · · , and Ĉn, where Ĉ1 > Ĉ2 > · · · > Ĉn. This module also measures the current channel

condition to each sensor and determines the most appropriate rate to communicate with

that sensor (several works [8, 54, 99, 115] have addressed the rate selection problem, but

this is out of scope of this chapter). The information of the best rate is also reported

to the MR-FQ scheduler for making a decision. For simplicity, we assume that the data

aggregator has immediate knowledge of the best rate for each sensor. Note that this also

includes the worst case where the channel is too bad to be used, in which case we can

regard the best rate to be zero.

6.2.2 Service Fairness vs. Time Fairness

With the emergence of multi-rate communication, the concept of fairness may be defined

in two ways. One is service fairness, which means that the difference between services

received by any two flows should be bounded, and the other is time fairness, which means

that the difference between the amounts of transmission time of two any flows should be

bounded. Formally, let Φs
i (t1, t2) and Φt

i(t1, t2) be the amount of services and the amount

of time that a flow i receives/utilizes during the time interval [t1, t2), respectively. Then

for any two flows i and j, during any [t1, t2),∣∣∣∣Φs
i (t1, t2)

wi

− Φs
j(t1, t2)

wj

∣∣∣∣ ≤ σs, (6.6)

104

Figure 6.4: The system architecture of MR-FQ.

holds if service fairness is desired, and∣∣∣∣Φt
i(t1, t2)

wi
− Φt

j(t1, t2)

wj

∣∣∣∣ ≤ σt, (6.7)

holds if time fairness is desired, where σs and σt are small, non-negative numbers.

We observe that in a single-rate environment, Eq. (6.6) and Eq. (6.7) are equivalent.

However, in a multi-rate environment, Eq. (6.6) and Eq. (6.7) may not be satisfied at the

same time. If service fairness is desired, then flows using lower rates will occupy more

medium time. On the contrary, if time fairness is desired, flows using higher rates will

transmit more data. The concept is illustrated in Fig. 6.5. Furthermore, when the rates

used by sensors exhibit higher variation, the tradeoff between service and time fairness is

more significant (solid line in Fig. 6.5). When the variation is lower, the tradeoff is less

significant (dashed line in Fig. 6.5). When the variation is zero, this degenerates to the

single-rate case (thick line in Fig. 6.5).

6.2.3 Scheduling Policy

Fig. 6.5 leads to the following guidelines in the design of MR-FQ. First, the concept of

virtual time is redefined based on the concept of time fairness. However, we differentiate

flows according to their lagging degrees. A flow is allowed to use a lower transmission

rate only if it is suffering from a higher lagging degree. In this way, we can take care of

service fairness. Thus the system performance would not be hurt when there exist too

many low-rate stations.

105

time

fairness

service fairness

single-rate

(flows with higher variation

in transmission rates)

(flows with lower variation in

transmission rates)

multi-rate

multi-rate

Figure 6.5: The tradeoff between service fairness and time fairness.

Fig. 6.6 outlines the scheduling policy of MR-FQ. First, the active flow i with the

smallest virtual time vi is selected. If flow i is backlogged, the Rate Selection Scheme is

invoked to compute the best rate r to transmit for flow i. If the result is r ≤ 0, which

means either flow i has a bad channel condition or its current lagging degree does not

allow it to transmit (refer to Section 6.2.4 for details). Otherwise, if flow i is non-leading,

the head-of-line packet of flow i will be served. Then we update the virtual time of flow

i as follows:

vi = vi +

(
lp
wi

× Ĉ1

r

)
, (6.8)

where lp is the length of the packet. Note that the ratio Ĉ1

r
is to reflect the concept of

time fairness. The amount of increase in vi is inverse to the transmission rate r. Thus, if

a lower r is used, the less competitive flow i will be in the next round.

If flow i is over-served (i.e., leading), the Gradual Degradation Scheme is activated to

check if flow i is still eligible for the service (refer to Section 6.1.3). In case that flow i

has to give up its service due to an empty queue, a bad channel condition, or a rejection

decision by the Gradual Degradation Scheme, the service is transferred to the Multi-rate

Compensation Scheme to select another flow j to serve (refer to Section 6.2.5). If the

scheme fails to select any flow, this service is just wasted. If the scheme still selects flow

i to serve, then we send its head-of-line packet and update vi according to Eq. (6.8). If

another flow j (�= i) is selected, flow j’s packet is sent and the values of vi, lagi, and lagj

are updated according to Eqs. (6.1)–(6.3). Since flow i is not actually served, Eq. (6.1)

is equivalent to Eq. (6.8) with r = Ĉ1.

Whenever the scheduler serves any flow i, it has to check the queue size of flow i. If

flow i’s queue state changes to non-backlogged and it is still lagging, we distribute its

credit to other flows according to the rules in Section 6.1.5.

Below, we introduce the Rate Selection Scheme and Multi-rate Compensation Scheme

106

backlogged?

Yes

No

i cannot send

No

j = NULL

Yes

j = i

j i

r > 0

lagi < 0 ?

a
d
d
itio

n
a
l

services

start

send the head-of-line packet

of flow i and update vi

select the active flow i with the minimum virtual time vi

select another flow j to transmit by the

Multi-rate Compensation Scheme

redistribute the lag of transmitting flow if it is lagging and non-backlogged

determine whether flow i can transmit

by the Gradual Degradation Scheme

compute a transmission rate r for flow i

by the Rate Selection Scheme

skip this slot

additional

services

send the head-of-line packet of flow j and

update vi, lagi, and lagj by Eqs. (6.1), (6.2), and (6.3), respectively

r < 0

i can send

j = i

Figure 6.6: The scheduling policy of MR-FQ.

107

in MR-FQ.

6.2.4 Rate Selection Scheme

When a backlogged flow i is selected, the Rate Selection Scheme is invoked to choose a

suitable transmission rate for flow i according to its lagging degree and channel condition.

The basic idea is to permit different ranges of transmission rates according to flow i’s

normalized lag (i.e., lagi

wi
). In order to help a seriously lagging flow to alleviate its huge

lag, we allow it to use a larger range of rates. Specifically, we set up n−1 levels of lagging

thresholds δ1, δ2, · · · , δn−1. A flow with a normalized lag exceeding δi is allowed to use a

rate as low as Ĉi+1, i ≤ n− 1. Fig. 6.7 shows the mapping of lagging degrees to allowable

transmission rates. If flow i’s current best rate falls within the allowable range, the rate

is returned. Otherwise, a negative value is returned to indicate a failure. For example, if

flow i satisfies δ2 < lagi

wi
≤ δ3 and its current best rate is Ĉ2, then Ĉ2 is returned. If the

current best rate is Ĉ5, then a negative value is returned.

lagging degrees Ĉ1 Ĉ2 Ĉ3 · · · Ĉn−2 Ĉn−1 Ĉn

lagi

wi
≤ δ1

√

δ1 < lagi

wi
≤ δ2

√ √

δ2 < lagi
wi

≤ δ3
√ √ √

...
...

δn−3 < lagi
wi

≤ δn−2
√ √ √ · · · √

δn−2 < lagi
wi

≤ δn−1
√ √ √ · · · √ √

δn−1 ≤ lagi
wi

√ √ √ · · · √ √ √

Figure 6.7: The mapping of lagging degrees to allowable transmission rates (indicated by

check marks) in the Rate Selection Scheme.

6.2.5 Multi-rate Compensation Scheme

When the selected flow i does not have a satisfactory channel condition or fails to pass the

Gradual Degradation Scheme, the Multi-rate Compensation Scheme is triggered (reflected

by additional services in Fig. 6.6). Fig. 6.8 shows how to dispatch additional services.

Flows are prioritized according to the following rules:

1. Lagging flows have a higher priority over non-lagging flows to receive such services.

2. Flows that can use higher rates to transmit have a higher priority over flows that

can only use lower rates.

108

3. Among lagging flows of the same best rate, real-time flows and non-real-time ones

will share the services according to some ratio.

Note that the last rule is not applied to leading flows because such flows suffer no lagging.

additional services
high

priority
low

priority

C1 C2 Cn
. . .

. . .

C1 C2 Cn
. . .

. . .

high low
priority

set of real-time lagging flows

set of non-real-time lagging flows

lagging flows non-lagging flows

R R R RN N N

N

Figure 6.8: Dispatching additional services in the Multi-rate Compensation Scheme.

Next, we elaborate on the last rule. When dispatching additional services to lagging

flows (i.e., flows on the left-hand side in Fig. 6.8), we keep track of the services received

by real-time ones and non-real-time ones. Let LR = L1
R ∪ L2

R ∪ · · · ∪ Ln
R be the set of

real-time, lagging flows, and LN = L1
N ∪ L2

N ∪ · · · ∪ Ln
N the set of non-real-time, lagging

flows. To let real-time lagging flows receive more fraction of additional services without

starving non-real-time lagging flows, we assign weights WR and WN (system parameters)

to LR and LN , respectively, to control the fractions of additional services they already

received, where WR > WN . A virtual time VR (respectively, VN) is used to record the

normalized additional services received by LR (respectively, LN). Flows in Fig. 6.8 are

checked from left to right. When both Lk
R and Lk

N are non-empty, where 1 ≤ k ≤ n, the

service is given to LR if VR ≤ VN , and to LN otherwise. When only one of Lk
R and Lk

N

is non-empty, the service is given to that one, independent of the values of VR and VN .

When a flow in LR receives the service, VR is updated by Eq. (6.4). Similarly, when a

flow in LN receives the service, VN is updated by Eq. (6.5).

When the scheduler selects either Lk
R or Lk

N , it distributes additional services pro-

portional to the weights of flows in that set. Specifically, for each flow i, we maintain a

compensation virtual time ci to keep track of the normalized amount of additional services

received by flow i. The scheduler selects the flow i with the smallest ci to serve, and then

updates ci as

ci = ci +

(
lp
wi

× Ĉ1

Ĉk

)
,

Initially, when a flow i newly enters LR or LN , its ci is set to

ci = max{ci, min{cj | flow j belongs to the same set of flow i (LR or LN); j �= i}}.

109

If there is no lagging flow in the previous stage, the service is returned back to the

originally selected flow if it is a leading flow but rejected by the Gradual Degradation

Scheme. Otherwise, the services is given to a non-lagging flow that can use the highest

rate. In case of a tie, MR-FQ dispatches the services proportional to some weights.

Specifically, each flow i is assigned with an extra virtual time fi to keep track of the

normalized amount of additional services received by flow i when it is non-lagging (lagi ≤
0). When a backlogged flow i that can send packets becomes non-lagging, fi is set to

fi = max{fi, min{fj | flow j is backlogged, non-lagging and can send; j �= i}}.

The scheduler selects the flow i with the smallest fi to serve. When flow i receives the

service, fi is updated as

fi = fi +

(
lp
wi

× Ĉ1

r

)
,

where r is the current best rate for flow i.

6.3 Theoretical Analyses on Fairness and Delay Bounds

6.3.1 Analyses of TD-FQ

In this section, we analyze the fairness and delay properties of TD-FQ. Our analyses

rely on the following assumptions: (i) αR ≥ αN , (ii) WR ≥ WN , (iii) W S
R ≥ W M

R , (iv)

W S
N ≥ W M

N , and (v) B ≥ lmax, where lmax is the maximum length of a packet. The

complete proofs can be found in Appendix A.

Fairness Properties

Theorems 6.1–6.3 show the fairness property guaranteed by TD-FQ. Theorem 6.1 is for

flows of the same traffic type, while Theorem 6.2 is for flows of different types. Theorem 6.3

provides some bounds on differences of services received by LR, LN , LS
R, LM

R , LS
N , and

LM
N .

Theorem 6.1. For any two active flows i and j of the same traffic type, the difference

between the normalized services received by flows i and j in any time interval [t1, t2)

during which both flows are continuously backlogged, error-free, and remain in the same

state (leading, seriously lagging, moderately lagging, or satisfied) satisfies the inequality:∣∣∣∣Φi(t1, t2)

wi
− Φj(t1, t2)

wj

∣∣∣∣ ≤ β ·
(

lmax

wi
+

lmax

wj

)
,

110

where Φi(t1, t2) represents the services received by flow i during [t1, t2), β = 3 if both flows

belong to the same lagging set (LS
R, LM

R , LS
N , or LM

N) or both flows are satisfied, β = 3+αR

if both flows are real-time leading flows, and β = 3 + αN if both flows are non-real-time

leading flows.

Theorem 6.2. For any real-time flow i and non-real-time flow j, the difference between

the normalized services received by flows i and j in any time interval [t1, t2) during which

both flows are continuously backlogged, error-free, and remain leading satisfies the inequal-

ity: ∣∣∣∣Φi(t1, t2)

wi

− Φj(t1, t2)

wj

∣∣∣∣ ≤ 3 ·
(

lmax

wi

+
lmax

wj

)
+ 2αN

lmax

wj

. (6.9)

Theorem 6.3. The difference between normalized ES/CS received by any two lagging sets

in any time interval [t1, t2) during which both sets remain active satisfies the inequalities:

(1) for LR and LN :

∣∣∣∣ΦR(t1, t2)

WR

− ΦN(t1, t2)

WN

∣∣∣∣ ≤ B + lmax

WR

+
B + lmax

WN

,

(2) for LS
R and LM

R :

∣∣∣∣ΦS
R(t1, t2)

W S
R

− ΦM
R (t1, t2)

W M
R

∣∣∣∣ ≤ B + lmax

W S
R

+
B + lmax

W M
R

,

(3) for LS
N and LM

N :

∣∣∣∣ΦS
N (t1, t2)

W S
N

− ΦM
N (t1, t2)

W M
N

∣∣∣∣ ≤ B + lmax

W S
N

+
B + lmax

W M
N

,

where ΦR(t1, t2), ΦN (t1, t2), ΦS
R(t1, t2), ΦM

R (t1, t2), ΦS
N(t1, t2), and ΦM

N (t1, t2) represents

ES/CS received by LR, LN , LS
R, LM

R , LS
N , and LN

M during [t1, t2), respectively.

Delay Bounds

When a backlogged flow suffers from errors, it becomes lagging. Theorem 6.4 shows that

if a lagging flow becomes error-free and has sufficient service demand, it can get back all

its lagging services within bounded time.

Theorem 6.4. If an active but lagging flow i becomes error-free at time t and remains

backlogged continuously after time t, it is guaranteed that flow i will become non-lagging

(i.e., lagi ≤ 0) within time Δt, where

Δt ≤
(ε + 2lmax)

wmin(1 − αR)R̂
+ (m + 1 +

wmin
)
lmax

R̂
,

m is the number of active flows, R̂ is the transmission rate,
 is the total weight of all

flows,
R is the total weight of all real-time flows,
N is the total weight of all non-real-

111

time flows, wmin is the minimum weight of all flows, and

ε =
(WR + WN)(W S

R + W M
R)

WRW S
R

(
lagi(t)

wi

R + (

R

wi

+ m − 2)lmax + B

)
+

WR + WN

WR

(
δ
R + (

2
R

wi
+ m − 1)lmax + B

)
if flow i is real-time, and

ε =
(WR + WN)(W S

N + W M
N)

WNW S
N

(
lagi(t)

wi

N + (

N

wi
+ m − 2)lmax + B

)
+

WR + WN

WN

(
δ
N + (

2
N

wi

+ m − 1)lmax + B

)
if flow i is non-real-time.

6.3.2 Analyses of MR-FQ

In this section, we demonstrate that MR-FQ can guarantee fairness (including service

fairness and time fairness) and bounded delays for packet flows by mathematical analyses.

Our analyses rely on the following assumptions: (i) αR ≥ αN , (ii) WR ≥ WN , (iii)

B ≥ lmax, and (iv) ri ∈ {Ĉ1, · · · , Ĉn}, where ri is the transmission rate used by flow i. A

flow is called allowed-to-send if the Rate Selection Scheme returns a positive transmission

rate to it, and is called a candidate if it can use a higher rate compared to other flows

such that the scheduler may choose it to receive additional services in the Multi-rate

Compensation Scheme. Besides, we let rmin
i be the smallest transmission rate that flow i

has ever used during the nearest time interval when flow i is active. The complete proofs

can refer to Appendix B.

Fairness Properties

Theorems 6.5 and 6.6 show the service fairness guaranteed by MR-FQ. Theorem 6.5 is

for flows that have the similar conditions and Theorem 6.6 provides some bounds on

differences of services received by LR and LN . Theorem 6.7 shows the time fairness

guaranteed by MR-FQ.

Theorem 6.5. For any two active flows i and j, assume that both flows are continuously

backlogged and allowed-to-send, and remain in the same state (leading, lagging, or satis-

fied) during a time interval [t1, t2). Let rRSC and rMCS be the transmission rates used by

the these flows in the Rate Selection Scheme and the Multi-rate Compensation Scheme

during [t1, t2), respectively, where rRSC and rMCS are both in {Ĉ1, · · · , Ĉn}, and their

values do not change during [t1, t2). Then the difference between the normalized services

112

received by flows i and j during [t1, t2) satisfies the following inequality:∣∣∣∣Φs
i (t1, t2)

wi
− Φs

j(t1, t2)

wj

∣∣∣∣ ≤ β · lmax

wi
+ γ · lmax

wj
,

where Φs
i (t1, t2) represents the services received by flow i during [t1, t2), and

(β, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(rRSC

rmin
i

+ 1, rRSC

rmin
j

+ 1), if both flows are lagging but not candidates

(rRSC+rMCS

rmin
i

+ 1, rRSC+rMCS

rmin
j

+ 1), if both flows are lagging and candidates

(rRSC+rMCS

rmin
i

+ 1, rRSC+rMCS

rmin
j

+ 1), if both flows are satisfied

(rMCS+αRĈ1

rmin
i

+ 2, rMCS+αRĈ1

rmin
j

+ 2), if both flows are real-time leading flows

(rMCS+αN Ĉ1

rmin
i

+ 2, rMCS+αN Ĉ1

rmin
j

+ 2), if both flows are non-real-time leading flows

(rMCS

rmin
i

+ 2, rMCS+2αN Ĉ1

rmin
j

+ 2), if i and j are real-time and non-real-time

leading flows, respectuively.

.

Theorem 6.6. The difference between normalized additional services received by LR and

LN in any time interval [t1, t2) during which both sets remain active (i.e., there exists at

least one candidate in each set) satisfies the following inequality:∣∣∣∣ΦR(t1, t2)

WR
− ΦN (t1, t2)

WN

∣∣∣∣ ≤ B + lmax

WR
+

B + lmax

WN
,

where ΦR(t1, t2) and ΦN (t1, t2) are additional services received by LR and LN during

[t1, t2), respectively.

Theorem 6.7. For any two active flows i and j, the difference between the normalized

transmission time used by flows i and j in any time interval [t1, t2) during which both flows

are continuously backlogged and allowed-to-send, and remain in the same state (leading,

lagging, or satisfied) satisfies the following inequality:∣∣∣∣Φt
i(t1, t2)

wi
− Φt

j(t1, t2)

wj

∣∣∣∣ ≤ β · lmax

wi
+ γ · lmax

wj
,

where Φt
i(t1, t2) represents the transmission time used by flow i during [t1, t2), and

(β, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ĉ1

rmin
i

+ 1, Ĉ1

rmin
j

+ 1), if both flows are lagging but not candidates

(2Ĉ1

rmin
i

+ 1, 2Ĉ1

rmin
j

+ 1), if both flows are lagging and candidates

(2Ĉ1

rmin
i

+ 1, 2Ĉ1

rmin
j

+ 1), if both flows are satisfied

((αR+1)Ĉ1

rmin
i

+ 2, (αR+1)Ĉ1

rmin
j

+ 2), if both flows are real-time leading flows

((αN+1)Ĉ1

rmin
i

+ 2, (αN +1)Ĉ1

rmin
j

+ 2), if both flows are non-real-time leading flows

(Ĉ1

rmin
i

+ 2, (2αN +1)Ĉ1

rmin
j

+ 2), if i and j are real-time and non-real-time

leading flows, respectuively.

.

113

Delay Bounds

Theorem 6.8 shows that if a lagging flow which has sufficient service demand becomes

allowed-to-send and is always a candidate in the Multi-rate Compensation Scheme, it can

get back all its lagging services within bounded time.

Theorem 6.8. If an active but lagging flow i which remains backlogged continuously be-

comes allowed-to-send and is always a candidate in the Multi-rate Compensation Scheme,

it is guaranteed that flow i will become non-lagging (i.e., lagi ≤ 0) within time Δt, where

Δt <

(ε + 2lmax)

wmin(1 − αR)Ĉn

+

(
Ĉ1

Ĉn

(m +

wmin
) + 1

)
lmax

Ĉn

,

m is the number of active flows,
 is the total weight of all flows,
R is the total weight of

all real-time flows,
N is the total weight of all non-real-time flows, wmin is the minimum

weight of all flows, and

ε =
WR + WN

WR

(
Ĉ1

Ĉn

(

R · lagi(t)

wi
+ (

2
R

wi
+ m − 2)lmax) + 2lmax + B

)
,

if flow i is real-time, and

ε =
WR + WN

WN

(
Ĉ1

Ĉn

(

N · lagi(t)

wi

+ (
2
N

wi

+ m − 2)lmax) + 2lmax + B

)
,

if flow i is non-real-time.

6.4 Experimental Results

In this section, we present some experimental results to verify the effectiveness of the pro-

posed TD-FQ and MR-FQ algorithms. In Section 6.4.1, we compare the packet dropping

ratios and queuing delays of real-time flows and the throughput of flows in TD-FQ and

CIF-Q. In Section 6.4.2, we verify the effectiveness of MR-FQ in a multi-rate environment.

In addition, we also evaluate the effect of time fairness property on MR-FQ.

6.4.1 Performance Evaluation of TD-FQ

Dropping Ratios and Delays of Real-time Flows

In the first experiment, we mix real-time and non-real-time traffics together. We observe

the packet dropping ratios and queuing delays of real-time flows in TD-FQ and CIF-Q,

respectively. Eight flows are used, as shown in Table 6.2. The first six flows are real-time

flows, which have two traffic models: constant-bit-rate (CBR) and ON-OFF model. The

114

latter can be used to model a periodic event reported by sensors. The average durations

of ON and OFF states are set to 2.5 and 0.5 seconds, respectively. During ON period,

packets are generated with fixed intervals. No packet is generated during OFF period.

The last two flows are non-real-time flows without delay constraints, and their traffics

are modeled as greedy sources whose queues are never empty. As for error scenarios, we

use two parameters Pgood and Pbad to control the average time when the channel stays in

error-free and error states, respectively. The total channel capacity is set to 5 Mb/s. The

total simulation time in this experiment is 100 seconds.

Table 6.2: Traffic specification of the flows used in the first experiment in Section 6.4.1.

flow guaranteed bandwidth packet size error scenario

periodic1 64 Kb/s 2 Kb no error occurs

periodic2 32 Kb/s 1 Kb Pgood = 6 sec., Pbad = 1.5 sec.

periodic3 32 Kb/s 1 Kb Pgood = 5 sec., Pbad = 0.5 sec.

CBR1 512 Kb/s 2 Kb no error occurs

CBR2 256 Kb/s 1 Kb Pgood = 6 sec., Pbad = 1.5 sec.

CBR3 256 Kb/s 1 Kb Pgood = 5 sec., Pbad = 0.5 sec.

greedy1 2 Mb/s 4 Kb no error occurs

greedy2 2 Mb/s 4 Kb Pgood = 6 sec., Pbad = 1.5 sec.

For CIF-Q, we set α = 0.5, while for TD-FQ we set αR = 0.8 and αN = 0.2, respec-

tively. The weights assigned to lagging sets are WR : WN = 3 : 1, W S
R : W M

R = 3 : 1, and

W S
N : W M

N = 3 : 1. The packet dropping ratios and queuing delays of real-time flows are

shown in Fig. 6.9 and Fig. 6.10, respectively, where the packet dropping ratio is defined

as

Number of packets dropped because of exceeding their deadlines

Number of packet generated
,

where the deadline of a packet is set to twice of the packet inter-arrival time. From

Fig. 6.9 and Fig. 6.10, we can observe that the packet dropping ratios and queuing delays

of real-time flows in TD-FQ are smaller than those in CIF-Q, especially when the flows are

periodic traffic. This is because TD-FQ not only lets real-time flows give up less services to

compensate other lagging flows, but also gives more services to real-time lagging flows for

compensation. From this observation, we conclude that TD-FQ can alleviate the packet

dropping ratios and queuing delays of real-time flows as compared to CIF-Q.

Throughput of Flows

In the second experiment, we observe the throughput of flows in TD-FQ and CIF-Q. Four

flows are used, as shown in Table 6.3. The first two flows are real-time CBR flows, and the

115

2.2

30.3

18.5

34.2

22.7

11.2

20.3

31.6

10.911.0

22.6

0.7

0

5

10

15

20

25

30

35

40

periodic1 periodic2 periodic3 CBR1 CBR2 CBR3

p
ac

k
et

d
ro

p
p
in

g
ra

ti
o

(%
) CIF-Q

TD-FQ

Figure 6.9: Packet dropping ratios of real-time flows.

24.9

35.0

30.0

3.4
4.7 4.03.2 3.6

29.7

4.2

25.8
23.0

0

5

10

15

20

25

30

35

40

periodic1 periodic2 periodic3 CBR1 CBR2 CBR3

av
er

ag
e

d
el

ay
(m

s)

CIF-Q

TD-FQ

Figure 6.10: Average queuing delays of real-time flows.

last two flows are non-real-time greedy flows. Suffering from channel errors during [0, 15)

period, flows CBR2 and greedy2 will become active but lagging after the 15th second.

The other flows are all leading in this experiment. For CIF-Q, we set α = 0.5, while for

TD-FQ we set αR = 0.8, αN = 0.2, WR = 3, and WN = 1. The channel capacity in this

experiment is set to 2 Mb/s.

Table 6.3: Traffic specification of the flows used in the second experiment Section 6.4.1.

flow guaranteed bandwidth packet size error scenario

CBR1 1.25 Mb/s 4 Kb no error occurs

CBR2 1.25 Mb/s 4 Kb error occurs during [0,15) sec.

greedy1 2 Mb/s 8 Kb no error occurs

greedy2 2 Mb/s 8 Kb error occurs during [10,15) sec.

Fig. 6.11 shows the throughput of flows after the 16th second. We see that real-

time flows can receive more services in TD-FQ as compared to CIF-Q. This is because

TD-FQ favors real-time flows over non-real-time flows. However, the cost, as shown in

Fig. 6.11(b), is at lower throughput for non-real-time flows.

116

0

5

10

15

20

25

30

35

40

16 18 20 22 24 26 28 30

time (second)

th
ro

u
g

h
p

u
t

(M
b

)
CBR1 (CIF-Q)

CBR1 (TD-FQ)

CBR2 (CIF-Q)

CBR2 (TD-FQ)

0

10

20

30

40

50

60

70

80

16 18 20 22 24 26 28 30

time (second)

th
ro

u
g

h
p

u
t

(M
b

)

greedy1 (CIF-Q)

greedy1 (TD-FQ)

greedy2 (CIF-Q)

greedy2 (TD-FQ)

(a) (b)

Figure 6.11: Throughput of (a) real-time flows CBR1 and CBR2 and (b) non-real-time

flows greedy1 and greedy2.

6.4.2 Performance Evaluation of MR-FQ

Impact of a Multi-rate Environment

In the first experiment, we evaluate the impact of a multi-rate environment on our MR-

FQ method and other wireless fair scheduling algorithms. We mix real-time and non-

real-time flows together. We mainly observe the packet dropping ratios and the average

queuing delays of real-time flows and the average throughput of non-real-time flows. We

compare CIF-Q and TD-FQ with MR-FQ. CIF-Q and TD-FQ both assume that the

wireless channel is either in a good state or a bad state. We assume that the MAC

protocol can provide 11 Mb/s, 5.5 Mb/s, 2 Mb/s, and 1 Mb/s transmission rates. Ten

flows are used, as shown in Table 6.4. The first six flows are real-time flows, which

represent three traffic models: periodic, variable-bit-rate (VBR), and CBR traffics. The

average durations of ON and OFF periods of a periodic traffic are set to 2.5 and 0.5

seconds, respectively. For a VBR traffic, packets arrive in a Poisson fashion. The last

four flows are non-real-time greedy flows. For error scenarios, we also use Pgood and Pbad

to adjust the average time when a channel stays in good and bad states, respectively.

When the channel is in the good state, the flow can use 11 Mb/s to transmit. When the

channel is in the bad state, the best transmission rate that a flow can use in MR-FQ is

randomly selected from 5.5, 2, 1, and 0 Mb/s. However, both CIF-Q and TD-FQ simply

treat the channel is bad and no packet can be transmitted. The total simulation time in

this experiment is 30 minutes.

For CIF-Q, we set its parameter α = 0.5, while for TD-FQ and MR-FQ, we set their

117

Table 6.4: Traffic specification of the flows used in the first experiment in Section 6.4.2.

flow guaranteed bandwidth packet size error scenario

periodic1 64 Kb/s 2 Kb Pgood = 8 sec., Pbad = 1.5 sec.

periodic2 32 Kb/s 1 Kb Pgood = 5 sec., Pbad = 1 sec.

VBR1 2 Mb/s 4 Kb Pgood = 8 sec., Pbad = 1.5 sec.

VBR2 1 Mb/s 2 Kb Pgood = 5 sec., Pbad = 1 sec.

CBR1 512 Kb/s 2 Kb Pgood = 8 sec., Pbad = 1.5 sec.

CBR2 256 Kb/s 1 Kb Pgood = 5 sec., Pbad = 1 sec.

greedy1 2 Mb/s 4 Kb Pgood = 9.5 sec., Pbad = 0.5 sec.

greedy2 2 Mb/s 4 Kb Pgood = 8 sec., Pbad = 1.5 sec.

greedy3 2 Mb/s 4 Kb Pgood = 5sec., Pbad = 1 sec.

greedy4 2 Mb/s 4 Kb Pgood = 3 sec., Pbad = 1 sec.

parameters αR = 0.8 and αN = 0.2, respectively. In TD-FQ, the weights assigned to

lagging sets are WR : WN = 3 : 1, W S
R : W M

R = 3 : 1, and W S
N : W M

N = 3 : 1. In MR-FQ,

we set WR : WN = 3 : 1. In addition, the values of δ1, δ2, δ3, and B in MR-FQ are set to

32, 64, 128, and 1024, respectively.

The packet dropping ratios and the average queuing delays of real-time flows are shown

in Figs. 6.12 and 6.13, respectively. We can observe that real-time flows have the highest

packet dropping ratios and average queuing delays when we apply CIF-Q to the scheduler.

This is because CIF-Q does not separate real-time flows from non-real-time flows and treat

all flows in the same way. Real-time flows then have to compete with non-real-time flows,

thus causing higher dropping ratios and queuing delays. The packet dropping ratios and

the average queuing delays of real-time flows in TD-FQ are smaller than those in CIF-Q

because TD-FQ gives higher priorities to real-time flows to reduce their queuing delays.

MR-FQ allows flows in a bad state to transmit packets using lower rates (if possible), so

the packet dropping ratios and the average queuing delays of real-time flows in MR-FQ

will be the smallest.

The similar effect can be observed in Fig. 6.14, where the average throughput of non-

real-time flows in MR-FQ are larger than those in CIF-Q and TD-FQ.

From this experiment, we can conclude that by considering multi-rate capability of a

wireless channel, the proposed MR-FQ method can reduce the packet dropping ratios and

average queuing delays of real-time flows and increase the overall system performance.

118

24.4

49.1

30.0

25.9

33.9
36.1

35.8
33.3

46.7

21.7
23.9

25.6

30.5

41.2

19.3

32.6

21.8 22.1

10

15

20

25

30

35

40

45

50

55

periodic1 periodic2 VBR1 VBR2 CBR1 CBR2

p
ac

k
et

d
ro

p
p
in

g
ra

ti
o

(%
) CIF-Q

TD-FQ
MR-FQ

Figure 6.12: Packet dropping ratios of real-time flows.

4.7 5.7

38.6

33.0

3.52.4
5.14.33.3

1.9

37.1

31.1

4.93.9
2.9

1.8

35.6

29.4

0

5

10

15

20

25

30

35

40

45

periodic1 periodic2 VBR1 VBR2 CBR1 CBR2

av
er

ag
e

q
u
eu

in
g

d
el

ay
(m

s) CIF-Q

TD-FQ

MR-FQ

Figure 6.13: Average queuing delays of real-time flows.

1.57

1.54

1.48

1.36

1.54
1.53

1.49

1.39

1.59
1.57

1.52

1.43

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

greedy1 greedy2 greedy3 greedy4

av
er

ag
e

th
ro

u
g
h
p
u
t

(M
b
/s

) CIF-Q

TD-FQ
MR-FQ

Figure 6.14: Average throughput of non-real-time flows.

Time Fairness Property

In the second experiment, we evaluate the effect of time fairness property on MR-FQ.

Recall that there are two parts in MR-FQ that address the time fairness issue. One is

the Rate Selection Scheme, which chooses a suitable transmission rate for the selected

flow according to its lagging degree and channel condition. A flow is allowed to use a

lower rate for transmission only if it suffers from seriously lagging. Another is the ratio

119

Ĉ1

r
used to update a flow’s virtual time, where r is the transmission rate used by the flow.

To observe the effect of time fairness property, we design a modified version of MR-FQ

that does not consider the time fairness property. This modified version removes the Rate

Selection Scheme and updates a flow i’s virtual time as vi = vi + lp
wi

, ci = ci + lp
wi

, and

fi = fi + lp
wi

, where lp is the length of the packet being transmitted. We mainly observe

the total services received by flows and the total medium time used by flows. Two greedy

flows are used, as shown in Table 6.5. The total simulation time in this experiment is 100

seconds.

Table 6.5: Traffic specification of the flows used in the second experiment in Section 6.4.2.
flow guaranteed bandwidth packet size error scenario

greedy1 6 Mb/s 8 Kb Pgood = 10 sec., Pbad = 1 sec.

greedy2 6 Mb/s 8 Kb Pgood = 4 sec., Pbad = 2.5 sec.

(a) (b)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

time (second)

re
ce

iv
ed

S
er

v
ic

es
(M

b
)

greedy1

greedy2

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

time (second)

re
ce

iv
e

se
rv

ic
es

(M
b
) greedy1

greedy2

Figure 6.15: Total services received by the two greedy flows: (a) MR-FQ and (b) MR-FQ

without considering time fairness.

(a) (b)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

time (second)

tr
an

sm
is

si
o

n
ti

m
e

(s
ec

o
n
d

) greedy1

greedy2

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

time (second)

tr
an

m
is

si
o

n
ti

m
e

(s
ec

o
n

d
)

greedy1

greedy2

Figure 6.16: Total medium time used by the two greedy flows: (a) MR-FQ and (b) MR-FQ

without considering time fairness.

120

Figs. 6.15 and 6.16 show the total services received and the total medium time used

by these two greedy flows, respectively. Since the channel condition of the flow greedy1

is better than that of the flow greedy2, MR-FQ will let the flow greedy1 receive more

services, as shown in Fig. 6.15(a). However, the medium time used by both flows are

the same in MR-FQ, as shown in Fig. 6.16(a). On the contrary, although the modified

version of MR-FQ can achieve better service fairness (as shown in Fig. 6.15(b)), it makes

the flow greedy2 occupy too much medium time, as shown in Fig. 6.16(b). Since the

flow greedy2 has a worse channel condition, it will often use lower transmission rates to

send packets, thus causing a longer transmission time. By comparing Fig. 6.15 (a) and

(b), we can observe that the total services received by the flow greedy1 in the modified

version of MR-FQ are quite lower than that in MR-FQ. This reflects the fact that if we do

not consider the time fairness issue, the flows using lower transmission rates will degrade

the amount of services received by other flows, and thus decreasing the overall system

performance.

6.5 Summary

In this chapter, we have proposed two fair scheduling algorithms for data aggregators to

manage reporting from sensor nodes. The proposed TD-FQ algorithm takes traffic types

of flows into consideration and gives a higher priority for real-time flows to reduce their

queuing delays. Although TD-FQ benefits real-time flows, it does not starve non-real-

time flows. By taking both time fairness and service fairness into account, the proposed

MR-FQ algorithm allows a flow to transmit at different rates according to its channel

condition and lagging degree. MR-FQ not only increases the overall system throughput,

but also guarantees fairness and bounded delays for flows. In this chapter, we have

analytically derived the fairness properties and delay bounds of TD-FQ and MR-FQ.

Simulation results have also shown that TD-FQ incurs less packet dropping for real-

time flows when compared with CIF-Q, while MR-FQ has a larger throughput of flows

compared with both CIF-Q and TD-FQ when multi-rate transmissions are allowed.

121

Chapter 7

Implementation of a Mobile Sensor Plat-

form: the iMouse System

Wireless mobile sensor networks provide us a convenient manner to monitor physical

environments. It can be an attractive research direction to integrate the context-aware

capability of such network into a surveillance system . In this chapter, we therefore propose

an integrated mobile surveillance and wireless sensor (iMouse) system. The iMouse system

is composed of a large number of static sensors and a small number of more powerful

mobile sensors. The former can be used to detect unusual events in the environment,

while the latter is able to visit the event locations reported from static sensors to conduct

more advanced analyses of events. The iMouse system is thus a mobile, context-aware

surveillance system. We demonstrate our current prototyping system for a home/office

security application.

7.1 Motivation

One of the major goals of this chapter is to study the possibility to integrate wireless

sensor networks into surveillance systems. Most of traditional visual surveillance systems

handle the real-time monitoring of stationary and moving objects in the environment.

In particular, the chief goal of these systems is to provide an automatic interpretation

of scenes and thus to realize or even predict actions of the observed objects from the

information obtained from wall-board cameras or closed circuit television (CCTV) [116].

For example, the work in [38] proposes a video-based surveillance network. In such a

surveillance network, the information gathered by each video camera will be transmitted

through an IEEE 802.11 WLAN1 card. The similar issue has also been addressed in

1wireless local area network

122

the field of robotics [55, 67, 68], which discuss how to navigate a robot by the visual

information provided from cameras installed on walls. Specifically, with these information,

the server (or the robot itself) can recognize the stationary obstacles or humans in the field,

so that the robot can bypass these obstacles. However, the aforementioned surveillance

systems have to extract the relatively little meaningful information from massive visual

messages, which requires a large amount of manpower or computation to analyze.

As for wireless sensor networks, the issue of object/event tracking has been widely

discussed [5, 47, 60, 65, 72, 129]. Most of these works consider that the intrusive object

will emit some signals such as light or sound, or the object itself is a phenomenon (e.g.,

chemical liquid or diffused gas [60]). However, events described by sensor nodes are

typically quite brief and lack of more in-depth information. This motivates us to study

the possibility to combine surveillance systems with wireless sensor networks to support

intelligent surveillance services.

7.2 The System Architecture

The system architecture of our iMouse system is illustrated in Fig. 7.1. This system is

composed of a large number of static sensors, a small number of mobile sensors, and a

control server. These static sensors form a sensor network to monitor the environment

and they will notify the server if there are events occurring. When something unusual

is reported from static sensors, the server will dispatch mobile sensors to visit these

emergency sites. The mobile sensors will then move to these sites and conduct more in-

depth analyses of events. In the following, we detail each system component separately.

Each static sensor is composed of a sensing board and a Mote. The former is used to

collect information from the environment, while the latter is used to communicate with

other sensors. In our current implementation, three kinds of sensing data can be gathered,

including light, sound, and temperature. An event is defined when the sensory input is

higher or lower than a predefined threshold, depending on the type of sensing data and the

application. Different sensory inputs can be combined to define a new event. For example,

a combination of light and temperature thresholds can be used to define a potential fire

emergency. To detect an explosion, a combination of temperature and sound thresholds

can be adopted. For home/office security, an unusual sound or light may be used. More

sophisticated sensing devices can be added to increase the capabilities of static sensors.

To conserve the energies of static sensors, reporting of events is reactive, in the sense that

static sensors will report their sensing data only when they detect some specified events.

Each mobile sensor has the following functionalities:

• Receive commands from the server and then move to the specified emergency sites.

123

Figure 7.1: The system architecture of the proposed iMouse system.

124

Figure 7.2: The mobile sensor in our iMouse system.

• Exchange messages with neighboring static or mobile sensors.

• Take snapshots from the vicinity of event locations.

• Transmit snapshots and analyzed data to the server.

To implement the aforementioned functions, each mobile sensor is equipped with a process-

ing platform (called Stargate), which is connected with a Lego car, a Mote, a WebCam,

and an IEEE 802.11 WLAN card, as illustrated in Fig. 7.2. The Lego car provides mo-

bility for the mobile sensor. The Mote is used to communicate with other static sensors.

The WebCam is used to take snapshots around the emergency sites. To support a larger

communication range and a higher bandwidth, the 802.11 WLAN card is used to commu-

nicate with other mobile sensors and to report visual information to the server. Finally,

the Stargate is the processing unit of the mobile sensor, which controls the actions of the

mobile sensor (such as movement and taking snapshots) according to the messages read

from the Mote or WLAN interface.

The control server coordinates all the system components in the iMouse system. It

acts as a remote sink to collect information (such as the locations of events) from the static

sensors and then dispatches mobile sensors according to the received information. This

server also provides a user interface to help people access the statuses of the environment

(e.g., locations and snapshots of events) and issue commands to the system. The users

can communicate with the server through the Internet.

Next, we present a fire emergency scenario to demonstrate how the iMouse system

works, as shown in Fig. 7.1. In the beginning, the control server issues a command to

125

make static sensors form a spanning tree to build up the network and to monitor the

environment. Suppose that static sensors A and C have reported unusual high temper-

atures and are thus suspected of fire emergency in their vicinity. Once receiving such

reports, the server will notify the users and then dispatch mobile sensors to visit these

emergency sites. After moving to A and C, the mobile sensors will take snapshots in their

neighborhoods and send these pictures back to the server for further actions2.

7.3 Design of the iMouse System

7.3.1 System Operations and Control Flows

Below, we detail the operations and control flows of each system component separately.

The control server periodically broadcasts a tree-maintenance message to maintain the

sensor network. The server also records each static sensor’s location (which can be ob-

tained when deployment) and its status, which is set to normal initially. When the server

receives a status-change message from a static sensor, if the static sensor’s current status

is normal, then it means that there is a new event occurring and thus the server will

set this static sensor’s status as abnormal and then dispatch mobile sensors to visit this

emergency site (i.e., the static sensor). Otherwise, the server will reset the static sensor’s

status as normal, in the sense that the old event has disappeared. To manage mobile

sensors, the server maintains a mobile sensor table, with each entry having a format of

〈mobile sensor’s ID, current location, visiting sites〉, where the last two items indicate the

current location of the corresponding mobile sensor and the emergency sites that it has

to visit, respectively. The server will dispatch mobile sensors according to this table. In

particular, the server will first select the mobile sensors whose visiting sites are empty

(i.e., no mission assigned), and assign an emergency site to the mobile sensor whose cur-

rent location is closest to it. After the assignment, the server will send a visit message to

the mobile sensors with the locations that they have to visit.

Each static sensor executes the procedure in Fig. 7.3. Specifically, a static sensor will

wait for messages from the server or other sensors and then conduct actions according

to the received message. A tree-maintenance message will command the static sensor to

check if its parent node is null (or has expired). If the parent node is null, the static sensor

will set the sender as its tree parent. It then rebroadcasts the tree-maintenance message

to its neighbors. To distinguish new from old messages, each tree-maintenance message is

associated with a unique sequence number. The objective is to maintain a spanning tree

2For example, the user can determine whether this event is a false alarm or a true fire emergency and

thus decide to call the firemen if needed.

126

sensory input

(detect event)

XOR

(event_flag)

Is the sequence

number new?

tree-maintenance

message

relay the message

to the parent node

status-change

message

False

True

inverse event_flag

send a status-change message

to the server via the parent node

Yes

set the sender as

the parent node

rebroadcast the

tree-maintenance

message to the neighbors

No

notification from a

mobile sensor

check the incoming message

from the Mote or the sensing board

start

Figure 7.3: The procedure executed by the static sensors.

of the network to collect information from the environment. To determine if the current

status changes from the sensory input, each static sensor keeps an event flag, which is

initially set to false, to indicate whether it has detected an event or not. The static

sensors will decide whether to report a status-change message to the server according to

Table 7.1, which reflects an XOR relationship of whether to detect an event and the value

of event flag. Using the event flag can help reduce communication overheads of static

sensors since events usually occur in a non-short period and the static sensors do not

need to continuously report to the server during the occurrence of events.

detect event event flag Does the static sensor need to report a status-change message?

true true No (This is an old event that has been reported before.)

true false Yes (This is a new event.)

false true Yes (The old event has disappeared.)

false false No (Nothing happens.)

Table 7.1: Decision of whether to report a status-change message.

Fig. 7.4 illustrates the procedure executed by mobile sensors. On receiving the server’s

visit message, which contains the emergency sites that it has to visit, the mobile sensor can

use the modified version of approximate traveling-salesman algorithm [97] APPROX-TSP-

TOUR in Fig. 7.5 to compute its patrolling path. During the movement, two neighboring

127

mobile sensors will exchange their current locations with each other to avoid potential

collision. In particular, when two mobile sensors want to pass the same location, the

one with a larger ID can always have the highest priority to move through that location

while the one with a smaller ID has to wait. When the mobile sensor move to a specified

emergency site, it will take snapshots in the vicinity and saves the pictures in its Stargate’s

flash memory. The mobile sensor also notifies the server of the emergency site that it

currently visits to make the server update its current location. This notification will be

transmitted through the static sensor network to make sure that the server can receive the

message. After visiting all emergency sites assigned by the server, the mobile sensor will

move into the WLAN communication range of the server to transmit the pictures of all

visited emergency sites that it has taken, and the server will also update the corresponding

entry in its mobile sensor table.

7.3.2 Implementation Details and User Interface

In this section, we report our prototyping experiences of the proposed iMouse system.

We adopt the MICAz Motes [25] as the static sensors. The MICAz is an IEEE 802.15.4-

compliant [66] Mote module enabling low-power operations and providing a data rate of

250 kbps with a DSSS3 radio in 2.4 GHz frequency band. For mobile sensors, we use

the Stargate [26] as their processing platforms. The Stargate contains a 32-bits, 400-MHz

Intel PXA-255 XScale RISC processor with a 64 MB main memory and a 32 MB extended

flash memory. It also has a daughter board with a PCMCIA slot, an RS-232 serial port,

a USB port, and a 51-pin extension connector, which can be attached to a Mote. The

Stargate can drive a WebCam through its USB port, and an IEEE 802.11 WLAN card

through its PCMCIA slot. The Stargate controls the Lego car [84] through a USB port

connected to a Lego infrared tower, as shown in Fig. 7.2. The Lego car has an infrared

ray receiver in the front to receive commands from the infrared tower, and two motors on

the bottom to provide mobility. The Lego car also contains a light detector, and we use

it for the navigation purpose. Specifically, this can be realized by different colors of the

tapes that we stick on the ground. This mechanism also helps a mobile sensor localize

itself in the sensing field.

In our current prototyping system, an experimental 6 × 6 grid-like sensing field is

implemented, as shown in Fig. 7.6. On the ground, we stick black tapes as the roads and

golden tapes as the intersections. Two mobile sensors and 17 static sensors are placed on

the sensing field to construct the system. For static sensors, a light reading below 800

is to simulate an event, so we can cover a static sensor with a box to model a potential

3Direct Sequence Spread Spectrum

128

check the incoming message

from the WLAN interface or the Mote

visit

message

decide the visiting sequence of

the emergency sites and calculate

the shortest patrolling path

move to the next site and

take snapshots in the vicinity

report the snapshots and

analyzed data to the server

move into the server s WLAN

communication range if necessary

Yes

send a notification to the server

via the static sensor network

No

will I

pass lj ?

No

No
my ID < IDi ?

wait for the mobile sensor IDi

to pass through lj

keeping moving to the destination

Yes

Yes

(IDi , location lj) from

another mobile sensor

start

,

have I visited

all sties?

Figure 7.4: The procedure executed by the mobile sensors.

algorithm APPROX-TSP-TOUR

Input: G = (V,E): a complete graph, where V is the set of visiting sites

Output: a Hamiltonian path to visit all sites

1: select the nearest site as the root vertex;

2: find the minimum spanning tree T in G from the root s;

3: let L be the list of verities visited in a pre-order tree of T;

4: return the Hamiltonian path P that visits the vertices in the order L;

s V�

Figure 7.5: The approximate traveling-salesman algorithm APPROX-TSP-TOUR.

129

Figure 7.6: A 6 × 6 grid-like sensing field in prototyping system.

emergency.

At the control server, we design a user interface to help users monitor the statuses

of the system and control the actions of mobile sensors, as shown in Fig. 7.7. The user

interface consists of the following components.

• Configure area: The configure area is used to set up the system parameters, such

as mobile sensors’ IP addresses, ports, and sensors’ positions.

• System-command area: The system-command area provides an interface to let

users issue commands to control the system, such as sending a tree-maintenance

message to the static sensors, adjusting the network’s topology, and connecting or

disconnecting a specified mobile sensor.

• Sensor-status area: The sensor-status area illustrates the current status of the

static sensor being queried.

• Action-control area: The action-control area is used to control the actions of a

specified mobile sensor, such as changing the moving direction of the mobile sensor

and commanding it to take snapshots.

• Monitoring area: The monitor area illustrates the network topology of the static

sensor network and the patrolling paths of mobile sensors. When a static sensor has

detected an event, there will be a fire icon shown in the corresponding location.

• Log area: The log area provides some status messages of the system.

130

Figure 7.7: The user interface at the control server.

7.4 Experimental Results

In this section, we present some experimental results to evaluate the dispatch time of

mobile sensors. In our current implementation, the dispatch time of a mobile sensor to

visit an emergency site is determined by the following three times:

• The time that a mobile sensor needs to move one grid-unit (approximates to 26 cm).

• The time that a mobile sensor needs to turn its direction with an angle of 90 degrees.

• The time that a mobile sensor needs to take snapshots and report to the server.

We measure the averages values of these three times with our system as 2.5, 2.2, and 4.0

seconds, respectively.

Fig. 7.8 shows the experimental results of our prototyping system, where the two

mobile sensors are initially placed at locations (0, 0) and (5, 5), respectively. The total

dispatch time of a mobile sensor is calculated from the time that the server is notified

with events to the time that the mobile sensor visits all event locations and reports its

analyzed data, while the average waiting time of an emergency site is calculated from

the time that an event is detected by the static sensor to the time that a mobile sensor

131

18

30

46.4
51.9

62.5

74.4

84.3

95.7
102.6

108.7

31.2
35.1

41
47.5

50.6
54.9

59.7

25
19

14

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

number of emergency sites

to
ta

l
d

is
p
at

ch
ti

m
e

(s
ec

o
n

d
)

number of mobile sensors: 1

number of mobile sensors: 2

14

17.9

24.8
27.1

31.1

36.8

40.9

46.1
48.5

52.7

10
11.7 12.3

14.6
16.5

19.8
21.7

22.7
24.6

29

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

number of emergency sites

av
er

ag
e

w
ai

ti
n
g

ti
m

e
(s

ec
o

n
d

) number of mobile sensors: 1

number of mobile sensors: 2

(b)

(a)

Figure 7.8: Experimental results of our current prototyping system: (a) total dispatch

time of mobile sensors and (b) average waiting time of emergency sites.

moves to the event’s location. From Fig. 7.8, we can observe that by adding more mobile

sensors, both the dispatch time and waiting time can be greatly reduced.

To evaluate the dispatch time of mobile sensors under more larger scenarios, we setup

four grid-size of sensing fields in the simulations: 30×30, 60×60, 90×90, and 120×120.

Note that a 30×30 grid-size of sensing field approximately has a 7.5m × 7.5m area, which

approximates to a room’s area. In the simulations, event locations and mobile sensors’

initial locations are randomly selected inside the sensing field, but any two events will

not appear in the same place simultaneously. The number of events and mobile sensors

increases proportionally to the size of the sensing field. For each experiment, we repeat

100 rounds and take their averages. Note that in the end of each round, mobile sensors

will stay in their last-visiting locations.

132

Fig. 7.9 shows the total dispatch time of mobile sensors under different grid-size of

sensing fields. The dispatch time increases as the number of events increases, but the

gaps decrease as we increase the number of mobile sensors. In addition, when the number

of events is fixed, the dispatch time decreases as the number of mobile sensors increases.

However, such trend becomes smoother when the number of mobile sensors becomes

larger. This phenomenon can help us to select the suitable number of mobile sensors

under different grid-size of sensing fields.

7.5 Summary

In this chapter, we have proposed the iMouse system that combines both the wireless

mobile sensor networks and surveillance technologies to support intelligent mobile surveil-

lance services. On one hand, the mobile sensors can improve the weakness of traditional

static sensor networks that they can only provide rough description of the environment

by including mobile cameras to conduct more advanced analyses of events. On the other

hand, the wireless sensor network introduces the context-aware capability to the surveil-

lance system. Thus, the overheads of traditional visual surveillance systems can be greatly

reduced since the real important video sections or images can be immediately retrieved

and proactively sent to the users.

133

0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10 11 12

number of mobile sensors

to
ta

l
d
is

p
at

ch
ti

m
e

(s
ec

o
n

d
)

event num: 30

event num: 60

event num: 90

event num: 120

0

100

200

300

400

500

600

700

12 16 20 24 28 32 36 40 44 48

number of mobile sensors

to
ta

l
d
is

p
at

ch
ti

m
e

(s
ec

o
n

d
)

event num: 240

event num: 300

event num: 360

event num: 420

0

100

200

300

400

500

600

700

800

27 36 45 54 63 72 81 90 99 108

number of mobile sensors

to
ta

l
d
is

p
at

ch
ti

m
e

(s
ec

o
n

d
)

event num: 270

event num: 540

event num: 810

event num: 1080

0

100

200

300

400

500

600

700

800

48 64 80 96 112 128 144 160 176 192

number of mobile sensors

to
ta

l
d

is
p
at

ch
ti

m
e

(s
ec

o
n
d

)

event num: 480

event num: 960

event num: 1440

event num: 1920

(a)

(b)

(c)

(d)

Figure 7.9: Total dispatch time of mobile sensors under different sizes of sensing fields:

(a) 30×30 grid-size, (b) 60×60 grid-size, (c) 90×90 grid-size, and (d) 120×120 grid-size.

134

Chapter 8

Conclusions and Future Directions

8.1 Conclusions

In this dissertation, we have studied the three issues of deployment, dispatch, and packet-

scheduling in a mobile wireless sensor network. For the deployment issue, we have first

proposed systematical solutions for general sensor placement and dispatch problems. Our

solution to the sensor placement problem allows the deployed region as an arbitrary-

shaped polygon possibly with obstacles, so the results can be adopted to an indoor en-

vironment. Our solution also allows an arbitrary relationship of sensors’ communication

distances and their sensing distances. We have verified that the proposed placement

scheme requires fewer sensors to guarantee full coverage of the deployed region and con-

nectivity of the network as compared with the coverage-first and connectivity-first schemes

in different shapes of deployed regions. Moreover, we have proposed two energy-efficient

dispatch algorithms to help deploy sensors in a way that sensors can move to the target

locations determined by our placement scheme.

We have further developed systematical solutions to the k-coverage sensor placement

and distributed dispatch problems. Our solutions to the k-coverage placement problem

allow the relationship of sensors’ communication distances and their sensing distances as

arbitrary. We have shown that the interpolating placement scheme can use fewer sensors

to ensure k-coverage of the deployed region and connectivity of the network as compared

with the intuitive duplicate scheme. Our solutions to the distributed dispatch problem

are based on a competitive nature in a distributed network. Simulation results have

shown that the competition-based dispatch scheme performs better than the pattern-based

dispatch scheme. However, the performance of pattern-based scheme can approximate to

that of the competition-based scheme if there are more than 40% target locations selected

as the seed locations.

135

For the dispatch issue, we have designed an efficient dispatch method to schedule

mobile sensors to visit event locations in a hybrid sensor network with the purpose of

maximizing the system lifetime. Our dispatch method can balance the moving distances

of mobile sensors while conserve their energies as much as possible, and thus avoiding

the early-exhausted mobile sensors burdening other still alive ones. Our dispatch method

is general in which the numbers of event locations and mobile sensors can be arbitrary.

When the number of event locations is not larger than that of mobile sensors, we transform

the dispatch problem into a maximum matching problem in a weighted bipartite graph.

Otherwise, we propose efficient clustering schemes to group event locations so that the

previous matching approach can be adopted. Simulation results have shown that by

considering the load-balance of mobile sensors, our proposed dispatch method can prolong

the system lifetime compared with the dispatch method that simply maximizes the total

remaining energy of mobile sensors during each one-round dispatch.

For the packet-scheduling issue, we have proposed TD-FQ and MR-FQ algorithms for

data aggregators to manage the messages reported from sensors. TD-FQ is developed for

a single-rate wireless environment, and it takes traffic types of flows into account when

scheduling packets. TD-FQ alleviates the queuing delays of real-time flows by giving them

a higher priority, but it still guarantees the fairness among flows so that non-real-time

flows will not be starved. MR-FQ is developed for a more complicated multi-rate wireless

environment. It can adjust flows’ transmission rates based on their channel conditions and

lagging degrees. In MR-FQ, when a flow is more serious lagging, it is allowed to use a lower

rate to transmit its packets, if its channel condition is not good. With this differentiation,

MR-FQ can guarantee the fairness property among flows’ transmissions while improves

the system performance. In this dissertation, we have derived the fairness properties and

delay bounds of TD-FQ and MR-FQ by mathematical analyses. Simulation results have

also verified their effectiveness.

Finally, in this dissertation we have implemented a mobile sensor platform called

the iMouse system. This system combines the mobile wireless sensor networks with the

surveillance technologies to support intelligent mobile surveillance services. On one hand,

the mobile sensors can help improve the weakness of traditional static sensor networks

that they only provide rough information of the environment by including mobile cameras

to conduct more in-depth analyses of events. On the other hand, the wireless sensor

network can provide the context-aware capability to the surveillance system. Thus, the

overheads of traditional visual surveillance systems can be reduced because the real critical

information can be immediately sent to the users. In this dissertation, we have reported

the prototyping experiences of our iMouse system. We have also analyzed the dispatch

time of mobile sensors by simulations.

136

8.2 Future Directions

Based on the research results presented in this dissertation, several issues worth further

investigation are summarized as follows:

• Deploy sensors in a real world: In this dissertation, we assume that an obstacle

may disconnect two sensors and diminish the coverage of a sensor. However, in a

real situation, this depends on the materials, thickness, and possibly location of the

obstacle. In addition, the signal strength also affects the connectivity between two

sensors and the covered area of a sensor. Thus, it deserves to investigate how to

further improve our deployment solution to fit for a real world.

• Multi-type sensor deployment: Most sensor deployment schemes are based on

the assumption that the deployed sensors are homogenous. Reference [19] provides

a way to deploy a sensor network with two different types (i.e., cost and sensing

distance) of sensors by a grid-based structure. This provides us a research direction

to further investigate how to efficiently deploy a multi-type sensor network, where

the sensors can have different properties, such as sensing distances, communication

distances, costs, and sensing types.

• Sensor dispatch with other issues: In our sensor dispatch algorithm, we focus

on how to conserve the mobile sensors’ energies so that the system lifetime can

be extended. However, several issues can be also taken into consideration when

dispatching mobile sensors. For example, each event location can be associated

with a delay constraint and mobile sensors have to visit these locations before their

deadlines expire. Besides, the dispatch problem in a multi-type sensor network is

worth further investigation. In such problem, sensors are assumed to have multiple

sensing capabilities and different types of events will appear in the sensing field.

When an event with certain type occurs, we can only dispatch those mobile sensors

that can detect the corresponding type of event to visit that event location.

• Hierarchical packet scheduling architecture: In this dissertation, we have

proposed TD-FQ and MR-FQ for data aggregators to manage the messages reported

from neighboring sensors. However, the management of packet flows between the

data aggregators and the sink deserves further investigation. In this case, we have

to consider the fairness and delay bounds of flows along the whole pathes from

sensors to the sink, rather than just the one-hop distance from sensors to the data

aggregator.

137

• Improvement of the iMouse system: In this dissertation, we have reported how

we prototyped the iMouse system. We believe that this prototype can be further

improved or extended in several ways. First, the grid-like patrolling paths of mobile

sensors should be further improved. Second, the coordination among mobile sensors,

especially when they are on-the-road, can be exploited. Third, how to utilize mobile

sensors to improve the network topology deserves further investigation.

In this dissertation, we have address the deployment, dispatch, and packet-scheduling

issues in mobile wireless sensor networks. We have not only proposed several schemes

to solve these problems, but also implemented a prototyping mobile sensor platform.

Hopefully these research results presented in this dissertation can be served as useful

foundations for future study in the field of mobile wireless sensor networks and thus

motivates other researchers to develop more solutions in this field.

138

Appendix A

Theoretical Analyses of TD-FQ

In this appendix, we analyze the fairness and delay properties of TD-FQ proposed in

Section 6.1. Our proof relies on the following assumptions: (i) αR ≥ αN , (ii) WR ≥ WN ,

(iii) W S
R ≥ W M

R , (iv) W S
N ≥ W M

N , and (v) B ≥ lmax, where lmax is the maximum length of

a packet.

A.1 Fundamental Lemmas

Lemmas A.1–A.3 show that there are bounds on the differences between virtual times

(vi’s), extra virtual times (fi’s), and compensation virtual times (cS
i ’s and cM

i ’s) of two

any active flows.

Lemma A.1. Let vi(t) be the virtual time of flow i at time t. For any two active flows i

and j such that t ≥ 0, we have

− lmax

wj
≤ vi(t) − vj(t) ≤ lmax

wi
. (A.1)

Proof. This proof is by induction on t.

Basic step: When t = 0, all virtual times are zero, so Eq. (A.1) holds trivially.

Induction step: Suppose that at time t, Eq. (A.1) holds. Let t + Δt be the nearest

time when any flow changes its virtual time. We want to prove Eq. (A.1) for time t + Δt.

Observe that a flow’s virtual time may be updated in two cases: (1) it is selected by the

scheduler and the service does not become a lost service, and (2) it becomes active.

In case (1), let flow i be selected by the scheduler. Then its virtual time becomes

vi(t + Δt) = vi(t) +
lp
wi

,

139

where lp is the length of the packet being transmitted (not necessarily flow i’s). By

TD-FQ, it follows that vi(t) ≤ vj(t), for all j ∈ A. Since vi is increased, by induction

hypothesis, we have

− lmax

wj
≤ vi(t + Δt) − vj(t) = vi(t + Δt) − vj(t + Δt).

Further, since vi(t) ≤ vj(t), we have

vi(t + Δt) − vj(t + Δt) =

(
vi(t) +

lp
wi

)
− vj(t) ≤ lp

wi
≤ lmax

wi
.

So Eq. (A.1) holds at t + Δt.

In Eq. (A.1), if flow j is selected by the scheduler, then vi(t + Δt) − vj(t + Δt) ≤ lmax

wi

holds trivially. Further,

vi(t + Δt) − vj(t + Δt) = vi(t) −
(

vj(t) +
lp
wj

)
≥ − lp

wj

≥ − lmax

wj

.

So Eq. (A.1) still holds at t + Δt.

In case(2), suppose that flow i becomes active at t + Δt. By TD-FQ, vi(t + Δt)

is set to max{vi(t), mink∈A−{i}{vk(t + Δt)}}. If vi(t + Δt) = mink∈A−{i}{vk(t + Δt)},
then Eq. (A.1) holds trivially . Otherwise, vi(t + Δt) = vi(t), which means that vi(t) ≥
mink∈A−{i}{vk(t + Δt)}. So we have

vi(t + Δt) − vj(t + Δt) ≥ min
k∈A−{i}

{vk(t + Δt)} − vj(t + Δt) ≥ − lmax

wj

.

Since the virtual time is non-decreasing, we have

vi(t + Δt) − vj(t + Δt) ≤ vi(t) − vj(t) ≤ lmax

wi

.

So Eq. (A.1) holds at t + Δt. When flow j (instead of i) becomes active, the proof is

similar, so we can conclude the proof. �

Because TD-FQ updates fi, cS
i , and cM

i similarly to that of the vi, proofs of the next

two lemmas are similar to that of Lemma A.1. So we omit the proofs.

Lemma A.2. Let fi(t) be the extra virtual time of flow i at time t. For any two active

flows i and j such that t ≥ 0, we have

− lmax

wj
≤ fi(t) − fj(t) ≤ lmax

wi
.

Lemma A.3. Let cS
i (t) and cM

i (t) be the compensation virtual times of flow i at time t.

For any two active flows i and j which have the same traffic type (real-time or non-real-

time) such that t ≥ 0, we have{
− lmax

wj
≤ cS

i (t) − cS
j (t) ≤ lmax

wi
, if both flows are seriously lagging

− lmax

wj
≤ cM

i (t) − cM
j (t) ≤ lmax

wi
, if both flows are moderately lagging

.

140

Lemma A.4 shows that there is also a bound on the difference between the normalized

services received by a leading flow i (i.e., gi) and the maximum amount that the flow can

receive (i.e., αivi).

Lemma A.4. Let gi(t) be the value of gi at time t. For any flow i that is error-free,

backlogged, and leading during the time interval t ∈ [t1, t2), we have

(α − 1)
lmax

wi

≤ αvi(t) − gi(t) ≤ α
lmax

wi

, (A.2)

where α = αR if flow i is a real-time flow, and α = αN otherwise.

Proof. The proof is by induction on time t ∈ [t1, t2).

Basic step: When t = t1, flow i just becomes leading, and the Gradual Degradation

Scheme will set gi(t) = αvi(t), so the lemma is trivially true.

Induction step: Suppose that at time t, the lemma holds. Observe that vi and/or gi

change only when flow i is selected. So we consider two cases: (1) flow i is actually served,

and (2) another flow j �= i is served. Let t + Δt ≤ t2 be the nearest time that vi and/or

gi are updated. We want to prove that the lemma still holds at t + Δt.

Based on TD-FQ, case (1) occurs only when gi(t) ≤ αvi(t), so we have

αvi(t + Δt) − gi(t + Δt)

= α

(
vi(t) +

lp
wi

)
−
(

gi(t) +
lp
wi

)
= (α − 1)

lp
wi

+ αvi(t) − gi(t) ≥ (α − 1)
lmax

wi
,

where lp represents the length of the packet being transmitted.

Case (2) implies gi(t) > αvi(t). Also, vi is updated but gi is not. So we have

αvi(t + Δt) − gi(t + Δt) = α(vi(t) +
lp
wi

) − gi(t) < α
lp
wi

≤ α
lmax

wi

. �

Lemma A.5. Let VR(t), VN(t), V S
R (t), V M

R (t), V S
N (t), and V M

N (t) be the value of VR, VN ,

V S
R , V M

R , V S
N , and V M

N at time t, respectively. For t ≥ 0, we have⎧⎪⎪⎨⎪⎪⎩
− B

WN
≤ VR(t) − VN(t) ≤ B

WR

− B
W M

R
≤ V S

R (t) − V M
R (t) ≤ B

W S
R

− B
W M

N
≤ V S

N (t) − V M
N (t) ≤ B

W S
N

.

Proof. This proof is by induction on time t ≥ 0.

Basic step: When t = 0, VR(t) = VN(t) = 0, so the lemma is trivially true.

141

Induction step: Assume that the lemma holds at time t. VR (resp., VN) is updated only

when LR or LN is non-empty. We consider two cases: (1) only one set is non-empty, and

(2) two sets are non-empty. Let t + Δt be the nearest time that VR or VN is updated. We

want to prove the lemma to be true at time t + Δt.

In case (1), if LR is active, then ES/CS will be given to LR. In TD-FQ, we bound the

total difference of ES/CS received by LR and LN at any time by |WRVR − WNVN | ≤ B.

So at time t + Δt, WRVR(t + Δt) − WNVN(t + Δt) ≤ B. Since WR ≥ WN , we have

WRVR(t + Δt) − WRVN(t + Δt) ≤ WRVR(t + Δt) − WNVN(t + Δt) ≤ B

⇒ VR(t + Δt) − VN(t + Δt) ≤ B

WR
.

On the other hand, if LN is active, we can similarly derive that

VR(t + Δt) − VN(t + Δt) ≥ − B

WN

.

So the first inequality in the lemma holds at t + Δt.

In case (2), since both sets are non-empty, the scheduler gives ES/CS to LR if VR(t) ≤
VN(t). Let lp represent the length of the packet being transmitted. We have

VR(t + Δt) − VN (t + Δt) =

(
VR(t) +

lp
WR

)
− VN(t) ≤ lp

WR
≤ lmax

WR
≤ B

WR
.

Note that it is trivially true that − B
WN

≤ VR(t + Δt) − VN(t + Δt). Similarly, if VR(t) >

VN(t), the service is given to LN , so we have

VR(t + Δt) − VN(t + Δt) = VR(t) −
(

VN(t) +
lp

WN

)
> − lp

WN
≥ − lmax

WN
≥ − B

WN
.

Note that it is trivially true that VR(t + Δt) − VN(t + Δt) ≤ B
WR

. Therefore, the first

inequality in this lemma still holds at t + Δt. The other two inequalities in this lemma

can be proved in a similar way. �

A.2 Fairness Properties

Theorems A.1–A.3 show the fairness property guaranteed by TD-FQ. Theorem A.1 is for

flows of the same traffic type, while Theorem A.2 is for flows of different types. Theo-

rem A.3 provides some bounds on differences of services received by LR, LN , LS
R, LM

R ,

LS
N , and LM

N .

Theorem A.1. For any two active flows i and j of the same traffic type, the difference

between the normalized services received by flows i and j in any time interval [t1, t2)

142

during which both flows are continuously backlogged, error-free, and remain in the same

state (leading, seriously lagging, moderately lagging, or satisfied) satisfies the inequality:∣∣∣∣Φi(t1, t2)

wi
− Φj(t1, t2)

wj

∣∣∣∣ ≤ β ·
(

lmax

wi
+

lmax

wj

)
,

where Φi(t1, t2) represents the services received by flow i during [t1, t2), β = 3 if both flows

belong to the same lagging set (LS
R, LM

R , LS
N , or LM

N) or both flows are satisfied, β = 3+αR

if both flows are real-time leading flows, and β = 3 + αN if both flows are non-real-time

leading flows.

Proof. We consider the four cases: flows i and j are both (1) seriously lagging, (2)

moderately lagging, (3) satisfied, and (4) leading and backlogged during the entire time

interval [t1, t2).

Case (1): In this case, any flow i that is seriously lagging can receive services each

time when it is selected (by vi), or when it receives ES/CS from another flow (by cS
i).

Since vi and cS
i are updated before a packet is transmitted, the services received by flow

i may deviate from what really reflects by its virtual times by one packet, so

vi(t2) − vi(t1) + cS
i (t2) − cS

i (t1) − lmax

wi
≤ Φi(t1, t2)

wi

≤ vi(t2) − vi(t1) + cS
i (t2) − cS

i (t1) +
lmax

wi
. (A.3)

Applying Eq. (A.3) to flows i and j, we have

vi(t2) − vi(t1) + cS
i (t2) − cS

i (t1) − lmax

wi

−
(

vj(t2) − vj(t1) + cS
j (t2) − cS

j (t1) +
lmax

wj

)
≤ Φi(t1, t2)

wi
− Φj(t1, t2)

wj

≤ vi(t2) − vi(t1) + cS
i (t2) − cS

i (t1) +
lmax

wi
−
(

vj(t2) − vj(t1) + cS
j (t2) − cS

j (t1) − lmax

wj

)
.

By Lammas A.1 and A.3, the leftmost term can be reduced to

vi(t2) − vj(t2) − (vi(t1) − vj(t1)) + cS
i (t2) − cS

j (t2) −
(
cS
i (t1) − cS

j (t1)
)− (lmax

wi
+

lmax

wj

)
≥ −3(

lmax

wi
+

lmax

wj
).

Similarly, the rightmost term would be less than or equal to 3
(

lmax

wi
+ lmax

wj

)
, which leads

to ∣∣∣∣Φi(t1, t2)

wi

− Φj(t1, t2)

wj

∣∣∣∣ ≤ 3

(
lmax

wi

+
lmax

wj

)
.

Case (2): This case is similar to case 1. So we can replace cS
i and cS

j by cM
i and cM

j ,

respectively, and obtain an inequality similar to Eq. (A.3). This will lead to a β = 3 too.

143

Case (3): In this case, both flows can receive services each time when they are selected

(by vi), or when they receive ES from another flow (by fi). So we have

vi(t2) − vi(t1) + fi(t2) − fi(t1) − lmax

wi
≤ Φi(t1, t2)

wi
≤ vi(t2) − vi(t1) + fi(t2) − fi(t1) +

lmax

wi
.

Consequently, similar to case 1, by Lemmas A.1 and A.2, we can obtain∣∣∣∣Φi(t1, t2)

wi
− Φj(t1, t2)

wj

∣∣∣∣ ≤ 3

(
lmax

wi
+

lmax

wj

)
.

Case (4): An error-free, backlogged, and leading flow i can receive NS (by gi) and ES

from other flows (by fi). So the total services received by flow i during [t1, t2) is bounded

as

gi(t2) − gi(t1) + fi(t2) − fi(t1) − lmax

wi

≤ Φi(t1, t2)

wi

≤ gi(t2) − gi(t1) + fi(t2) − fi(t1) +
lmax

wi
. (A.4)

Applying Lemma A.4 twice to flows i and j and subtracting one by the other, we have

α (vi(t) − vj(t)) + α

(
lmax

wj

− lmax

wi

)
− lmax

wj

≤ gi(t) − gj(t) ≤ α (vi(t) − vj(t)) + α

(
lmax

wj

− lmax

wi

)
+

lmax

wi

.

By Lemma A.1, we can rewrite the inequality as

−α
lmax

wi
− lmax

wj
≤ gi(t) − gj(t) ≤ α

lmax

wj
+

lmax

wi
. (A.5)

Applying Eq. (A.5) and Lemma A.2 to Eq. (A.4), we have∣∣∣∣Φi(t1, t2)

wi
− Φj(t1, t2)

wj

∣∣∣∣ ≤ (3 + α)

(
lmax

wi
+

lmax

wj

)
,

where α = αR if these flows are real-time, and α = αN if they are non-real-time. �

Theorem A.2. For any real-time flow i and non-real-time flow j, the difference between

the normalized services received by flows i and j in any time interval [t1, t2) during which

both flows are continuously backlogged, error-free, and remain leading satisfies the inequal-

ity: ∣∣∣∣Φi(t1, t2)

wi
− Φj(t1, t2)

wj

∣∣∣∣ ≤ 3 ·
(

lmax

wi
+

lmax

wj

)
+ 2αN

lmax

wj
. (A.6)

144

Proof. Applying Lemma A.4 to flows i and j and taking a subtract leads to

αRvi(t) − αR
lmax

wi
−
(

αNvj(t) − (αN − 1)
lmax

wj

)
≤ gi(t) − gj(t) ≤ αRvi(t) − (αR − 1)

lmax

wi
−
(

αNvj(t) − αN
lmax

wj

)
= T. (A.7)

By Lemma A.1 and the αR ≥ αN principle, the left-hand side of Eq. (A.7) becomes

αRvi(t) − αNvj(t) + αN
lmax

wj
− αR

lmax

wi
− lmax

wj

≥ αN(vi(t) − vj(t)) + αN
lmax

wj
− αR

lmax

wi
− lmax

wj

≥ −αR
lmax

wi
− lmax

wj
.

Consider the right-hand side of Eq. (A.7). There are two cases for the term αRvi(t) −
αNvj(t). If αRvi(t) − αNvj(t) ≥ 0, we have vi(t) ≥ αN

αR
vj(t). By Lemma A.1,

T ≤ αN (vj(t) − vi(t)) + αN
lmax

wj
− αR

lmax

wi
+

lmax

wi
≤ 2αN

lmax

wj
− αR

lmax

wi
+

lmax

wi
.

If αRvi(t) − αNvj(t) < 0, we have

T ≤ αN
lmax

wj
− αR

lmax

wi
+

lmax

wi
.

These two cases together imply T ≤ 2αN
lmax

wj
− αR

lmax

wi
+ lmax

wi
. So we have

−αR
lmax

wi

− lmax

wj

≤ gi(t) − gj(t) ≤ 2αN
lmax

wj

+ (1 − αR)
lmax

wi

.

Similar to the proof of Theorem A.1, the service received by any leading flow i during

[t1, t2) satisfies Eq. (A.4). Subtracting Eq. (A.4) of flow i by Eq. (A.4) of flow j leads to

gi(t2) − gi(t1) + fi(t2) − fi(t1) − lmax

wi

−
(

gj(t2) − gj(t1) + fj(t2) − fj(t1) +
lmax

wj

)
≤ Φi(t1, t2)

wi
− Φj(t1, t2)

wj

≤ gi(t2) − gi(t1) + fi(t2) − fi(t1) +
lmax

wi
−
(

gj(t2) − gj(t1) + fj(t2) − fj(t1) − lmax

wj

)
,

The leftmost term can be reduced to

gi(t2) − gj(t2) − (gi(t1) − gj(t1)) + fi(t2) − fj(t2) − (fi(t1) − fj(t1)) −
(

lmax

wi
+

lmax

wj

)
≥ −αR

lmax

wi
− lmax

wj
− 2αN

lmax

wj
+ (αR − 1)

lmax

wi
− 2

(
lmax

wi
+

lmax

wj

)
= −3

(
lmax

wi
+

lmax

wj

)
− 2αN

lmax

wj
.

Similarly, the rightmost term would be less than or equal to 3
(

lmax

wi
+ lmax

wj

)
+ 2αN

lmax

wj
.

Thus, Eq. (A.6) holds. �

145

Theorem A.3. The difference between normalized ES/CS received by any two lagging sets

in any time interval [t1, t2) during which both sets remain active satisfies the inequalities:

(1) for LR and LN :

∣∣∣∣ΦR(t1, t2)

WR
− ΦN (t1, t2)

WN

∣∣∣∣ ≤ B + lmax

WR
+

B + lmax

WN
,

(2) for LS
R and LM

R :

∣∣∣∣ΦS
R(t1, t2)

W S
R

− ΦM
R (t1, t2)

W M
R

∣∣∣∣ ≤ B + lmax

W S
R

+
B + lmax

W M
R

,

(3) for LS
N and LM

N :

∣∣∣∣ΦS
N(t1, t2)

W S
N

− ΦM
N (t1, t2)

W M
N

∣∣∣∣ ≤ B + lmax

W S
N

+
B + lmax

W M
N

,

where ΦR(t1, t2), ΦN (t1, t2), ΦS
R(t1, t2), ΦM

R (t1, t2), ΦS
N(t1, t2), and ΦM

N (t1, t2) represents

ES/CS received by LR, LN , LS
R, LM

R , LS
N , and LN

M during [t1, t2), respectively.

Proof. Since VR is updated before a packet is transmitted, it follows that the total

ES/CS received by LR during [t1, t2) is bounded by

VR(t2) − VR(t1) − lmax

WR

≤ ΦR(t1, t2)

WR

≤ VR(t2) − VR(t1) +
lmax

WR

.

Similarly, for VN , we have

VN(t2) − VN(t1) − lmax

WN
≤ ΦN (t1, t2)

WN
≤ VN(t2) − VN(t1) +

lmax

WN
.

Therefore, we have

VR(t2) − VR(t1) − lmax

WR
−
(

VN(t2) − VN(t1) +
lmax

WN

)
≤ ΦR(t1, t2)

WR
− ΦN (t1, t2)

WN
≤ VR(t2) − VR(t1) +

lmax

WR
−
(

VN (t2) − VN(t1) − lmax

WN

)
.

By Lemma A.5, we can rewrite the inequality as

−
(

B + lmax

WR
+

B + lmax

WN

)
≤ ΦR(t1, t2)

WR
− ΦN(t1, t2)

WN
≤ B + lmax

WR
+

B + lmax

WN

⇒
∣∣∣∣ΦR(t1, t2)

WR
− ΦN (t1, t2)

WN

∣∣∣∣ ≤ B + lmax

WR
+

B + lmax

WN
.

This concludes the first inequality. The other two inequalities in this theorem can be

proved similarly. �

A.3 Delay Bounds

When a backlogged flow suffers from errors, it becomes lagging. Theorem A.4 shows that

if a lagging flow becomes error-free and has sufficient service demand, it can get back all

its lagging services within bounded time.

146

Theorem A.4. If an active but lagging flow i becomes error-free at time t and remains

backlogged continuously after time t, it is guaranteed that flow i will become non-lagging

(i.e., lagi ≤ 0) within time Δt, where

Δt ≤
(ε + 2lmax)

wmin(1 − αR)R̂
+ (m + 1 +

wmin
)
lmax

R̂
,

m is the number of active flows, R̂ is the transmission rate,
 is the total weight of all

flows,
R is the total weight of all real-time flows,
N is the total weight of all non-real-

time flows, wmin is the minimum weight of all flows, and

ε =
(WR + WN)(W S

R + W M
R)

WRW S
R

(
lagi(t)

wi

R + (

R

wi
+ m − 2)lmax + B

)
+

WR + WN

WR

(
δ
R + (

2
R

wi
+ m − 1)lmax + B

)
if flow i is real-time, and

ε =
(WR + WN)(W S

N + W M
N)

WNW S
N

(
lagi(t)

wi

N + (

N

wi
+ m − 2)lmax + B

)
+

WR + WN

WN

(
δ
N + (

2
N

wi

+ m − 1)lmax + B

)
if flow i is non-real-time.

Proof. Assume that flow i is a real-time flow. Consider the worst case: flow i has the

maximum lag among all flows and lagi/wi ≥ δ at time t. Since flow i becomes error-free

after time t, lagi is decreased each time when it receives CS. Now let flow i becomes

moderately lagging at time tM , and further become non-lagging at time tN , t < tM < tN ,

i.e., i ∈ LS
R during [t, tM) and i ∈ LM

R during [tM , tN). Also, let ΦC(t, tN) be the total CS

received by all lagging flows during [t, tN).

To prove this theorem, observe that Δt should be an upper bound of tN − t. The

largest value of tN occurs when all flows in the system are error-free (i.e., no ES) and

there is only one leading flow, say k, who provides CS such that flow k is a real-time flow

and wk = wmin. Since flow k can still receive a fraction αR of its NS when it is leading

and flow k uses gk to keep track of the amount of such NS when it is leading, this leads

to

ΦC(t, tN) ≥ wmin(vk(tN) − vk(t)) − wmin(gk(tN) − gk(t)) − lmax. (A.8)

By Lemma A.1, for any active flow j during [t, tN), we have

vj(tN) − vj(t) ≤ vk(tN) − vk(t) +
lmax

wj
+

lmax

wmin
.

147

This inequality helps to derive the total amount of services provided by the system during

[t, tN):

R̂(tN − t) ≤
(∑

j∈A

wj(vj(tN) − vj(t))

)
+ lmax

≤
(∑

j∈A

wj(vk(tN) − vk(t) +
lmax

wj
+

lmax

wmin
)

)
+ lmax

≤ (vk(tN) − vk(t))
∑
j∈A

wj + m · lmax +
lmax

wmin

∑
j∈A

wj + lmax

≤ (vk(tN) − vk(t))
 + (m + 1 +

wmin

)lmax

⇒ vk(tN) − vk(t) ≥ 1

(
R̂(tN − t) − (m + 1 +

wmin

)lmax

)
. (A.9)

Applying Lemma A.4 to flow k at times t and tN and taking a subtract, we obtain

gk(tN) − gk(t) ≤ αRvk(tN) − αRvk(t) +
lmax

wmin

. (A.10)

By combining Eqs. (A.9) and (A.10) into Eq. (A.8), we can obtain

ΦC(t, tN) ≥ wmin (vk(tN) − vk(t) − (gk(tN) − gk(t))) − lmax

≥ wmin

(
vk(tN) − vk(t) − αRvk(tN) + αRvk(t) − lmax

wmin

)
− lmax

= wmin(1 − αR) (vk(tN) − vk(t)) − 2lmax

≥ wmin(1 − αR)

(
R̂(tN − t) − (m + 1 +

wmin
)lmax

)
− 2lmax

⇒ tN − t ≤
(ΦC(t, tN) + 2lmax)

wmin(1 − αR)R̂
+ (m + 1 +

wmin
)
lmax

R̂
. (A.11)

It remains to derive an upper bound for ΦC(t, tN) in Eq. (A.11). Note that there

are m − 1 lagging flows who are allowed to share the ΦC(t, tN) services. The worst case

happens when (1) exactly one of these m−1 flows remains in LN during [t, tN), (2) exactly

m−3 flows remain in LS
R and 1 flow remains in LM

R during [t, tM), and (3) no flow remains

in LS
R and exactly m − 2 flows remain in LM

R during [tM , tN). Note that in this case LR

can share at most a fraction WR

WR+WN
of ΦC(t, tN) during [t, tN), and LS

R can share at most

a fraction
W S

R

W S
R+W M

R
of CS received by LR during [t, tM).

Let ΦR(t, tN) and ΦN (t, tN) be CS received by LR and LN during [t, tN), respectively,

ΦC(t, tN) = ΦR(t, tN) + ΦN(t, tN). According to the first inequality of Theorem A.3, we

have

ΦN (t, tN) ≤ WN

(
ΦR(t, tN)

WR
+

B + lmax

WR
+

B + lmax

WN

)
⇒ ΦC(t, tN) ≤ WR + WN

WR
(ΦR(t, tN) + B + lmax) . (A.12)

148

Next we derive the ΦR(t, tN) in Eq. (A.12). It can be divided into two terms,

ΦR(t, tN) = ΦR(t, tM) + ΦR(tM , tN). (A.13)

Let ΦS
R(t, tM) and ΦM

R (t, tM) be CS received by LS
R and LM

R during [t, tM), respectively.

Again, by Theorem A.3, we have

ΦR(t, tM) = ΦS
R(t, tM) + ΦM

R (t, tM)

≤ ΦS
R(t, tM) + W M

R

(
ΦS

R(t, tM)

W S
R

+
B + lmax

W S
R

+
B + lmax

W M
R

)
=

W M
R + W S

R

W S
R

(
ΦS

R(t, tM) + B + lmax

)
. (A.14)

We further expand the term ΦS
R(t, tM) in Eq. (A.14) as follows:

ΦS
R(t, tM) ≤

∑
j∈LS

R(t,tM)

wj(c
S
j (tM) − cS

j (t))

≤
∑

j∈LS
R(t,tM)

wj

(
cS
i (tM) − cS

i (t) +
lmax

wi

+
lmax

wj

)

= (cS
i (tM) − cS

i (t))
∑

j∈LS
R(t,tM)

wj +
lmax

wi

∑
j∈LS

R(t,tM)

wj +
∑

j∈LS
R(t,tM)

lmax

<
R(cS
i (tM) − cS

i (t)) + (

R

wi

+ m − 3)lmax. (A.15)

Note that the fourth term in Eq. (A.15) is obtained by applying Lemma A.3 twice on flow

i and any flow j ∈ LS
R

cS
j (tM) − cS

j (t) ≤ cS
i (tM) − cS

i (t) +
lmax

wi
+

lmax

wj
.

Since LS
R is empty during [tM , tN), ΦR(tM , tN) = ΦM

R (tM , tN). Similarly to the derivation

of Eq. (A.15), we have

ΦR(tM , tN) = ΦM
R (tM , tN) ≤

∑
j∈LM

R (tM ,tN)

wj(c
M
j (tN) − cM

j (tM))

≤
R(cM
i (tN) − cM

i (tM)) + (

R

wi
+ m − 2)lmax. (A.16)

By Eqs. (A.14) and (A.15), we have

ΦR(t, tM) <
W M

R + W S
R

W S
R

(

R(cS

i (tM) − cS
i (t)) + (

R

wi

+ m − 2)lmax + B

)
. (A.17)

149

Furthermore, by combining Eqs. (A.16) and (A.17) into Eq. (A.13), we have

ΦR(t, tN) ≤ W M
R + W S

R

W S
R

(

R(cS

i (tM) − cS
i (t)) + (

R

wi
+ m − 2)lmax + B

)
+
R(cM

i (tN) − cM
i (tM)) + (

R

wi

+ m − 2)lmax

=
R

(
W S

R + W M
R

W S
R

(cS
i (tM) − cS

i (t)) + cM
i (tN) − cM

i (tM)

)
+

2W S
R + W M

R

W S
R

(

R

wi
+ m − 2

)
lmax +

(W S
R + W M

R)B

W S
R

. (A.18)

By combining Eqs. (A.12) and (A.18), we have

ΦC(t, tN) ≤ WR + WN

WRW S
R

(
R((W S
R + W M

R)(cS
i (tM) − cS

i (t)) + W S
R(cM

i (tN) − cM
i (tM)))

+

(
(2W S

R + W M
R)(

R

wi
+ m − 2) + W S

R

)
lmax + (2W S

R + W M
R)B). (A.19)

Since flow i is still lagging after time tM , it means that 0 < lagi(tM) < lagi(t). So

cS
i (tM) − cS

i (t) =
|lagi(tM) − lagi(t)|

wi
=

lagi(t) − lagi(tM)

wi
<

lagi(t)

wi
. (A.20)

After time tN , flow i becomes non-lagging, so −lmax < lagi(tN) ≤ 0. Besides, 0 <

lagi(tM) < wiδ since flow i becomes moderately lagging after time tM , so we have

cM
i (tN) − cM

i (tM) =
|lagi(tN) − lagi(tM)|

wi

=
lagi(tM) − lagi(tN)

wi
< δ +

lmax

wi
. (A.21)

By combining Eqs. (A.20) and (A.21) into Eq. (A.19), we have

ΦC(t, tN) <
(WR + WN)(W S

R + W M
R)

WRW S
R

(
lagi(t)

wi

R + (

R

wi
+ m − 2)lmax + B

)
+

WR + WN

WR

(
δ
R + (

2
R

wi
+ m − 1)lmax + B

)
. (A.22)

By combining Eqs. (A.11) and (A.22), the first part of this theorem is proved. When

flow i is a non-real-time flow, the proof is similar and we omit the details. �

150

Appendix B

Theoretical Analyses of MR-FQ

In this appendix, we analyze the fairness and delay properties of MR-FQ proposed in

Section 6.2. Our proof relies on the following assumptions: (i) αR ≥ αN , (ii) WR ≥ WN ,

(iii) B ≥ lmax, and (iv) ri ∈ {Ĉ1, · · · , Ĉn}, where lmax is the maximum length of a packet

and ri is the transmission rate used by flow i. A flow is called allowed-to-send if the Rate

Selection Scheme returns a positive transmission rate to it, and is called a candidate if

it can use a higher rate compared to other flows such that the scheduler may choose it

to receive additional services in the Multi-rate Compensation Scheme. Besides, we let

rmin
i be the smallest transmission rate that flow i has ever used during the nearest time

interval that flow i is active.

B.1 Fundamental Lemmas

The following three lemmas give bounds on the differences between virtual times (vi’s),

compensation virtual times (ci’s), and extra virtual times (fi’s) of any two active flows.

Lemma B.1. Let vi(t) be the virtual time of flow i at time t. For any two active flows i

and j such that t ≥ 0, we have

− lmax

wj
× Ĉ1

rmin
j

≤ vi(t) − vj(t) ≤ lmax

wi
× Ĉ1

rmin
i

. (B.1)

Proof. This proof is by induction on t.

Basic step: When t = 0, all virtual times are 0, so Eq. (B.1) holds trivially.

Induction step: Suppose that at time t, Eq. (B.1) holds. Let t + Δt be the nearest

time when any flow changes its virtual time. We want to prove Eq. (B.1) for time t + Δt.

Observe that a flow’s virtual time may be updated in three cases: (1) it is selected by the

151

scheduler and the service is indeed given to it, (2) it is selected by the scheduler but the

service is given to another flow, and (3) it becomes active.

In case (1), let flow i be selected by the scheduler and it use transmission rate ri

(≥ rmin
i) to send. Then its virtual time becomes

vi(t + Δt) = vi(t) +

(
lp
wi

× Ĉ1

ri

)
,

where lp is the length of the packet being transmitted. By MR-FQ, it follows that vi(t) ≤
vj(t), for all j ∈ A. Since vi is increased, by the induction hypothesis, we have

− lmax

wj
× Ĉ1

rmin
j

≤ vi(t + Δt) − vj(t) = vi(t + Δt) − vj(t + Δt).

Further, since vi(t) ≤ vj(t), we have

vi(t + Δt) − vj(t + Δt) =

(
vi(t) +

lp
wi

× Ĉ1

ri

)
− vj(t) ≤ lmax

wi
× Ĉ1

rmin
i

.

So Eq. (B.1) holds at t + Δt.

In Eq. (B.1), if flow j is selected by the scheduler and it uses transmission rate rj

(≥ rmin
j) to send, then vi(t + Δt) − vj(t + Δt) ≤ lmax

wi
× Ĉ1

rmin
i

holds trivially. Further,

vi(t + Δt) − vj(t + Δt) = vi(t) −
(

vj(t) +
lp
wj

× Ĉ1

rj

)
≥ − lmax

wj
× Ĉ1

rmin
j

.

So Eq. (B.1) still holds at t + Δt.

Case (2) is similar to case (1), except that we need to replace ri and rj by Ĉ1 in all

inequalities.

In case (3), suppose that flow i becomes active at t + Δt. By MR-FQ, vi(t + Δt)

is set to max{vi(t), mink∈A−{i}{vk(t + Δt)}}. If vi(t + Δt) = mink∈A−{i}{vk(t + Δt)},
then Eq. (B.1) holds trivially . Otherwise, vi(t + Δt) = vi(t), which means that vi(t) ≥
mink∈A−{i}{vk(t + Δt)}. So we have

vi(t + Δt) − vj(t + Δt) ≥ min
k∈A−{i}

{vk(t + Δt)} − vj(t + Δt) ≥ − lmax

wj
× Ĉ1

rmin
j

.

Since the virtual time is non-decreasing, we have

vi(t + Δt) − vj(t + Δt) ≤ vi(t) − vj(t) ≤ lmax

wi

× Ĉ1

rmin
i

.

So Eq. (B.1) holds at t + Δt. When flow j (instead of i) becomes active, the proof is

similar, so we can conclude the proof. �

Since MR-FQ updates ci and fi similarly to that of the vi, proofs of the next two

lemmas are similar to that of Lemma B.1. So we omit the proofs.

152

Lemma B.2. Let ci(t) be the Multi-rate Compensation virtual time of flow i at time

t. For any two flows i and j which are both candidates and have the same traffic type

(real-time or non-real-time) such that t ≥ 0, we have

− lmax

wj
× Ĉ1

rmin
j

≤ ci(t) − cj(t) ≤ lmax

wi
× Ĉ1

rmin
i

.

Lemma B.3. Let fi(t) be the extra virtual time of flow i at time t. For any two flows i

and j that are both candidates such that t ≥ 0, we have

− lmax

wj
× Ĉ1

rmin
j

≤ fi(t) − fj(t) ≤ lmax

wi
× Ĉ1

rmin
i

.

The next lemma gives bounds on the difference between the normalized services re-

ceived by a leading flow i (i.e., gi) and the maximum amount that it can receive (i.e.,

αivi).

Lemma B.4. Let VR(t) and VN(t) be the value of VR and VN , respectively. For t ≥ 0, we

have

− B

WN
≤ VR(t) − VN(t) ≤ B

WR
.

Proof. This proof is by induction on time t ≥ 0.

Basic step: When t = 0, VR(t) = VN(t) = 0, so the lemma is trivially true.

Induction step: Assume that the lemma holds at time t. VR (resp., VN) can be updated

only when Lk
R (resp., Lk

N) is non-empty, where Lk
R (resp., Lk

N) is the subset of LR (resp.,

LN) selected in the Multi-rate Compensation Scheme, respectively. We consider two cases:

(1) only one set is non-empty, and (2) two sets are non-empty. Let t + Δt be the nearest

time that VR or VN is updated. We want to prove the lemma to be true at time t + Δt.

In case (1), if Lk
R is non-empty, additional services will be given to LR. In MR-FQ,

we bound the total difference of additional services received by LR and LN at any time

by |WRVR − WNVN | ≤ B. So at time t + Δt, WRVR(t + Δt)−WNVN(t + Δt) ≤ B. Since

WR ≥ WN , we have

WRVR(t + Δt) − WRVN(t + Δt) ≤ WRVR(t + Δt) − WNVN(t + Δt) ≤ B

⇒ VR(t + Δt) − VN(t + Δt) ≤ B

WR
.

153

On the other hand, if Lk
N is non-empty, we can similarly derive that

VR(t + Δt) − VN(t + Δt) ≥ − B

WN
.

So the lemma holds at t + Δt.

In case (2), since both sets are non-empty, the scheduler gives additional services to

LR if VR(t) ≤ VN(t). Let lp represent the length of the packet being transmitted. We

have

VR(t + Δt) − VN (t + Δt) =

(
VR(t) +

lp
WR

)
− VN(t) ≤ lp

WR

≤ lmax

WR

≤ B

WR

.

Note that it is trivially true that − B
WN

≤ VR(t + Δt) − VN(t + Δt). Similarly, if VR(t) >

VN(t), the service is given to LN , so we have

VR(t + Δt) − VN(t + Δt) = VR(t) −
(

VN(t) +
lp

WN

)
> − lp

WN

≥ − lmax

WN

≥ − B

WN

.

Note that it is trivially true that VR(t + Δt) − VN(t + Δt) ≤ B
WR

. Therefore, the lemma

still holds at t + Δt. �

B.2 Fairness Properties

Theorems B.1 and B.2 show the service fairness guaranteed by MR-FQ under some con-

strains. Theorem B.1 is for flows that have the similar conditions and Theorem B.2

provides some bounds on differences of services received by LR and LN .

Theorem B.1. For any two active flows i and j, assume that both flows are continuously

backlogged and allowed-to-send, and remain in the same state (leading, lagging, or satis-

fied) during a time interval [t1, t2). Let rRSC and rMCS be the transmission rates used by

the these flows in the Rate Selection Scheme and the Multi-rate Compensation Scheme

during [t1, t2), respectively, where rRSC and rMCS are both in {Ĉ1, · · · , Ĉn}, and their

values do not change during [t1, t2). Then the difference between the normalized services

received by flows i and j during [t1, t2) satisfies the following inequality:∣∣∣∣Φs
i (t1, t2)

wi

− Φs
j(t1, t2)

wj

∣∣∣∣ ≤ β · lmax

wi

+ γ · lmax

wj

,

154

where Φs
i (t1, t2) represents the services received by flow i during [t1, t2),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β = rRSC

rmin
i

+ 1, γ = rRSC

rmin
j

+ 1, if both flows are lagging but not candidates

β = rRSC+rMCS

rmin
i

+ 1, γ = rRSC+rMCS

rmin
j

+ 1, if both flows are lagging and candidates

β = rRSC+rMCS

rmin
i

+ 1, γ = rRSC+rMCS

rmin
j

+ 1, if both flows are satisfied

β = rMCS+αRĈ1

rmin
i

+ 2, γ = rMCS+αRĈ1

rmin
j

+ 2, if both flows are real-time leading flows

β = rMCS+αN Ĉ1

rmin
i

+ 2, γ = rMCS+αN Ĉ1

rmin
j

+ 2, if both flows are non-real-time leading flows

β = rMCS

rmin
i

+ 2, γ = rMCS+2αN Ĉ1

rmin
j

+ 2, if flow i is a real-time leading flow and

flow j is a non-real-time leading flow

.

Proof. A lagging flow that is allowed-to-send is not necessarily a candidate since there

may exist other lagging flows that can use higher rates to transmit. Thus, we have to

consider the five cases: (1) flows i and j are both lagging but not candidates, (2) flows i

and j are both lagging and candidates, (3) flows i and j are both satisfied, (4) flows i and

j are both leading and have the same traffic type, and (5) flows i is a real-time leading

flow and j is a non-real-time leading flow during the entire time interval [t1, t2).

Case (1): In this case, any flow i that is lagging but not a candidate can only receive

services each time when it is selected by vi. Since vi is updated before a packet is trans-

mitted, the services received by flow i may deviate from what really reflects by its virtual

times by one packet. Besides, the services received by flow i is vi × rRSC

Ĉ1
. Thus, we have

rRSC

Ĉ1

(vi(t2) − vi(t1)) − lmax

wi
≤ Φs

i (t1, t2)

wi
≤ rRSC

Ĉ1

(vi(t2) − vi(t1)) +
lmax

wi
. (B.2)

Applying Eq. (B.2) to flows i and j, we have

rRSC

Ĉ1

(vi(t2) − vi(t1)) − lmax

wi

−
(

rRSC

Ĉ1

(vj(t2) − vj(t1)) +
lmax

wj

)
≤ Φs

i (t1, t2)

wi

− Φs
j(t1, t2)

wj

≤ rRSC

Ĉ1

(vi(t2) − vi(t1)) +
lmax

wi

−
(

rRSC

Ĉ1

(vj(t2) − vj(t1)) − lmax

wj

)
.

By Lemma B.1, the leftmost term can be reduced to

rRSC

Ĉ1

(vi(t2) − vj(t2) − (vi(t1) − vj(t1))) −
(

lmax

wi
+

lmax

wj

)
≥ −

(
rRSC

rmin
i

+ 1

)
lmax

wi
−
(

rRSC

rmin
j

+ 1

)
lmax

wj
.

Similarly, the rightmost term would be less than or equal to
(

rRSC

rmin
i

+ 1
)

lmax

wi
+
(

rRSC

rmin
j

+ 1
)

lmax

wj
,

which leads to∣∣∣∣Φs
i (t1, t2)

wi

− Φs
j(t1, t2)

wj

∣∣∣∣ ≤ (rRSC

rmin
i

+ 1

)
lmax

wi

+

(
rRSC

rmin
j

+ 1

)
lmax

wj

.

155

Case (2): In this case, both flows can receive services each time when they are selected

by vi/vj, or receive additional services from another flow by ci/cj . Besides, the additional

services received by flow i is ci × rMCS

Ĉ1
. So we have

rRSC

Ĉ1

(vi(t2) − vi(t1)) +
rMCS

Ĉ1

(ci(t2) − ci(t1)) − lmax

wi

≤ Φs
i (t1, t2)

wi

≤ rRSC

Ĉ1

(vi(t2) − vi(t1)) +
rMCS

Ĉ1

(ci(t2) − ci(t1)) +
lmax

wi

.

Similarly to case 1, by Lemmas B.1 and B.2, we can obtain∣∣∣∣Φs
i (t1, t2)

wi
− Φs

j(t1, t2)

wj

∣∣∣∣ ≤ (rRSC + rMCS

rmin
i

+ 1

)
lmax

wi
+

(
rRSC + rMCS

rmin
j

+ 1

)
lmax

wj
.

Case (3): In this case, both flows can receive services each time when they are selected

by vi/vj, or when they receive additional services from another flow by fi/fj. Besides,

since the additional services received by flow i is fi × rMCS

Ĉ1
, we have

rRSC

Ĉ1

(vi(t2) − vi(t1)) +
rMCS

Ĉ1

(fi(t2) − fi(t1)) − lmax

wi

≤ Φs
i (t1, t2)

wi

≤ rRSC

Ĉ1

(vi(t2) − vi(t1)) +
rMCS

Ĉ1

(fi(t2) − fi(t1)) +
lmax

wi

.

Consequently, similar to case 1, by Lemmas B.1 and B.3, we can obtain∣∣∣∣Φs
i (t1, t2)

wi
− Φs

j(t1, t2)

wj

∣∣∣∣ ≤ (rRSC + rMCS

rmin
i

+ 1

)
lmax

wi
+

(
rRSC + rMCS

rmin
j

+ 1

)
lmax

wj
.

Case (4): An allowed-to-send, backlogged, leading flow i can receive services by gi and

additional services from other flows by fi. So the total services received by flow i during

[t1, t2) is bounded as

gi(t2) − gi(t1) +
rMCS

Ĉ1

(fi(t2) − fi(t1)) − lmax

wi
≤ Φi(t1, t2)

wi

≤ gi(t2) − gi(t1) +
rMCS

Ĉ1

(fi(t2) − fi(t1)) +
lmax

wi

.

Applying the previous inequality to flows i and j, we have

rMCS

Ĉ1

(fi(t2) − fj(t2) − fi(t1) + fj(t1)) + gi(t2) − gj(t2) − gi(t1) + gj(t1) − lmax

wi
− lmax

wj

≤ Φs
i (t1, t2)

wi

− Φs
j(t1, t2)

wj

≤ rMCS

Ĉ1

(fi(t2) − fj(t2) − fi(t1) + fj(t1)) + gi(t2) − gj(t2)−

gi(t1) + gj(t1) +
lmax

wi

+
lmax

wj

. (B.3)

Applying Lemma A.4 twice to flows i and j and subtracting one by the other, we have

α (vi(t) − vj(t)) + α

(
lmax

wj
− lmax

wi

)
− lmax

wj

≤ gi(t) − gj(t) ≤ α (vi(t) − vj(t)) + α

(
lmax

wj
− lmax

wi

)
+

lmax

wi
.

156

By Lemma B.1, we can rewrite the inequality as

−
(

α
Ĉ1

rmin
j

− α + 1

)
lmax

wj
− α

lmax

wi
≤ gi(t) − gj(t)

≤
(

α
Ĉ1

rmin
i

− α + 1

)
lmax

wi
+ α

lmax

wj
. (B.4)

Applying Eq. (B.4) and Lemma B.3 to Eq. (B.3), we have∣∣∣∣Φi(t1, t2)

wi

− Φj(t1, t2)

wj

∣∣∣∣ ≤
(

rMCS + αĈ1

rmin
i

+ 2

)
lmax

wi

+

(
rMCS + αĈ1

rmin
j

+ 2

)
lmax

wj

,

where α = αR if these flows are real-time, and α = αN if they are non-real-time.

Case (5): Applying Lemma A.4 to flows i and j and taking a subtract leads to

αRvi(t) − αR
lmax

wi
−
(
αNvj(t) − (αN − 1) lmax

wj

)
≤ gi(t) − gj(t) ≤

αRvi(t) − (αR − 1) lmax

wi
−
(
αNvj(t) − αN

lmax

wj

)
= Sright. (B.5)

By Lemma B.1 and the αR > αN principle, the left-hand side of Eq. (B.5) becomes

αRvi(t) − αNvj(t) + αN
lmax

wj
− αR

lmax

wi
− lmax

wj

> αN(vi(t) − vj(t)) + αN
lmax

wj
− αR

lmax

wi
− lmax

wj

≥ −αR
lmax

wi

−
(

αN
Ĉ1

rmin
j

− αN + 1

)
lmax

wj

.

Consider the right-hand side of Eq. (B.5). There are two cases for the term αRvi(t) −
αNvj(t). If αRvi(t) − αNvj(t) ≥ 0, we have vi(t) ≥ αN

αR
vj(t). By Lemma B.1,

Sright ≤ αN (vj(t) − vi(t)) + αN
lmax

wj
− αR

lmax

wi
+

lmax

wi

≤
(

αN
Ĉ1

rmin
j

+ αN

)
lmax

wj
+ (1 − αR)

lmax

wi
.

If αRvi(t) − αNvj(t) < 0, we have

Sright ≤ αN
lmax

wj

+ (1 − αR)
lmax

wi

.

These two cases together imply Sright ≤
(
αN

Ĉ1

rmin
j

+ αN

)
lmax

wj
+ (1 − αR) lmax

wi
. So we have

− αR
lmax

wi
−
(

αN
Ĉ1

rmin
j

− αN + 1

)
lmax

wj
≤ gi(t) − gj(t)

≤
(

αN
Ĉ1

rmin
j

+ αN

)
lmax

wj
+ (1 − αR)

lmax

wi
. (B.6)

157

By applying Eq. (B.6) and Lemma B.3 to Eq. (B.3), we have∣∣∣∣Φs
i (t1, t2)

wi

− Φs
j(t1, t2)

wj

∣∣∣∣ ≤ (rMCS

rmin
i

+ 2

)
lmax

wi

+

(
rMCS + 2αN Ĉ1

rmin
j

+ 2

)
lmax

wj

.

�

Theorem B.2. The difference between normalized additional services received by LR and

LN in any time interval [t1, t2) during which both sets remain active (i.e., there exists at

least one candidate in each set) satisfies the following inequality:

∣∣∣∣ΦR(t1, t2)

WR
− ΦN (t1, t2)

WN

∣∣∣∣ ≤ B + lmax

WR
+

B + lmax

WN
,

where ΦR(t1, t2) and ΦN (t1, t2) represents additional services received by LR and LN during

[t1, t2), respectively.

Proof. Since VR is updated before a packet is transmitted, it follows that the total

additional services received by LR during [t1, t2) is bounded by

VR(t2) − VR(t1) − lmax

WR
≤ ΦR(t1, t2)

WR
≤ VR(t2) − VR(t1) +

lmax

WR
.

Similarly, for VN , we have

VN(t2) − VN(t1) − lmax

WN

≤ ΦN (t1, t2)

WN

≤ VN(t2) − VN(t1) +
lmax

WN

.

Therefore, we have

VR(t2) − VR(t1) − lmax

WR

−
(

VN(t2) − VN(t1) +
lmax

WN

)
≤ ΦR(t1, t2)

WR
− ΦN (t1, t2)

WN
≤ VR(t2) − VR(t1) +

lmax

WR
−
(

VN (t2) − VN(t1) − lmax

WN

)
.

By Lemma B.4, we can rewrite the inequality as

−
(

B + lmax

WR
+

B + lmax

WN

)
≤ ΦR(t1, t2)

WR
− ΦN(t1, t2)

WN
≤ B + lmax

WR
+

B + lmax

WN

⇒
∣∣∣∣ΦR(t1, t2)

WR

− ΦN (t1, t2)

WN

∣∣∣∣ ≤ B + lmax

WR

+
B + lmax

WN

.

�

Theorem B.3 shows the time fairness guaranteed by MR-FQ. Since vi, ci, and fi

reflect the transmission time using by flow i, the proof of Theorem B.3 is similar to that

of Theorem B.1, except that we do not multiply vi, ci, and fi by rRSC

Ĉ1
or rMCS

Ĉ1
factors.

Thus, we omit the proof of Theorem B.3.

158

Theorem B.3. For any two active flows i and j, the difference between the normalized

transmission time used by flows i and j in any time interval [t1, t2) during which both flows

are continuously backlogged and allowed-to-send, and remain in the same state (leading,

lagging, or satisfied) satisfies the following inequality:∣∣∣∣Φt
i(t1, t2)

wi

− Φt
j(t1, t2)

wj

∣∣∣∣ ≤ β · lmax

wi

+ γ · lmax

wj

,

where Φt
i(t1, t2) represents the transmission time used by flow i during [t1, t2),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β = Ĉ1

rmin
i

+ 1, γ = Ĉ1

rmin
j

+ 1, if both flows are lagging but not candidates

β = 2Ĉ1

rmin
i

+ 1, γ = 2Ĉ1

rmin
j

+ 1, if both flows are lagging and candidates

β = 2Ĉ1

rmin
i

+ 1, γ = 2Ĉ1

rmin
j

+ 1, if both flows are satisfied

β = (αR+1)Ĉ1

rmin
i

+ 2, γ = (αR+1)Ĉ1

rmin
j

+ 2, if both flows are real-time leading flows

β = (αN +1)Ĉ1

rmin
i

+ 2, γ = (αN +1)Ĉ1

rmin
j

+ 2, if both flows are non-real-time leading flows

β = Ĉ1

rmin
i

+ 2, γ = (2αN +1)Ĉ1

rmin
j

+ 2, if flow i is a real-time leading flow and

flow j is a non-real-time leading flow

.

B.3 Delay Bounds

Theorem B.4 shows that if a lagging flow which has sufficient service demand becomes

allowed-to-send and is always a candidate in the Multi-rate Compensation Scheme, it can

get back all its lagging services within bounded time.

Theorem B.4. If an active but lagging flow i which remains backlogged continuously be-

comes allowed-to-send and is always a candidate in the Multi-rate Compensation Scheme,

it is guaranteed that flow i will become non-lagging (i.e., lagi ≤ 0) within time Δt, where

Δt <

(ε + 2lmax)

wmin(1 − αR)Ĉn

+

(
Ĉ1

Ĉn

(m +

wmin
) + 1

)
lmax

Ĉn

,

m is the number of active flows,
 is the total weight of all flows,
R is the total weight of

all real-time flows,
N is the total weight of all non-real-time flows, wmin is the minimum

weight of all flows, and

ε =
WR + WN

WR

(
Ĉ1

Ĉn

(

R · lagi(t)

wi

+ (
2
R

wi

+ m − 2)lmax) + 2lmax + B

)
,

if flow i is real-time, and

ε =
WR + WN

WN

(
Ĉ1

Ĉn

(

N · lagi(t)

wi
+ (

2
N

wi
+ m − 2)lmax) + 2lmax + B

)
,

if flow i is non-real-time.

159

Proof. Assume that flow i is a real-time flow. Consider the worst case: flow i has

the maximum lag among all flows. Since flow i becomes allowed-to-send, lagi is never

decreased after time t. Besides, because flow i is always a candidate in the Multi-rate

Compensation Scheme, lagi is decreased each time when it receives additional services.

Now let ΦA(t, tN) be the total additional services received by all lagging flows during

[t, t + Δt).

To prove this theorem, observe that the largest value of Δt occurs when all flows in

the system are allowed-to-send and there is only one leading flow, say k, who provides

additional services such that flow k is a real-time flow and wk = wmin. Since flow k can

still receive a fraction αR of its services when it is leading and flow k uses gk to keep track

of the amount of such services when it is leading, this leads to

ΦA(t, t + Δt) ≥ wmin · Ĉ1

Ĉ1

(vk(t + Δt) − vk(t)) − wmin(gk(t + Δt) − gk(t)) − lmax. (B.7)

Not that the best rate of flow k must be Ĉ1, or it is not allowed-to-send. By Lemma B.1,

for any active flow j during [t, t + Δt), we have

vj(t + Δt) − vj(t) ≤ vk(t + Δt) − vk(t) +
Ĉ1

rmin
j

· lmax

wj
+

Ĉ1

rmin
k

· lmax

wmin

≤ vk(t + Δt) − vk(t) +
Ĉ1

Ĉn

(
lmax

wj
+

lmax

wmin

)
.

This inequality helps to derive the total amount of services provided by the system during

[t, t + Δt):

Ĉn · Δt ≤
(∑

j∈A

wj · Ĉ1

Ĉ1

(vj(t + Δt) − vj(t))

)
+ lmax

≤
(∑

j∈A

wj(vk(t + Δt) − vk(t) +
Ĉ1

Ĉn

(
lmax

wj

+
lmax

wmin

))

)
+ lmax

≤ (vk(t + Δt) − vk(t))
∑
j∈A

wj +
Ĉ1

Ĉn

(
mlmax +

lmax

wmin

∑
j∈A

wj

)
+ lmax

≤ (vk(t + Δt) − vk(t))
 +

(
Ĉ1

Ĉn

(m +

wmin
) + 1

)
lmax

⇒ vk(t + Δt) − vk(t) ≥ 1

(
Ĉn · Δt − (

Ĉ1

Ĉn

(m +

wmin
) + 1)lmax

)
. (B.8)

Applying Lemma A.4 to flow k at times t and t + Δt and taking a subtract, we obtain

gk(t + Δt) − gk(t) ≤ αRvk(t + Δt) − αRvk(t) +
lmax

wmin
. (B.9)

160

By combining Eqs. (B.8) and (B.9) into Eq. (B.7), we can obtain

ΦA(t, t + Δt) ≥ wmin

(
vk(t + Δt) − vk(t) − αRvk(t + Δt) + αRvk(t) − lmax

wmin

)
− lmax

= wmin(1 − αR) (vk(t + Δt) − vk(t)) − 2lmax

≥ wmin(1 − αR)

(
Ĉn · Δt − (

Ĉ1

Ĉn

(m +

wmin

) + 1)lmax

)
− 2lmax

⇒ Δt ≤
(ΦA(t, t + Δt) + 2lmax)

wmin(1 − αR)Ĉn

+

(
Ĉ1

Ĉn

(m +

wmin

) + 1

)
lmax

Ĉn

. (B.10)

It remains to derive an upper bound for ΦA(t, t + Δt) in Eq. (B.10). The worst case

happens when these n − 1 lagging flows are candidates so that they are all allowed to

share the ΦA(t, t + Δt) services. Besides, Exactly one of these n − 1 flows remains in LN

during [t, t + Δt). In this case, LR can share at most a fraction WR

WR+WN
of ΦA(t, t + Δt).

Let ΦR(t, t+Δt) and ΦN(t, t+Δt) be additional services received by LR and LN during

[t, t + Δt), respectively, ΦA(t, t + Δt) = ΦR(t, t + Δt) + ΦN (t, t + Δt). By Theorem B.2,

we have

ΦN(t, t + Δt) ≤ WN

(
ΦR(t, t + Δt)

WR
+

B + lmax

WR
+

B + lmax

WN

)
⇒ ΦA(t, t + Δt) ≤ WR + WN

WR
(ΦR(t, t + Δt) + B + lmax) . (B.11)

By applying Lemma B.2 twice on flow i and any flow j ∈ LR, we have

ΦR(t, t + Δt) ≤
∑
j∈LR

wj · Ĉ1

Ĉ1

(cj(t + Δt) − cj(t)) + lmax

≤
∑
j∈LR

wj

(
ci(t + Δt) − ci(t) +

Ĉ1

rmin
i

· lmax

wi

+
Ĉ1

rmin
j

· lmax

wj

)
+ lmax

≤ (ci(t + Δt) − ci(t))
∑
j∈LR

wj +
Ĉ1

Ĉn

· lmax

wi

∑
j∈LR

wj +
Ĉ1

Ĉn

∑
j∈LR

lmax + lmax

<
R(ci(t + Δt) − ci(t)) +

(
Ĉ1

Ĉn

(

R

wi

+ m − 2) + 1

)
lmax. (B.12)

After time t+Δt, flow i becomes non-lagging, so −lmax < lag(t+Δt) ≤ 0. Thus, we have

Ĉn

Ĉ1

(ci(t + Δt) − ci(t)) ≤ |lagi(t + Δt) − lagi(t)|
wi

<
lagi(t) + lmax

wi

⇒ ci(t + Δt) − ci(t) <
Ĉ1

Ĉn

· lagi(t) + lmax

wi

. (B.13)

161

By combining Eqs. (B.12) and (B.13) into Eq. (B.11), we have

ΦA(t, t + Δt) <
WR + WN

WR

(
Ĉ1

Ĉn

(

R · lagi(t)

wi

+

(
2
R

wi
+ m − 2)lmax) + 2lmax + B

)
. (B.14)

By combining Eqs. (B.10) and (B.14), the first part of this theorem is proved. When flow

i is a non-real-time flow, the proof is similar and we omit the details. �

162

Bibliography

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn, “Popular matchings,”

in ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 424–432.

[2] Acroname, “Garcia robot,”

http://www.acroname.com/garcia/garcia.html.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor

networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, 2002.

[4] G. W. Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees,

“Deploying a wireless sensor network on an active volcano,” IEEE Internet Com-

puting, vol. 10, no. 2, pp. 18–25, 2006.

[5] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus, “Tracking

a moving object with a binary sensor network,” in International Conference on

Embedded Networked Sensor Systems, 2003, pp. 150–161.

[6] F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental geometric data

structure,” ACM Computing Surveys, vol. 23, no. 3, pp. 345–405, 1991.

[7] D. Avis and G. T. Toussaint, “An optimal algorithm for determining the visibility

of a polygon from an edge,” IEEE Transactions on Computers, vol. 30, no. 12, pp.

910–914, 1981.

[8] K. Balachandran, S. R. Kadaba, and S. Nanda, “Channel quality estimation and

rate adaptation for cellular mobile radio,” IEEE Journal on Selected Areas in Com-

munications, vol. 17, pp. 1244–1256, 1999.

[9] P. Basu and J. Redi, “Movement control algorithms for realization of fault-tolerant

ad hoc robot networks,” IEEE Network, vol. 18, no. 4, pp. 36–44, 2004.

[10] V. Bharghavan, S. Lu, and T. Nandagopal, “Fair queuing in wireless networks:

issues and approaches,” IEEE Personal Communications, vol. 6, pp. 44–53, 1999.

163

[11] M. Bläser, “A new approximation algorithm for the asymmetric TSP with triangle

inequality,” in ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 638–645.

[12] G. Brasseur, “Robust automotive sensorsy,” in IEEE Instrumentation and Measure-

ment Technology Conference (IMTC), vol. 2, 1997, pp. 1278–1283.

[13] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor localization

for very small devices,” IEEE Personal Communications, vol. 7, no. 5, pp. 28–34,

2000.

[14] Z. Butler and D. Rus, “Controlling mobile sensors for monitoring events with cov-

erage constraints,” in IEEE International Conference on Robotics and Automation,

2004, pp. 1568–1573.

[15] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor networks,”

IEEE Pervasive Computing, vol. 2, no. 4, pp. 34–42, 2003.

[16] Y. Cao and V. O. K. Li, “Scheduling algorithms in broadband wireless networks,”

in Proceedings of the IEEE, vol. 89, no. 1, 2001, pp. 76–87.

[17] M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target coverage in

wireless sensor networks,” in IEEE INFOCOM, 2005, pp. 1976–1984.

[18] L. G. Casado, I. Garćıa, P. G. Szabó, and T. Csendes, “Packing equal circles in a

square II. — new results for up to 100 circles using the TAMSASS-PECS algorithm,”

Optimization Theory: Recent Developments from Mátraháza, pp. 207–224, 2001.

[19] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid coverage for surveillance

and target location in distributed sensor networks,” IEEE Transactions on Com-

puters, vol. 51, no. 12, pp. 1448–1453, 2002.

[20] J. H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless sensor net-

works,” IEEE/ACM Transactions on Networking, vol. 12, no. 4, pp. 609–619, 2004.

[21] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govin-

dan, E. Johnson, and S. Masri, “Monitoring civil structures with a wireless sensor

network,” IEEE Internet Computing, vol. 10, no. 2, pp. 26–34, 2006.

[22] V. Chvátal, “A combinatorial theorem in plane geometry,” Journal of Combinatorial

Theory, Series B, vol. 18, pp. 39–41, 1975.

[23] T. Clouqueur, K. K. Saluja, and P. Ramanathan, “Fault tolerance in collaborative

sensor networks for target detection,” IEEE Transactions on Computers, vol. 53,

pp. 320–333, 2004.

164

[24] Crossbow, “MICA2 Series,”

http://www.xbow.com/Products/productsdetails.aspx?sid=72.

[25] Crossbow, “MICAz ZigBee Series,”

http://www.xbow.com/Products/productsdetails.aspx?sid=101.

[26] Crossbow, “Stargate Gateway,”

http://www.xbow.com/Products/productsdetails.aspx?sid=85.

[27] G. M. Dai, A. H. Du, Q. H. Li, and M. C. Wang, “Planning of moving path based

on simplified terrain,” in International Conference on Machine Learning and Cy-

bernetics, vol. 3, 2003, pp. 1915–1918.

[28] M. Demirbas, A. Arora, and M. Gouda, “A pursuer-evader game for sensor net-

works,” in Sixth Symposium on Self-Stabilizing Systems, 2003, pp. 1–16.

[29] S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective coverage and

surveillance in distributed sensor networks,” in IEEE Wireless Communications

and Networking, 2003, pp. 1609–1614.

[30] R. Diestel, “Graph theory,” Graduate Texts in Mathematics, 1997.

[31] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, pp. 269–271, 1959.

[32] D. Du, F. Hwang, and S. Fortune, “Voronoi diagrams and Delaunay triangulations,”

Euclidean Geometry and Computers, 1992.

[33] X. Du and F. Lin, “Improving sensor network performance by deploying mobile

sensors,” in IEEE International Performance, Computing, and Communications

Conference (IPCCC), 2005, pp. 67–71.

[34] T. Dubejko and K. Stephenson, “Circle packing: experiments in discrete analytic

function theory,” Experimental Mathematics, vol. 4, pp. 307–348, 1995.

[35] S. Dulman, P. Havinga, and J. Hurink, “Wave leader election for wireless sensor

networks,” in International Symposium on Mobile Muiltimedia Systems & Applica-

tions, 2002, pp. 43–50.

[36] D. A. Eckhardt and P. Steenkiste, “Effort-limited fair (ELF) scheduling for wireless

networks,” in IEEE INFOCOM, 2000, pp. 1097–1106.

165

[37] Y. Fang, W. E. Dixon, D. M. Dawson, and P. Chawda, “Homography-based vi-

sual servo regulation of mobile robots,” IEEE Transactions on Systems, Man and

Cybernetics, Part B, vol. 35, no. 5, pp. 1041–1050, 2005.

[38] W. C. Feng, E. Kaiser, W. C. Feng, and M. L. Baillif, “Panoptes: scalable low-

power video sensor networking technologies,” ACM Transactions on Multimedia

Computing, Communications, and Applications, vol. 1, no. 2, pp. 151–167, 2005.

[39] S. Fisk, “A short proof of Chvátal’s watchman theorem,” Journal of Combinatorial

Theory, Series B, vol. 24, p. 374, 1978.

[40] F. Fodor, “The densest packing of 19 congruent circles in a circle,” Geometriae

Dedicata, vol. 74, pp. 139–145, 1999.

[41] J. A. George, J. M. George, and B. W. Lamar, “Packing different-sized circles into

a rectangular container,” European Journal of Operational Research, vol. 84, pp.

693–712, 1995.

[42] M. Goldberg, “Packing of 14, 16, 17 and 20 circles in a circle,” Mathematics Maga-

zine, vol. 44, pp. 134–139, 1971.

[43] S. J. Golestani, “A self-clocked fair queueing scheme for broadband applications,”

in INFOCOM, 1994, pp. 12–16.

[44] P. Goyal, H. M. Vin, and H. Chen, “Start-time fair queueing: a scheduling algorithm

for integrated services packet switching networks,” IEEE/ACM Transactions on

Networking, vol. 5, no. 5, pp. 690–704, 1997.

[45] R. L. Graham and B. D. Lubachevsky, “Dense packings of equal disks in an equilat-

eral triangle: from 22 to 34 and beyond,” The Electronic Journal of Combinatorics,

vol. 2, 1995.

[46] R. L. Graham, B. D. Lubachevsky, K. J. Nurmela, and P. R. J. Österg̊ard, “Dense

packings of congruent circles in a circle,” Discrete Mathematics, vol. 181, no. 1-3,

pp. 139–154, 1998.

[47] C. Gui and P. Mohapatra, “Power conservation and quality of surveillance in tar-

get tracking sensor networks,” in ACM/IEEE International Conference on Mobile

Computing and Networking, 2004, pp. 129–143.

[48] J. Han and M. Kamber, Data Mining: Concepts and Techniques, D. D. Cerra, Ed.

Academic Press, 2001.

166

[49] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,

T. Yan, L. Gu, J. Hui, and B. Krogh, “Energy-efficient surveillance system using

wireless sensor networks,” in ACM International Conference on Mobile Systems,

Applications, and Services (MobiSys), 2004, pp. 270–283.

[50] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent mobile sensor

networks,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 35,

no. 1, pp. 78–92, 2005.

[51] A. Heppes and J. B. M. Melissen, “Covering a rectangle with equal circles,” Peri-

odica Mathematica Hungarica, vol. 34, no. 1–2, pp. 65–81, 1996.

[52] F. Hoffmann, M. Kaufmann, and K. Kriegel, “The art gallery theorem for polygons

with holes,” in IEEE Symposium on Foundations of Computer Science, 1991, pp.

39–48.

[53] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System:

Theory and Practice. 4th ed., Springer Verlag, 1997.

[54] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive MAC protocol for multi-

Hop wireless networks,” in ACM Internationl Conference on Mobile Computing

and Networking (MobiCom), 2001, pp. 236–251.

[55] A. Hoover and B. D. Olsen, “Sensor network perception for mobile robotics,” in

IEEE International Conference on Robotics and Automation, 2000, pp. 83–88.

[56] L. Hu and D. Evans, “Localization for mobile sensor networks,” in International

Conference on Mobile Computing and Networking, 2004, pp. 45–57.

[57] S. Hwang and B. P. Kintigh, “Implementation of an intelligent roving robot using

multiple sensors,” in IEEE International Conference on Multisensor Fusion and

Integration for Intelligent Systems (MFI), 1994, pp. 763–770.

[58] J. O’Rourke, Art gallery theorems and algorithms. Oxford University Press, Inc.,

1987.

[59] M. R. Jeong, H. Morikawa, and T. Aoyama, “Wireless packet scheduler for fair

service allocation,” in Fifth Asia-Pacific Conference and Fourth Optoelectronics and

Communications Conference, 1999, pp. 794–797.

[60] X. Ji, H. Zha, J. J. Metzner, and G. Kesidis, “Dynamic cluster structure for object

detection and tracking in wireless ad-hoc sensor networks,” in IEEE International

Conference on Communications, 2004, pp. 3807–3811.

167

[61] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci, and J. Lep-

reau, “Mobile Emulab: a robotic wireless and sensor network testbed,” in IEEE

INFOCOM, 2006.

[62] K. Kar and S. Banerjee, “Node placement for connected coverage in sensor net-

works,” in Proceedings of the Modeling and Optimization in Mobile, Ad Hoc and

Wireless Networks (WiOpt), 2003, pp. 50–52.

[63] L. A. Klein, “A boolean algebra approach to multiple sensor voting fusion,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 29, no. 2, pp. 317–327, 1993.

[64] H. W. Kuhn, “Hungarian method for the assignment problem,” Naval Research

Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[65] H. T. Kung and D. Vlah, “Efficient location tracking using sensor networks,” in

Wireless Communications and Networking, 2003, pp. 1954–1961.

[66] LAN/MAN Standards Committee of the IEEE Computer Society, “IEEE Std

802.15.4-2003, Wireless medium access control (MAC) and physical layer (PHY)

specifications for low-rate wireless personal area networks (LR-WPANs),” IEEE,

2003.

[67] B. J. Lee, J. H. Lee, and G. T. Park, “The resource sharing architecture of mobile

robots in the home network environment using Jini,” in International Symposium

on Robotics, 2001, pp. 233–238.

[68] J. H. Lee and H. Hashimoto, “Controlling mobile robots in distributed intelligent

sensor network,” IEEE Transaction on Industrial Electronics, vol. 50, no. 5, pp.

890–902, 2003.

[69] S. Lee, K. Kim, and A. Ahmad, “Channel error and handoff compensation scheme

for fair queueing algorithms in wireless networks,” in IEEE International Conference

on Communications (ICC), 2002, pp. 3128–3132.

[70] C. W. Lin, D. H. Wang, H. C. Wang, and H. D. Wu, “Prototype development of dig-

ital spirometer,” in International Conference of the IEEE Engineering in Medicine

and Biology Society, vol. 4, 1998, pp. 1786–1788.

[71] F. Y. S. Lin and P. L. Chiu, “A near-optimal sensor placement algorithm to achieve

complete coverage/discrimination in sensor networks,” IEEE Communications Let-

ters, vol. 9, no. 1, pp. 43–45, 2005.

168

[72] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao, “Distributed state representation

for tracking problems in sensor networks,” in Information Processing in Sensor

Networks, 2004, pp. 234–242.

[73] Y. H. Liu and S. Arimoto, “Finding the shortest path of a disc among polygonal

obstacles using a radius-independent graph,” IEEE Transactions on Robots and

Automation, vol. 11, pp. 682–691, 1995.

[74] L. Lofdahl, G. Stemme, and B. Johansson, “Turbulence measurements using sensors

based on silicon technology,” in IEEE International Congress on Instrumentation

in Aerospace Simulation Facilities (ICIASF), 1989, pp. 95–103.

[75] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet networks,”

IEEE/ACM Transactions on Networking, vol. 7, no. 4, pp. 473–489, 1999.

[76] S. Lu, T. Nandagopal, and V. Bharghavan, “A wireless fair service algorithm for

packet cellular networks,” in ACM International Conference on Mobile Computing

and Networking (MobiCom), 1998, pp. 10–20.

[77] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sen-

sor networks for habitat monitoring,” in ACM International Workshop on Wireless

Sensor Networks and Applications (WSNA), 2002, pp. 88–97.

[78] V. S. Mansouri, B. Afsari, and H. Shahmansouri, “A simple transport protocol for

wireless sensor networks,” in IEEE International Conference on Intelligent Sensors,

Sensor Networks and Information Processing (ICC), 2005, pp. 127–131.

[79] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage

problems in wireless ad-hoc sensor networks,” in IEEE INFOCOM, 2001, pp. 1380–

1387.

[80] H. Melissen, “Loosest circle coverings of an equilateral triangle,” Mathematics Mag-

azine, vol. 70, no. 2, pp. 118–124, 1997.

[81] J. B. M. Melissen, “Densest packing of eleven congruant circles in a circle,” Geome-

triae Dedicata, vol. 50, pp. 15–25, 1994.

[82] J. B. M. Melissen and P. C. Schuur, “Improved coverings of a square with six and

eight equal circles,” Electronic Journal of Combinatorics, vol. 3, no. 1, 1996.

[83] J. B. M. Melissen and P. C. Schuur, “Packing 16, 17 or 18 circles in an equilateral

triangle,” Discrete Mathematics, vol. 145, pp. 333–342, 1995.

169

[84] MINDSTORM, “Robotics Invention System,”

http://mindstorms.lego.com.

[85] A. Nasipuri and K. Li, “A directionality based location discovery scheme for wireless

sensor networks,” in ACM International Workshop on Wireless Sensor Networks

and Applications (WSNA), 2002, pp. 105–111.

[86] T. S. E. Ng, I. Stoica, and H. Zhang, “Packet fair queueing algorithms for wireless

networks with location-dependent errors,” in IEEE INFOCOM, 1998, pp. 1103–

1111.

[87] D. Nicules and B. Nath, “Ad-hoc positioning system (APS) using AoA,” in IEEE

INFOCOM, 2003, pp. 1734–1743.

[88] D. Niculescu, “Communication paradigms for sensor networks,” IEEE Communi-

cations Magazine, vol. 43, no. 3, pp. 116–122, 2005.

[89] K. J. Nurmela and P. R. J. Österg̊ard, “Covering a square with up to 30 equal

circles,” Helsinki University of Technology, Laboratory for Theoretical Computer

Science, Espoo, Finland, Research Report A62, June 2000.

[90] J. O’Rourke, “Galleries need fewer mobile guards: A variation on Chvátal’s theo-

rem,” Geometriae Dedicata, vol. 14, no. 3, pp. 273–283, 1983.

[91] Özgür B. Akan and I. F. Akyildiz, “Event-to-sink reliable transport in wireless sensor

networks,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1003–1016,

2005.

[92] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to

flow control in integrated services networks: the single-node case,” IEEE/ACM

Transactions on Networking, vol. 1, no. 3, pp. 344–357, 1993.

[93] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communica-

tions of the ACM, vol. 43, no. 5, pp. 51–58, 2000.

[94] K. Premaratne, J. Zhang, and M. Dogruel, “Location information-aided task-

oriented self-organization of ad-hoc sensor systems,” IEEE Sensors Journal, vol. 4,

no. 1, pp. 85–95, 2004.

[95] P. Ramanathan and P. Agrawal, “Adapting packet fair queuing algorithms to wire-

less networks,” in ACM International Conference on Mobile Computing and Net-

working (MobiCom), 1998, pp. 1–9.

170

[96] P. Ramanathan and P. Agrawal, “The havana framework for supporting application

and channel dependent QoS in wireless networks,” in IEEE International Conference

on Network Protocols (ICNP), 1999, pp. 235–244.

[97] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “An analysis of several heuristics

for the traveling salesman problem,” SIAM Journal on Computing, vol. 6, no. 3, pp.

563–581, 1977.

[98] I. B. Sachs and D. L. Souvaine, “An efficient algorithm for guard placement in

polygons with holes,” Discrete & Computational Geometry, vol. 13, pp. 77–109,

1995.

[99] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic media

access for multirate ad hoc networks,” in ACM Internationl Conference on Mobile

Computing and Networking (MobiCom), 2002, pp. 24–35.

[100] A. Savvides, C. C. Han, and M. B. Strivastava, “Dynamic fine-grained localiza-

tion in ad-hoc networks of sensors,” in ACM International Conference on Mobile

Computing and Networking (MobiCom), 2001, pp. 166–179.

[101] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and D. Culler,

“Design and implementation of a sensor network system for vehicle tracking and

autonomous interception,” in European Workshop on Sensor Networks, 2005, pp.

93–107.

[102] T. C. Shermer, “Recent results in art galleries,” Proceedings of the IEEE, vol. 80,

no. 9, pp. 1384–1399, 1992.

[103] J. P. Sheu, P. W. Cheng, and K. Y. Hsieh, “Design and implementation of a smart

mobile robot,” in IEEE International Conference on Wireless And Mobile Comput-

ing, Networking And Communications (WiMob), 2005, pp. 422–429.

[104] E. Shih, S. H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan,

“Physical layer driven protocol and algorithm design for energy-efficient wireless

sensor networks,” in ACM International Conference on Mobile Computing and Net-

working (MobiCom), 2001, pp. 272–287.

[105] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,”

IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 375–385, 1996.

[106] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sensor

networks,” in IEEE International Conference on Communications (ICC), 2001, pp.

11–14.

171

[107] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocols for self-organization

of a wireless sensor network,” IEEE Personal Communications, vol. 7, pp. 16–27,

2000.

[108] K. Stephenson, Introduction to circle packing: the theory of discrete analytic func-

tions. Cambridge University Press, 2004.

[109] L. Stoica, A. Rabbachin, H. O. Repo, T. S. Tiuraniemi, and I. Oppermann, “An

ultrawideband system architecture for tag based wireless sensor networks,” IEEE

Transactions on Vehicular Technology, vol. 54, no. 5, pp. 1632–1645, 2005.

[110] K. Sugihara, M. Sawai, H. Sano, D. S. Kim, and D. Kim, “Disk packing for the

estimation of the size of a wire bundle,” Japan Journal of Industrial and Applied

Mathmatics, vol. 21, pp. 259–278, 2004.

[111] T. Sun, L. J. Chen, C. C. Han, and M. Gerla, “Reliable sensor networks for planet

exploration,” in IEEE International Conference On Networking, Sensing and Con-

trol, 2005, pp. 816–821.

[112] P. G. Szabó, T. Csendes, L. G. Casado, and I. Garciá, “Packing equal circles in

a square I. — problem setting and bounds for optimal solutions,” Optimization

Theory: Recent Developments from Mátraháza, pp. 191–206, 2001.

[113] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin,

“Habitat monitoring with sensor networks,” Communications of the ACM, vol. 47,

no. 6, pp. 34–40, 2004.

[114] D. Tian and N. D. Georganas, “A coverage-preserving node scheduling scheme for

large wireless sensor networks,” in ACM International Workshop on Wireless Sensor

Networks and Applications (WSNA), 2002, pp. 32–41.

[115] T. Ue, S. Sampei, N. Morinaga, and K. Hamaguchi, “Symbol rate and modulation

level-controlled adaptive modulation/TDMA/TDD system for high-bit-rate wireless

data transmission,” IEEE Transactions on Vehicular Technology, vol. 47, pp. 1134–

1147, 1998.

[116] M. Valera and S. A. Velastin, “Intelligent distributed surveillance systems: a re-

view,” IEE Proceedings – Vision, Image and Signal Processing, vol. 152, no. 2, pp.

192–204, 2005.

[117] A. Verma, H. Sawant, and J. Tan, “Selection and navigation of mobile sensor nodes

using a sensor network,” in IEEE International Conference on Pervasive Computing

and Communications (PerCom), 2005, pp. 41–50.

172

[118] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,” in

IEEE INFOCOM, 2004, pp. 2469–2479.

[119] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in mobile sensor

networks,” in IEEE INFOCOM, 2005, pp. 2302–2312.

[120] K. C. Wang and Y. L. Chin, “A fair scheduling algorithm with adaptive com-

pensation in wireless networks,” in IEEE Global Telecommunications Conference

(GLOBECOM), 2001, pp. 3543–3547.

[121] R. Williams, The geometrical foundation of natural structure: a source book of

design. Dover, New York, 1979.

[122] A. Woo and D. E. Culler, “A transmission control scheme for media access in sensor

networks,” in ACM International Conference on Mobile Computing and Networking

(MobiCom), 2001, pp. 221–235.

[123] J. Wu and S. Yang, “SMART: a scan-based movement-assisted sensor deployment

method in wireless sensor networks,” in IEEE INFOCOM, 2005, pp. 2313–2324.

[124] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated

adaptive sleeping for wireless sensor networks,” IEEE/ACM Transactions on Net-

working, vol. 12, no. 3, pp. 493–506, 2004.

[125] H. H. Yen, F. Y. S. Lin, and S. P. Lin, “Efficient data-centric routing in wireless

sensor networks,” in IEEE International Conference on Communications (ICC),

vol. 5, 2005, pp. 3025–3029.

[126] Y. Yi, Y. Seok, T. Kwon, Y. Choi, and J. Park, “W2F2Q: packet fair queuing

in wireless packet networks,” in ACM International Workshop on Wireless Mobile

Multimedia (WOWMOM), 2000, pp. 2–10.

[127] H. Zhang, “Service disciplines for guaranteed performance service in packet-

switching networks,” Proceedings of the IEEE, vol. 83, pp. 1374–1396, 1995.

[128] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity in large

sensor networks,” in NSF International Workshop on Theoretical and Algorithmic

Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004.

[129] W. Zhang and G. Cao, “DCTC: dynamic convoy tree-based collaboration for tar-

get tracking in sensor networks,” IEEE Transactions on Wireless Communications,

vol. 3, no. 5, pp. 1689–1701, 2004.

173

[130] S. Q. Zheng, J. S. Lim, and S. S. Iyengar, “Finding obstacle-avoiding shortest paths

using implicit connection graphs,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 15, pp. 103–110, 1996.

[131] S. Zhou, M. Y. Wu, and W. Shu, “Finding optimal placements for mobile sen-

sors: wireless sensor network topology adjustment,” in IEEE Circuits and Systems

Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Commu-

nication, 2004, pp. 529–532.

[132] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based on

virtual forces,” in IEEE INFOCOM, 2003, pp. 1293–1303.

[133] Y. Zou and K. Chakrabarty, “A distributed coverage- and connectivity-centric tech-

nique for selecting active nodes in wireless sensor networks,” IEEE Transactions on

Computers, vol. 54, pp. 978–991, 2005.

174

Curriculum Vitae

You-Chiun Wang was born in Tainan, Taiwan, in 1979. He received his B.S. and M.S.

degrees in Computer Science and Information Engineering from the National Chung-

Cheng University and the National Chiao-Tung University, Taiwan, in 2001 and 2003,

respectively. He is currently a Ph.D. candidate in the Department of Computer Science,

National Chiao-Tung University, Taiwan. His research interests include wireless commu-

nication and mobile computing, QoS management and wireless fair scheduling, mobile ad

hoc network, and wireless sensor networks. He is a member of the Phi Tau Phi Scholas-

tic Honor Society of the Republic of China, in 2001. More information can be found in

http://www.csie.nctu.edu.tw/∼wangyc/index.htm

Email address: wangyc@csie.nctu.edu.tw

175

Publication List

Journal Papers

1. Shiang-Rung Ye, You-Chiun Wang, and Yu-Chee Tseng, “A Jamming-Based MAC

Protocol to Improve the Performance of Wireless Multihop Ad Hoc Networks,”

Wireless Communications and Mobile Computing, Vol. 4, No.1, Feb. 2004, pp. 75

– 84. (SCIE, EI)

2. You-Chiun Wang, Shiang-Rung Ye, and Yu-Chee Tseng, “A Fair Scheduling Algo-

rithm with Traffic Classification in Wireless Networks,” Computer Communications,

Vol. 28, No. 10, Jun. 2005, pp. 1225 – 1239. (SCIE, EI)

3. You-Chiun Wang, Yu-Chee Tseng, and Wen-Tsuen Chen, “MR-FQ: A Fair Schedul-

ing Algorithm for Wireless Networks with Variable Transmission Rates,” Simula-

tion: Transactions of The Society for Modeling and Simulation International, Vol.

81, No. 8, Aug. 2005, pp. 587 – 608. (SCIE, EI)

4. You-Chiun Wang, Kai-Yang Cheng, and Yu-Chee Tseng, “Using Event Detection

Latency to Evaluate the Coverage of a Wireless Sensor Network,” accepted by Com-

puter Communications. (SCIE, EI)

Conference Papers

1. Shiang-Rung Ye, You-Chiun Wang, and Yu-Chee Tseng, “A Jamming-Based MAC

Protocol for Wireless Multihop Ad Hoc Networks,” IEEE Vehicular Technology

Conference (VTC), 2003-Fall, Orlando, USA, pp. 1396 – 1400.

2. You-Chiun Wang, Shiang-Rung Ye, and Yu-Chee Tseng, “A Fair Scheduling Al-

gorithm with Traffic Classification in Wireless Networks,” SCS International Sym-

posium on Performance Evaluation of Computer and Telecommunication Systems

(SPECTS), 2004, San Jose, USA, pp. 502 – 509.

3. You-Chiun Wang, Yu-Chee Tseng, Wen-Tsuen Chen, and Kun-Cheng Tsai, “MR-

FQ: A Fair Scheduling Algorithm for Wireless Networks with Variable Transmission

176

Rates,” IEEE International Conference on Information Technology: Research and

Education (ITRE), 2005, Hsinchu, Taiwan, pp. 250 – 254.

4. You-Chiun Wang, Chun-Chi Hu, and Yu-Chee Tseng, “Efficient Deployment Algo-

rithms for Ensuring Coverage and Connectivity of Wireless Sensor Networks,” IEEE

Wireless Internet Conference (WICON), 2005, Visegrád, Hungary, pp. 114 – 121.

5. Yu-Chee Tseng, You-Chiun Wang, and Kai-Yang Cheng, “An Integrated Mobile

Surveillance and Wireless Sensor (iMouse) System and Its Detection Delay Analy-

sis,” ACM/IEEE International Symposium on Modeling, Analysis and Simulation

of Wireless and Mobile Systems (MSWiM), 2005, Montréal, Canada, pp. 178 – 181.

Book Chapters

1. You-Chiun Wang and Yu-Chee Tseng, “Packet Fair Queuing Algorithms for Wire-

less Networks,” Design and Analysis of Wireless Networks, Edited by Yi Pan and

Yang Xiao, Nova Science Publishers, 2005, ISBN: 1-59454-186-8.

2. You-Chiun Wang and Yu-Chee Tseng, “Attacks and Defenses of Routing Mecha-

nisms in Ad Hoc and Sensor Networks,” Security in Sensor Networks, Edited by

Yang Xiao, Auerbach Publications, CRC Press, 2006, ISBN: 0-84937-058-2.

Submitted Journal Papers

1. Yu-Chee Tseng, You-Chiun Wang, Kai-Yang Cheng, and Yao-Yu Hsieh, “iMouse:

An Integrated Mobile Surveillance and Wireless Sensor System,” submitted to IEEE

Computers, Feb. 2006 (in revision).

Submitted Conference Papers

1. You-Chiun Wang and Yu-Chee Tseng, “Distributed Sensor Deployment of a Wire-

less Sensor Network for Multi-level Coverage,” submitted to IEEE INFOCOM 2007.

2. Min-Hsien Chang, You-Chiun Wang, Wen-Chih Peng, and Yu-Chee Tseng, “Energy-

Efficient Algorithms for Dispatching Mobile Sensors in a Wireless Sensor Network,”

submitted to IEEE INFOCOM 2007.

3. Yu-Chee Tseng, You-Chiun Wang, and Lun-Wu Yeh, “iPower: An Energy Conser-

vation System for Intelligent Buildings by Wireless Sensor Networks,” submitted to

International Computer Symposiums (ICS) 2006.

177

	
	The Deployment, Dispatch, and Packet-scheduling
	Issues of Mobile Wireless Sensor Networks

	
	The Deployment, Dispatch, and Packet-scheduling
	Issues of Mobile Wireless Sensor Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

