
Computers & Operations Research 36 (2009) 1158–1175
www.elsevier.com/locate/cor

A two-machine flowshop problem with processing time-dependent
buffer constraints—An application in multimedia presentations�

Feng-Cheng Lina, Jen-Shin Honga,∗, Bertrand M.T. Linb

aDepartment of Computer Science and Information Engineering, National Chi Nan University, Nantou, Taiwan
bDepartment of Information and Finance Management, Institute of Information Management, National Chiao Tung University, Hsinchu, Taiwan

Available online 21 January 2008

Abstract

To have a quality multimedia presentation through networks, its presentation lag needs to be controlled. One way to reduce the
lag is to prefetch the media objects before their due dates. This paper explores techniques for optimizing the object sequence in a
prefetch-enabled TV-like presentation. An optimal solution is the one with which the presentation lag is minimized. We formulate
the problem into a two-machine flowshop scheduling problem with a single chain precedence constraint and a player-side buffer
constraint. The player-side buffer is “processing time-dependent” and distinguished from the conventional item-based intermediate
buffer constraints discussed in previous flowshop studies. We prove the problem to be strongly NP-hard. A branch and bound
algorithm equipped with four lower bounds and an NEH-based upper bound is developed. The simulation results show that the
average gaps between the overall lower bounds and the NEH-based upper bound are less than 3% for problems with a large buffer
size, and less than 13% for problems with a small buffer size and high density of precedence constraints. For applications where
the media objects are delivered through extremely busy servers with which only very restricted CPU resources can be allocated for
computation, the CDS-based algorithm provides better sequences than the NEH-based algorithm.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Multimedia presentation; Object sequence optimization; Buffer constraint; Two-machine flowshop

1. Introduction

Rapid advances in technologies for media capture, storage and transmission have contributed to an exponential growth
of multimedia objects on the Internet. A common way to present the archived media objects in online multimedia
communication applications is by a TV-like presentation which continuously plays the media objects in sequence.
Applications that prefer a TV-like presentation can originate from any systems that need to combine multiple separate
media objects into a continuous presentation. Examples include assembling a TV-like documentary based on queries to
multimedia databases, continuously showing the media items in an online multimedia album, presenting a personalized
multimedia daily news delivery service, or presenting a multimedia message (MMS) in a mobile phone, etc. A TV-like
presentation consists of a set of multimedia objects ordered sequentially. In these dynamically generated presentations,
the orders of the objects are dynamically assigned at runtime.

� This research was partially supported by the National Science Council of Taiwan, under grant NSC 96-2221-E-260-020-MY3. B.M.T. Lin was
also partially supported by the National Science Council of Taiwan under grant NSC-95-2416-H-009-033.

∗ Corresponding author. Tel.: +886 49 2915225; fax: +886 49 2915226.
E-mail address: jshong@ncnu.edu.tw (J.-S. Hong).

0305-0548/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.01.002

http://www.elsevier.com/locate/cor
mailto:jshong@ncnu.edu.tw

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1159

Fig. 1. Graphical illustration of the notations.

Table 1
Correspondence between the media object ordering problem and the two-machine flowshop problem

Media object scheduling for TV-like presentations Two-machine flowshop scheduling Notation

A set of media objects A set of jobs N
A media object A job Ji

Server (send data to the client) First machine M1

Client (receive/playback data from the server) Second machine M2

Download time for a media object Processing time (download time) on first machine ai

Playback time for a media object Processing time (playback time) on second machine bi

Completion time of playback of a media object Completion time of each job Ji Ci

Transmission bit rate (bytes per second) BR
File size of a media object (bytes) si
Buffer size Total size of jobs allowed in buffer BUF
The completion of the presentation Makespan (the maximum of Ci (1� i �n)) Cmax

To have a quality TV-like presentation through the Internet, the presentation lag, which is defined as the difference
between the instant a media object really begins and the instant it was previously scheduled to start, needs to be kept
controlled. A commonly used strategy to possibly reduce the total presentation lag of a presentation is to prefetch
the objects before their due times. Each prefetched media object occupies the player-side buffer until it finishes the
playback (here we assume that the media player provides the first-in, first-out buffer control service). The prefetched
objects are stored in the buffer for promptly responding to a user request. Such a prefetch mechanism usually can reduce
presentation lags by acquiring the future objects during the current object’s view time. When a media object is being
played, there could be un-occupied buffer space available for further downloading other subsequent media objects into
the buffer.

In typical multimedia presentations, the modalities of the media objects could be text, images (e.g., JPG, GIF), audio
(e.g., MP3, MIDI), video (e.g., MPEG, AVI), or vector graphics (e.g., SVG, SWF). Each media type may have a unique
data compression ratio. In addition, the objects could be distributed across multiple servers with varied end-to-end
bandwidths to the media player. Thus, for the same amount of data transmitted, the anticipated presentation time differs
drastically for different media types. If the media objects are ordered appropriately in the server, the total presentation
lag perceived by users for a prefetch-enabled TV-like presentation could be significantly reduced.

Since each media object has a download time (ai) and playback time (bi) (refer to Fig. 1), so as to reduce the total
presentation lag, the order of these media objects should be properly arranged. Our work explores the optimization
techniques for sequencing a set of media objects in a delay prone environment such that the presentation lag is minimized.
Based on the corresponding elements list in Table 1,we find that the object ordering problem actually can be formulated
as a two-machine flowshop problem F2‖Cmax [1], in which F2 means the machine environment and Cmax represents
the objective. However, the player-side buffer constraint, as described below, appears to be a new type of constraint
which has never been explored in the existing two-machine flowshop problems.

1160 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175

In general, two types of constraints are commonly encountered in online multimedia applications, namely, the
inter-object precedence constraint, and the player-side buffer constraint. A precedence constraint (here we adopt the
terminology used in conventional scheduling research as described in Brucker [1]) requires one media object to precede
the second object without precluding other objects from coming between them. For example, in an educational lecture
video of a math course, a video object illustrating the proof of a theorem must be preceded (but not necessarily
immediately) by the video defining the theorem itself. In such a case, other objects (such as example applications or
the historical remarks of the theorem) are allowed to be presented between the two objects. Beyond the precedence
constraints, for online multimedia applications with which certain portable devices such as PDA are used for the
playback, the maximum buffer size allowed for keeping the prefetched objects needs to be considered in the schedule
optimization process.

If two jobs (i.e., media objects), Ji and Jj are temporally related by a precedence constraint (denoted by Ji → Jj),
Ji must precede Jj but not necessarily next to Jj . Note that there are two different interpretations of the precedence
constraint addressed in the flowshop problems (refer to [2,3]). Assuming that job Ji precedes job Jj , in the first
interpretation, Jj cannot be started on the first machine until Ji is completed on the second machine (all machines).
The two-machine flowshop scheduling problem with the first type of precedence constraint is NP-hard even if the given
graph contains only one arc [4,5].

In the second interpretation, Jj cannot start on the first machine unless Ji is completed on the same machine, that
is, Jj can start on the first machine while Ji is being processed on machine two. The precedence constraint considered
in the multimedia presentation applications refers to the second interpretation. In general, by a series of concatenation
on the constrained objects, the overall precedence constraint for a multimedia presentation might be presented by a
general graph. Two-machine flowshop scheduling of makespan minimization in applications with arbitrary precedence
constraints (i.e., the F2|prec|Cmax problem) has been proved to be NP-hard [6]. To efficiently compute a near-optimal
solution using numerical approaches, Hariri and Potts [7] and McMahon and Lim [8] developed a variety of branch
and bound algorithms where various lower bounds, upper bounds, and dominance rules were proposed to speed up the
enumerative procedure. The two-machine flowshop problem with a number of simplified versions of the precedence
constraint, including chain, tree, sp-graph, can be solved in polynomial time. Kurisu [9] gave an algorithm for the case
of parallel-chain precedence constraints. A tree-based precedence problem F2|tree|Cmax is actually a special case of
the series-parallel precedence problem (F2|sp-graph|Cmax) which was solved by polynomial algorithms in Monma
and Sidney [10], Sidney [11] and Gordon and Shafransky [12]. Valdes et al. [13] presented a linear-time algorithm
to recognize series-parallel digraphs. In this paper, we consider only the multimedia presentations where the overall
precedence constraint is in the form of a single chain. Problems with more complicated forms of precedence constraint
is currently under investigation.

With respect to the player-side buffer constraint, we did not find any existing flowshop scheduling studies that have
addressed the problem. In the literature, there are a few studies investigating flowshop problems with limitation of
“number of jobs” that can be allocated in the intermediate storage buffer before flowing to the next machine. For the
case without any buffer limitation (denoted as the problem ∞-buffer problem in [14]), an optimal solution can be
obtained by Johnson’s rule [23]. For the case in which no any job is allowed to be kept in the intermediate storage
buffer (denoted as the zero-buffer or no-wait problem in [14]), the polynomial algorithm developed by Gilmore and
Gomory [15] for a specific TSP can be used to produce optimal solutions. Other than the above two cases, the buffer-
constrained machine flowshop scheduling problem has been shown to be strongly NP-hard by Papadimitriou and
Kanellakis [14]. To obtain the exact solution of this NP-hard scheduling problem with a finite intermediate buffer,
a number of strategies have been proposed; for example, Leisten [16], Smutnicki [17], Dutta and Cunningham [18],
Brucker et al. [19], Tang and Xuan [20], Wang et al. [21], etc. In these flowshop studies, the number of jobs allowed
to keep in the buffer is fixed throughout the process. In the online multimedia applications addressed in this paper,
we fix the “buffer size” instead of number of objects allowed in the player-side buffer. For a given buffer size, the
number of objects allowed in the buffer actually depends on the file sizes of the current playing objects and other
unscheduled objects. Since, under an environment with a constant transmission bit rate, the download time of an
object (i.e., the processing time on M1) is proportional to its file size, the number of objects allowed in the buffer is
actually “processing time-dependent”. Hence, the media scheduling problem we want to solve is more complicated
than the above-mentioned buffer-constrained flowshop scheduling problems. Another unique feature our buffer model
exhibits is that the buffer resides on machine M2 instead of in an intermediate storage area between two machines.
Therefore, a job currently being processed on machine M2 still occupies the buffer until its completion. In conventional

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1161

scheduling problems with buffers, a job released from the buffer for processing immediately frees the space it has
acquired.

In summary, two constraints are taken into account in the two-machine flowshop problem to be explored in this paper,
including a single chain precedence constraint of a subset of jobs, and a processing time-dependent buffer constraint.
We denote the problem addressed in this paper by F2|ai-buffer, chain|Cmax. The jobs that are not constrained by the
precedence chain are mutually independent and can be inserted in any place of the chain. Furthermore, since most web
servers do not support resumable download with which the transmission of a media object can be temporarily halt and
resume later, the jobs are assumed to be non-preemptive. For a problem with a buffer capacity larger than the sum of
all objects, in the case without a precedence constraint, the optimal sequence can be obtained using Johnson’s rule
(refer to [22]). In Johnson’s rule, job Ji precedes job Jj if min{ai, bj }� min{bi, aj }. In the case with a single chain
precedence constraint, the optimal sequence can be obtained using the algorithm developed in Kurisu [9]. Note that
previous works by Allahverdi and Al-Anzi [24], Batra and Eleftheriadis [25] and Blazewicz et al. [26] also addressed
the scheduling of objects in multimedia applications. However, the applications and optimization criteria addressed in
these studies are different from this paper.

In the following, we introduce the notation which will be referred throughout this paper.
Notation:

N = {J1, J2, . . . , Jn} set of n jobs
Ji a specific job in N
NSD a subset of N in which the jobs are already scheduled
N\NSD a subset of N in which the jobs are not yet scheduled
SN a sequence of jobs of set N
SNSD

a sequence of jobs of set NSD

ai processing time (download time) of Ji on machine one M1
bi processing time (playback time) of Ji on machine two M2
BR transmission bit rate in byte/s
Ci completion time of Ji

idlei idle time before Ji on M2
CSD maximum completion time of the jobs in sequence SNSD

Cmax maximum completion time of the jobs in sequence SN

NP = {JP 1, JP 2, . . . , JPk} a subset of jobs that are subject to a single precedence chain, where
JP 1 must be played before (but not necessarily immediately next
to) JP 2
JPk must be the last one in NP to be played

NNSDP = {JNSDP 1, JNSDP 2, . . . , JNSDPk} a subset of unscheduled jobs (i.e., N\NSD) in which jobs are not
subject to any precedenceconstraint

NBUF a subset of jobs that currently reside in the buffer
amin the minimum processing time (download time) of ai among the

jobs of N
bmin the minimum processing time (playback time) of bi among the

jobs of N
aprec-first download time of the job with the highest priority in the set of

unscheduled jobs of Np (i.e., Np ∩ (N\NSD))

bprec-last playback time of the job with the lowest priority in the set of
unscheduled jobs of Np (i.e., Np ∩ (N\NSD)).

2. Strong NP-hardness of the F2|ai-buffer|Cmax problem

In this section, we show that problem F2|ai-buffer|Cmax is strongly NP-hard by a reduction from the 3-Partition
problem, which is known to be NP-hard in the strong sense (see [31]).

1162 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175

Fig. 2. Gantt chart of the optimal schedule with Cmax = Y in Theorem 1.

3-Partition: Given an integer B and a set of A of 3t positive integers {x1, x2, . . . , x3t }, B/4 < xi < B/2, 1� i�3t ,
such that

∑3t
i=1 xi = tB, does there exist a partition A1, A2, . . . , At of the set A such that

∑
xi∈Al

xi = B, 1� l� t?

Theorem 1. The F2|ai-buffer|Cmax problem is strongly NP-hard.

Proof. It is not hard to see that the decision version of F2|ai-buffer|Cmax is in the NP class. We next perform a
polynomial-time reduction from 3-Partition. Given an instance of 3-Partition, we construct a job setN={1, 2, . . . , 4t+1}
as follows:

Ordinary jobs:

ai = xi, bi = Bxi, 1� i�3t ,

Enforcer jobs:

a3t+i = B2, b3t+i = B, 1� i� t + 1,

Y = (t + 1)(B2 + B),

Buffer capacity = B2 + B.
The network bit rate, BR is assumed to be one unit, i.e., si = ai for all jobs.
With the above instance, we claim that there is a partition for the set A as specified in 3-Partition if and only if there

exists an optimal schedule of F2|ai-buffer|Cmax whose makespan is no greater than Y. Before proceeding to the proof,
we assume t < xi for all elements of A. If it is not the case, we can scale the numerical values in polynomial time to
meet the inequality.

If part: Let subsets A1, A2, . . . , At be a partition as specified for the set A in 3-Partition. We schedule job J3t+1 first,
followed by the jobs corresponding to the elements of A1. Next, we schedule job J3t+2 and then the jobs corresponding
to the elements of A2. Continuing the arrangement, we have a schedule as shown in Fig. 2. Inspecting the Gantt chart,
we can easily see that the constructed schedule has a makespan Y.

Only if part: Suppose that there is an optimal schedule of F2|ai-buffer|Cmax with a makespan no greater than
Y = (t + 1)(B2 + B). We first note that, without loss of generality, we can assume the enforcer jobs are scheduled
in increasing order of their indices. Due to the buffer constraint, no two enforcer jobs are allowed to stay in the
buffer at the same time. This implies that for any two enforcer jobs, say for example J3t+1 and J3t+2, the machine-
two operation of J3t+1 and the machine-one operation of J3t+2 cannot overlap. This can be illustrated by the Gantt
chart given in Fig. 2. With this property and the fact that

∑4t
i=3t+1 ai + ∑4t

i=3t+1 bi = (t + 1)(B2 + B) = Y , no
ordinary job can be scheduled before enforcer job J3t+1 for otherwise the makespan will be greater than Y. That is,
the ordinary jobs need to be allocated to fully fill up the intervals in between any two consecutive enforcer jobs.
Moreover, no idle time on machine one is allowed and no idle time between any two machine-two operations is
allowed.

Let N1 be the set of ordinary jobs scheduled between jobs J3t+1 and J3t+2. We analyze two disjoint cases.
Case 1:

∑
Ji∈N1

ai < B. The completion time of J3t+2 on machine M1 is B2 + ∑
Ji∈N1

ai + B2. On the other

hand, on machine M2, the completion time of the last job in N1 is B2 + B + ∑
Ji

aiB. Consider the following

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1163

chain of derivations⎛
⎝B2 +

∑
Ji

ai + B2

⎞
⎠ −

⎛
⎝B2 + B +

∑
Ji

aiB

⎞
⎠

= B2 +
∑
Ji

ai − B −
∑
Ji

aiB

= B(B − 1) −
∑
Ji

ai (B − 1)

=
⎛
⎝B −

∑
Ji

ai

⎞
⎠ (B − 1)

> 0.

The strict inequality indicates that on machine M2 a non-zero idle time exists between the last job of N1 and
job J3t+2.

Case 2:
∑

Ji∈N1
ai > B. Let Ji1 , Ji2 , . . . , Jik be the ordinary jobs of N1 as arranged in the schedule. Let Jij , 1�j �k,

be the first job such that ai1 + ai2 + · · · + aij−1 �B and ai1 + ai2 + · · · + aij > B.
Case 2.1: ai1 + ai2 + · · ·+ aij−1 < B. When job Jij is considered for processing on machine one, the buffer contains

enforcer job J3t+1 and ordinary jobs Ji1 , Ji2 , . . . , Jij−1 . The residual space in the buffer is less than aij because
ai1 +ai2 +· · ·+aij > B. Therefore, job Jij needs to wait for B − (ai1 +ai2 +· · ·+aij−1) time units for the completion
of the playback of job J3t+1. As a sequel, non-zero idle time occurs, a contradiction.

Case 2.2: ai1 +ai2 +· · ·+aij−1 =B. The completion time of the first ordinary job Ji1 on machine M2 is B2+B+ai1B.
On machine M1, the completion time of the last job Jik of N1 is at most B2 + tB, which is smaller than B2 + B + ai1B

as we have assumed tB < xiB. When job J3t+1 is to be dispatched to machine M1, all jobs of N1 still occupy the buffer
with a total size greater than B. Subject to the capacity constraint, we cannot dispatch job J3t+1 onto machine M1,
implying non-zero idle time before J3t+1.

From the analysis of Cases 2.1 and 2.2, we known that
∑

Ji∈N1
ai > B cannot hold.

The above analysis has shown that
∑

Ji∈N1
ai =B must hold. We let the elements that define the jobs of N1 constitute

subset A1. Continuing the above line of analysis, we can iteratively come up with A2, A3 and At as required by the
3-Partition problem. The proof is complete. �

The instance constructed in the proof of F2|ai-buffer|Cmax is a degenerate case of F2|ai-buffer, chain|Cmax without
any precedence constraint. The studied problem F2|ai-buffer, chain|Cmax, with precedence constraints incorporated, is
more complicated and thus also computationally intractable. An extreme case of F2|ai-buffer, chain|Cmax has a chain
consisting of all jobs. In this case, the sequence defined by the chain is the solution.

3. Branch and bound algorithm

As the media object scheduling problem is strongly NP-hard, it is unlikely to develop polynomial time algo-
rithms for producing optimal schedules. In this section, we shall develop a branch and bound algorithm for the
F2|ai-buffer, chain|Cmax problem. To support the design of an efficient branch and bound algorithm, we develop
several lower bounds to curtail unnecessary branching for reducing the computing efforts. An NEH-based heuristic
algorithm will also be proposed to produce approximate solutions that will be used as the initial incumbent value of
the exact method.

3.1. Lower bounds based on the precedence constraint

In a node in the branch and bound tree, there should be a set of scheduled jobs (i.e., NSD) and other unscheduled
jobs (i.e., N\NSD). The scheduled jobs include jobs finished on M2, the job currently under processing on M2 (been

1164 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175

Fig. 3. Lower bound LB1.

Fig. 4. Lower bound LB2.

previously downloaded to the buffer), and buffered jobs waiting for playback on M2. The following two lower bounds,
LB1 and LB2, are based on certain characteristics of the precedence constraint.

3.1.1. LB1
Referring to Fig. 3, a lower bound at a node must be larger than the total ai for all Ji (i.e.,

∑
Ji∈NSD

ai+∑
Ji∈{N\NSD} ai

in Fig. 3) plus the processing time for the final job on M2. Given NS as the set of scheduled jobs, the last job
in a sequence should be either JPk (i.e., the last one to be played in JP) or the job with the smallest bi in NNSDP

(NNSDP =(N\NSD)∩(N\NP), i.e., the unscheduled jobs that are not subject to any precedence constraint), whichever
has a smaller playback time bi . Based on the above consideration, a lower bound LB1 can be given as

LB1 =
∑
Ji∈N

ai + min

{
min

Ji∈NNSDP

{bi}, bprec-last

}
. (1)

3.1.2. LB2
At a node in the search tree, a lower bound must be larger than the total processing time for all unscheduled jobs

on M2 (i.e.,
∑

Ji∈{N\NSD} bi in Fig. 4), plus the time elapsed before these jobs starting on M2. The earliest job to be
scheduled at this stage should be the one with the highest priority in (N\NSD), or the one with the smallest ai in
NNSDP , whichever has a smaller ai . Therefore, the time elapsed can be given by min(minJi∈NNSDP

(ai), aprec-first).
Given CSD as the flowtime of sequence SNSD

of job set NSD , a lower bound can be calculated as

LB2 = max

⎛
⎝CSD,

∑
Ji∈NSD

ai + min

(
min

Ji∈NNSDP

(ai), aprec-first

)⎞
⎠ +

∑
Ji∈N\NSD

bi . (2)

3.2. Lower bounds based on the buffer constraint

We further propose two more sophisticated lower bounds that exploit certain general characteristics of a buffer-
constrained sequence. At any instant during the presentation, if there is certain vacancy in the buffer, more unscheduled

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1165

Fig. 5. Buffer status at the four playback steps.

job(s) can be possibly downloaded into the buffer (that is, M1 can process further unscheduled jobs). Each time a job
finishes on M2, the newly released buffer space can then be used to download more unscheduled job(s). Note that based
on the requirements of real world multimedia applications, we assume the download process needs to be suspended
unless the currently available free space in the buffer is sufficient for keeping an incoming media object, that is, the
download process is not resumable.

3.2.1. LB3
In a node of the search tree, given the current makespan of the sequence SNSD

as CSD , a reasonable estimate on the
minimum remaining processing time is the total processing time (ai) required for all unscheduled jobs minus the total
allowable processing time on M1 before all the buffered jobs finish their playbacks. Fig. 5 illustrates the general idea
of LB3. The calculation is based on the following three values: (1) duration required to fully fill up an empty buffer
(denoted by Tbuffer), (2) duration allowed for further download after Jp starts its playback (denoted by Tfill) and (3)
duration allowed for further download during the processing of Jp (denoted by Tduring_p).

Refer to Fig. 5 and consider an instant when a job Jp is under processing on M2, with a number of other jobs waiting
in the buffer (e.g., Jq and Jr in Fig. 5). Assuming the data transmission bit rate on M1 (denoted by BR defined above)
to be constant, the time required to completely fill up the empty buffer is calculated as

Tbuffer = BUF

BR
. (3)

At a node, the current free buffer space (denoted by BUFfree) is the total buffer size minus the size of the job being
processed on M2 and the standby job(s) in the buffer. Hence, the duration allowed for further transmission after Jp

1166 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175

Fig. 6. Calculation of TR .

starts its playback is given as

Tfill = BUFfree

BR
. (4)

There are two different scenarios for calculating the duration allowed for further download during the processing of
a job Ji on M2 (denoted by Tduring_i). In the first case (step 1, Fig. 5(a)), bp is larger than Tfill. So, during the processing
of Jp on M2, the download process on M1 will be suspended once the buffer is full. The maximum allowable download
time is equal to Tfill. Hence, Tduring_p = Tfill.

In the second case (step 2, Fig. 5(b)), the buffer will not be fully occupied before Jq completes on M2. The buffer
has a free space for downloading the next job, say Jr . In such a case, Tduring_q = bq .

By combining the above two scenarios, we compute the allowable download time Tduring_i during the playback of a
buffered job Ji as

Tduring_i = min(Tfill, bi). (5)

The total allowable download time for all buffered jobs at that node can then be given as

Tduring_buffer =
∑

Ji∈NBUF

Tduring_i . (6)

We now propose a lower bound based on Tduring_buffer. Given CSD as the current makespan of the scheduled jobs, the
makespan of the complete sequenceNSD should be larger than a presumed ideal sequence with which all the unscheduled
jobs can be processed on M1 during the playback of all the buffer jobs on M2 (i.e.,

∑
Ji∈N\NSD

ai < Tduring_buffer). In
such a case, a lower bound can be given by summing CSD and the total processing time of the unscheduled jobs on
M2. That is, a lower bound is given as CSD + ∑

Ji∈N\NSD
bi .

In the case where the total processing time on M1 of the unscheduled jobs is larger than Tduring_buffer (i.e.,
∑

Ji∈N\NSD

ai �Tduring_buffer), the makespan should then be the sum of the following values: (1) the current makespan CSD , (2)
the remaining time required to process all the unscheduled jobs on M1 after the playback of current buffered jobs and
(3) the total download idle time (the time that cannot be allocated for downloading) when an unscheduled job is under
playback on M2. In the following, we elaborate the general idea of this lower bound.

During the playback of the currently buffered jobs on M2 (i.e., within CSD), there will be a time slot of Tduring_buffer for
possible download of the unscheduled jobs on M1. The minimum remaining time required to download the unscheduled
jobs after the completion time of current buffered jobs is given as TR = ∑

Ji∈N\NSD
ai − Tduring_buffer.

Referring to Fig. 6(b), due to the buffer constraint, the time span for downloading all the unscheduled jobs could be
larger than TR . When a job Ji is processed on M2, the buffer is at least occupied by Ji itself. Hence, the maximum

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1167

Fig. 7. Calculation of the minimum downloading idle time Tdi_i for Ji .

allowable download time on M1 during its playback is Tbuffer − ai . When Tduring_i < bi (Fig. 7(a)), the minimum
download idle time Tdi_i = bi − (Tbuffer − ai). Otherwise, Tdi_i = 0 (Figs. 7(b) and (c)).

Therefore, Tdi_i can then be given as

Tdi_i = max{bi − (Tbuffer − ai), 0}. (7)

The minimum download idle time TDI for all the unscheduled jobs is the sum of Tdi_i of all unscheduled jobs

TDI =
∑

Ji∈N\NSD

Tdi_i =
∑

Ji∈N\NSD

max{bi − (Tbuffer − ai), 0}. (8)

Thus, a lower bound can be given by CSD + TR + TDI .
In summary, we have the following lower bound:

LB =
3

⎧⎨
⎩

CSD +
∑

Ji∈N\NSD

bi if
∑

Ji∈N\NSD

ai < Tduring_buffer

CSD + TR + TDI otherwise.

3.2.2. LB4
With further elaboration, we can improve the tightness of the previous lower bound LB3 by calculating the best

possible job combination so as to optimize the utilization of the residual buffer space in any instance.
Given a partial schedule with Jp starting its playback, there are two cases to consider for calculating Tduring_p

(duration allowed for further download during the processing of Jp). In the first case (Fig. 8(a)), bq is smaller than
Tfill. The buffer will not be fully occupied before the completion of Jq . In such a case, Tduring_q = bq . In the second
case (Fig. 8(b)), bp is larger than the Tfill. The maximum allowable download time Tduring_p will depend on the
possible combinations of the unscheduled jobs (e.g., in Fig. 8(b), {ai, ak} occupies more buffer space than aj). The best
allocation can be calculated using techniques of the 0-1 Knapsack problem [27]. In the studied case, we can compute
Tduring_i using algorithms of the 0-1 Knapsack problem by mapping ai to the item values and Tfill to the knapsack
capacity. The objective is then to determine an optimal combination of ai’s among the unscheduled jobs with which
Tduring_i is maximized. The 0-1 Knapsack problem can be solved by dynamic programming algorithms (denoted by
DP) in O(nT fill) time, where n is the number of jobs. We denote the solution obtained from the Knapsack problem by
Tduring_knapsack.

1168 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175

Fig. 8. Maximum allowable download time.

Fig. 9. Calculation of Tduring_i by dynamic programming.

By combining the above two cases, we can compute the allowable download time during the playback of a buffered
job Ji by

If Tfill > bi (Fig. 9(a)), then Tduring_i = bi ,

Else Tduring_i = Tduring_Knapsack_i (Fig. 9(b)). (9)

The total allowable download time for all buffered jobs in the partial schedule is given as

Tduring_buffer =
∑

Ji∈NBUF

Tduring_i . (10)

The minimum remaining time required to download the unscheduled jobs after the playback of the currently buffered
jobs is

TR = max

⎧⎨
⎩

∑
Ji∈N\NSD

ai − Tduring_buffer, 0

⎫⎬
⎭ . (11)

Under the buffer constraint, for any sequence, the time span for downloading all unscheduled jobs should be no less
than TR due to the possible idle time in the download process. When Ji is being played, the buffer is at least occupied
by Ji . Hence, the maximum of allowable download time during its processing is Tbuffer −ai . When Tfill > bi (Fig. 9(a)),
Tdi_i = 0. When Tfill �bi (Fig. 9(b)), Tduring_i can be computed by using the dynamic programming algorithms for
solving the Knapsack problem. The download idle time for Ji can then be given as

Tdi_i = bi − Tduring_Knapsack_i (12)

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1169

By combining the above two cases, Tdi_i can be given as

If Tfill > bi, then Tdi_i = 0, else Tdi_i = bi − Tduring_Knapsack_i . (13)

The minimum download idle time for all the unscheduled jobs is the sum of the download idle times of all the
unscheduled jobs, given as

TDI =
∑

Ji∈N\NSD

Tdi_i =
∑

Ji∈N\NSD

max{bi − Tduring_Knapsack_i , 0}. (14)

Summarizing the above discussions, we have

LB4 = CSD + TR + TDI

= CSD + max

⎧⎨
⎩

∑
Ji∈N\NSD

ai −
∑

Ji∈NBUF

Tduring_i , 0

⎫⎬
⎭ + TDI . (15)

3.3. Upper bounds

We apply the NEH algorithm proposed by Nawaz et al. [28] to obtain an upper bound. The method has been widely
applied in various flowshop scheduling problems with pretty good performances [29,30].

We outline the major steps in the NEH method as follows:
NEH-based Algorithm—UB:
Step 1: For each Ji , compute ci = ai + bi . Sort the jobs by non-increasing ci .
Step 2: Take the first two jobs in the list of sorted jobs in Step 1, and order them (without violating the precedence

constraint) so as to minimize the partial makespan.
Step 3: For k = 3 to n do. Insert the kth job into the partial schedule. There are k possible positions for this insertion.

Select the position which minimizes the partial makespan while compliant to the precedence constraint.
Step 4: Output the final sequence from step 3.
Note that for applications where the multimedia servers typically handle a huge number of requests simultane-

ously, the CPU resource that can be allocated for each request to calculate the heuristic sequence is extremely limited.
Therefore, the computation time required by the proposed NEH-based heuristic solutions needs to be addressed.
In such a case, a faster algorithm giving a potentially worse schedule than NEH-based solutions might be able to
give a smaller value of the summation of the computation time and the scheduled makespan. Therefore, for appli-
cation with busy servers, we also apply a much more efficient algorithm—the CDS algorithm, which was proposed
by Campbell et al. [32] in 1970. The CDS algorithm is a generalization of Johnson’s algorithm and has been fre-
quently used for obtaining approximate solutions to m-machine flowshop scheduling problems without precedence
constraints.

4. Computational results

This section presents the computational experiments designed to evaluate the effectiveness and efficiency of the
proposed lower bounds and upper bound for producing an optimal media sequence. For each job set, processing
times ai and bi were randomly generated from the uniform interval [1, 100]. The transmission bite rate was set to be
160 KB/s (i.e., BR=160 K). The simulation codes were written in C++ language, and the experiments were performed
on IBM ×Series ×206 m computers running Microsoft Window Server 2003. All numerical values of time reported
are in CPU-seconds(s). We conducted a series of computational experiments with different problem sizes (small and
big size). The instance generation procedure yields test instances encompassing a wide variety of real life scenarios
of online multimedia applications. In each media set, we randomly assigned certain precedence constraints among a
portion (0%, 20% and 40%) of the objects. For each experiment, 50 different media sets were used to investigate the
proposed algorithms. Two buffer size constraints, 16,000 KB and 30,720 KB were given for the experiments.

Tables 2–4 list the results for problems with a relatively large buffer size, 30,720 KB. Table 2 shows that, without
any precedence constraints, in more than 26 experiments out of the 50 experiments conducted, the overall lower bound

1170 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175
Ta

bl
e

2
B

uf
fe

r=
30

,
72

0
K

B

D
ev

ia
tio

n
(%

)

n
L

B
=

U
B

U
B

vs
.O

pt
O

pt
vs

.L
B

U
B

vs
.L

B
L

B
4

L
B

3

A
vg

.
M

ax
.

A
vg

.
M

ax
.

A
vg

.
M

ax
.

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

8
29

1.
04

7.
34

0.
46

5.
52

1.
45

10
.0

9
19

1
22

88
0.

00
0

0
33

7
82

93
0.

00
0

0
10

27
0.

74
5.

89
0.

16
3.

02
0.

87
8.

42
50

83
99

,0
02

0.
00

8
0

89
65

21
9,

17
1

0.
00

3
0

12
28

0.
80

5.
08

0.
21

2.
92

0.
98

5.
05

8.
43

E
+

04
3.

67
E

+
06

0.
03

7
0

84
70

1
3.

67
E

+
06

0.
03

6
0

14
26

0.
50

3.
12

0.
12

1.
78

0.
61

3.
58

2.
15

E
+

07
1.

07
E

+
09

9.
93

0
0

2.
19

E
+

07
1.

09
E

+
09

9.
69

5
0

16
32

0.
61

3.
94

0.
03

0.
87

0.
62

4.
61

N
A

N
A

N
A

1
N

A
N

A
N

A
1

18
26

0.
74

5.
31

0.
07

0.
90

0.
79

5.
04

N
A

N
A

N
A

3
N

A
N

A
N

A
4

N
o

pr
ec

ed
en

ce
co

ns
tr

ai
nt

.U
B

vs
.O

pt
=

U
B

−O
pt

O
pt

×
10

0%
,O

pt
vs

.L
B

=
O

pt
−L

B
O

pt
×

10
0%

,U
B

vs
.L

B
=

U
B

−L
B

U
B

×
10

0%
.

Ta
bl

e
3

B
uf

fe
r
=

30
,
72

0
K

B

D
ev

ia
tio

n
(%

)

n
L

B
=

U
B

U
B

vs
.O

pt
O

pt
vs

.L
B

U
B

vs
.L

B
L

B
4

L
B

3

A
vg

.
M

ax
.

A
vg

.
M

ax
.

A
vg

.
M

ax
.

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

8
27

1.
33

10
.6

7
0.

68
7.

62
1.

93
10

.5
4

16
2

26
06

0.
00

0
0

20
5

26
06

0.
00

0
0

10
22

1.
15

10
.0

7
0.

39
5.

73
1.

49
9.

96
76

83
13

6,
24

8
0.

00
4

0
90

12
13

6,
25

9
0.

00
4

0
12

21
0.

91
8.

88
0.

19
2.

92
1.

07
8.

15
7.

49
E

+
04

2.
95

E
+

06
0.

03
2

0
7.

56
E

+
04

2.
96

E
+

06
0.

03
2

0
14

21
0.

64
4.

60
0.

14
2.

04
0.

77
4.

40
1.

27
E

+
07

6.
07

E
+

08
8.

52
8

0
1.

29
E

+
07

6.
17

E
+

08
8.

63
7

0
16

25
1.

14
7.

62
0.

06
1.

40
1.

15
7.

08
N

A
N

A
N

A
1

2.
83

E
+

07
1.

18
E

+
09

12
.6

66
0

18
23

1.
10

6.
73

0.
04

0.
90

1.
10

6.
72

N
A

N
A

N
A

4
N

A
N

A
N

A
4

Pr
ec

ed
en

ce
co

ns
tr

ai
nt

=
20

%
.

Ta
bl

e
4

B
uf

fe
r
=

30
,
72

0
K

B

D
ev

ia
tio

n
(%

)

n
L

B
=

U
B

U
B

vs
.O

pt
O

pt
vs

.L
B

U
B

vs
.L

B
L

B
4

L
B

3

A
vg

.
M

ax
.

A
vg

.
M

ax
.

A
vg

.
M

ax
.

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

8
22

1.
68

10
.6

4
1.

55
12

.3
3

3.
11

14
.4

7
27

3
29

56
0.

00
0

0
28

4
29

56
0.

00
0

0
10

13
2.

84
14

.1
0

1.
31

12
.3

6
3.

93
14

.0
3

29
56

31
,2

94
0.

00
1

0
29

96
31

,2
94

0.
00

1
0

12
14

2.
25

11
.1

3
0.

48
4.

21
2.

60
12

.1
7

6.
51

E
+

04
1.

01
E

+
06

0.
02

2
0

6.
56

E
+

04
1.

01
E

+
06

0.
02

2
0

14
10

1.
68

8.
38

0.
34

3.
84

1.
95

7.
73

1.
06

E
+

06
1.

84
E

+
07

0.
58

0
0

1.
08

E
+

06
1.

87
E

+
07

0.
55

7
0

16
11

1.
94

11
.4

5
0.

46
10

.1
0

2.
29

11
.1

1
1.

77
E

+
07

2.
08

E
+

08
6.

65
8

0
1.

81
E

+
07

2.
14

E
+

08
6.

15
9

0
18

13
2.

53
9.

10
0.

19
2.

65
2.

59
8.

34
N

A
N

A
N

A
3

N
A

N
A

N
A

3

Pr
ec

ed
en

ce
co

ns
tr

ai
nt

=
40

%
.

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1171

Table 5
The deviation between UB and LB

Precedence 0% 20% 40%

Gap UB vs. LB UB = LB UB vs. LB UB = LB UB vs. LB UB = LB

Avg./Max. Avg. Max. No. Avg. Max. No. Avg. Max. No.

20 0.652 3.097 19 0.744 3.607 17 2.418 9.626 6
50 0.163 1.030 21 0.407 2.735 18 1.125 4.483 8

100 0.092 0.915 21 0.258 1.478 15 0.728 2.824 3
200 0.058 0.682 19 0.135 1.112 9 0.557 2.166 5
300 0.043 0.370 21 0.109 0.697 7 0.519 1.892 0
500 0.031 0.270 9 0.064 0.341 7 0.332 1.246 1

Buffer = 30, 720 KB.

equals to the NEH-based upper bound (LB = UB) at the root node, i.e., optimal solutions were found. For all the
experiments, the average error ratios between the optimal solutions (Opt) and UB or LB are less than 1.45%. For
problems with more than 14 jobs, the branch and bound algorithm is not very computationally efficient and there were
instances for which the branch and bound algorithm cannot find optimal solutions within 10 min. Tables 3 and 4 show
that as the density of the precedence constraints increases, the number of instances for which LB = UB decreases as
compared to the cases without precedence constraints. On the other hand, the average error ratios between the optimal
solutions (Opt) and UB or LB increase accordingly. These results indicate that the proposed lower bounds are more
effective in problems with sparse precedence constraints among the jobs. Further, in cases where the buffer size is
relatively large, the total number of nodes traversed before the optimal solutions can be obtained is slightly reduced if
LB4 (with the dynamic programming algorithm) is applied. Therefore, we conclude that LB4 only slightly outperforms
LB3 for problems with a large buffer size.

As the problem size grows, as listed in Table 5, UB has an average gap to LB less than 2.418%. This result indicates
that UB can be used as a pretty good approximate solution in real time multimedia applications.

For problems with a small buffer, Tables 6–8 show that the possibility for LB = UB at the root node is minimal.
Generally speaking, the gaps between LB and UB are less than 13% on average. As the number of jobs increases, the
average CPU time increases significantly. As the percentages of the precedence constraints increase, the average CPU
time decreases. For the problems with 40% precedence constraints, the branch and bound algorithm can handle up to
14 jobs. Furthermore, the total number of nodes traversed for a problem is reduced by about 50% if LB4 is applied.
However, the computation time is roughly doubled in each case. As the problem size increases, Table 9 shows that the
average gap between UB and LB could get to 7.919% for problems without precedence constraints. This gap seems to
decrease as the problem size increases. But the gap increases slightly as the density of precedence constraints increases.
Still, this result indicates that the UB can be used as a rather good approximation solution in real time multimedia
applications.

For applications where the multimedia servers typically handle a huge number of simultaneous requests, we have
also conducted experiments to compare the performances of the NEH-based algorithm with the CDS-based algorithm.
Table 10 lists the computation results of the NEH-based algorithm and the CDS-based algorithm for problems without
any precedence constraint. Two different settings of the CPU resources were used in the experiments. The first case
simulates a rather busy server with which only 1/100,000 of the CPU time can be allocated to the scheduling task. The
second case simulates an extremely busy server with which only 1/1,000,000 of the CPU time can be allocated. The
results clearly indicate that for the second case (applications with extremely busy servers), the CDS-based algorithm
provides better solutions than the NEH-based algorithm.

5. System implementation

In current web environments, there are a number of technologies available for providing prefetchable multime-
dia presentations that integrate different modalities of media objects. The most popular ones include SMIL, Flash,

1172 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175
Ta

bl
e

6
B

uf
fe

r=
16

,
00

0
K

B

16
,
00

0
K

B
D

ev
ia

tio
n

(%
)

n
L

B
=

U
B

U
B

vs
.O

pt
O

pt
vs

.L
B

U
B

vs
.L

B
L

B
4

L
B

3

A
vg

.
M

ax
.

A
vg

.
M

ax
.

A
vg

.
M

ax
.

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

8
3

1.
96

10
.9

3
5.

67
17

.0
0

7.
45

17
.0

0
50

73
29

63
0

0.
01

0
0

11
73

5
81

88
0

0.
00

5
0

10
1

2.
28

6.
89

5.
26

13
.4

6
7.

36
14

.2
5

1.
75

E
+

05
2.

06
E

+
06

0.
32

2
0

4.
56

E
+

05
3.

38
E

+
06

0.
19

4
0

12
1

1.
95

8.
54

6.
57

22
.7

5
8.

34
22

.7
5

6.
48

E
+

06
9.

44
E

+
07

15
.9

15
0

2.
14

E
+

07
1.

69
E

+
08

9.
83

3
0

14
0

1.
94

6.
28

6.
84

17
.8

3
8.

62
17

.8
3

N
A

N
A

N
A

18
N

A
N

A
N

A
13

16
0

1.
39

5.
22

6.
93

15
.6

2
8.

21
15

.6
2

N
A

N
A

N
A

46
N

A
N

A
N

A
45

N
o

pr
ec

ed
en

ce
co

ns
tr

ai
nt

.

Ta
bl

e
7

B
uf

fe
r=

16
,
00

0
K

B

16
,
00

0
K

B
D

ev
ia

tio
n

(%
)

n
L

B
=

U
B

U
B

vs
.O

pt
O

pt
vs

.L
B

U
B

vs
.L

B
L

B
4

L
B

3

A
vg

.
M

ax
.

A
vg

.
M

ax
.

A
vg

.
M

ax
.

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

8
3

2.
68

11
.0

4
5.

91
16

.0
0

8.
32

19
.5

0
33

76
16

,2
48

0.
00

7
0

73
56

48
,8

19
0.

00
2

0
10

0
2.

87
7.

49
5.

76
14

.6
9

8.
37

16
.8

7
5.

17
E

+
04

5.
53

E
+

05
0.

09
0

0
1.

14
E

+
05

5.
53

E
+

05
0.

04
7

0
12

1
3.

52
9.

50
6.

86
22

.7
5

9.
99

23
.5

7
2.

02
E

+
06

2.
50

E
+

07
4.

55
5

0
5.

87
E

+
06

4.
11

E
+

07
2.

59
5

0
14

0
2.

77
10

.1
3

6.
99

17
.8

3
9.

48
17

.8
3

N
A

N
A

N
A

10
N

A
N

A
N

A
7

16
0

2.
62

7.
65

7.
36

15
.6

2
9.

71
15

.6
9

N
A

N
A

N
A

36
N

A
N

A
N

A
29

18
1

1.
98

6.
97

6.
51

13
.6

9
8.

31
15

.1
6

N
A

N
A

N
A

46
N

A
N

A
N

A
44

Pr
ec

ed
en

ce
co

ns
tr

ai
nt

=
20

%
.

Ta
bl

e
8

B
uf

fe
r=

16
,
00

0
K

B

16
,
00

0
K

B
D

ev
ia

tio
n

(%
)

n
L

B
=

U
B

U
B

vs
.O

pt
O

pt
vs

.L
B

U
B

vs
.L

B
L

B
4

L
B

3

A
vg

.
M

ax
.

A
vg

.
M

ax
.

A
vg

.
M

ax
.

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

av
g_

no
de

s
m

ax
_n

od
es

av
g_

tim
e

U
nf

ou
nd

8
1

3.
25

19
.9

6
8.

11
17

.8
3

10
.8

8
22

.8
8

10
07

25
49

0.
00

2
0

17
47

57
88

0.
00

1
0

10
1

3.
68

14
.3

8
7.

36
16

.2
8

10
.5

3
21

.4
0

1.
07

E
+

04
3.

56
E

+
04

0.
01

8
0

1.
98

E
+

04
6.

03
E

+
04

0.
00

7
0

12
0

4.
30

12
.5

4
8.

00
22

.7
5

11
.7

1
27

.0
6

3.
03

E
+

05
1.

72
E

+
06

0.
68

6
0

7.
23

E
+

05
3.

45
E

+
06

0.
28

5
0

14
0

4.
15

13
.7

5
8.

72
18

.7
2

12
.2

7
21

.6
3

6.
38

E
+

06
6.

81
E

+
07

25
.9

82
0

1.
97

E
+

07
3.

09
E

+
08

11
.2

54
0

16
0

4.
08

15
.2

9
8.

75
14

.6
0

12
.2

4
21

.1
6

N
A

N
A

N
A

9
N

A
N

A
N

A
6

18
0

4.
33

14
.7

8
7.

35
17

.4
4

11
.1

2
25

.3
9

N
A

N
A

N
A

28
N

A
N

A
N

A
20

Pr
ec

ed
en

ce
co

ns
tr

ai
nt

=
40

%
.

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1173

Table 9
Deviation between UB and LB

Precedence 0% 20% 40%

Gap UB vs. LB UB = LB UB vs. LB UB = LB UB vs. LB UB = LB

Avg./Max. Avg. Max. No. Avg. Max. No. Avg. Max. No.

20 7.919 14.143 0 9.847 17.582 0 12.773 21.930 0
50 6.191 12.985 0 7.957 13.739 0 10.594 16.068 0

100 4.412 6.653 0 6.173 8.409 0 9.342 12.675 0
200 3.632 6.052 0 5.364 7.760 0 8.731 11.246 0
300 3.300 4.821 0 4.944 6.905 0 8.028 9.459 0
500 2.811 4.349 0 4.249 5.584 0 7.433 8.728 0

Buffer = 16, 000 KB.

Table 10
Comparison of the NEH-based and the CDS-based heuristic solutions

N Case 1: 1/100,000 CPU time allocated Case 2: 1/1,000,000 CPU time allocated

16,000 KB NEH(UB) CDS 30,720 KB NEH(UB) CDS 16,000KB NEH CDS 30,720KB NEH(UB) CDS
(s) (s) (s) (s)

10 CPU_time 35.40 0.85 CPU_time 27.90 0.60 CPU_time 304.00 7.80 CPU_time 365.70 11.80
Makespan 732.18 841.66 Makespan 546.16 592.62 Makespan 732.18 841.66 Makespan 546.16 592.62
Total time 767.58 842.51 Total time 574.06 593.22 Total time 1036.18 849.46 Total time 911.86 604.42

20 CPU_time 76.50 1.90 CPU_time 63.80 1.90 CPU_time 732.30 20.30 CPU_time 591.00 20.10
Makespan 1460.72 1757.10 Makespan 1069.36 1252.24 Makespan 1460.72 1757.10 Makespan 1069.36 1252.24
Total time 1537.22 1759.00 Total time 1133.16 1254.14 Total time 2193.02 1777.40 Total time 1660.36 1272.34

50 CPU_time 346.28 6.90 CPU_time 293.50 7.20 CPU_time 3399.00 72.00 CPU_time 2806.00 71.00
Makespan 3592.92 4550.98 Makespan 2628.66 3290.94 Makespan 3592.92 4550.98 Makespan 2628.66 3290.94
Total time 3939.20 4557.88 Total time 2922.16 3298.14 Total time 6991.92 4622.98 Total time 5434.66 3361.94

Quicktime, Real Player, etc. With these players and a standard web server, a prefetch-enabled TV-like presentation
services can be realized using script languages or APIs supported by the players. Fig. 10 shows a snapshot of a prototype
Flash-based implementation incorporating the object ordering algorithms developed in this paper.

6. Conclusion

In this paper, we mapped the media object scheduling problem aiming to minimize the presentation span to a
conventional two-machine flowshop scheduling problem. Two constraints are considered in this paper, including a
single chain precedence constraint and a player-side buffer constraint. In particular, the characteristics of the player-
side buffer constraints have never been explored in previous flowshop scheduling problems. The player-side buffer
constraint is termed as processing time-dependent buffer so as to distinguish it from the conventional item-based
intermediate buffer in flowshop scheduling problems. We have proved that the studied problem is strongly NP-hard in
Section 2.

Based on the characteristics associated with the precedence and the buffer constraints, we have proposed four lower
bounds and an NEH-based upper bound for a branch and bound solution method. From the simulation experiments,
the average gap between the overall lower bound and the NEH-based upper bound is less than 13% for problems
with small buffer sizes and high density of precedence constraints, and 3% for problems with large buffer sizes.
The performance of the proposed NEH-based heuristic solutions should be satisfactory for typical real time online
multimedia applications. For applications where the media objects are delivered through extremely busy servers with

1174 F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175

Fig. 10. Snapshot of a prototype prefetch-enabled media player that incorporates the scheduling algorithms discussed in this paper.

which only very restricted CPU resources can be allocated for computation, the CDS-based algorithm provides better
sequences than the NEH-based algorithm.

Acknowledgments

The authors are grateful to the anonymous referees for their constructive comments that have improved the presen-
tation of this paper.

References

[1] Brucker P. Scheduling algorithms. 3rd ed., Berlin: Springer; 2001.
[2] Strusevich VA. Shop scheduling problems under precedence constraints. Annals of Operations Research 1997;69(1):351–77.
[3] Gladky AA, Shafransky YM, Strusevich VA. Flow shop scheduling problems under machine-dependent precedence constraints. Journal of

Combinatorial Optimization 2004;8(1):13–28.
[4] Lenstra J, Rinnooy Kan AHG, Brucker P. Complexity of machine scheduling problem. Annals of Discrete Mathematics 1977;1:343–62.
[5] Lenstra J, Rinnooy Kan AHG. Complexity of scheduling under precedence constraints. Operations Research 1978;26(1):22–35.
[6] Monma CL. Sequencing to minimize the maximum job cost. Operations Research 1980;28(4):942–51.
[7] Hariri AMA, Potts CN. Algorithms for two-machine flow-shop sequencing with precedence constraints. European Journal of Operational

Research 1984;17(2):238–48.
[8] McMahon GB, Lim CJ. The two-machine flow shop problem with arbitrary precedence relations. European Journal of Operational Research

1993;64(2):249–57.
[9] Kurisu T. Two-machine scheduling under required precedence among jobs. Journal of the Operations Research Society of Japan 1976;19(1):

1–13.
[10] Monma CL, Sidney JB. Sequencing with series-parallel precedence constraints. Mathematics of Operations Research 1979;4(3):215–24.
[11] Sidney JB. The two-machine maximum flow time problem with series parallel precedence relations. Operations Research 1979;27(4):782–91.

F.-C. Lin et al. / Computers & Operations Research 36 (2009) 1158–1175 1175

[12] Gordon VS, Shafransky YM. Optimal sequencing under series-parallel precedence constraints. Doklady Akademii Nauk BSSR 1978;22:
224–47 (in Russian).

[13] Valdes J, Tarjan RE, Lawler EL. The recognition of series parallel digraphs. SIAM Journal on Computing 1982;11(2):298–313.
[14] Papadimitriou CH, Kanellakis PC. Flowshop scheduling with limited temporary storage. Journal of the Association for Computing Machinery

(JACM) 1980;27(3):533–49.
[15] Gilmore PC, Gomory RE. Sequencing a one state-variable machine: a solvable case of the traveling salesman problem. Operations Research

1964;12(5):655–79.
[16] Leisten R. Flowshop sequencing problems with limited buffer storage. International Journal of Production Research 1990;28(11):2085–100.
[17] Smutnicki C. A two-machine permutation flow shop scheduling problem with buffer. OR Spectrum 1998;20(4):229–35.
[18] Dutta SK, Cunningham AA. Sequencing two-machine flow-shops with finite intermediate storage. Management Science 1975;21(9):989–96.
[19] Brucker P, Heitmann S, Hurink J. Flow-shop problems with intermediate buffers. OR Spectrum 2003;25(4):549–74.
[20] Tang L, Xuan H. Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers. Journal of the

Operational Research Society 2006;57:316–24.
[21] Wang L, Zhang L, Zheng DZ. An effective hybrid genetic algorithm for flow shop scheduling with limited buffers. Computers & Operations

Research 2006;33(10):2960–71.
[22] Lin FC, Hong JS. Using Johnson’s rule to optimize media object sequence for multimedia autoplay services. NCNU Technical Report

TR20060005, 2006. 〈http://tr.csie.ncnu.edu.tw/〉.
[23] Johnson SM. Optimal two- and three-stage production schedules with setup time included. Naval Research Logistics Quarterly 1954;1:61–8.
[24] Allahverdi A, Al-Anzi FS. Using two-machine flowshop with maximum lateness objective to model multimedia data objects scheduling problem

for WWW applications. Computers & Operations Research 2002;29(8):971–94.
[25] Batra P, Eleftheriadis A. A framework for optimal scheduling of structured and streaming media. CU/ADVENT Technical Report 2000-03,

2000. 〈http://www.ee.columbia.edu/∼pbatra/tr00.pdf〉.
[26] Blazewicz J, Dell’Olmo P, Drozdowski M. Scheduling of client-server applications. International Transactions in Operational Research

1999;6(4):345–63.
[27] Martello S, Toth P. Knapsack problems: algorithms and computer implementations. Chichester: Wiley; 1990.
[28] Nawaz M, Enscore E, Ham I. A heuristic algorithm for the m-machine, n-job flow shop sequencing problem. OMEGA 1983;11:91–5.
[29] Watson JP, Barbulescu L, Howe AE, Whitley LD. Algorithm performance and problem structure for flow-shop scheduling. In: The 16th national

conference on artificial intelligence (AAAI-99) 1999. p. 688–95.
[30] Agarwal A, Colak S, Eryarsoy E. Improvement heuristic for the flow-shop scheduling problem: an adaptive-learning approach. European

Journal of Operational Research 2006;169(3):801–15.
[31] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. San Franciso, CA: Freeman; 1979.
[32] Campbell HG, Dudek RA, Smith ML. A heuristic algorithm for n job, m machine sequencing problem. Management Science 1970;16(10):

630–7.

http://tr.csie.ncnu.edu.tw/
http://www.ee.columbia.edu/~pbatra/tr00.pdf

	A two-machine flowshop problem with processing time-dependent buffer constraints---An application in multimedia presentations62626262
	Introduction
	Strong NP-hardness of the F2"026A30C ai=-buffer"026A30C Cmax problem
	Branch and bound algorithm
	Lower bounds based on the precedence constraint
	=LB1
	=LB2

	Lower bounds based on the buffer constraint
	=LB3
	=LB4

	Upper bounds

	Computational results
	System implementation
	Conclusion
	Acknowledgments
	References

