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運動影片內容分析、理解與註釋之研究 

 

研究生: 陳華總                              指導教授: 李素瑛 教授 
             

 

國立交通大學資訊工程學系 

 

摘要 

 

隨著教育、娛樂、運動以及其它各式各樣多媒體應用的發展，數位化的影音多媒體

數位內容與日劇增。因此，許多研究致力於多媒體內容的分析與理解並研發實用的系

統，讓使用者可以快速地獲得所要的多媒體資料。運動影片是影音多媒體資料中相當重

要的一環，有著相當可觀的商業利益、多樣的娛樂效果以及龐大的觀眾群，所以有越來

越多的研究著眼於運動影片分析。目前大多數的運動影片分析以場景分類或精彩片段的

擷取為主。然而，有越來越多的觀眾或球員希望能有多媒體系統的輔助來取得更豐富的

運動資訊。甚至，裁判也要求利用電腦技術來輔助判決以提高公平性。本論文研究重點

在於單一視角之視訊特徵的整合並設計相關演算法以達成運動影片內容理解、索引、註

釋與擷取。 

在運動影片中，重要的事件主要發生於球跟球員之間的互動。為了得知意義上與戰

術上的相關內容，首先我們提出了一個有效且快速的方法來追蹤球路並計算球在各畫面

中的位置。球路追蹤是一個相當艱難的問題。球在畫面中的體積小且不明顯，移動速度

又快，想在單一畫面中辨別出哪一個物體是球，幾乎是不可能的。因此，我們利用球在

畫面中移動的特性來辨識哪一段軌跡是球路，而不是從各畫面中去辨識哪一個物體是

球。為了取得更豐富的比賽資訊並對比賽內容有更深刻的理解，我們提出一套創新的方

法，能夠從單一視角之影片重建 3D 球路。此 3D 球路重建之演算法可用於籃球、排球、
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網球之類擁有特定球場模型且多數場地特徵能被鏡頭所拍攝到之運動影片。在這類的運

動影片中，利用攝影機所拍攝到的球場邊線與特徵物體，可以計算出三維空間位置與二

維畫面座標之間的轉換關係。要從二維資訊去推論三維的資訊本來就是相當具有挑戰性

的一個問題，因為在影像拍攝的過程中已經損失了空間中的深度資訊。在此，我們利用

物理特性來設立球在三維空間的移動模型，再加上先前所求計算得之二維軌跡以及三維

二維間的轉換關係，我們將可以估算出三維球路模型的參數，進而重建球在三維空間的

運動軌跡。所取得之二維球路與重建之三維球路在運動影片中有著多樣化的重要應用，

像是籃球的投籃出手點定位、排球事件偵測，以及棒球的投球球路分析。從三維球路所

產生之三百六十度虛擬重播更可以讓觀眾隨己意變換不同視角來觀看球的動向。 

在棒球比賽中，投球的進壘點（球經過打者時，與好球帶的相對位置）是影響球被

打擊出去後移動方向的一個重要因素。好球帶是決定投球進壘點的一個參考指標，因此

我們提出了一演算法分析打者姿勢與輪廓來設定好球帶，不論左打或右打姿勢都可適

用。除了投打之間的對決外，球被打擊出去後的守備過程亦是吸引觀眾注目的焦點。經

由辨識畫面中的特徵物體與線段，我們分類目前攝影機所拍攝的球場區域。因為攝影機

所拍攝之區域即為事件發生之區域，所以我們可以利用影片中不同球場區域之轉換來推

論球的移動路線與防守過程，並提供相似防守片段之比較，以分析守備策略。 

我們以籃球、排球與棒球影片為測試資料，進行了多樣的實驗來評估所提出各種方

法的效能。在我們的實驗中，其結果驗證所提各方法之可行性與優越性，並顯示從單一

視角之運動影片即可取得相當多的比賽內容資訊供球員、教練做戰術分析與資料統計之

用，並讓觀眾對比賽有更深入的了解。我們亦相信，本論文所提之運動資訊擷與影片內

容理解諸多方法將可以應用於更多種類之運動影片。 
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Abstract 

The explosive proliferation of multimedia data in education, entertainment, sport and 

various applications necessitates the development of multimedia application systems and 

tools. As important multimedia content, sports video has been attracting considerable 

research efforts due to the commercial benefits, entertainment functionalities and a large 

audience base. The majority of existing work on sports video analysis focuses on shot 

classification and highlight extraction. However, more keenly than ever, increasing sports 

fans and professionals desire computer-assisted sports information retrieval. Even more, the 

umpires demand assistance in judgment with computer technologies. In this thesis, we 

concentrate on the feature integration and semantic analysis for sports video content 

understanding, indexing, annotation and retrieval from single camera video.  

In sports games, important events are mainly caused by the ball-player interaction and 

the ball trajectory contains significant information and semantics. To infer the semantic and 

tactical content, we first propose an efficient and effective scheme to track the ball and 

compute the ball positions over frames. Ball tracking is arduous task due to the fast speed and 

small size. It is almost impossible to distinguish the ball within a single frame. Hence, we 

utilize the ball motion characteristic over frames to identify the true ball trajectory, instead of 

recognizing which object is the ball in each frame. To retrieve more information about the 
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games and have a further insight, we design an innovative approach of 3D ball trajectory 

reconstruction in single camera video for court sports, where the court lines and feature 

objects captured in the frames can be used for camera calibration to compute the 

transformation between the 3D real world and the 2D frame. The problem of 2D-to-3D 

inference is intrinsically challenging due to the loss of the depth information in picture 

capturing. Incorporating the 3D-2D transformation and the physical characteristic of ball 

motion, we are able to approximate the depth information and accomplish the 2D-to-3D 

trajectory reconstruction. Manifold applications of sports video understanding and sports 

information retrieval can be achieved on the basis of the obtained 2D trajectory and the 

reconstructed 3D trajectory, such as shooting location estimation in basketball, event 

detection in volleyball, pitch analysis in baseball, etc. The 3D virtual replay generated from 

the 3D trajectory makes game watching a whole new experience that the audience are 

allowed to switch between different viewpoints for watching the ball motion. 

In baseball, the pitch location (the relative location of the ball in/around the strike zone 

when the ball passes by the batter) is an important factor affecting the motion of the ball hit 

into the field. Strike zone provides the reference for determining the pitch location. Hence, 

we design a contour-based strike zone shaping and visualization method. No matter the batter 

is right- or left-handed, we are able to shape the strike zone adaptively to the batter’s stance. 

Computer-assisted strike/ball judgment can also be achieved via the shaped strike zone. In 

addition to the pitcher/batter confrontation, the defense process after the ball is batted also 

attracts much attention. Therefore, we design algorithms to recognize spatial patterns in 

frames for classifying the active regions of event occurrence in the field. The ball routing 

patterns and defense process can be inferred from the transitions of the active regions 

captured in the video. Furthermore, the sequences with similar ball routing and defense 

patterns can be retrieved for defense strategy analysis. 

Comprehensive experiments on basketball, volleyball and baseball videos have been 



 v

conducted to evaluate the performance of the proposed methods. The experimental results 

show that the proposed methods perform well in retrieving game information and even 

reconstructing 3D information from single camera video for different kinds of sports. It is our 

belief that the preliminary work in this thesis will lead to satisfactory solution for sports 

information retrieval, content understanding, tactics analysis and computer-assisted game 

study in more kinds of sports videos. 
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Chapter 1. Introduction 

 

The advances in video production technology and the consumer demand have led to the 

ever-increasing volume of multimedia data. The rapid evolution of digital equipments allows 

general users to archive multimedia data much easily. The explosive proliferation of 

multimedia data in education, entertainment, sport and various applications makes manual 

indexing and annotation no more practical. The development of practical systems and tools 

for multimedia content analysis, understanding, indexing and retrieval is undoubtedly 

compelling [1, 4, 6, 72, 73, 74].  

A large number of content retrieval approaches have been proposed on the basis of 

low-level features. However, human interpret video in terms of semantics rather than 

low-level features. The demand for automatic video understanding and interpretation requires 

the mid-level representations mapping from low-level features to high-level semantics, such 

as shot class, camera motion pattern, color layout, object shape and object trajectory. 

Especially, object trajectory is one of the most informative representations which human use 

to analyze events frequently. Hence, the trajectory-based approaches have been gaining 

popularity [8, 15, 34, 35].  

As important multimedia content, sports video has been attracting considerable research 

efforts due to the commercial benefits, entertainment functionalities and a large audience base 

[1, 2, 22, 25, 30, 35, 74]. In this thesis, we take sports video as source material for research. 

Techniques of event detection, content understanding and sports information retrieval are 

proposed for automatic annotation and enriched visual presentation. Most viewers prefer 

retrieving the designated events, scenes and payers to watching a whole game in a sequential 

way. Therefore, various algorithms have been developed for shot classification, highlight 

extraction and semantic annotation based on the fusion of audiovisual features and the 

game-specific rules.  
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In this thesis, we focus on feature integration and algorithm development for sports 

video content analysis and understanding. Sports information retrieval, tactics analysis, 

enriched visual presentation can provide the audience and professionals a further insight into 

the games. Fig. 1-1 depicts the overview of our research work. We first extract low-level 

features adaptive to different event detection so as to infer the high-level semantic 

information. Then, various mid-level representations are computed to bridge the gap between 

low-level features and semantic content meanings. Since significant events are mainly caused 

by the interaction of moving objects, object trajectories bring much semantic information 

contributive to content understanding. Thus, we design several trajectory-based algorithms 

for sports video content analysis and understanding. 

 

 
Fig. 1-1. Overview of our research work. 
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For semantic and tactical content analysis in sports video, we first propose an effective 

and efficient ball tracking algorithm. Object tracking is usually the medium to convert the 

low-level features into high-level events in video processing. Object tracking has been an 

arduous problem despite the long research history. Ball tracking is even a more challenging 

task due to the fast speed and small size. It is almost impossible to distinguish the ball within 

a single frame, so information over successive frames, e.g. motion information, is required to 

facilitate the discrimination of the ball from other objects. In several kinds of ball games, the 

ball moves following the physical characteristic that the ball trajectory forms a (near-) 

parabolic curve. For example, the ball shot toward the basket in a basketball game, the ball 

passed between players in a volleyball game, the ball moving between players in a tennis 

game and the pitched ball in a baseball game. Utilizing the physical characteristics of ball 

motion, we present a physics-based ball tracking method to compute the 2D ball trajectory in 

different kinds of single camera sports videos.  

To have a further insight into the games and retrieve more detailed sports information, 

we propose an innovative approach capable of reconstructing 3D ball trajectory from single 

camera video for court sports. The 2D-to-3D inference is intrinsically challenging due to the 

loss of 3D information in projection to 2D frames. For court sports, the court lines and feature 

objects are captured in video frames. We utilize the domain knowledge of the court 

specifications to compute the transformation between 3D real world positions and 2D frame 

coordinates for camera calibration. Involving the physical characteristic of ball motion, we 

are able to recover the 3D information and reconstruct the 3D ball trajectory.  

The obtained 2D trajectory and the reconstructed 3D trajectory enable manifold 

applications to sports information retrieval and computer-assisted game study. In basketball 

games, shooting location (the location of a player shooting the ball) is one of the important 

game statistics providing abundant information about the shooting tendency of a team. The 

statistical graph of shooting locations facilitates the coach to view the distribution of shooting 
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locations at a glance and to quickly comprehend where the players have higher possibility of 

shooting. Then, the players and the couch can infer the offense tactics of an opponent team 

and adapt their own defense strategy toward the team. Presently, most of the shooting 

location logging tasks are achieved manually. It is time-consuming and inefficient to watch a 

whole long video, take records and gather statistics. Thus, we propose a scheme to extract the 

shooting trajectory in basketball video, reconstruct the 3D trajectory and estimate the 

shooting location. 

 In volleyball games, players are not allowed to hold the ball. Hence, we detect the 

ball-player interaction events by utilizing the positions and the occurring times of direction 

changes in the trajectory. Moreover, the reconstructed 3D trajectory can provide the sports 

information the audience or professionals would like to know, such as set type, attack height, 

serve speed, serve placement, etc. Most of the informative game statistical data which cannot 

be directly perceived through human eyes can now be obtained based on the obtained 2D 

trajectory and the reconstructed 3D trajectory. Furthermore, the 3D virtual replay gives an 

exciting and practical visualization which enables watching the ball motion from any 

viewpoint. 

 In baseball games, the ball speed and the curvature of the ball trajectory are two main 

factors in determining how difficult the pitched ball can be hit. Hence, we track the pitched 

ball and extract the ball trajectory. Thus, ball speed and trajectory curvature can be computed 

for pitch analysis. Due to the capturing viewpoint and the frame rate constraint, the ball speed 

and trajectory curvature might not be very precise. The proposed pitch analysis is not for 

grading, but for entertainment effects, enriched visual presentation and sports information 

retrieval. In addition to ball speed and trajectory curvature, the pitch location (the relative 

location of the ball in/around the strike zone when the ball passes by the batter) also 

dominates the direction of the ball batted out. For example, a batter who swings at a lower 

pitch has a good chance of hitting a ground ball, while a batter who swings at a higher pitch 
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has a great chance of hitting the ball in the air. Since the strike zone provides reference for 

determining the pitch location, we propose a contour-based method to shape the strike zone 

according to the batter’s stance. Strike/ball judgment can also be visualized on the video 

frames by the shaped strike zone. Besides the pitch/batter confrontation, the ball motion and 

the defense process after the ball is batted into the field is another focus of attention. With the 

field specifications, we design algorithms to recognize the spatial patterns (field lines and 

field objects) in frames. Then, the active regions of event occurrence in the field are classified 

by the spatial patterns. We can infer the ball routing patterns and defense process from the 

transitions of the active regions captured in the video. Content understanding and annotation 

can thus be achieved, providing rich information about the games. 

Comprehensive experiments on basketball, volleyball and baseball videos show 

encouraging results. The proposed methods perform well in 2D ball tracking and 3D 

trajectory reconstruction from single camera video for different kinds of sports. It is our 

belief that the coach and players will be greatly assisted in game study with the semantic and 

tactical information derived from our proposed methods. Also, the audience can have a 

professional insight into the game. 

In the following chapters, we give detailed explanation for the proposed methods and 

techniques. The rest of the thesis is organized as follows. Chapter 2 explains physics-based 

ball tracking and 3D trajectory reconstruction with applications to shooting location 

estimation in basketball video. Chapter 3 describes ball tracking and 3D trajectory 

approximation with applications to tactics analysis in volleyball video. Chapter 4 elaborates 

on ball tracking, strike zone shaping and play region classification in baseball video. Finally, 

Chapter 5 concludes this thesis. 
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Chapter 2. Physics-Based Ball Tracking and 3D Trajectory Reconstruction 

with Applications to Shooting Location Estimation in Basketball Video 

 

The demand for computer-assisted game study in sports is growing dramatically. This 

chapter presents a practical video analysis system to facilitate semantic content understanding. 

A physics-based algorithm is designed for ball tracking and 3D trajectory reconstruction in 

basketball video and shooting location statistics can be obtained. The 2D-to-3D inference is 

intrinsically a challenging problem due to the loss of 3D information in projection to 2D 

frames. One significant contribution of the proposed system lies in the integrated scheme 

incorporating domain knowledge and physical characteristics of ball motion into object 

tracking to overcome the problem of 2D-to-3D inference. With the 2D trajectory extracted 

and the camera parameters calibrated, physical characteristics of ball motion are involved to 

reconstruct the 3D trajectories and estimate the shooting locations. Our experiments on 

broadcast basketball video show promising results. We believe the proposed system will 

greatly assist intelligence collection and statistics analysis in basketball games. 

The rest of this chapter is organized as follows. Section 2.1 gives the introduction. 

Section 2.2 elaborates the overview of the proposed system. Sections 2.3, 2.4 and 2.5 present 

the processes of court shot retrieval, camera calibration and 2D shooting trajectory extraction, 

respectively. Section 2.6 explains on 3D trajectory mapping and shooting location estimation. 

Experimental results and discussions are presented in section 2.7. Finally, section 2.8 

summaries this chapter. 

 

2.1  Introduction 

The advances in video production technology and the consumer demand have led to the 

ever-increasing volume of multimedia information. The rapid evolution of digital equipments 
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allows the general users to archive multimedia data much easily. The urgent requirements for 

multimedia applications therefore motivate the researches in various aspects of video analysis. 

Sports videos, as important multimedia contents, have been extensively studied, and sports 

video analysis is receiving more and more attention due to the potential commercial benefits 

and entertaining functionalities. Major research issues of sports video analysis include: shot 

classification, highlight extraction and object tracking. 

In a sports game, the positions of cameras are usually fixed and the rules of presenting the 

game progress are similar in different channels. Exploiting these properties, many shot 

classification methods are proposed. Duan et al. [1] employ a supervised learning scheme to 

perform a top-down shot classification based on mid-level representations, including motion 

vector field model, color tracking model and shot pace model. Lu and Tan [2] propose a 

recursive peer-group filtering scheme to identify prototypical shots for each dominant scene 

(e.g., wide angle-views of the court and close-up views of the players), and examine time 

coverage of these prototypical shots to decide the number of dominant scenes for each sports 

video. Mochizuki et al. [3] provide a baseball indexing method based on patternizing baseball 

scenes using a set of rectangles with image features and the motion vector. 

Due to broadcast requirement, highlight extraction attempts to abstract a long game into a 

compact summary to provide the audience a quick browsing of the game. Assfalg et al. [4] 

present a system for automatic annotation of highlights in soccer video. Domain knowledge is 

encoded into a set of finite state machines, each of which models a specific highlight. The 

visual cues used for highlight detection are ball motion, playfield zone, players’ positions and 

colors of uniforms. Gong et al. [5] classify baseball highlights by integrating image, audio and 

speech cues based on maximum entropy model (MEM) and hidden Markov model (HMM). 

Cheng and Hsu [6] fuse visual motion information with audio features, including zero crossing 

rate, pitch period and Mel-frequency cepstral coefficients (MFCC), to extract baseball 

highlight based on hidden Markov model (HMM). Xie et al. [7] utilize dominant color ratio 
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and motion intensity to model the structure of soccer video based on the syntax and content 

characteristics of soccer video. 

Object tracking is widely used in sports analysis. Since significant events are mainly 

caused by ball-player and player-player interactions, balls and players are tracked most 

frequently. Yu et al. [8] present a trajectory-based algorithm for ball detection and tracking in 

soccer video. The ball size is first proportionally estimated from salient objects (goalmouth and 

ellipse) to detect ball candidates. The true trajectory is extracted from potential trajectories 

generated from ball candidates by a verification procedure based on Kalman filter. The ball 

trajectory computed is applied to analyze semantic basic and complex events, team ball 

possession and the play-break structure. Some works of 3D trajectory reconstruction are built 

based on multiple cameras located on specific positions [11-14]. In addition, 

computer-assisted umpiring and tactics inference are burgeoning research issues of sports 

video analysis [11-15]. However, these can be considered as advanced applications based on 

ball and player tracking. Therefore, object tracking is an essential and vital issue in sports video 

analysis.  

In this chapter, we work on the challenging issues of ball tracking and 3D trajectory 

reconstruction in broadcast basketball video in order to automatically gather the game statistics 

of shooting locations – the location where a player shoots the ball. Shooting location is one of 

the important game statistics providing abundant information about the shooting tendency of 

a basketball team. An example of statistical graph for shooting locations is given in Fig. 2-1, 

where each shooting location is marked as an O (score) or X (miss). The statistical graph for 

shooting locations not only provides the audience a novel insight into the game but also 

assists the coach in guiding the defense strategy. With the statistical graph for shooting 

locations, the coach is able to view the distribution of shooting locations at a glance and to 

quickly comprehend where the players have higher possibility of scoring by shooting. Thus, 

the coach can enhance the defense strategy of the team by preventing the opponents from 
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shooting at the locations they stand a good chance of scoring. Increasing basketball websites, 

such as NBA official website, provide text- and image-based web-casting, including game 

log, match report, shooting location and other game statistics. However, these tasks are 

achieved by manual efforts. It is time-consuming and inefficient to watch a whole long video, 

take records and gather statistics. Hence, we propose a physics-based ball tracking system for 

3D trajectory reconstruction so that automatic shooting location estimation and statistics 

gathering can be achieved. Whether the shooting scores or not can be derived from the change 

of the scoreboard by close caption detection technique [16]. Thus, the statistical graph of 

shooting locations, as Fig. 2-1, can be generated automatically. 

 

 

Fig. 2-1. Statistical graph of shooting locations: O (score) or X (miss). 

 

2.2  Overview of the Proposed Physics-Based Ball Tracking and 3D Trajectory 

Reconstruction System in Basketball Video 

Object tracking is usually the medium to convert the low-level features into high-level 

events in video processing. In spite of the long research history, it is still an arduous problem. 

Especially, ball tracking is a more challenging task due to the small size and fast speed. It is 

almost impossible to distinguish the ball within a single frame, so information over 

successive frames, e.g. motion information, is required to facilitate the discrimination of the 

ball from other objects. 

To overcome the challenges of ball tracking and 3D shooting trajectory reconstruction, 
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an integrated system utilizing physical characteristics of ball motion is proposed, as depicted 

in Fig. 2-2. Basketball video contains several prototypical shots: close-up view, medium view, 

court view and out-of-court view. The system starts with court shot retrieval, because court 

shots can present complete shooting trajectories. Then, 2D ball trajectory extraction is 

performed on the retrieved court shots. To obtain 2D ball candidates over frames, we detect 

ball candidates by visual features and explore potential trajectories among the ball candidates 

using velocity constraint. To reconstruct 3D trajectories from 2D ones, we set up the motion 

equations with the parameters: velocities and initial positions, to define the 3D trajectories 

based on physical characteristics. The 3D ball positions over frames can be represented by 

equations. Camera calibration, which provides the geometric transformation from 3D real 

world to 2D frames, is used to map the equation-represented 3D ball positions to 2D ball 

coordinates in frames. With the 2D ball coordinates over frames being known, we can 

approximate the parameters of the 3D motion equations. Finally, the 3D positions and 

velocities of the ball can be derived and the 3D trajectory is reconstructed from the 2D 

frame-trajectory. Having the reconstructed 3D information, the shooting locations can be 

estimated more accurately from 3D trajectories than from 2D trajectories, in which the 

z-coordinate (height) of ball is lost in camera capturing. 

The major contribution of this chapter is that we reconstruct 3D information from single 

view 2D video sequences based on the integration of multimedia features, basketball domain 

knowledge and the physical characteristics of ball motion. Besides, trajectory-based 

high-level basketball video analysis is also provided. The 3D ball trajectories facilitate the 

automatic collection of game statistics about shooting locations in basketball, which greatly 

help the coaches and professionals to infer the shooting tendency of a team. 
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Fig. 2-2. Flowchart of the proposed system for ball tracking and 3D trajectory reconstruction 
in basketball video. 

 

2.3  Court Shot Retrieval 

To perform high-level analysis such as ball tracking and shooting location estimation, 

we should retrieve the court shots, which contain most of the semantic events. Shot boundary 

detection is usually the first step in video processing and has been extensively studied [17-19]. 

For computational efficiency, we apply the shot boundary detection algorithm [20,21] to 

segment the basketball video into shots. 

To offer the proper presentation of a sports game, the camera views may switch as 

different events occur when a game proceeds. Thus, the information of shot types conveys 

important semantic cues. Motivated by this observation, basketball shots are classified into 

three types: 1) court view shots, 2) medium view shots, and 3) close-up view or out-of-court 

view shots (abbreviated ass C/O shots). A court shot displays the global view of the court, 

which can present complete shooting trajectories, as shown in Fig. 2-3(a) and (b). A medium 

shot, where the player carrying the ball is focused, is a zoom-in view of a specific part of the 

court, as shown in Fig. 2-3(c) and (d). Containing little portion of the court, a close-up shot 

shows the above-waist view of the person(s), as shown in Fig. 2-3(e), and an out-of-court 

shot presents the audience, coach, or other places out of the court, as shown in Fig. 2-3(f).  
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(a) Court shot            (b) Court shot           (c) Medium shot 

   
(d) Medium shot         (e) Close-up shot        (f) Out-of-court shot 

Fig. 2-3. Examples of shot types in a basketball game. 

 

Shot class can be determined from a single key frame or a set of representative frames. 

However, the selection of key frames or representative frames is another challenging issue. 

For computational simplicity, we classify every frame in a shot and assign the shot class by 

majority voting, which also helps to eliminate instantaneous frame misclassification. 

 A basketball court has one distinct dominant color–the court color. The spatial 

distribution of court-colored pixels and the ratio of court-colored pixels in a frame, as defined 

in Eq. (2-1), would vary in different view shots. 

R = #court-colored pixels / #pixels in a frame                          (2-1) 

To compute the court-colored pixel ratio R in each frame, we apply the algorithm in [22], 

which learns the statistics of the court color, adapts these statistics to changing imaging and 

then detects the court-colored pixels. Intuitively, a high R value indicates a court view, a low 

R value corresponds to a C/O view, and in between, a medium view is inferred. The feature R 

is indeed sufficient to discriminate C/O shots from others, but medium shots with high R 

value might be misclassified as court shots. 

Thus, we propose a compute-easy, yet effective, algorithm to discriminate between court 
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shots and medium shots. As shown in Fig. 2-4, we define the nine frame regions by 

employing Golden Section spatial composition rule [23,24], which suggests dividing up a 

frame in 3: 5: 3 proportion in both horizontal and vertical directions. Fig. 2-4 displays the 

examples of the regions obtained by golden section rule on medium and court views. To 

distinguish medium views from court views, the feature R5∪8 defined in Eq. (2-2) is utilized 

on the basis of the following observation. 

R5∪8 : the R value in the union of region 5 and region 8                  (2-2) 

A medium view zooms in to focus on a specific player and usually locates the player around 

the frame center. Since players are composed of non-court-colored pixels, a medium view 

would have low R values in the center regions (region 2, 5 and 8). A court view aims at 

presenting the global viewing, so the players are distributed over the frames. Therefore, a 

court view would have higher R values in the center regions (region 2, 5 and 8) than those of 

a medium view. However, the upper section of a frame is usually occupied by the audience or 

advertising boards, so region 2 is not taken into consideration. Only the R values in region 5 

and region 8 are considered for classification: court views have higher R5∪8 than that of 

medium views. 

 

   

(a) Frame regions         (b) Court view            (c) Medium view 
Fig. 2-4. Examples of Golden Section spatial composition. 

 

2.4  Camera Calibration 

Camera calibration is an essential task to provide geometric transformation mapping the 

positions of the ball and players in the 2D video frames to 3D real-world coordinates or vice 
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versa [25,26]. However, the 2D-to-2D transformation with court model known is not 

sufficient to reconstruct 3D trajectory due to the disregard of height information. In addition 

to the feature points on the court plane, some non-coplanar feature points are also taken into 

consideration in our system to keep the height information. 

The geometric transformation from 3D real world coordinate (x, y, z) to 2D image 

coordinate (u′ ,v′) can be represented as Eq. (2-3): 

 

(2-3)

The eleven camera parameters cij can be calculated from at least six non-coplanar points 

whose positions are both known in the court model and in frames. Since the detection of lines 

is more robust than locating the accurate positions of specific points, the intersections of lines 

are utilized to establish point-correspondence.  

Fig. 2-5 depicts the flowchart of camera calibration. In the process, we make use of 

ideas in general camera calibration, such as white line pixel detection and line extraction [25]. 

We start with identifying the white line pixels exploiting the constraints of color and local 

texture. To extract feature lines, the Hough transform is applied to the detected white line 

pixels. Then, we compute the intersection points of court lines and end points of the 

backboard border. With these corresponding points whose positions are both known in 2D 

frame and in the court model, as shown in Fig. 2-6, the 3D-to-2D transformation can be 

computed and the camera parameters are then derived.  

For the subsequent frames, we apply the model tracking mechanism [25], which predicts 

the camera parameters from the previous frame in spite of the camera motion, to improve the 

efficiency since Hough transform and court model fitting need not be performed again. For 

more detailed process, please refer to the paper [25]. 
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Fig. 2-5. Flowchart of camera calibration. 
 

 
(a) Court image                            (b) Court model 

Fig. 2-6. Point-correspondence between the 2D frame and the basketball court model 

 

2.4.1  White line pixel detection 

For visual clarity, the court lines and important markers are in white color, as specified 

in the official game rules. However, there may exist other white objects in the images such as 

advertisement logos and the uniforms of the players. Hence, additional criteria are needed to 

further constrain the set of white line pixels. 

As illustrated in Fig. 2-7, each square represents one pixel and the central one drawn in 

gray is a candidate pixel. Assuming that white lines are typically no wider than τ pixels (τ = 6 

in our system), we check the brightness of the four pixels, marked ‘●’ and ‘○’, at a distance of 

τ pixels away from the candidate pixel on the four directions. The central candidate pixel is 

identified as a white line pixel only if both pixels marked ‘●’ or both pixels marked ‘○’ are 

with lower brightness than the candidate pixel. This process prevents most of the pixels in 

white regions or white uniforms being detected as white line pixels, as shown in Fig. 2-8 (b). 
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Fig. 2-7. Illustration of part of an image containing a white line. 

 

 
(a) Original frame 

 
(b) Without line-structure constraint 

 
(c) With line-structure constraint 

Fig. 2-8. Sample results of white line pixel detection. 

 

 To improve the accuracy and efficiency of the subsequent Hough transform for line 

detection and court model fitting, we apply the line-structure constraint [25] to exclude the 

white pixels in finely textured regions. The structure matrix S [27] computed over a small 

window of size 2b+1 (we use b=2) around each candidate pixel (px, py), as defined in Eq. 

(2-4), is used to recognize texture regions. 
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Depending on the two eigenvalues of matrix S, called λ1 and λ2 (λ1 ≥ λ2), the texture can be 
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classified into textured (λ1, λ2 are large), linear (λ1 » λ2) and flat (λ1, λ2 are small). On the 

straight court lines, the linear case will apply to retain the white pixels only if λ1 > αλ2 (α = 4 

in our system). Fig. 2-8 demonstrates sample results of white line pixel detection. The 

original frames are presented in Fig. 2-8(a). In Fig. 2-8(b), although most of the white pixels 

in white regions or white uniforms are discarded, there are still many false detections of white 

line pixels occurring in the textured areas. With line-structure constraint, Fig. 2-8(c) shows 

that the number of false detections is reduced and white line pixel candidates are retained 

only if the pixel neighbor shows a linear structure. 

 

2.4.2  Line extraction 

To extract the court lines and the backboard border, we perform a standard Hough 

transform on the detected white line pixels. The parameter space (θ, d) is used to represent 

the line: θ is the angle between the line normal and the horizontal axis, and d is the distance 

of the line to the origin. We construct an accumulator matrix for all (θ, d) and sample the 

accumulator matrix at a resolution of one degree for θ and one pixel for d. Since a line in (x, y) 

space corresponds to a point in (θ, d) space, line candidates can be determined by extracting 

the local maxima in the accumulator matrix. The court line intersections on the court plane 

can be obtained by the algorithm of finding line-correspondences in [25], which has good 

performance in 2D-to-2D court model mapping. A sample result is presented in Fig. 2-9 (a). 

To reconstruct 3D information of the ball movement, we need two more points which 

are not on the court plane to calculate the calibration parameters. The two endpoints of the 

backboard top-border (p7 and p8 as shown in Fig. 2-6) are selected because the light 

condition makes the white line pixels of the backboard top-border easy to detect in frames. 

Fig. 2-9 presents the process of the detection of backboard top-border. In 3D real world, the 

backboard top-border is parallel with the court lines (p1, p3, p5) and (p2, p4, p6). According to 
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vanishing point theorem, parallel lines in 3D space viewed in a 2D frame appear to meet at a 

point, called vanishing point. Therefore, the lines (p1, p3, p5), (p2, p4, p6) and the backboard 

top- border in the fame will meet at the vanishing point. Utilizing this characteristic, the 

vanishing point pv can be computed as the intersection of the extracted court lines (p1, p3, p5) 

and (p2, p4, p6), as shown in Fig. 2-9(b). Besides, we also detect two vertical line segments 

above the court line (p1, p3, p5). Then, Hough transform is performed on the area between the 

two vertical lines above the court line (p1, p3, p5). The detected line segment whose extension 

passes the vanishing point is extracted as the backboard top-boarder, as shown in Fig. 2-9(c). 

 

 

(a) Detected court lines      (b) Computing vanishing point   (c) Searching backboard top-border 

Fig. 2-9. Detection of backboard top-border. 

 

2.4.3  Computation of camera calibration parameters 

 Multiplying out the linear system in Eq. (2-3), we obtain two equations, Eq. (2-5) and 

Eq. (2-6), for each corresponding point—the point whose coordinate is both known in the 3D 

court model (x, y, z) and in the frame (u′, v′).  

c11 x + c12 y + c13 z + c14 = u′ (c31 x + c32 y + c33 z + 1)                          (2-5) 

c21 x + c22 y + c23 z + c24 = v′ (c31 x + c32 y + c33 z + 1)                          (2-6) 

To compute the calibration parameters cij, we set up a linear system AC = B from Eq. (2-5) 

and Eq. (2-6): 
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  (2-7) 

N is the number of corresponding points. In our process, N = 8: six are the court line 

intersections and two are the endpoints of the backboard top-border. To solve C, we can 

over-determine A and find a least squares fitting for C with a pseudo-inverse solution: 

AC = B,   ATAC =ATB,   C = (ATA)-1 ATB                             (2-8) 

Thus, the parameters of camera calibration can be derived to form the matrix which 

transforms 3D real world coordinate to 2D image coordinate. 

 

2.5  2D Shooting Trajectory Extraction 

 The ball is the most important focus of attention in basketball either for the players or 

for the audience. It is a challenging task to identify the ball in video frames due to its small 

size in court views and its fast movement. In this section, we aim at extracting the shooting 

trajectories in court shots. When a shooting event occurs, one of the backboards should be 

captured in the frames. Therefore, our system performs ball candidate detection and ball 

tracking on the frames with a backboard detected in court shots. 

 

2.5.1  Ball candidate detection 

The detection of ball candidates, the basketball-colored moving objects, requires 

extracting the pixels which are 1) moving and 2) in basketball color. For moving pixel 
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detection, frame difference is a compute-easy and effective method. We extract the pixels 

with significant luminance difference between consecutive frames as moving pixels. Color is 

another important feature to extract ball pixels. However, the color of the basketball in frames 

might vary due to the different angles of view and lighting conditions. To obtain the color 

distribution of the basketball in video frames, 30 ball images are segmented manually from 

different basketball videos to produce the respective color histograms in RGB, YCbCr and 

HSI color spaces, as shown in Fig. 2-10. After statistical analysis, the Hue value in HSI space 

has better discriminability and is selected as the color feature and the ball color range is set to 

[Ha, Hb]. We compute the average Hue value for each 4x4 block in frames and discard the 

moving pixels in the blocks of which the average Hue values are not within the ball color 

range [Ha, Hb]. To remove noises and gaps, morphological operations are performed on the 

remaining moving pixels, called ball pixels. An example of ball pixel detection is shown in 

Fig. 2-11. Fig. 2-11(a) is the original frame and Fig. 2-11(b) shows the moving pixels 

detected by frame difference. The extracted ball pixels after morphological operations are 

presented in Fig. 2-11(c). 

 

 
Fig. 2-10. Color histograms of 30 manually segmented basketball images 
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(a) Source frame                (b) Moving pixels          (c) Extracted ball pixels 

Fig. 2-11. Illustration of ball pixel detection. 

 

With the extracted ball pixels, objects are formed in each frame by region growing. To 

prune non-ball objects, we design two sieves based on visual properties: 

1) Shape sieve: The ball in frames might have a shape different from a circle, but the 

deformation is not so dramatic that its aspect ratio should be within the range [1/Ra, Ra] in 

most frames. We set Ra = 3 since the object with aspect ratio > 3 or < 1/3 is far from a ball 

and should be eliminated. 

2) Size sieve: The in-frame ball diameter Dfrm can be proportionally estimated from the 

length between the court line intersections by pinhole camera imaging principal, as Eq. (2-9): 

(Dfrm / Dreal) = (Lfrm / Lreal)  ,  Dfrm = Dreal  (Lfrm / Lreal)                 (2-9) 

where Dreal is the diameter of a real basketball (≈ 24cm), Lfrm and Lreal are the in-frame length 

and the real-world length of a corresponding line segment, respectively. To compute the ratio 

(Lfrm / Lreal), we select the two points closest to the frame center from the six court line 

intersections and calculate the in-frame distance Lfrm of the selected two points. Since the 

distance of the two points in real court Lreal is specified in the basketball rules, the ratio (Lfrm / 

Lreal) can be computed out. Thus, the planar ball size in the frame can be estimated as π • 

(Dfrm/2)2. The size sieve filter out the objects of which the sizes are not within the range [π • 

(Dfrm/2)2 – ∆ , π • (Dfrm/2)2 + ∆], where ∆ is the extension for tolerance toward processing 

faults. 

It would be a difficult task to detect and track the ball if there is camera motion. There 
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are two major problems we may confront. The first is that more moving pixels are detected 

due to the camera motion and therefore more ball candidates might exist. However, our 

analysis is focused on the shooting trajectories in court shots. To capture and present the large 

portion of the court, the camera is usually located at a distance from the court. The camera 

motion is not so violent in court shots except for a rapid camera transition from one half-court 

to the other, as can be noted in Fig. 2-12, where the left image shows the detected ball 

candidates marked in the yellow circles, and the right image presents the camera motion 

using motion history image [28], generated from 45 consecutive frames. When a shooting 

event occurs, one of the backboards should be captured in the frames. During the camera 

transition since no backboard shows on the screen, our system need not perform ball 

candidate detection. That is, the performance of ball candidate detection is not affected by the 

camera moving from one half-court to the other. Second, it is possible (although it is rare in 

practice) that the ball might have little motion or stay still on the screen when the camera 

attempts to follow the ball. However, we observe in experiments that the ball is hardly at 

exactly the same position in consecutive frames even if the camera follows the ball. Although 

there are still some misses in moving pixel detection in this case due to the mild motion of the 

ball in frames, the pixels of the true ball can be correctly detected in most frames. The missed 

ball candidate can be recovered from the ball positions in the previous and the subsequent 

frames by interpolation. 
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(a) Fewer ball candidates produced if the camera motion is small. 

   
(b) More ball candidates would be produced if there is large camera motion. 

Fig. 2-12. Left: detected ball candidates, marked as yellow circles. Right: motion history 
image to present the camera motion. 

 

2.5.2.  Ball tracking 

 Many non-ball objects might look like a ball in video frames and it is difficult to 

recognize which is the true one. Therefore, we integrate the physical characteristic of the ball 

motion into a dynamic programming-based route detection mechanism to track the ball 

candidates, generate potential trajectories and identify the true ball trajectory. 

 For ball tracking, we need to compute the ball velocity constraint first. Since the 

displacement of the ball in a long shoot would be larger than that in a short shoot, we take a 

long shoot into consideration, as diagramed in Fig. 2-13. The time duration from the ball 

leaving the hand to the ball reaching the peak in the trajectory t1 and the time duration of the 

ball moving from the peak to the basket t2 can be represented by Eq. (2-10) and Eq. (2-11), 

respectively: 
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H+h = g t1
2 /2 ,   t1 = [2(H+h) /g]1/2                                (2-10) 

H = g t2
2 /2 ,   t2 = (2H /g)1/2                                      (2-11) 

where g is the gravity acceleration (9.8 m/s2) and t is the time duration, H and h is the vertical 

distances from the basket to the trajectory peak and to the position of ball leaving the hand, 

respectively. Thus, the highest vertical velocity Vv of the ball in the trajectory should be Vv = 

g t1 and the horizontal velocity Vh can be calculated as Vh = Dis / (t1+t2), where Dis is the 

distance from the shooter to the basket center. With the vertical and horizontal velocities, the 

ball velocity Vb can be derived as Eq. (2-12):  

Vb = (Vh2+ Vv2
 )1/2                                               (2-12) 

Vb value increases as Dis increases. Since our goal is to compute the upper limit of the ball 

velocity, we consider the distance from the 3-point line to the basket (6.25m), which is almost 

the longest horizontal distance from the shooter to the basket. To cover all cases, we set Dis = 

7m. Considering an l meter tall player, the height of the ball leaving the hand should be 

higher than (l+0.2) m. Thus, the value h should be less than (3.05−0.2−l) m. To cover most 

players, we set l = 1.65, that is, h ≤ 1.2. Besides, there are few shooting trajectories with the 

vertical distance H greater than 4 meters. Given different h values (0, 0.3, 0.6, 0.9 and 1.2), 

the values of Vb computed using Eq. (2-10)-(2-12) for H varying between 1 and 4 meters are 

plotted in Fig. 2-14, showing the reasonable values of Vb. It can be observed that, when H = 

4 m and h = 1.2 m, we have the maximum value of Vb (≈ 10.8 m/s). Thus, we set the velocity 

constraint (upper limit) as Vb ≈ 10.8 m/s ≈ 36 cm/frm. Finally, similar to Eq. (2-9), the 

in-frame velocity constraint Vc can be proportionally estimated by applying pinhole camera 

imaging principle as Eq. (2-13): 

(Vc / Vb) = (Lfrm / Lreal) ,  Vc = Vb (Lfrm / Lreal)                        (2-13) 
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Fig. 2-13. Diagram of a long shoot.          Fig. 2-14. Relation between Vb an H. 

 

The goal of ball velocity constraint is to determine the search range for ball tracking. To 

avoid ball missing in ball tracking, what we want to derive is the upper limit of in-frame ball 

velocity. Hence, although there may be deviation of in-frame ball velocity due to the different 

relationship between the angle of camera shooting and the angle of player’s shooting, the 

derived upper limit of ball velocity still significantly improves the computational efficiency 

and accuracy for ball tracking by setting an appropriate search range. 

Fig 2-15 illustrates the ball tracking process. The X and Y axes represent the in-frame 

coordinates of ball candidates, and the horizontal axis indicates the frame number. The nodes 

C1, C2, C3 and C4 represent the ball candidates. Initially, for the first frame of a court shot, 

each ball candidate is considered as the root of a trajectory. For the subsequent frames, we 

check if any ball candidate can be added to one of the existing trajectories based on the 

velocity property. The in-frame ball velocity can be computed by Eq. (2-14): 

ji
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→
→

−+−
=
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                                 (2-14) 

where i and j are frame indexes, (xi, yi) and (xj, yj) are the coordinates of the ball candidates in 

frame i and frame j, respectively, and ti → j is the time duration. Trajectories grow by adding 

the ball candidates in the subsequent frames which satisfy the velocity constraint. Although it 

is possible that no ball candidate is detected in some frames, the trajectory growing process 
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does not terminate until no ball candidate is added to the trajectory for Tf consecutive frames 

(we use Tf = 5). The missed ball position(s) can be estimated from the ball positions in the 

previous and the subsequent frames by interpolation. 

  

 

Fig. 2-15. Illustration of ball tracking process. (X and Y represent ball coordinates) 

 

To extract the shooting trajectory, we exploit the characteristic that the ball trajectories 

are near parabolic (or ballistic) due to the gravity, even though the trajectories are not actually 

parabolic curves because of the effect of the air friction, ball spin, etc. As illustrated in Fig. 

2-16, we compute the best-fitting quadratic function f(x) for each route using the 

least-squares-fitting technique of regression analysis and determine the distortion as the 

average of the distances from ball candidate positions to the parabolic curve. A shooting 

trajectory is then verified according to its length and the distortion. Although the passing 

trajectories are often more linear in nature, still some passing trajectories in the form of 

parabolic (or ballistic) curves are verified as shooting trajectories. We can further identify a 

shooting trajectory by examining if it approaches the backboard. Thus, the passing 

trajectories can be discarded even though they may be parabolic (or ballistic). 
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Fig. 2-16. Illustration of the best-fitting function. 

 

2.6  3D Trajectory Reconstruction and Shooting Location Estimation 

With the 2D trajectory extracted and the camera parameters calibrated, now we are able 

to employ the physical characteristics of ball motion in real world for 3D trajectory 

reconstruction. The relationship between each pair of corresponding points in the 2D space 

(u′, v′) and 3D space (Xc, Yc, Zc) is given in Eq. (2-3). Furthermore, the ball motion should fit 

the physical properties, so we can model the 3D trajectory as: 

Xc = x0 + Vx t 
Yc = y0 + Vy t                                                   (2-15) 
Zc = z0 + Vz t + gt2/2 

where (Xc, Yc, Zc) is the 3D real world coordinate, (x0, y0, z0) is the initial 3D coordinate of the 

ball in the trajectory, (Vx, Vy, Vz) is the 3D ball velocity, g is the gravity acceleration and t is 

the time interval. Substituting Xc, Yc and Zc in Eq. (2-3) by Eq. (2-15), we obtain: 

 

(2-16)

Multiplying out the equation with u =u′w and v = v′w, we get two equations for each ball 

candidate: 

c11 x0 + c11 Vx t + c12 y0 + c12 Vy t + c13 z0 + c13 Vz t + c13 g t2 /2 + c14 

= u′ (c31 x0 + c31 Vx t + c32 y0 +c32 Vy t + c33 z0 +c33 Vz t + c33 g t2 /2 +1)        (2-17) 

c21 x0 + c21 Vx t + c22 y0 + c22 Vy t + c23 z0 + c23 Vz t + c23 g t2 /2 + c24 

= v′ (c31 x0 + c31 Vx t + c32 y0 +c32 Vy t + c33 z0 +c33 Vz t + c33 g t2 /2 +1)        (2-18) 
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Since the eleven camera calibration parameters cij and the time of each ball candidate on the 

trajectory are known, we set up a linear system D2Nx6 E6x1 = F2Nx1 from Eq. (2-17) and Eq. 

(2-18) to compute the six unknowns (x0, Vx, y0, Vy, z0, Vz) of the parabolic (or ballistic) 

trajectory: 

 

                               (2-19) 

where N is the number of ball candidates on the trajectory and (ui′, vi′) are the 2D coordinates 

of the candidates. Similar to Eq. (2-8), we can over-determine D with three or more ball 

candidates on the 2D trajectory and find a least squares fitting for E by pseudo-inverse. 

Finally, the 3D trajectory can be reconstructed from the six physical parameters (x0, Vx, y0, Vy, 

z0, Vz).  

Originally, the definition of shooting location should be the location of the player 

shooting the ball. However, the starting position of the trajectory is almost the position of the 

ball leaving the player’s hand. Thus, we can estimate the shooting location on the court model 
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as (x0, y0, 0) via projecting the starting position of the trajectory onto the court plane. 

Moreover, the occurring time of a shooting action can also be recorded for event indexing 

and retrieval. 

 

2.7  Experimental Results and Discussions in Basketball Video 

The framework elaborated in the previous sections supports shot classification, ball 

tracking, 3D trajectory reconstruction and shooting location estimation. For performance 

evaluation the proposed system has been tested on broadcast basketball video sequences: 1) 

the Olympics gold medal game: USA vs. Spain, 2) the Olympics game: USA vs. China, 3) 

one Taiwan high-school basketball league (HBL) game and 4) one Korea basketball game. 

The replay shots can be eliminated in advance by previous researches of replay detection [17, 

29]. In the following, the parameter setting and experimental results are presented. 

 

2.7.1  Parameter setting 

 Although the basketball courts are similar in different games, they would be captured in 

different lighting conditions and the quality of video would be different. Hence, the 

thresholds should be determined adaptively. For court shot retrieval, two thresholds Tc/o and 

Tcourt are used. A frame with the dominant color ratio R ≤ Tc/o is assigned as a C/O view. 

When R > Tc/o, the frame is classified as a court view (R5∪8 > Tcourt) or a medium view (R5∪8 ≤ 

Tcourt). The thresholds are automatically learned as explained in the following. Some court 

shots can be first located using shot length since the shots with long lengths are mostly court 

shots. This can be verified by the statistical data of the shot lengths for different shot classes, 

as shown in Fig. 2-17, which is constructed from 120 shots with shot classes already known. 

Starting with roughly initialized threshold (Tc/o = average R in all frames), each shot with long 

length (>600 frames) and high court-colored pixel ratio (R > Tc/o) is classified as a court shot. 
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We construct the R5∪8 histogram of those shots passing the shot length and R constraints. 

Tcourt is determined in such a way that the percentage of the frames with R5∪8 > Tcourt 

contained in the qualified shots should be ≥ 70%. Then, Tc/o is re-adjusted to the average R of 

the frames excluding the frames of court shots. 

 

 
Fig. 2-17. Statistical data of the shot lengths for different basketball shot classes. 

 

For ball candidate detection, the ball Hue color range [Ha, Hb] is determined statistically. 

With the Hue histogram constructed from 30 ball images manually segmented out of different 

basketball sequences, as shown in Fig. 2-10, the range [Ha, Hb] is selected to cover 80% of 

the pixels of the 30 ball images. An alternative way to determine the ball color range is that 

the system provides frames of court shots for the user to locate the ball and then computes 

[Ha, Hb]. 

 

2.7.2  Performance of basketball shot boundary detection and court shot retrieval 

In sports videos, gradual transitions usually accompany replay shots. The shot 

boundaries are almost cut-type after replay shot elimination. Thus, we achieve good 

performance of overall 96.38% recall rate and 91.51% precision rate in shot boundary 

detection, as reported in Table 2-1. The misses are mainly caused by the strong correlation of 

the court color between shots, while special effects, high camera motion and the drastic 

action of the players in close-up view lead to false alarms.  

Since our final applications are ball tracking and shooting location estimation, we favor 
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court shots over other shots. The results of court shots retrieval are presented in Table 2-2 

(only the correctly segmented shots are used). We achieve high recall rate (98.59%) so that 

few shooting events are missed. The results of shot boundary detection and court shot 

retrieval are quite satisfactory, which allows the proposed system to perform the subsequent 

high-level analysis of basketball video. 

 
Table 2-1. Performance of basketball shot boundary detection. 

 Olympics1 Olympics2 HBL Korea Overall 
Correct 159 103 98 66 426 
Miss 4 3 6 3 16 
False positive 12 10 10 7 39 
Recall (%) 97.55 97.17 94.23 95.65 96.38 
Precision (%) 92.98 91.15 90.74 90.41 91.61 

 
Table 2-2. Performance of basketball court shot retrieval. 

 Olympics1 Olympics2 HBL Korea Overall 
Correct 52 35 32 21 140 
Miss 1 0 0 1 2 
False positive 3 2 2 1 8 
Recall (%) 98.11 100 100 95.45 98.59 
Precision (%) 94.55 94.59 94.12 95.45 94.59 

 

2.7.3  Results of court line and backboard top-border detection 

 The proposed systems detect the court lines and the backboard top-border reliably. Fig. 

2-18 demonstrates some example results, where the corresponding points are marked with 

yellow circles. Since the camera motion in a shot is continuous, the coordinates of 

corresponding points should not change dramatically in successive frames. Hence, though 

there might be errors in court line detection caused by the occlusion of players in some 

frames, the incorrect coordinates of the corresponding points can be recovered by 

interpolation.  
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Fig. 2-18. Example results of detecting court lines and corresponding points (marked with 
yellow circles). 

 

2.7.4  Performance of basketball tracking and shooting location estimation 

The performance study of ball tracking and shooting location estimation is focused on 

the shooting trajectory. The ground truth boundaries of shooting segments and ground truth 

ball positions are determined manually. A ball is said to be detected correctly if the system 

can conclude the correct position of the ball on the trajectory. The experimental results of ball 

tracking are presented in Table 2-3, where “ball frame” represents the number of frames 

containing the ball belonging to a shooting trajectory. On average, the recall and precision are 

up to 92.83% and 95.41%, respectively. On inspection, we find that the false alarms of ball 

tracking are mainly from the case when there is a ball-like object located on the extension of 

the ball trajectory. Tracking misses happen when the ball flies over the top boundary of the 

frame, as the example shown in Fig. 2-19. In this case, an actual shooting trajectory is 

separated into two potential trajectories and the system retains only the one approaching the 

backboard as shooting trajectory. The other trajectory will be eliminated, which leads to the 

misses of the ball candidates on it. Besides, this case (trajectory split) is also one main cause 

of the mistakes in shooting location estimation. 
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Table 2-4 reports the performance of shooting location estimation. The shooting 

locations estimated are judged as correct or not by an experienced basketball player and the 

proposed system achieves an accuracy of 86.21%. Some demonstrations of shooting location 

estimation are presented in Fig. 2-20. In each image, the blue circles are the ball positions 

over frames and the green circle represents the estimated shooting location, which is obtained 

by projecting the starting position of the trajectory onto the court plane. To present the 

camera motion, we also mark the positions of corresponding points over frames with red 

squares. 

 

 
Fig, 2-19. Example of a shooting trajectory being separated. 

 

Table 2-3. Performance of basketball tracking. 
 Olympics1 Olympics2 HBL Korea Total 
Ball frame 1509 794 643 459 3405 

Correct 1421 740 598 402 3161 

False alarm 57 29 32 34 152 

Recall (%) 94.17 93.2 93 87.58 92.83 

Precision (%) 96.14 96.23 94.92 92.2 95.41 

 

Table 2-4. Performance of basketball shooting location estimation. 
 Olympics1 Olympics2 HBL Korea Total 
#shoot 48 26 26 16 116 

#correct 42 23 22 13 100 

Accuracy (%) 87.5 88.46 84.62 81.25 86.21 
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Fig. 2-20. Demonstration of shooting location estimation. In each image, the blue circles are 
the ball positions over frames, the green circle represents the estimated shooting location and 
the red squares show the movement of corresponding points due to the camera motion. 

 

In fact, the physical factors we do not involve in 3D trajectory modeling, such as air 

friction and ball spin rate, may cause the deviation in 3D trajectory reconstruction. In the 

example of Fig. 2-21(a), the estimated shooing location (the green circle) seems correct. 

However, we inspect the 3D virtual replay from different viewpoints and observe the 

directional deviation in the reconstructed 3D trajectory. In the original video clip, the 

basketball is shot toward the right of the basket, but the ball of the reconstructed 3D 

trajectory is shot toward the left in the 3D virtual replay. On the other hand, the errors in ball 

tracking and camera calibration also affect the accuracy of 3D trajectory reconstruction. Fig. 

2-22 presents another example. As shown in Fig. 2-22(a), the backboard top border is 

occluded by the superimposed caption and can not be detected. The incorrect calibration 

parameters lead to the deviation in shooting location estimation, as shown in Fig. 2-22(b). 
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However, the court lines and the backboard top-border are detected appropriately in most 

frames and overall, we achieve quite encouraging results.  

 

  
(a) Shooting location estimation                (b) 3D virtual replay 

Fig. 2-21. Example of directional deviation in 3D trajectory reconstruction. 

 

 
(a) Corresponding points                       (b) Shooting location estimation 

Fig. 2-22. Error case of shooting location estimation caused by the misdetection of backboard 
top-border. 

 

2.7.5  Comparison and discussion 

For performance comparison, we implement another ball tracking algorithm based on 

Kalman filter, which is widely used in moving object tracking [8,11,52]. To compare the 

effectiveness and efficiency of the Kalman filter-based algorithm (KF) with those of the 
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proposed physics-based algorithm (PB), we use the precision, recall and the number of 

potential trajectories (#PT) as criteria. As reported in Table 2-5, KF algorithm has a similar 

recall with PB algorithm but lower precision, which reveals that PB algorithm performs better 

in eliminating the false alarms. Besides, PB algorithm produces less potential trajectories 

because most of the trajectories which do not fit the physical motion characteristics would be 

discarded. Therefore, fewer potential trajectories need be further processed in PB algorithm, 

which leads to high efficiency. Overall, the proposed PB algorithm outperforms KF algorithm 

in both effectiveness and efficiency. 

As to shooting location estimation, strictly speaking, there may be some deviation 

between the actual shooting location and the estimated one, due to the effects of the physical 

factors we do not involve, such as air friction, ball spin rate and spin axis, etc. However, 

owing to the consideration of 3D information in camera calibration, the automatic generated 

statistics of shooting locations provide strong support for the coach and players to 

comprehend the scoring distribution and even the general offense strategy. Compared to the 

plane-to-plane (2D-to-2D) mapping in [25], our system has the advantage of the 2D-to-3D 

inference retaining the vertical information, so the shooting location can be estimated much 

more precisely. An example for comparing the estimated shooting locations with/without 

vertical (height) information is presented in Fig. 2-23. Without the vertical information, the 

estimated shooting locations in Fig. 2-23(c) is far from the actual ones as in Fig. 2-23(a). That 

is, our system greatly reduces the deviation of shooting location estimation due to the 

reconstructed 3D information. Overall, the experiments show encouraging results and we 

believe that the proposed system would highly assist the statistics gathering and strategy 

inference in basketball games. 

 

 



 37

Table 2-5. Comparison between the proposed physics-based method and the Kalman 
filer-based method in basketball video. (#PT : number of potential trajectories) 

Proposed PB method  Comparative KF method  Ball 
 tracking Recall(%) Precision(%) #PT Recall(%) Precision(%) #PT

Olympics1 94.17 96.14 286 92.31 92.12 346 
Olympics2 93.20 96.23 153 91.68 93.33 183 

HBL 93.00 94.92 164 90.51 91.65 212 
Korea 87.58 92.20 94 87.36 90.51 133 

 

(a)  (b)  (c)  

Fig. 2-23. Comparison of shooting location estimation with/without vertical (height) 
information: (a) Original shooting location in the frame (b) Estimated shooting location with 
vertical information. (c) Estimated shooting location without vertical information. 

 

2.8  Summary 

The more you know the opponents, the better chance of winning you stand. Thus, game 

study in advance of the play is an essential task for the coach and players. It is a growing 

trend to assist game study for intelligence collection in sports games with computer 

technology. To cater for this, we design a physics-based ball tracking system for 3D trajectory 

reconstruction and shooting location estimation.  

Some key ideas and contributions in our system are as follows. The first is to utilize the 

domain knowledge of court specification for camera calibration. This enables the 

computation of 3D-to-2D transformation for single-view video sequences. The second is the 

development of physics-based trajectory extraction mechanism. Exploiting the physical 
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characteristics of ball motion assists eliminating the non-parabolic (or non-ballistic) 

trajectories and improves the efficiency and effectiveness of trajectory extraction. Moreover, 

it allows the 3D information lost in projection to 2D images in camera capturing to be 

reconstructed. The technical ideas presented in this chapter can also be applied to other sports, 

such as volleyball, baseball, etc. To the best of our knowledge, the trajectory-based 

application of shooting location estimation in basketball is first proposed. The experiments 

show encouraging results on broadcast basketball video.  

The fairly good results of ball tracking and 3D trajectory reconstruction in basketball 

video encourage us to explore appropriate physical motion models for 3D ball trajectory 

reconstruction in other kinds of sports videos. It is our belief that the preliminary work 

presented in this chapter will lead to satisfactory solutions for automatic intelligence 

collection in various kinds of sports games. 
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Chapter 3. Ball Tracking and 3D Trajectory Approximation with 

Applications to Tactics Analysis in Volleyball Video 

 

Providing computer-assisted tactics analysis in sports is a growing trend. This chapter 

presents an automatic system for ball tracking and 3D trajectory approximation from 

single-camera volleyball sequences as well as demonstrates several applications to tactics 

analysis. Ball tracking in volleyball video has great complexity due to the high density of 

players on the court and the complicated overlapping of player-player or ball-player. The 

2D-to-3D inference is intrinsically challenging due to the loss of 3D information in projection 

to 2D frames. To overcome these challenges, we propose a two-phase ball tracking algorithm 

in which we first detect ball candidates for each frame, and then use them to compute the ball 

trajectories. With the aid of camera calibration, we involve physical characteristics of ball 

motion to approximate the 3D ball trajectory from the 2D trajectory. The visualization of 3D 

trajectory and the applications to trajectory-based tactics analysis not only assist the coach 

and players in game study but also make game watching a whole new experience. The 

experiments on international volleyball games show encouraging results. 

The rest of the chapter is organized as follows. Section 3.1 gives the introduction.  

Section 3.2 explains the related work on sports video analysis. Section 3.3 describes the 

overview of the proposed VIA system. The processes of audio event detection, camera 

calibration and 2D ball trajectory extraction are explained in section 3.4, 3.5 and 3.6, 

respectively. Section 3.7 elaborates 3D trajectory approximation. Section 3.8 presents the 

trajectory-based applications to tactics analysis. Section 3.9 reports and discusses the 

experimental results. Finally, section 3.10 summaries this chapter. 
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3.1  Introduction  

The proliferation of multimedia data makes manual annotation of huge video databases 

no more practical. This trend facilitates developing automatic systems and tools for 

content-based multimedia information retrieval. Recently, sports video is attracting 

considerable attention due to the potential commercial benefits and entertaining 

functionalities. As the pace of life in the information society accelerates, most viewers desire 

to retrieve the significant events or designated scenes and players, rather than watch a whole 

game in a sequential way. Various algorithms of shot classification [1,2,30,31], highlight 

extraction [6,17,32] and semantic annotation [4,33] in sports video have been developed 

based on the combination of low-level visual/auditory features and game-specific rules. 

Furthermore, semantic content analysis of sports video requires ball/player tracking 

[8,10,34-37] to acquire the ball-player interaction and camera calibration [25,26,32,38,39] to 

obtain the ball/player positions in the real world coordinates. 

Most existing work in sports video analysis is audience-oriented. However, the coach 

and sports professionals desire to watch a sports game not only with efficiency but also with 

profundity, variety and professionalism. Traditional interactive video viewing systems which 

provide quick browsing, indexing and summarization of sports video no longer fulfill their 

requirements. The professionals prefer better understanding of the tactic patterns and 

statistical data so that they are able to improve performance and better adapt the operational 

policy during the game. To achieve this purpose, the current trend is to employ some 

personnel for game annotation, match recording, tactics analysis and statistics collection. 

However, it is obviously time-consuming and labor-intensive. Hence, automatic tactics 

analysis and statistics collection in sports games are undoubtedly compelling. 

Although increasing research effort of sports video processing concentrates on ball 

tracking and trajectory-based tactics analysis, the majority of existing work focuses on tennis 
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and soccer video [8,34-36]. Little work was done for volleyball video because it is much 

complex to track the ball in volleyball video due to the high density of players on the court 

and the frequent ball-player overlaps. However, the ball motion brings significant tactic 

information in volleyball games and the ball trajectory greatly contributes to tactics analysis. 

In this chapter, we develop an automatic system called VIA (Volleyball Intelligence Agent), 

which performs 2D ball tracking and 3D trajectory approximation from single view video 

sequences, captured by a camera set behind the court, for tactics analysis in volleyball games. 

Note that the “trajectory” mentioned in this chapter does not include the trajectory of the 

attack action since the attacked ball move too fast and is almost unrecognizable in video 

frames, even for human eyes. 

It might be arguable that the proposed VIA system concentrates on the user-captured 

volleyball video. However, not all of the games are broadcasted on TV. As the rapid evolution 

of digital equipments, general users are allowed to capture multimedia data much easier. It is 

common nowadays for sports professionals to set up a camera to capture the video sequences 

of the games they are interested in for game strategy study. Visual content analysis is no 

longer confined to broadcast video. Content analysis in user-generated multimedia data 

becomes another burgeoning and critical issue [40-42]. This trend necessitates the 

development of computer-assisted game study system for the user-captured sports video.  

 

3.2  Related Work 

3.2.1  Related work on camera calibration 

Semantic analysis of sport video requires camera calibration to convert 2D positions in 

the video frame to 3D real world coordinates or vice versa. Various camera calibration 

methods are based on planar reference objects [25,26,38]. These plane-based calibration 

techniques require feature points on a plane appearing in different views. Farin et al. [25,26] 
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propose an camera calibration algorithm for court sports. They start with identifying the 

court-line pixels by exploiting the constraints of color and local texture, and then detect the 

court lines by the Hough transform. The intersection points of the court lines are extracted as 

the feature points to compute the camera projection matrix via solving a set of linear 

equations. For the subsequent frames, a model tracking mechanism is used to predict the 

camera parameters from the previous frame. Watanabe et al. [38] propose a soccer field 

tracking method, which extracts the field lines, defines a wire frame model based on the 

official layout of the soccer field lines, and finally tracks where the field area corresponds in 

the soccer field by utilizing the camera parameters computed via matching the wire frame 

model with the extracted field lines.  

Yu. et al. [36,39] propose a non-plane based camera calibration method of tennis video. 

They approximate the projection geometry by a perspective projection model mapping 

between the 3D world and the 2D image. To compute the camera matrix, they find the tops of 

the net-poles together with the ground feature points to form a non-coplanar feature point set. 

For camera matrix refinement, they find clip-invariant parameter via finding the cluster 

centers of all their instances in a clip. Then, they classify all frames into groups according to 

the focal lengths and the 3D world points which the camera is looking at in the straight-ahead 

direction. A better estimate of the group-invariant parameters is obtained via a group-wise 

data analysis. Except for the camera center, the rest of the group-invariant parameters are 

further refined via a Hough-like search, i.e. frame-wise tuning. 

 

3.2.2  Related work on ball/player tracking 

Since significant events are mainly caused by ball-player and player-player interactions, 

balls and players are the most frequently tracked objects in sports video. Yu et al. [34] present 

a trajectory-based algorithm for ball detection and tracking in soccer video. The ball size is 

first estimated from feature objects (goalmouth and ellipse) to detect ball candidates. 
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Potential trajectories are generated from ball candidates by a Kalman filter based verification 

procedure. The true ball trajectories are finally selected from the potential trajectories 

according to a confidence index, which indicates the likelihood that a potential trajectory is a 

ball trajectory. Zhu et al. [35] analyze the temporal-spatial interaction among the ball and 

players to construct a tactic representation called aggregate trajectory based on multiple 

trajectories. The interactive relationship with play region information and hypothesis testing 

for trajectory temporal-spatial distribution are exploited to analyze the tactic patterns.  

Some work focuses on 3D trajectory reconstruction based on multiple cameras located at 

specific positions [11,13,43]. Hawk-Eye system [43] produces computer-generated replays 

viewed through 360 degrees. 2D tracking is first performed on each of the specifically 

located cameras. These 2D trajectories are then sent to a 3D reconstitution module to 

construct the 3D trajectories, and impact points between separate trajectories (can occur at a 

bounce or a strike) are determined. Finally, the complete track is visualized. ESPN K-Zone 

system [11] extracts the trajectory for each pitch and uses computer-generated graphics to 

outline the strike zone boundaries. Two cameras linked to two PCs are used to observe the 

ball and each PC extracts a 2D trajectory. The two pitch-tracking computers combine two 2D 

positions which correspond to the same time code into a 3D position. Then, the successive 

3D positions are fed into a Kalman filter to determine the final trajectory. UIS (Umpire 

Information System) [13] uses multiple cameras to track each pitch and measure the batter’s 

strike zone so as to support the strike/ball judgment.  

Although these systems perform well in ball tracking and 3D trajectory reconstruction, 

they have strong limitation of view angles and require high cost of multiple high speed 

cameras. Moreover, the high demand for the camera installation locations and the visible 

areas constrains their systems to be used in a studio-like sports field. These systems are not 

practicable for general users. 
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3.3  Overview of the Proposed Ball Tracking and 3D Trajectory Approximation in 

Volleyball Video 

To achieve automatic tactics analysis in volleyball games, a system called VIA (Volleyball 

Intelligence Agent) is designed in this chapter. VIA fuses visual cues with audio features for 

both syntactic and semantic analysis in volleyball games. Furthermore, VIA visualize the 3D 

trajectory approximation, so that not only trajectory-based game study can be presented but 

game watching also becomes an entirely novel experience. The system framework is 

illustrated in Fig. 3-1.  

 

 

Fig. 3-1. Framework overview of the proposed VIA system. 

 

Whistle is one of the most indicative audio events in volleyball games since whistle 

determines the start and end of each play. Thus, VIA starts with whistle detection to 

determine play boundaries. Moreover, VIA also detects the attacks for event indexing. 

For video frames, VIA first performs camera calibration via finding the non-coplanar 

feature points to compute the projection matrix mapping 3D real world coordinates to 2D 

image positions. For 2D ball trajectory extraction, ball candidates are detected in each frame 

by the constraints of size, shape and compactness. However, it is almost impossible to 
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distinguish the ball within a single frame, so information from successive frames, e.g. motion 

information, is required for the discrimination between the ball and other objects. VIA 

correlates information on the ball candidates over a sequence of frames, explores potential 

trajectories and identifies the true ball trajectories. To approximate 3D trajectories, we set up 

the motion equations with the parameters: velocities and initial positions, to model the 3D 

trajectories based on the physical characteristics of ball motion. The 3D ball positions over 

frames can be represented by equations. The projection matrix computed in camera 

calibration is then used to map the equation-represented 3D ball positions to the 2D ball 

coordinates in frames. With the 2D coordinates of the extracted ball candidates being known, 

we can compute the parameters of the 3D motion equations. Finally, the 3D positions and 

velocities of the ball can be derived to approximate the 3D ball trajectory. 

The novelty and contribution of this chapter are summarized as follows. The problem of 

2D-to-3D inference is intrinsically challenging due to the loss of 3D information in projection 

to 2D frames in picture capturing. We reconstruct 3D information from single view 2D video 

sequences based on the integration of multimedia features, domain knowledge of court 

specification and physical characteristics of ball motion. Moreover, several applications using 

the acquired 2D and 3D trajectories are presented to demonstrate the utility of the proposed 

2D ball tracking and 3D trajectory approximation scheme. The trajectory-based applications 

to tactics analysis greatly assist the coaches and professionals in game strategy study. 

 

3.4  Audio Event Detection 

Several significant events which are difficult to detect from visual features, such as 

whistle, can be directly traced through audio features [44,45]. In this section, we explain the 

detection of whistles and attacks in volleyball video.  
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3.4.1.  Whistle detection 

Whistle directly determines the play boundaries in volleyball games. For whistle 

detection, ZCR (Zero Crossing Rate) is a distinguishing and easy-to-compute feature [46,47]. 

ZCR counts the number of times which an audio signal crosses its zero axis, as defined in Eq. 

(3-1) [44]: 
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The frequency of whistle is higher than that of other signals, so a peak can be found in 

ZCR when the referee is blowing the whistle. By observation, the duration of a whistle is 

about 200 to 800 ms, so we set the window length Nz to the average—500 ms. The feature 

peak index [48] is adopted here for peak picking. The mean of ZCR over a time duration of α 

times the window length (α × NZ, α = 10) is computed, and then the peak index is defined as 

the difference between the ZCR of each window and the mean ZCR. Final decision of whistle 

detection is obtained by thresholding. With the whistles detected, each play can be segmented 

out. Besides, the time-outs (game breaks) can be easily eliminated by visual features since in 

volleyball games players are not allowed to stay in the court during a time-out. 

 

3.4.2  Attack detection  

Attack plays an important role in event indexing. The sound of attack is a transient 

signal in a very short duration. By analyzing the STE (Short-Time Energy) [44], a peak can 
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be observed when an attack is coming up. The STE is defined as Eq. (3-3): 
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where n is the time index of the short-time energy and w(k) is a rectangle window of length 

NE (we use NE = 15 ms, since the sound of attack is a transient signal in a very short duration 

of about 10~20 ms). As in whistle detection, the feature peak index [48] is adopted for peak 

picking and final decision of attack detection is obtained by thresholding. 

 

3.5  Camera Calibration 

Camera calibration aims at computing the geometric transformation, Eq. (2-3) in section 

2.4 on pp. 14, mapping from the 3D real-world positions to 2D video frames or vice versa. To 

compute the camera projection matrix, we need to extract a set of corresponding points—the 

points whose coordinates are both known in the 3D real world and in the 2D image.  

 

 
Fig. 3-2. Illustration of the non-coplanar feature points. 

 

We first segment the court region consisting of the court lines L1 to L7 (see Fig. 3-2) 

using the dominant color feature computed via color histogram. The court lines are detected 

by the Hough transform. Then, we can obtain the coordinates of the ground feature points p1 

to p10 via computing the intersection of court lines. In addition to the ground feature points, 

the computation of camera matrix requires non-coplanar feature points. Thus, we trace 

vertically from the ground points p5, p6 in the image and search the two vertical borders of the 
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net using the Hough transform. The endpoints of the vertical border of the net (p11 to p14), 

together with the ground feature points, form a non-coplanar feature point set. For the 

computation of camera calibration parameters cij, please refer to section 2.4.3 on pp. 18. 

 

3.6  2D Volleyball Trajectory Extraction 

It is a challenging task to identify the ball in frames due to its small size and fast 

movement. In this section, we explain the processes of 2D trajectory extraction. 

 

3.6.1  Ball candidate detection 

We design the following sieves to prune the non-ball objects. The objects satisfying the 

constraints of size, shape and compactness are retained as ball candidates. 

1) Size sieve: Please refer to the description of size sieve in section 2.5.1 on pp. 21. 

2) Shape sieve: Please refer to the description of shape sieve in section 2.5.1 on pp. 21. 

3) Compactness sieve: The ball object should be compact, so we build a compactness 

sieve to filter out the objects with the degree of compactness Dcompact, as defined in Eq. (3-4), 

less than a threshold Tc (we set Tc = 50% since an object of Dcompact less than half can not be 

claimed to be “compact”). The illustration of the compactness filter is presented in Fig. 3-3. 

Dcompact = Object_Size / Bounding_Box_Area                              (3-4) 

 

 

Fig. 3-3. Illustration of the compactness filter: (a) Compactness degree Dcompact is defined as 
the ratio of the object size to the area of the bounding box. (b) Objects with low Dcompact 
would be removed while objects with high Dcompact would be retained. 
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The ball is at a distance away from other moving object in most frames. Thus, the ball 

candidates close to other moving objects might be over-segmented regions of players. To 

improve the accuracy of ball tracking, ball candidates are classified into isolated or contacted 

candidates according to their nearest objects. A candidate is classified as isolated if there is no 

neighboring object within a distance of Dfrm, the in-frame ball diameter in Eq. (2-9) on pp. 21, 

and it is classified as contacted, otherwise. 

 

3.6.2  Potential trajectory exploration 

It is very difficult to identify the ball from the ball candidates within a single frame. 

Therefore, motion information over successive frames is required to discriminate the ball 

from other moving objects. To visualize the motion of ball candidates, we plot the y-and x- 

coordinates of the ball candidates over time (indexed by the frame serial number n), called 

Y-distribution image (YDI) and X-distribution image (XDI), respectively. An example of YDI 

and XDI is shown in Fig. 3-4(a), where black dots represent isolated candidates and green 

crosses represent contacted candidates.  

In volleyball games, players are not allowed to hold the ball during a play, so the ball 

trajectory comprises a sequence of near parabolic curves. We have a further observation that 

the ball moves near parabolically in y-direction due to the gravity and moves near straightly in 

x-direction in spite of the air friction. Thus, we explore a sequence of points which form a 

near parabolic curve in YDI and a near straight line in XDI simultaneously as a potential 

trajectory. 
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Y-distribution image (YDI)                 X-distribution image (XDI) 

 
(a) Plotting the y-and x- coordinates of the ball candidates over time (indexed by the frame 
serial number n). Black dots represent isolated candidates and green crosses represent 
contacted candidates. 

 
(b) Potential trajectories: the sequences of the linked ball candidates in YDI and XDI. 

 
(c) Integrated trajectory. 

Fig. 3-4. Illustration of the Y- and X-distribution images for different process stages of a 
volleyball game. 

 

The procedure of potential trajectory exploration is depicted in Fig. 3-5. Each ball 

candidate is first linked to the nearest neighbor in the next frame. Since in frames the ball 

moves (near) parabolically in y-direction and (near) straightly in x-direction, we define the 

prediction functions for YDI and XDI as Eq. (3-5) and Eq. (3-6), respectively. 

y = a1 • n2 + a2 • n + a3, a1 < 0 ,   n : frame serial number            (3-5) 

 x = b1 • n + b2                                                      (3-6) 
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The ball position in the next frame is predicted by the prediction functions. The prediction is 

considered matched if a ball candidate close to the predicted position is found. The trajectory 

then grows by adding the candidate found and the prediction functions are updated by 

re-computing the best-fitting functions for the coordinates of the candidates detected so far 

using the least squares fitting technique of regression analysis. If there exists no candidate 

close to the predicted position, the frame is regarded as a missing frame and the predicted 

position is taken as the ball position. The trajectory growing terminates when the number of 

consecutive missing frames reaches a predefined limit (4 in our experiments). The potential 

trajectories produced from this procedure are shown as the sequences of the linked ball 

candidates in YDI and XDI, as depicted in Fig. 3-4(b). 

 

 

Fig. 3-5. Procedure of potential trajectory exploration. 

 

3.6.3.  Trajectory identification and integration 

Given the set of potential trajectories, the next step is to identify the true ball trajectories. 

For each potential trajectory T, we define its confidence degree, denoted by F(T), which 

measures how likely T is a ball trajectory:  
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  F(T) = λ1 L + λ2 R − λ3 E                                           (3-7) 

where L is the trajectory length, R is the ratio of isolated candidates to contacted candidates in 

T, E is the prediction error (defined as the average of the distances from ball candidate 

positions to the predicted positions) and the parameters λ1, λ2, λ3 are used to adjust the 

relative importance. We design an algorithm which iteratively selects the potential trajectory 

with the highest confidence degree as the ball trajectory Tb, and then discards the trajectories 

which overlap with Tb, until all trajectories are processed, as shown in the following pseudo 

code. Finally, the gaps between two successive identified trajectories can be patched by 

extending these two trajectories based on their respective prediction functions, as shown in 

Fig. 3-4(c). Thus, the ball positions can be estimated even though the ball is temporarily 

occluded. 

  

Algorithm of trajectory identification 
Input: S, the set of potential trajectories; 
Output: I, the set of identified ball trajectories; 
 
Initialize I to be empty; 
while (S is not empty) do{ 
  Let Tb be the trajectory with highest confidence degree in S; 
  Move Tb into I; 
  Eliminate the trajectories which overlap with Tb in S;        
} 

 

3.7  3D Volleyball Trajectory Approximation 

In volleyball games, the ball trajectory comprises a sequence of near parabolic curves, 

even though many factors affect the ball motion, such as velocity, gravity acceleration, spin 

axis, spin rate, air friction, etc. We call each near parabolic curve in the ball trajectory a 

sub-trajectory and roughly model a 3D sub-trajectory as: 
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x = x0 + Vx t  
y = y0 + Vy t                                                         (3-8) 
z = z0 + Vz t + gt2 /2  

where (x, y, z) is the 3D ball coordinate at time t, (x0, y0, z0) is the 3D ball coordinate of the 

starting position in the sub-trajectory, (Vx, Vy, Vz) is the 3D ball velocity and g is the gravity 

acceleration.  

The relationship between each pair of corresponding points in the 2D and 3D spaces is 

given in Eq. (2-3) on pp. 14. Substituting Eq. (3-8) into Eq. (2-3), we obtain: 

 

(3-9)

Multiplying out the equation with u =u′w and v = v′w, we get two equations for each ball 

candidate (u′, v′): 

c11 x0 + c11 Vx t + c12 y0 + c12 Vy t + c13 z0 + c13 Vz t + c13 g t2 /2 + c14 

= u′ (c31 x0 + c31 Vx t + c32 y0 +c32 Vy t + c33 z0 +c33 Vz t + c33 g t2 /2 +1)      (3-10) 

c21 x0 + c21 Vx t + c22 y0 + c22 Vy t + c23 z0 + c23 Vz t + c23 g t2 /2 + c24 

= v′ (c31 x0 + c31 Vx t + c32 y0 +c32 Vy t + c33 z0 +c33 Vz t + c33 g t2 /2 +1)      (3-11) 

Since the eleven camera calibration parameters cij and the time of each ball candidate on the 

sub-trajectory are known, we set up a linear system D2Nx6 E6x1 = F2Nx1 from Eq. (3-10) and 

Eq. (3-11) to compute the six unknowns (x0, Vx, y0, Vy, z0, Vz) of the parabolic trajectory: 
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u1′ (c33 g t1
2 /2 +1) - (c13 g t1

2 /2 + c14)
v1′ (c33 g t1

2 /2 +1) - (c23 g t1
2 /2 + c24 )

2Nx1

u2′ (c33 g t2
2 /2 +1) - (c13 g t2

2 /2 + c14)
v2′ (c33 g t2

2 /2 +1) - (c23 g t2
2 /2 + c24 )

uN′ (c33 g tN
2 /2 +1) - (c13 g tN

2 /2 + c14)
vN′ (c33 g tN

2 /2 +1) - (c23 g tN
2 /2 + c24 )

F                             (3-12) 

where N is the number of ball candidates on the sub-trajectory and (ui′, vi′) is the 2D 

coordinate of the candidates. Then, similar to Eq. (2-8) on pp. 19, we can over-determine D 

and find a least squares fitting for E by pseudo-inverse. Finally, each 3D sub-trajectory can 

be reconstructed from the six physical parameters (x0, Vx, y0, Vy, z0, Vz). 

However, here comes a problem. Since each 3D sub-trajectory is reconstructed 

independently, the 3D coordinate of the transition point between two adjacent sub-trajectories 

computed from the preceding sub-trajectory is not always consistent with the one computed 

from the succeeding sub-trajectory. To overcome this problem, we enhance the algorithm by 

taking two adjacent sub-trajectories into consideration at one time. Fig. 3-6 illustrates the 

procedure of 3D trajectory reconstruction by a sample ball trajectory. 
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Fig. 3-6. Procedure of 3D trajectory approximation.  

 

As shown in Fig. 3-6(a), the ball trajectory contains three sub-trajectories S0, S1 and S2. Let 

P1 be the transition point of S0 and S1, on which the 3D ball velocities are (Vx0, Vy0, Vz0) and 

(Vx1, Vy1, Vz1), respectively. As shown in Fig. 3-6(b), to derive (Vx0, Vy0, Vz0, x1, y1, z1, Vx1, Vy1, 

Vz1), we consider the two adjacent sub-trajectories S0 and S1. Taking P1 as the initial point, the 

3D trajectories of S0 and S1 are modeled as Eq. (3-13) and Eq. (3-14), respectively: 

X = x1 - Vx0 t 
Y = y1 - Vy0 t                                                    (3-13) 
Z = z1 - Vz0 t - g t2 /2 

X = x1 + Vx1 t 
Y = y1 + Vy1 t                                                    (3-14) 
Z = z1 + Vz1 t + g t2 /2 

Similar to Eq. (3-10) and Eq. (3-11), we can derive two equations, Eq. (3-15) and Eq. (3-16), 

for each ball candidate on S0, and two equations, Eq. (3-17) and Eq. (3-18), for each ball 

candidate on S1. (u′, v′) is the 2D coordinate of the ball candidate. 
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c11 x1 - c11 Vx0 t + c12 y1 - c12 Vy0 t + c13 z1 - c13 Vz0 t - c13 g t2 /2 + c14 

= u′ (c31 x1 - c31 Vx0 t + c32 y1 -c32 Vy0 t + c33 z1 -c33 Vz0 t - c33 g t2 /2 +1)     (3-15) 

c21 x1 - c21 Vx0 t + c22 y1 - c22 Vy0 t + c23 z1 - c23 Vz0 t - c23 g t2 /2 + c24 

= v′ (c31 x1 - c31 Vx0 t + c32 y1 - c32 Vy0 t + c33 z1 - c33 Vz0 t - c33 g t2 /2 +1)     (3-16) 

c11 x1 + c11 Vx1 t + c12 y1 + c12 Vy1 t + c13 z1 + c13 Vz1 t + c13 g t2 /2 + c14 

= u′ (c31 x1 + c31 Vx1 t + c32 y1 +c32 Vy1 t + c33 z1 +c33 Vz1 t + c33 g t2 /2 +1)    (3-17) 

c21 x1 + c21 Vx1 t + c22 y1 + c22 Vy1 t + c23 z1 + c23 Vz1 t + c23 g t2 /2 + c24 

= v′ (c31 x1 + c31 Vx1 t + c32 y1 +c32 Vy1 t + c33 z1 +c33 Vz1 t + c33 g t2 /2 +1)    (3-18) 

The equations produced by ball candidates can be represented as a linear system: G2N x 9 H9 x 1 

= L2N x 1, where H = (Vx0, Vy0, Vz0, x1, y1, z1, Vx1, Vy1, Vz1)T and N is the number of ball 

candidates on the S0 and S1 [please refer to Eq. (3-12)]. With G over-determined, we can find 

a least squares fitting for H by pseudo-inverse. Thus, the coordinate of P1 (x1, y1, z1) is 

obtained. In the same way, the nine parameters (Vx1, Vy1, Vz1, x2, y2, z2, Vx2, Vy2, Vz2) can be 

derived by processing S1 and S2 simultaneously, as shown in Fig. 3-6(c).  

For the sub-trajectory (S1 in this example) between two transition points, its 3D velocity 

(Vx1, Vy1, Vz1) is computed twice: one when processing S0-P1-S1 and the other when 

processing S1-P2-S2. For consistence, we take (x0, y0, z0) and (x1, y1, z1) as known parameters 

and estimate (Vx1, Vy1, Vz1) again, as shown in Fig. 3-6(d). Thus, each ball candidate on S1 

would produce four equations: Eq. (3-17), Eq. (3-18), Eq. (3-19) and Eq. (3-20). 

c11 x2 - c11 Vx1 t + c12 y2 - c12 Vy1 t + c13 z2 - c13 Vz1 t - c13 g t2 /2 + c14 

= u′ (c31 x2 - c31 Vx1 t + c32 y2 -c32 Vy1 t + c33 z2 -c33 Vz1 t - c33 g t2 /2 +1)     (3-19) 

c21 x2 - c21 Vx1 t + c22 y2 - c22 Vy1 t + c23 z2 - c23 Vz1 t - c23 g t2 /2 + c24 

= v′ (c31 x2 - c31 Vx1 t + c32 y2 - c32 Vy1 t + c33 z2 - c33 Vz1 t - c33 g t2 /2 +1)     (3-20) 

Once again, the equations produced by ball candidates can be represented as a linear system: 

M4N x 3 Q3 x 1 = R4N x 1, where Q = (Vx1, Vy1, Vz1)T and N is the number of ball candidates on S1. 

Q can be estimated by pseudo-inverse. Finally, the complete 3D trajectory can be 
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reconstructed by the 3D ball velocity (Vxi, Vyi, Vzi) on each sub-trajectory Si and the 

coordinate (xi, yi, zi) of each transition point Pj. 

 

3.8  Trajectory-Based Applications in Volleyball Games 

This section presents several application based on the acquired 3D and 3D trajectories to 

demonstrate the utility of the proposed 2D ball tracking and 3D trajectory approximation 

scheme. the trajectory-based applications of tactics analysis greatly assist the coaches and 

players in game strategy study. 

 

3.8.1  Action detection and set type recognition using 2D trajectory 

In volleyball games, a play begins with a serve followed by the iterative actions: 

reception, set and attack. By game rules, players are not allowed to hold the ball during a play. 

Thus, the ball changes its motion only when interacting with a player. The turning points of 

the ball trajectory can be detected and recognized as serve, reception, set and attack in order. 

The set action can be further analyzed for set type recognition, which is crucial for 

tactics inference because attack is the most effective way to gain points and the set type 

dominates an attack. Fig. 3-7 illustrates ten common set types. A set type is determined 

according to its direction (forward or backward), the horizontal and vertical displacements of 

the ball. We define the discriminants as Table 3-1. Set Qa, Qb, Qc and Qd are quick sets 

which players try to hit the ball as soon as possible. Set #2 and # 3 are short sets next to the 

setter while set #1, #4, #5 and #6 are long sets toward the two sides of the net. A set type can 

be recognized by classifying the set curve (the sub-trajectory after the set action) into one of 

the ten types by the discriminants, where a2 and b1 are coefficients in Eq. (3-5) and Eq. (3-6), 

and T1~T3 are thresholds. We use 200 set curves (20 curves per set type) as training data and 

manually label the set types. The thresholds T1~T3 are determined by seeking for the values 
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which best classify the set curves in the training data. 

 

 
Fig. 3-7. Illustration of set type diagram. 

 

Table 3-1. Discriminants of ten common set types. 
Set Discriminant Set Discriminant 

#1(long) b1<0, |b1|>T1, |b1|/a2≤ T2 Qa (quick) b1<0, |b1|<T1, T2 < |b1|/a2 ≤T3 
#2(short) b1<0, |b1|<T1, |b1|/a2≤ T2 Qb (quick) b1<0, |b1|/a2 > T3 
#3(short) b1>0, |b1|<T1, |b1|/a2≤ T2 Qc (quick) b1>0, |b1|<T1, T2< |b1|/a2 ≤ T3 
#4(long) b1>0, |b1|>T1, |b1|/a2≤ T2 Qd (quick) b1>0, |b1|/a2 > T3 
#5(long) b1<0, |b1|>T1, T2 < |b1|/a2 ≤T3   
#6 (long) b1>0, |b1|>T1, T2 < |b1|/a2 ≤T3   

  

3.8.2  3D virtual replays and serve placement estimation using 3D trajectory 

3D trajectory approximation facilitates the enriched visual presentation of 3D virtual 

replays. The ball movement can be watched on a virtual court from any viewpoint. This 

visualization is exciting and practical that the viewpoints can be switched among the receiver, 

setter, attacker or the players opposite the net, which cannot be captured from any camera on 

the court.  

Serve placement (landing position) offers a valuable insight into the game strategy 

because the serve-reception directs the first attack in a play. With the 3D trajectory 

approximated, we extend the sub-trajectory of a serve and the serve placement can be 

estimated when the sub-trajectory reaches the ground (the z-coordinate of the ball equals 
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zero).  

 

3.9  Experimental Results and Discussion in Volleyball Video 

The framework elaborated in the previous sections supports audio event detection, 2D 

ball tracking and 3D trajectory approximation. For performance evaluation, the proposed 

system has been tested on the volleyball video sequences (MPEG-1, 352x240, 29.97 fps, 

Audio: 44.1 kHz, 16 bits, stereo) captured in the Asia Men’s Volleyball Challenge Cup: 1) 

Taiwan vs. Korea, 2) China vs Japan, and 3) Japan vs. Korea. 

 

3.9.1  Results of audio event detection 

To segment a game into plays, VIA detects the whistles using ZCR (Zero Crossing Rate). 

The frequency of whistle is higher than that of other signals, so a peak of ZCR can be found 

when the referee is blowing the whistle. As to the attack detection, STE (Short-Time Energy) 

is used. A peak of STE occurs when an attack is taking place. To obtain the threshold values 

for peak picking in whistle detection and attack detection, a training set containing the sounds 

of whistle and attack in different games is used and an iterative procedure of modifying and 

testing the threshold values is conducted. We achieve a fairly good performance of overall 

96.5% precision rate and 98.57% recall rate in whistle detection, as reported in Table 3-2, so 

that most plays can be segmented appropriately. 

For attack detection, the sound energy highly depends on the power of the player hitting 

the ball. Not all of the attacks are very powerful, so some attacks with less power would be 

missed. The precision and recall of attack detection using STE are 84.62% and 88%, 

respectively, as presented in Table 3-3. The accuracy of attack detection can be improved 

with the assistance of visual information, such as the transition of ball motion (to be 

discussed in section 3.9.2). 
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Table 3-2. Performance of whistle detection. 
 #correct #false positive #miss Precision Recall 

TWN-KOR 93 4 1 95.88% 98.94% 
CHN-JPN 89 3 1 96.74% 98.89% 
JPN-KOR 94 3 2 96.91% 97.92% 
Total 276 10 4 96.5% 98.57% 

 

Table 3-3. Performance of attack detection. 
 #correct #false positive #miss Precision Recall 

TWN-KOR 37 6 5 86.05% 88.1% 
CHN-JPN 33 5 6 86.84% 84.62% 
JPN-KOR 40 9 4 81.63% 90.91% 
Total 110 20 15 84.62% 88% 

 

3.9.2  Results of 2D volleyball trajectory extraction 

The experiment of 2D trajectory extraction is conducted on the shots which are correctly 

segmented by whistle detection. The following conventions and notations are used in 

presenting the results. For each ball frame (the frame contains the ball), the ground truth of 

ball position is obtained by manual inspection. The system is said to correctly identify a 

frame f if: 1) it concludes the correct ball position when f is a ball frame or 2) it concludes 

that there is no ball when f is a no-ball frame. The system is said to give a false alarm if it 

concludes the incorrect ball position in a ball frame or it detects a ball in a no-ball frame. Let 

#frm, #ball-frm be the number of frames and ball frames in the sequence, respectively. Let 

#correct denote the number of frames which the system correctly identifies the ball and #false 

denote the number of false alarms. 

The results of ball detection and tracking are presented in Table 3-4. A ball is said to be 

detected correctly if it matches a ball candidate. A ball is said to be tracked if the system can 

conclude the correct position of the ball on the derived trajectory. An example is given in Fig. 

3-8. Fig. 3-8(a) shows the original frame. In Fig. 3-8(b), the ball is missed when the ball is 
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occluded by or close to the player(s). However, the system can still compute the ball 

trajectory and track the ball positions, as shown in Fig. 3-8(c). We achieve an accuracy of 

71.84% on average in ball detection. By inspecting the error cases, we observe that the ball 

might be missed before serving in some plays, because the player who is serving does not 

toss up the ball high enough. Consequently, the ball which is too close to or occluded by the 

player is hard to detect. On the other hand, the tracking might fail if too many ball candidates 

are missed and not enough ball candidates are detected. However, the proposed physics-based 

ball tracking method is able to correct most errors and promotes the final accuracy up to 

87.1% on average. Besides, the rate of false alarm (#false/#frm) is very low—an average of 

2.68%, which takes a very small portion in the trajectory. Hence, the high reliability of the 

extracted trajectories significantly promotes the feasibility of the subsequent trajectory-based 

applications for tactics analysis and 3D trajectory approximation. 

 

Table 3-4. Performance of volleyball detection and tracking. 
Sequence Ground truth Detection result Tracking result 

 #frm #ball-frm #correct #false accuracy #correct #false accuracy
TWN-KOR 15824 11508 11626 430 73.47% 13620 408 86.07% 

CHN-JPN 14835 10520 10728 418 72.32% 12885 410 86.86% 

JPN-KOR 19241 13147 13492 521 70.12% 16959 519 88.14% 

Total 49900 35175 35846 1369 71.84% 43464 1337 87.1% 

 

 
(a) Original frame            (b) Ball detection        (c) Ball tracking 

Fig. 3-8. Illustration of volleyball detection and ball tracking.  
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Table 3-5 presents the performance of action detection. Most actions, except serve, are 

detected well and the accuracies are about 90%. The misses of serve detection are mainly 

caused by the failures in ball tracking before a serve (as mentioned in the previous paragraph). 

The 6th column “attack(+audio)” reports the result of attack detection using both the 

trajectory and audio information. A peak in STE (Short-Time Energy) after the set action is 

recognized as an attack action. Combination of the trajectory and audio information improves 

the accuracy of attack detection in two ways: 1) the peaks in STE before the set action should 

be false alarms and can be eliminated, and 2) some misses in trajectory-based attack detection 

due to the tracking error can be recovered by STE.  

 

Table 3-5. Performance of action detection. 

Action Serve Reception Set Attack Attack(+audio) 
#action 133 133 130 125 125 

#correct 110 119 120 112 115 

Accuracy  82.71% 89.47% 92.31% 89.6% 92% 

 

Fig. 3-9 demonstrates examples of 2D ball trajectory extraction and action detection in 

volleyball video. The detected action: serve, reception, set and attack are shown in Fig. 3-9(a) 

~ (d), respectively. Set is one of the actions and the set type is further recognized. In each of 

Fig. 3-9(a) ~ (d), the left image displays the frame at the moment when the action is detected, 

with the trajectory superimposed on the frame. The right image shows the automatic 

generated close-up for the detected action.  
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Extracted trajectory      Detected action    Extracted trajectory     Detected action 

(a)  (b)  

(c)  (d)  
 Fig. 3-9. Demonstration of ball trajectory extraction and action detection in volleyball video: 
(a) Serve, (b) Reception, (c) Set and (d) Attack. 

 

3.9.3  Simulation results of 3D volleyball trajectory approximation 

The estimation of 3D ball positions highly relies on the 2D ball positions extracted. 

Owing to the high accuracy of the proposed 2D ball tracking scheme, VIA is able to 

approximate the 3D trajectory well. Sample simulation results are demonstrated in Fig. 3-10 

and Fig. 3-11. Take Fig. 3-10 for explanation. Fig. 3-10(a) displays the frame at the moment 

when a serve is occurring. The frame is enriched by superimposing the extracted ball 

trajectory on the frame and projecting the 3D trajectory on the court plane. Similarly, the 

enriched frames for reception, set and attack are shown in Fig. 3-10(b)~(d), respectively. It 

can be observed that the transition positions of the 3D trajectory are almost the locations of 

the actions occurring, which verifies the feasibility of the proposed 3D trajectory 

approximation method. The trajectory projected on the court model, as shown in Fig. 3-10(e), 

enables the audience or professionals to comprehend the transition of ball motion much easily. 

Fig. 3-10(f) displays the serve placement estimation. Furthermore, virtual replays can be 

provided and the ball trajectory in each play can be viewed from any viewpoint, as presented 

in Fig. 3-10(g)~(h).  
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Fig. 3-10. Demonstration of 3D trajectory approximation. (a)~(d) The enriched frames for 
serve, reception, set and attack, respectively. (e) Ball trajectory projected on the court model. 
(f) Serve placement estimation. (g)~(h) 3D virtual replays from different viewpoints. 
 

 
Fig. 3-11. Demonstration of 3D trajectory approximation. (a)~(d) The enriched frames for 
serve, reception, set and attack, respectively. (e) Ball trajectory projected on the court model. 
(f) Serve placement estimation. (g)~(h) 3D virtual replays from different viewpoints. 
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Inspecting the error cases, we find that improper segmentation of the ball might lead to 

the deviation of the 2D ball candidate coordinate. If there are not enough ball candidates 

detected to rectify the deviation, the system might misjudge a far-to-near trajectory as a 

near-to-far one, and vice versa. An example is shown in Fig. 3-12. Only five ball candidates 

detected for the serve, as shown in Fig. 3-12(a), and the far-to-near serve trajectory is 

miscomputed as a near-to-far trajectory, as shown in Fig. 3-12(b). All ball candidates detected 

in the video sequence and the complete 3D trajectory approximated are presented in Fig. 

3-12(c) and (d), respectively. Fig. 3-13 gives another example, in which the ball served 

directly falls to the ground without being touched by any player. The ground truth 2D ball 

positions and the ball candidates detected are shown in Fig. 3-13(a) and (b), respectively. In 

the sequence, the ball drops suddenly due to the effects of air friction and ball spin, and the 

serve placement is near the end-line, as shown in Fig. 3-13(b). However, we do not consider 

those physical factors. Moreover, we miss the later ball candidates in the serve. Thus, the 3D 

trajectory approximated is not accurate and the serve placement is over the end-line, as 

shown in Fig. 3-13(c) and (d).  

Strictly speaking, there may be some deviation between the actual ball trajectory and the 

approximated 3D trajectory, due to the effects of the physical factors we do not involve, such 

as air friction, ball spin rate and spin axis, etc. However, our experimental results show that 

the proposed physics-based method is able to approximate the 3D ball trajectory pretty well 

for tactics analysis.  
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(a)  (b)  

(c)  (d)  

Fig. 3-12. Error case in 3D trajectory approximation. (a) Detected ball candidates of serve. (b) 
The 3D approximated trajectory of serve. (c) Detect ball candidates in the video sequence. (d) 
The 3D trajectory approximated from the ball candidates in (c). 

 

(a)  (b)  

(c)  (d)  

Fig. 3-13. Error case in 3D trajectory approximation. (a) Ground truth 2D ball positions. (b) 
Ball candidates detected. (c) and (d) 3D virtual replays from different viewpoints. 
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3.9.4  Comparison with Kalman filter-based algorithm 

For performance comparison, we implement another ball tracking algorithm based on 

Kalman filter, which is widely used in moving object tracking [8,11,34]. To compare the 

effectiveness and efficiency of the Kalman filter-based algorithm (KF) with those of the 

proposed physics-based algorithm (PB), we use #correct (the number of frames which the 

system correctly identifies the ball), #false (the number of false alarms), accuracy and #PT 

(the number of potential trajectories) as criteria, as reported in Table 3-6. It can be observed 

that PB algorithm performs better in eliminating the false alarms. Consequently, PB 

algorithm has a higher accuracy of about 87% compared to about 80% for KF algorithm. 

Moreover, PB algorithm produces less potential trajectories because most of the trajectories 

which do not fit the motion characteristics would be discarded. Therefore, PB algorithm 

achieves higher efficiency since fewer potential trajectories need further processing. The 

results show that the proposed PB algorithm outperforms KF algorithm in both effectiveness 

and efficiency. 

 

Table 3-6. Comparison between the proposed physics-based method and the Kalman 
filer-based method in volleyball video. (#false: number of false positive, #PT: number of 
potential trajectories) 
Sequence Proposed PB method Comparative KF method 
 #correct #false accuracy #PT #correct #false accuracy #PT 

TWN-KOR 13620 408 86.07% 1116 12890 775 81.46% 1774
CHN-JPN 12885 410 86.86% 945 11818 701 79.66% 1550
JPN-KOR 16959 519 88.14% 1233 15427 1019 80.18% 1981
Total 43464 1337 87.1% 3294 40135 2495 80.43% 5305
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3.10  Summary 

The more you know the opponents, the better chance you stand of winning. Therefore, 

game strategy study before the play is of vital importance for the coach and players. To assist 

game strategy study and extract tactic information, we design a physics-based system VIA 

(Volleyball Intelligence Agent) for ball tracking, 3D trajectory approximation and providing 

applications to tactics analysis based on the 2D and 3D trajectories. The problem of 2D-to-3D 

inference is intrinsically challenging due to the loss of 3D information in projection to 2D 

frames in picture capturing. One significant contribution is the integrated scheme which 

utilizes the domain knowledge of court specification for camera calibration and encapsulates 

physical characteristics of ball motion into object tracking to achieve 3D trajectory 

approximation from single view video sequences. Moreover, the VIA system has illustrated 

some of the numerous trajectory-based applications made possible by this scheme, including: 

action detection, set type recognition, 3D virtual replays and serve placement estimation. 

These applications significantly assist the coach, players and the audience to have a novel 

insight into the game. 

It might be arguable that the proposed VIA system concentrates on the user-captured 

volleyball video. However, not all of the games are broadcasted on TV. It is a growing trend 

that the coach and players set up a camera to capture the game they want to analyze. This 

trend necessitates the development of computer-assisted game study system like the proposed 

VIA system. Currently, we are also trying to adapt the proposed scheme to broadcast 

volleyball video. On the other hand, we are exploring appropriate physical motion models for 

3D ball trajectory approximation in other sports. It is our belief that the preliminary work 

presented in this chapter will lead to satisfactory solutions for automatic tactics analysis in 

various kinds of sports. 
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Chapter 4. Sports Information Retrieval in Baseball Video 

 

The pitcher/batter confrontation and the defense process play the key roles in the 

resultant victory or defeat in a baseball game. In this chapter we present a 3-phased scheme 

of semantic content analysis, video annotation, information retrieval and enriched visual 

presentation in baseball video. In the first phase, we present a trajectory-based framework for 

automatic ball tracking and pitching evaluation based on the physical characteristic of ball 

motion. The task of ball detection and tracking in broadcast baseball video is very 

challenging because many objects may looks like a ball, the ball size is small, and the ball 

may deform due to its high speed movement. To overcome these challenges, we first define a 

set of filters to prune most non-ball objects but retain the ball, even if it is deformed. In ball 

position prediction and trajectory extraction, we analyze the 2D distribution of ball 

candidates and exploit the characteristic that the ball trajectory presents in a near parabolic 

curve in video frames. Most of the non-qualified trajectories are pruned, which greatly 

improves the computational efficiency. The missed ball positions can also be recovered in the 

trajectory by applying the position prediction.  

In the second phase, we design an effective yet compute-easy algorithm for strike zone 

determination. The strike zone is a conceptual rectangular area through which a pitch passing 

would be judged as a strike. The strike zone can offer a reference for positioning the pitch 

location, the relative location of the ball in/around the strike zone when the ball passes by the 

batter, which plays an important role in determining the batting result. In the third phase, we 

propose a framework to automatically summarize the defense profess and ball motion after 

the ball is batted into the field. Utilizing the strictly-defined specifications of the baseball 

field, we recognize the spatial patterns in each frame and identify the region of the baseball 

field being currently focused. Finally, an annotation string which abstracts the ball routing 
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patterns is generated.  

With ball trajectory extraction, strike zone determination and play region classification, 

the system is able to make informative descriptions about the game, generate enriched visual 

presentation and provide exploration, so that users can have a further insight into the game 

with both semantic and tactical understanding. The experiments on various broadcast baseball 

sequences captured from different TV channels show promising results.  

The rest of this chapter is organized as follows. Section 4.1 gives the introduction. 

Section 4.2 presents trajectory-based ball tracking framework. Section 4.3 explains the 

process of automatic strike zone determination. Section 4.4 shows baseball exploration using 

spatial pattern recognition. Experimental results are given in Section 4.5, and finally Section 

4.6 summarizes this chapter. 

 

4.1  Introduction  

 Sports video has been bringing considerable commercial benefits and entertaining 

functionalities. Hence, more and more research efforts are invested into sports video analysis. 

Sports games with specific rules and broadcasting characteristics draw various research 

issues in video analysis. Applications and technologies from many aspects are developed, 

including shot classification [1, 2, 50], highlight extraction [4, 5, 6, 51] and object tracking [8, 

12, 13, 15, 52, 53]. Popular sports such as soccer [4, 7, 8, 17, 34, 38, 46], tennis [12, 14, 15, 

36, 39, 48], basketball [31, 37], volleyball [9] and baseball [3, 5, 6, 50, 51, 52, 56, 69, 71, 72, 

73] are widely studied. 

 More keenly than ever, the audience desire professional insights into the games. The 

coach and the players demand automatic tactics analysis and performance evaluation with the 

aid of video analysis technologies. The sports fans and professionals are no longer satisfied 

with traditional interactive video viewing systems for quick browsing, indexing and 

summarization of sports video. In this chapter we present a 3-phased scheme of semantic 
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content analysis, video annotation, information retrieval and enriched visual presentation in 

baseball video.  

The pitches usually dominate the game situation on the baseball field. Ball speed and 

trajectory curvature are two main factors in determining how difficult of the pitched ball 

being hit. Thus, we propose a physics-based ball tracking method to extract the ball trajectory 

in pitch scenes. Ball speed and trajectory curvature can be computed for evaluating the pitch.  

Due to the capturing viewpoint and the frame rate constraint, the ball speed and trajectory 

curvature might not be very precise. The proposed pitch analysis is not for grading, but for 

entertainment effects, enriched visual presentation and sports information retrieval. 

In addition to the ball speed and trajectory curvature, the pitch location (the relative 

location of the ball in/around the strike zone when the ball passes by the batter) also has 

influence on the moving direction of the ball batted out. For example, a batter who swings at 

a lower pitch has a good chance of hitting a ground ball, while a batter who swings at a 

higher pitch has a great chance of hitting the ball in the air. Since the strike zone provides 

reference for determining the pitch location, we propose a contour-based method to shape the 

strike zone according to the batter’s stance. Strike/ball judgment can also be visualized on the 

video frames by the shaped strike zone. Besides the confrontation of the pitch vs. the batter, 

the ball motion and the defense process after the ball is batted into the field is another focus 

of attention. With the field specifications, we design algorithms to recognize the spatial 

patterns (field lines and field objects) in frames. Then, the active regions of event occurrence 

in the field are classified by the spatial patterns. We can infer the ball routing patterns and 

defense process from the transitions of the active regions captured in the video. From ball 

tracking, strike zone shaping to play region classification for ball routing inference, we have 

fairly extensive analysis on baseball video. Content understanding and annotation are 

achieved to provide rich information about the games. 
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4.2  Trajectory-Based Baseball Tracking Framework 

Ball tracking in baseball video is a challenging task since the high speed of the ball may 

cause ball deformation in video frames and the small size of the ball leads to tracking losses. 

Based on the observation, the baseball trajectory presents in a near parabolic curve in pitch 

scenes. We analyze the vertical and horizontal motion of the ball. Ideally, in the vertical 

direction, the ball moves parabolically due to the gravity, while in the horizontal direction, 

the ball moves in a straight line in spite of the air friction. In fact, the ball motion is not 

exactly a parabolic curve vertically and a straight line horizontally in video frames, but the 

characteristic of the near- parabolic/straight motion is sufficient for ball position prediction 

and trajectory extraction. The missed balls can also be recovered over the trajectory by 

applying the position prediction.  

In this section, we develop a 2D trajectory-based ball tracking framework for broadcast 

baseball video, as depicted in Fig. 4-1. First, the moving objects of each frame are segmented 

in the pitch shots. Each frame then generates ball candidates including the ball and some 

ball-like objects which satisfy the constraints of size, shape and compactness. Because of ball 

deformation caused by its speed, it is quite difficult to identify whether a single object is a 

ball. Hence, we utilize the physical characteristic of ball motion that the ball moves 

parabolically due to the gravity and identify whether a potential trajectory is the true ball 

trajectory. The X- and Y-distributions of ball candidates in a sequence of frames are analyzed 

to explore the trajectory which fulfills the physical characteristic. Finally, the baseball 

trajectory is extracted and the ball position in each frame can be located. In addition, visual 

enrichment and pitching evaluation can be presented based on the extracted ball trajectory. 
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Fig. 4-1. Block diagram of the proposed baseball tracking framework. 

 

Now we describe in turn the components of the proposed framework: moving object 

segmentation, ball candidate detection, candidate distribution analysis, trajectory exploration, 

trajectory identification and finally, baseball trajectory extraction. Shot classification and 

indexing in sports videos has been researched well in the literature [1,2,50,54,55]. We adopt 

the method in [55] and extract pitch shots using dominant color matching, region 

segmentation and dominant color layout analysis. 

 

4.2.1  Moving object segmentation 

Based on observation, there is usually no camera motion in pitch scenes, so frame 

difference method is applied to moving object segmentation. A Frame Difference Image (FDI) 

is a binary image formed by comparing every two successive frames (the intensity 

information is used). A pixel value of FDI is set to 255 if a significant difference occurs at the 

pixel location, and otherwise, the pixel value of FDI is set to 0, as defined in Eq. (4-1), where 

n is the frame sequence number and Td is a threshold. 

1255,  if ( , ) ( , )
( , )

0,      otherwise
n n d

n

Intensity x y Intensity x y T
FDI x y −⎧ − >⎪= ⎨

⎪⎩
                (4-1) 



 74

Fig. 4-2 presents an example of segmenting the moving objects where the ball is 

included. Fig. 4-2(a) gives the original frame and Fig. 4-2(b) shows the FDI. It can be 

observed that the ball is included in a white region larger than the original ball size. This is 

because FDI takes the absolute value of intensity difference between frames. Since the 

baseball in the video is white and bright, the intensity of the ball in a frame should be higher. 

That is, the baseball is included in the positive regions of intensity difference between frames. 

Thus, the Positive Frame Difference Image (PFDI), defined as Eq. (4-2), is used to 

effectively segment positive regions of intensity difference which contain the ball, as shown 

in Fig. 4-2(c). Morphological operations are then performed to remove noises and make the 

regions filled. Regions formed by region growing and ball candidates will be detected among 

these regions. 

1255, if  ( , ) ( , )
( , )

0,         otherwise
n n d

n

Intensity x y Intensity x y T
PFDI x y −− >⎧

= ⎨
⎩

       (4-2) 

 

 
(a) Original frame               (b) FDI                     (c) PFDI 
Fig. 4-2. Illustration of segmenting the moving objects where the ball is included. 

 

4.2.2  Ball candidate detection 

Many non-ball objects might look like a ball in video frames and it is difficult to 

recognize which is the true one. On the other hand, the ball might be presented in a shape 

different from a circle because of deformation. We use the size, shape and compactness 

sieves to extract the ball candidates from the moving objects segmented (please refer to 
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Section 3.6.1 on pp. 48). After sieving, the remaining objects which satisfy the constraints are 

considered as the ball candidates. 

 

 
(a) Ball candidate distribution analysis. Black dots represent isolated candidates and green 
crosses represent contacted ones. 

 

(b) Trajectory exploration. Potential trajectories are shown as the linking of ball candidates. 

 

(c) Trajectory identification. The ball trajectory identified is shown as the parabolic curve in 
YDI and the straight line in XDI. 

Fig. 4-3. Illustration of the Y- and X-distribution images for different processing stages of 
trajectory extraction, where n is the frame serial number, yc in YDI and xc in XDI are the y- and 
x-coordinates of each candidate in the original frame, respectively. 

 

4.2.3  Candidate distribution analysis and potential trajectory exploration 

Here, we applied the method presented in 3.6.2 (on pp.49) to extract potential 

trajectories. Fig. 4-3(a) shows am example of the Y- and X-distribution images of a baseball 
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sequence, and the potential trajectories produced from this procedure are shown as the linking 

of ball candidates in YDI and XDI, as depicted in Fig. 4-3(b). 

 

4.2.4  Trajectory identification 

After trajectory exploration, we obtain a set of potential trajectories. To identify the true 

ball trajectory from potential trajectories, we first prune the false ones to lower the 

computational complexity. For each potential trajectory, we have maintained the best-fitting 

function of the trajectory, the component ball candidates linked, and their associated 

coordinates and categories (isolated or contacted). The following properties are utilized to 

eliminate the potential trajectories which cannot be the true ball trajectory.  

Trajectory length: The distance from the pitcher to the catcher in a baseball field is 

about 18.39 meters, and it can be derived that a ball flying from the pitcher to the catcher at 

the speed of 180 km/h would last for at least 11 frames. (The detailed equation of ball speed 

estimation is described in section 4.4.) To the best of our knowledge, the highest ball speed in 

baseball games is no more than 170 km/h. Hence, the potential trajectories shorter than L (L = 

11 here) frames could not possibly be a true trajectory and should be discarded. 

Prediction error: The average distance (in pixel) of each ball candidate position from 

the predicted position is considered as prediction error. The potential trajectories with 

prediction error greater than a threshold Te are eliminated.  

Ratio of isolated candidates over all candidates on the trajectory: Since the pitched ball 

is at a distance away from other moving objects in most frames in a pitch scene, the ball 

trajectory should contain more isolated candidates than contacted ones. On a potential 

trajectory, if the ratio of the isolated candidates over all candidates is less than 50%, the 

trajectory could not be the true one and should be discarded. 
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After elimination, much fewer potential trajectories remain. For each remaining 

trajectory, we compute the length of consecutive isolated ball candidates. The trajectory with 

the longest length of consecutive isolated candidates is finalized and extracted as the ball 

trajectory. The following pseudo code explains the procedure of trajectory identification and 

Fig. 4-3(c) shows the final ball trajectory after the procedure of trajectory identification. 

 

Trajectory Identification 
Definitions 
S: the set of potential trajectories 
T: a potential trajectory 
T.length: trajectory length 
T.error: prediction error 
T.ratio: ratio of isolated candidates over all candidates on the trajectory 
T.LCIC: length of consecutive isolated candidates 

 I: the identified ball trajectory 
Algorithm of Trajectory Identification 
Input: S     Output: I 
For each trajectory T in S  
{ 
If T.length < L   remove T from S; (L = 11 here) 
Else If T.error > Te  remove T from S; 
Else If T.ratio < 50%  remove T from S;  

} 
 I = the trajectory T with the highest T.LCIC in S; 

 

4.2.5  Baseball trajectory extraction 

The scheme of baseball trajectory extraction is summarized and an example is 

demonstrated in Fig. 4-4. First, the moving objects with high intensity are segmented out. 

Utilizing the constraints of size, shape and compactness, ball candidates are detected from the 

segmented moving objects. The distributions of ball candidates in both Y- and X-directions 

are analyzed. From the potential trajectories which form parabolic curves in YDI and straight 
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lines in XDI, the ball trajectory is identified based on the properties of trajectory length, 

prediction error, the ratio of isolated candidates over all candidates on the trajectory and the 

length of consecutive isolated candidates. Finally, the ball position in each frame can be 

obtained and the extracted trajectory can be superimposed on the frame to provide the 

audience an insight into the pitching content. 

 

 
Fig. 4-4. Summarized demonstration of baseball trajectory extraction. 
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4.2.6  Trajectory-based pitching evaluation and visual enrichment 

More keenly than ever, the audience desires to perceive more comprehensive information 

about games. In this section, we apply the extracted baseball trajectory to pitching evaluation, 

such as ball speed estimation and trajectory curvature measurement, and use five-star 

evaluation to rank each pitch according to its speed and breaking degree. Although there 

might be deviation in the speed estimation due to the frame rate constraint of the capturing 

device, it does not influence our evaluation.  

Ball Speed Estimation. The distance from the pitcher’s mound to the home plate is strictly 

defined in the game rules. Hence, as defined in Eq. (4-3), the ball speed (BallSpeed in km/h) 

can be estimated as the distance from the pitcher’s mound to the home plate (18.39 m = 

0.01839 km) divided by the time interval of the ball trajectory (#frm in frame). The ball speed 

estimation and the five-star evaluation are given in Table 4-1, which lists the time interval of 

the trajectory, the estimated ball speed and the respective evaluation. 

)()3600/30/(#
)(01839.0

)/(
hfrm

km
hkmBallSpeed =                                 (4-3) 

Trajectory Curvature Measurement. A breaking ball is a pitch which does not travel 

straightly like a fastball, and it would have a sudden drop when approaching the batter. The 

more the drop height is, the harder the batter can hit the ball. Furthermore, the drop height 

rises as the curvature of the trajectory increases. Hence, we measure the curvature of the 

parabolic curve in YDI (Y-distribution image), the coefficient a1 in Eq. (3-5). A breaking ball 

with larger curvature |a1| will gain higher ranking, that is, more stars. The trajectory curvature 

measurement and the five-star evaluation are given in Table 4-2.  
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Table 4-1. Ball speed estimation with five-star evaluation using the ball trajectory. 
#frm BallSpeed(km/h) Evaluation #frm BallSpeed(km/h) Evaluation 
12 164 ★★★★★ 17 116 ★★☆☆☆ 
13 151 ★★★★☆ 18 109 ★★☆☆☆ 
14 141 ★★★☆☆ 19 104 ★☆☆☆☆ 
15 131 ★★★☆☆ 20 98 ★☆☆☆☆ 
16 123 ★★☆☆☆ 21 94 ★☆☆☆☆ 

 

Table 4-2. Trajectory curvature measurement with five-star evaluation. 
Curvature: |a1| Evaluation 

|a1| > 0.5 ★★★★★ 
0.4 < |a1| ≤ 0.5 ★★★★☆ 
0.3 < |a1| ≤ 0.4 ★★★☆☆ 
0.2 < |a1| ≤ 0.3 ★★☆☆☆ 

|a1| ≤ 0.2 ★☆☆☆☆ 

 

The pitching evaluation in this chapter aims at providing visual enrichment for 

entertainment effects based on the ball trajectory. Actually, in baseball rules there are no 

regulations about how fast a pitched ball can be considered as five-star or what the curvature 

of a five-star breaking ball is. Thus, the parameter settings, supported by two experienced 

experts in baseball games, in Table 4-1 and Table 4-2 for speed estimation and breaking 

measurement are comparative values, not absolute values.  

Two examples of the trajectory-based pitching evaluation and visual enrichment are 

demonstrated in Fig. 4-5, where Fig. 4-5(a) is a MLB (Major League Baseball) pitch shot 

with a left-handed pitcher and Fig. 4-5(b) is a JPB (Japan Professional Baseball) pitch shot 

with a right-handed pitcher. In the left picture of each example, the enriched frame presents 

the sight when the pitcher is about to throw the ball. The superimposed trajectory clearly 

depicts the sequence of ball motion for the pitch. In addition, the pitching evaluation 

displayed at the bottom of the frame provides more details about the pitch. In the right picture 

of each example, the final ball location of the trajectory is spotlighted with a crosshair (or 

reticle). If the batter swings at the pitched ball, the enriched frame catches up and reflects the 
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situation how the ball is hit or missed, as demonstrated in the right picture of Fig. 4-5(a). On 

the other hand, in baseball rules the strike zone is defined as that area over the home plate the 

upper limit of which is a horizontal line at the midpoint between the shoulders and the belt, 

and the lower limit is a line at the knees. Hence, if the batter does not swing, the crosshair can 

provide the reference for the strike/ball judgment, as shown in the right picture of Fig. 4-5(b). 

Moreover, the ball trajectory and the final ball location can also provide assistant information 

for the professional personnel to infer the tactics which each pitcher usually adopts in specific 

situations, such as “the pitcher prefers throwing a breaking ball to the inside corner of the 

strike zone when there are runner(s) on the base(s) and a fast ball to the outside corner when 

there is no runner.”  

 

    
 (a) Example of a MLB (Major League Baseball) pitch shot with a left-handed pitcher. 

    
(b) Example of a JPB (Japan Professional Baseball) pitch shot with a right-handed pitcher. 

Fig. 4-5. Demonstration of trajectory-based pitching evaluation and visual enrichment. Left: 
the superimposed ball trajectory and pitching evaluation. Right: the final ball location 
spotlighted with a crosshair. 
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4.3  Automatic Strike Zone Determination 

In this section, we design an effective yet compute-easy stance-based algorithm for 

automatic strike zone determination. Strike zone is a conceptual rectangular area over home 

plate defining the boundaries through which a pitch must pass in order to count as a strike 

when the batter does not swing [57]. A pitch which does not pass through the strike zone is 

called a ball if the batter does not swing. (The definition and explanation of baseball 

terminology can be referred in [58].) Strike zone plays a crucial role in baseball since the 

strike/ball judgment of every pitch must rely on the strike zone. In official baseball rules, the 

strike zone is defined as that area over the home plate the upper limit of which is a horizontal 

line at the midpoint between the shoulders and the belt, and the lower limit is a line at the 

knees [59]. The illustration of strike zone is presented in Fig. 4-6, where the left and right 

boundaries are decided by the home plate while the upper and lower boundaries are decided 

according to the dominant points of the batter: the shoulders, belt and knees. 

 

 

Fig. 4-6. Illustration of strike zone definition. 

 

In addition to providing the criteria in strike/ball judgments, the strike zone can also 

offer a reference for positioning the pitch location, the relative location of the ball in/around 

the strike zone when the ball passes by the batter. The pitch location is an important factor in 
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determining the batting result. A batter who swings at a lower pitch has a good chance of 

hitting a ground ball, while a batter who swings at a higher pitch has a great chance of hitting 

the ball in the air. Therefore, recording each pitch location in a sequence of pitches is an 

important task for baseball analysts, since the pitch location record could provide referential 

information for the next match and would promote the performance of the pitcher/batter. 

However, manual recording of the pitch locations is short of efficiency and accuracy. With 

the baseball trajectory extracted and the strike zone determined by computer vision 

technologies without manual operation, the task of automatic pitch location recording will be 

achieved. Then, the sequence of pitches with which a pitcher uses to face a batter can be 

summarized as a pitch location image, as shown in Fig. 4-7(a), where the thick rectangle 

represents the strike zone, the circles mark the pitch locations and the numbers represent the 

order of the pitches. The pitch location image not only helps the professional personnel to 

inspect the match for flaws, but also provides information to the audience for advanced 

understanding of the pitching content. After accumulating a mass of pitches, we will have the 

statistical data, as the example shown in Fig. 4-7(b), where the number in each region is 

simply the count of pitches thrown in the region. These statistical data help to infer whether 

the pitcher prefers inside or outside (lower or higher) pitches. The ratio of strikes to balls, 

which reveals the control ability of a pitcher, can also be calculated from the statistical data. 

Furthermore, we would be able to predict the next pitch location by mining the regular 

patterns of the order of pitch locations, such as “two upper inside pitches are usually followed 

by a lower outside pitch”. Hence, in order to achieve the results as shown in Fig. 4-8, 

trajectory extraction and strike zone determination are the essential tasks which we need to 

elaborate on. 
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       (a) Pitch location image          (b) Count of pitches in each region 

Fig. 4-7. Applications for strike zone determination. 

 

    

Fig. 4-8. Sample results of combining ball trajectory extraction with strike zone 

 

4.3.1  Overview of the proposed strike zone determination algorithm 

In baseball, the field is characterized by the strictly-defined layout. The specifications 

for the equipments and the field are clearly defined in the rule. The domain-specific 

knowledge can provide much information which can make our system perform more 

efficiently and reliably. Fig. 4-9 depicts the specifications of the baseball, home plate and 

batter’s boxes, which are utilized in our system. (For more details about the specifications, 

please refer to [61].) Exploiting the game-specific properties we propose a strike zone 

determination system containing four major steps: 1) Home plate detection, 2) Batter 

contouring, 3) Dominant point locating, and 4) Strike zone shaping, as diagramed in Fig. 

4-10. 
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Fig. 4-9. Specifications of the baseball, home plate and batter’s boxes [61]. 

 

 

Fig. 4-10. Block diagram of the proposed strike zone determination system. 

 

To determine the vertical boundaries of the strike zone, the home plate in the pitch scene 

is first detected utilizing the characteristics: location, intensity and shape. The obtained 

baseball diameter is also contributive to the estimation of the home plate width in the pitch 

scene. Since the relative locations and sizes of the home plate and the batter’s boxes are 

clearly defined in the rules, the width of batter boxes in a pitch scene can be proportionally 
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estimated from the width of the home plate. Then, the batter regions (BRs), the regions which 

the batter may stand in, can be circumscribed above the batter boxes so that the batter 

contouring processing can be limited to the batter region only, therefore with better efficiency. 

The layout of the home plate, batter’s boxes and batter regions in the pitch scene is presented 

in Fig. 4-11, where the batter regions are virtual rectangles above the batter’s boxes to outline 

the regions containing the batter. As described in the previous section, the strike zone is 

defined as that area over the home plate the upper limit of which is a horizontal line at the 

midpoint between the shoulders and the belt, and the lower limit is a line at the knees. To 

determine the horizontal boundaries of the strike zone, we should locate the dominant points: 

shoulders, belt and knees. Due to the characteristics of the batting posture, points of curvature 

extremes are good candidates for dominant points. Hence, we contour the batter in the batter 

region based on the batter’s motion when he is preparing to swing, and locate the dominant 

points by analyzing the curvature of the contour. With the detected home plate and the located 

dominant points, the strike zone can take shape finally.  

 

 

Fig. 4-11. Layout of home plate, batter’s boxes and batter regions 

 

The proposed strike zone shaping method has the advantages: 1) the strike zone can be 

shaped adaptively to each batter’s stance; 2) no additional camera setting is required; 3) the 

proposed method is robust to the batter’s uniform color; and 4) the proposed method is 
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applicable to both right- and left-handed batters. In the following, we use a right-handed 

batter for example to explain the processing stages. 

 

4.3.2  Home plate detection 

In the pitch scene, the home plate shows in the form of a short horizontal line segment in 

a light gray color close to white, as shown in Fig. 4-11. Besides, the home plate is mostly 

located around the frame center, because the best presentation of the pitch vs. batter can be 

provided in this viewpoint. Based on these visual properties, we design a compute-easy yet 

effective algorithm for home plate detection. The procedure is presented in Fig. 4-12.  

 

(a)  (b)  (c)  

Fig. 4-12. Procedure of home plate detection: (a) Original frame of a pitch scene. (b) Pixels 
with high intensity around the frame center. (c) Detected home plate. 

 

We remove the pixels with low intensity, and then retain only the pixels in the center 

quarter region of the frame, as shown in Fig. 4-12(b). Objects are formed from the remaining 

pixels by region growing. Utilizing the specifications of the baseball and the home plate 

defined in the rules (see Fig. 4-9), the in-frame width of the home plate Win can be 

proportionally estimated from the in-frame diameter of the baseball (computed by ball 

tracking). Thus, the object in the form of a short horizontal line segment with the width 

closest to Win (the estimated in-frame width of the home plate) is extracted as the home plate, 

as shown in Fig. 4-12(c). 
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4.3.3  Batter region (BR) outlining 

The batter is restricted (by game rules) to stand in one of the batter boxes when he is 

preparing to bat. To reduce the processing area for efficiency and accuracy, we outline the 

batter region above each batter box (see Fig. 4-11) based on the relative locations and sizes 

of the home plate and the batter boxes, as presented in Fig. 4-9. The in-frame width of the 

batter box Wbox can be proportionally estimated from the width of the detected home plate 

Whp by Eq. (4-4). 

Wbox = Sbox × Whp / SHP                                            (4-4) 

Sbox and SHP are the standard widths of the batter box and the home plate, respectively. Then, 

the batter region (BR) is outlined above each batter box with the height Hregion computed by Eq. 

(4-5). 

Hregion = Hbatter × Whp / SHP                                          (4-5) 

We set Hbatter = 78 in. (about 200 cm) so that the BR could cover almost all batters. Whether 

the batter is right-handed or left-handed, that is, whether the batter stands in the right or left 

BR can be judged by the intensity difference between frames within each BR. The BR with the 

batter would have larger intensity difference.  

 

4.3.4 Batter contouring 

After batter region outlining and the recognition of the BR with the batter, we are able to 

contour the batter within a specific region efficiently. To extract the moving edges of the 

batter, we adopt the algorithm in [60], which incorporates the spatial edge information in the 

motion detection stage by exploiting double-edge map derived from the difference between 

two successive frames. Here we give a brief review of the algorithm with the example 

presented in Fig. 4-13. First, the edge map En of current frame In (gray level image) is 

calculated as Eq. (4-6):  

En = Φ(In)                                                       (4-6) 
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where Φ(.) is the Canny edge detector and n is the frame sequence number. The difference 

edge map DEn is calculated by applying the Canny edge detector to the luminance difference 

image |In–In–1| of successive frames, as defined in Eq. (4-7). The Gaussian convolution 

included in the Canny operator suppresses the noise in the luminance difference.  

DEn = Φ(|In–In–1|)                                               (4-7) 

Finally, the moving edge map MEn is generated by selecting the edge pixels in En with at least 

one neighboring pixel in DEn, i.e. 

  MEn = {e∈En | ∃ p∈DEn , e and p are neighboring pixels }              (4-8) 

 

 
(a) In           (b) En             (c) |In–In–1|      (d) DEn           (e) MEn 

Fig. 4-13. Example of moving edge extraction (within the OBR): (a) Gray level image In (b) 
Edge map En (c) Luminance difference image |In–In–1| (d) Difference edge map DEn (e) 
Moving edge map MEn. 

 

 

Fig. 4-14. Procedure of batter contouring. 
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The procedure of batter contouring is illustrated in Fig. 4-14. We extract the rightmost 

moving edge points along the y-direction as the contour points of the right half contour. The 

x-coordinate xk of each contour point forms a one dimensional discrete function R(k) = xk, 

where k is the vertical index of each contour point [see Fig. 4-14(b)]. Similarly, the contour 

points of the left half contour are extracted from the leftmost moving edge points along the 

y-direction, and the x-coordinate of each contour point forms a one dimensional discrete 

function L(k). 

In the subsequent process, we have to locate the dominant points for strike zone shaping.  

Due to the human kinematic constraints, the sharp turns on the body contour are usually at 

the joints. Hence, points of curvature extremes are good candidates for the dominant points. 

The contour curvature can be obtained via computing the partial derivatives on the extracted 

contour. However, the zigzag contour due to the imperfect moving edge extraction may result 

in false alarms of curvature extremes. Thus, to achieve spatial continuity and ignore 

fragments, the cubic B-spline interpolation [64] is used to transform the discrete contour to a 

continuous one, as shown in Fig. 4-14(c). The complete contour is finalized by combining the 

smoothed right and left half contours as shown in Fig. 4-14(d), and the points of curvature 

extremes can be easily obtained by computing the second order partial derivatives on the 

parameterized contour. 

 

4.3.5  Dominant point locating 

To determine the top and bottom boundaries of the strike zone, a curvature-based 

method is designed to locate the dominant points on the batter’s contour: the hip, shoulders 

and knees. In the following, the terms back contour and front contour, as depicted in Fig. 

4-15, are used to avoid the confusion of the left or right half contour for a left- or 

right-handed batter.  
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Fig. 4-15. Back and front contours for right- and left-handed batters. 

 

We compute the NMC (negative minimum curvature) and PMC (positive maximum 

curvature) points of the contour, as shown in Fig. 4-16(a). Each NMC (or PMC) point on the 

back contour is linked to the nearest PMC (or NMC) point on the front contour, and vice 

versa, as shown in Fig. 4-16(b) and (c). Two points which are bi-directionally linked are 

deemed as a pair, as shown in Fig. 4-16(d). In the following, we use the term “NP point” to 

denote the midpoint of the pair of a NMC point on the front contour and a PMC point on the 

back contour, and the term “PN point” to denote the midpoint of the pair of a PMC point on 

the front contour and a NMC point on the back contour.  

 

 

Fig. 4-16. Dominant point locating using the points of curvature extremes. 
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Due to the kinematic constraints of body joints and the balance of the gravity center 

during the batting action, the trunk and knees tilt forward as the hip is pushed backward. 

Since the hip forms a salient curve at about half of the batter’s height, we choose the NP point 

closest to the midpoint of the contoured batter’s height as the hip point. Then, the PN point 

under the hip point and with the longest horizontal distance to the hip point is chosen as the 

knee point, while the PN point above the hip point and with the longest horizontal distance to 

the hip point is chosen as the shoulder point. Fig. 4-17 demonstrates sample results of the 

extracted pairs (the red lines) and the located dominant points (the solid red circles). 

 

 
Fig. 4-17. Sample results of dominant point locating. 

 

With the home plate detected and the dominant points located, now we are ready to shape 

the strike zone. The left and right limits of the strike zone are vertical lines at both sides of 

the detected home plate. The top limit is the horizontal line located at the midpoint between 

the batter’s hip and shoulders, and the bottom limit is located at the batter’s knees. Sample 

results of strike zone shaping and visualization for a right-handed batter and a left-handed 

batter are presented in Fig. 4-18.  
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(a)   (b)  
Fig. 4-18. Strike zone shaping and visualization: (a) a right-handed batter and (b) a 
left-handed batter. 

 

4.4  Baseball Exploration using Spatial Pattern Recognition 

 In addition to the pitcher-batter confrontation, the ball motion and defense process after 

the ball is batted out is another focus of interest. In this section, we propose algorithms to 

recognize the spatial patterns (field lines and field objects). We identify the play region, the 

currently focused region of the baseball field, and then annotation strings can be generated 

by analyzing the transition of the identified play regions. Fig. 4-19 presents the overview of 

the proposed baseball exploration framework.  

 

 
Fig. 4-19. Overview of the proposed baseball exploration framework. 
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For a given baseball video, the field shots, in which the camera follows the batted ball in 

the field, are first segmented. Then, we extract the visual features in a field shot to analyze 

the distribution of dominant colors and white pixels. With baseball domain knowledge, the 

spatial patterns of field lines and field objects are recognized to classify play region types, 

such as infield left, outfield right, audience, etc. Finally, from each field shot, an annotation 

string which describes the transition of play regions is generated to abstract the content of the 

batting for baseball exploration. In the following, we in turn describe the major components 

of the proposed system: visual feature extraction, spatial pattern recognition and play region 

type classification. 

 

4.4.1  Visual feature extraction 

As depicted in Fig. 4-20, the baseball field is characterized by a well-defined layout of 

specific colors. Moreover, important lines and the bases are in white color to provide visual 

assistance for players, umpires and audience. Therefore, color is an effective visual cue in 

baseball video analysis. The spatial distribution of dominant colors and white pixels are 

exploited to detect field objects and lines. 

 

         
(a) Full view of a real baseball field           (b) Illustration of field objects and lines. 

Fig. 4-20. Prototypical baseball field.  
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The soil color and grass color are the dominant colors in the baseball field. However, the 

appearance of the grass and soil colors would vary with the field condition and capturing 

device. We have observed that within one game, the hue value in the HSI (Hue- 

Saturation-Intensity) color space is relatively stable despite lighting variations. Hence, the 

hue value is adequate to define the dominant colors. In addition, the intensity value is 

applicable for white pixel extraction. In a field shot, the first frame mainly contains the 

baseball field, while the later frames, which might zoom in on a player or move to the 

audience, contain less proportion of the field. Therefore, it is reasonable to define the 

dominant colors at the first frame of a field shot. 

 

        
(a) First field frame                         (b) Hue histogram 

       
(c) Segmented regions                    (d) Extracted white pixels 

Fig. 4-21. Spatial distribution of dominant colors and white pixels. 

 

Fig. 4-21 demonstrates the spatial distribution of dominant colors and white pixels. The 

first field frame and its hue histogram are shown in Fig. 4-21(a) and (b), respectively. In the 
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hue histogram, dominant colors can be defined as the peak of small hue value representing 

the soil color and the peak of large hue value representing the grass color. The regions 

segmented by dominant colors are depicted in Fig. 4-21(c), where grass regions are shown in 

green, soil regions in brown and others in black. The white pixels extracted are presented in 

Fig. 4-21(d). 

 

4.4.2  Spatial pattern recognition 

We focus on the analysis of field shots and attempt to recognize the spatial patterns of 

field lines and field objects: left line (LL), right line (RL), pitcher’s mound (PM), home base 

(HB), first base(1B), second base (2B), third base (3B) and auditorium (AT), as depicted in 

Fig. 4-20(b). Since the baseball field has a strictly-defined layout, the field lines and objects 

can be recognized based on the distribution of dominant colors and white pixels. In Fig. 4-22, 

the top row gives the original frames and the bottom row illustrates the following detection of 

the field lines and objects. 

1)  Left line (LL) and right line (RL): A growing algorithm, which produces a vector 

representation of the line segments [70], is applied to the extracted white pixels. The field 

lines (left line and right line) are then obtained by joining together the line segments which 

are close and collinear, as the oblique lines in Fig. 4-22(a), (b) and (c). 

2) Pitcher’s mound (PM): An elliptic soil region surrounded by a grass region would be 

recognized as pitcher’s mound, as the red rectangle in Fig. 4-22(a) and (c). 

3)  Home base (HB): Home base can be located at the intersection of left line and right 

line, as shown in Fig. 4-22(a), if both field lines are detected. 

4)  First base (1B) and third base (3B): The white square located on the right line, if 

detected, in a soil region would be identified as first base, as depicted in Fig. 4-22(a). 

Similarly, the white square on the left line, if detected, in a soil region would be identified as 

third base, as depicted in Fig. 4-22(b). 
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5)  Second base (2B): In a soil region, a white square on neither field line would be 

recognized as second base, as the white square in Fig. 4-22(a) and (c). 

6) Auditorium (AT): The top area which contains high texture and no dominant colors is 

considered as the auditorium, as the black area above the white horizontal line in Fig. 

4-22(c). 

 

 
Fig. 4-22. Detection of field lines and field objects. 

 

4.4.3  Play region type classification 

In order to comprehend the detailed content of ball movement and region transition, we 

have to recognize the play region, the currently focused region in the baseball field, of each 

field frame. With baseball domain knowledge, we utilize the detected field objects and lines 

to classify each field frame into one of the twelve typical play region types: IL (infield left), 

IC (infield center), IR (infield right), B1 (first base), B2 (second base), B3 (third base), OL 

(outfield left), OC (outfield center), OR (outfield right), PS (player in soil), PG (player in 

grass) and AD (audience), as shown in Fig. 4-23. Note that B1, B2 and B3 here represent play 

region types while 1B, 2B and 3B in section 4.4.2 represent field objects. 
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Fig. 4-23. Twelve typical play region types. 

 

The rules of play region type classification are list in Table 4-3, where Wf is the frame 

width. The function P(A) returns the percentage of the area A in a frame, X(Obj) returns the 

x-coordinate of the center of the field object Obj, and E(Obj) returns whether the field object 

(or line) Obj exists or not. Each field frame is classified into one of the twelve play region 

types by applying the rules on the spatial patterns. Take IL (infield left) as an example. A field 

frame would be identified as IL under the following conditions: 

1. The percentage of AT area in a frame is no more than 10%, PM exists and the 

x-coordinates of PM center is greater than two-third of the frame width Wf (PM is located 

at the right one-third of a frame). 

2. The percentage of AT area in a frame is no more than 10%, PM does not exist, LL exists 

and 3B does not exist. 

3. The percentage of AT area in a frame is no more than 10%, PM does not exist, LL exists, 

3B exists and the percentage of soil area is no more than 30%. 
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Table 4-3. Rules of play region type classification 
IL: {P(AT) ≤ 10%, E(PM), X(PM) > Wf x 2/3} || 

{P(AT) ≤ 10%, ~E(PM), E(LL), ~E(3B)} || 
{P(AT) ≤ 10%, ~E(PM), E(LL), E(3B), P(soil) ≤ 30% } 

IC: {P(AT) ≤ 10%, E(PM), Wf /3 < X(PM) ≤ Wf x 2/3} || 
{P(AT) ≤ 10%, ~E(PM),~E(RL),~E(LL), E(2B), P(soil)≤30%} 

IR: {P(AT) ≤ 10%, E(PM), X(PM) ≤ Wf /3} || 
{P(AT) ≤ 10%, ~E(PM), E(RL), ~E(1B)} || 
{P(AT) ≤ 10%, ~E(PM), E(RL), E(1B), P(soil) ≤ 30%} 

B1: {P(AT) ≤ 10%, ~E(PM), E(RL), E(1B), P(soil) > 30%} 
B2: {P(AT) ≤ 10%, ~E(PM),~E(RL),~E(LL), E(2B), P(soil)>30%} 
B3: {P(AT) ≤ 10%, ~E(PM), E(LL), E(3B), P(soil) > 30%} 
OL: {10% < P(AT) ≤ 80%, E(PM), X(PM) > Wf x 2/3} || 

{10% < P(AT) ≤ 80%, ~E(PM), E(2B), X(2B) > Wf x 2/3} || 
{10% < P(AT) ≤ 80% , ~E(PM), ~E(2B), E(LL), ~E(RL)} 

OC: {10% < P(AT) ≤ 80%, E(PM), Wf /3 < X(PM) ≤ Wf x 2/3}|| 
{10% < P(AT) ≤ 80%,~E(PM),E(2B), Wf /3< X(2B) ≤Wf x 2/3} 

OR: {10% < P(AT) ≤ 80%, E(PM), X(PM) ≤ Wf /3} || 
{10% < P(AT) ≤ 80%, ~E(PM), E(2B), X(2B) ≤ Wf /3} || 
{10% < P(AT) ≤ 80%, ~E(PM), ~E(2B), E(RL), ~E(LL)} 

AD: {P(AT) > 80%} 
PS: {P(AT)≤10%, ~E(PM),~E(2B), ~E(RL),~E(LL), P(soil)>30%} 
PG: {10% < P(AT) ≤ 80%, ~E(PM), ~E(2B), ~E(RL), ~E(LL)} 
Unknown: others 

 

The scheme of play region type classification within a field shot is illustrated in Fig. 

4-24. The spatial patterns are first recognized by the distribution of dominant colors and 

white pixels in field frames. According to the rules on the spatial patterns, each field frame is 

then classified into one of the twelve typical play region types. To filter out instantaneous 

misclassifications of play region types within a field shot, a fixed length temporal window 

and majority voting are applied. Thus, an annotation string which describes the transition of 

play regions contained in a field shot can be obtained. The content of the sample field shot in 

Fig. 4-24 says that the ball is first batted into the left infield. Then, the shortstop picks up the 
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ball and throws it to the first baseman. The batting process can be appropriately abstracted by 

the output annotation string: IL (infield left)  PS (player in soil)  IR (infield right)  B1 

(first base). 

 

 
Fig. 4-24. Scheme of play region type classification within a field shot. 

 

4.5  Experimental Results 

The scheme elaborated in the previous sections supports trajectory-based ball tracking, 

strike zone determination and batting result analysis. For performance evaluation, we conduct 

the experiments on broadcast baseball video (352 × 240, MPEG-1) captured from different 

sports channels, as listed in Table 4-4. 

 

Table 4-4. Testing data used in the experiments. 

Baseball Video Source channels 
1. MLB (Major League Baseball) PTS channel of Taiwan 
2. JPB (Japan Professional Baseball) NHK channel of Japan 
3. CPBL (Chinese Professional Baseball League) VL sports channel of Taiwan 
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4.5.1  Results of trajectory-based baseball tracking 

For trajectory-based ball tracking, some parameters are used. Td is the threshold of frame 

difference in moving object segmentation. Since the intensity of the baseball should be much 

higher than the background or other objects in the frames, we adaptively set Td by Eq. (4-9), 

which can eliminate many noises and still retain the ball. 

Td = Average _intensity_of_the_frame × 50%                          (4-9) 

 

As to the range of size filter, up to 95% of the baseball sizes (in pixel) in the frames of the 

resolution 352 × 240 are within the range [8, 50] by statistical results, so [Rmin, Rmax] is set to 

[8, 50]. The parameter Ra is the threshold of shape filter. Generally speaking, the aspect ratio 

of the baseball should equal 1. Due to the high speed movement, the ball may deform over 

frames. Thus, for tolerance of deformation, the constraint of shape filter is loosened. Since an 

object with aspect ratio greater than 3 is far from a ball, Ra is set to 3. Since an object of 

compactness degree Dc less than half cannot be claimed to be “compact”, the threshold of 

compactness filter Tc is set to 50%. Furthermore, though the ball trajectory over frames is not 

exactly a parabolic curve, a trajectory with great prediction error cannot be the ball trajectory. 

Thus, for reasonable error tolerance, the threshold of prediction error Te is set to 2 (in pixel). 

The ball position in each video frame is manually recognized as ground truth. A ground 

truth ball is called “detected” if it matches a ball candidate. A ground truth ball falling on the 

obtained trajectory is called “tracked”, since the ball position can be predicted on the 

trajectory by the motion characteristics even though it does not match a ball candidate. The 

experimental results of ball detection and tracking are listed in Table 4-5, where #clip shows 

the number of pitch shots, #frm represents the total number of frames in all the pitch shots 

and #bf represents the number of the frames containing the ball. The column “#detected (%)” 

gives the number of balls detected and the detection rate (#detected / #bf), “#tracked (%)” 
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gives the number of balls tracked and the tracking rate (#tracked / #bf), #false (%) gives the 

number of false alarms and the false alarm rate (#false / #frm). 

It can be found that there are some misses because the ball might not be detected when it 

passes over a left-handed batter dressed in a white uniform. Fortunately, the positions of 

missed balls can be recovered by applying the ball position prediction. An example of ball 

detection is shown in Fig. 4-25(a), where the ball is missed in two frames when passing over 

the white uniform. The result of ball tracking is presented in Fig. 4-25(b) where the missed 

ball positions can be recovered by applying the predicted positions of the obtained trajectory. 

Although some tracking errors might exist, the proposed scheme promotes the overall 

accuracy of ball tracking up to 96%. The ball tracking with visual enrichment of some 

example pitch shots are demonstrated in Fig. 4-26. It is convincing that the proposed 

framework performs well in baseball clips from different channels, no matter whether the 

pitcher/batter is left- or right- handed. 

 

Table 4-5. Performance of baseball detection and tracking 

Baseball #clip #frm #bf #detected (%) # tracked (%) # false (%)

MLB 30 1380 424 387 (91.27%) 409 (96.46%) 11 (0.80%)

JPB 32 2089 466 435 (93.35%) 453 (97.21%) 12 (0.57%)

CPBL 24 942 352 326 (92.61%) 338 (96.02%) 7 (0.74%) 

Total 86 4411 1242 1148 (92.43%) 1200 (96.62 %) 30 (0.68%)

* detection rate (%) = #detected / #bf, tracking rate (%) = #tracked / #bf, and false alarm rate = #false / #frm. 
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(a) Ball detection                        (a) Ball tracking 
Fig. 4-25. Illustration of ball detection and ball tracking in baseball video. (a) Ball detection. 
Two ball positions are missed when passing over the white uniform. (b) Ball tracking. 
Positions of missed balls can be recovered. 

 

 
 (a) MLB pitch shot            (b) JPB pitch shot          (c) CPBL pitch shot 

Fig. 4-26. Examples of ball tracking and visual enrichment for various baseball clips. 

 

The experiments run on an IBM ThinkPad X60 notebook computer (CPU: Intel Core 

Duo T2400 1.83GHz, RAM: 1GB). For a pitch shot of 2 seconds, the required processing 

time is about 8~10 seconds. In baseball games, the duration between two successive pitches 

is usually longer than 10 seconds. That is, the proposed framework is able to compute the ball 

trajectory of a pitch shot and superimpose the trajectory over the video before the next pitch 

coming up in near real-time. The application of enriching the live broadcast baseball video 

for entertainment effects becomes feasible.  
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It is difficult to perform a head-to-head comparison with other algorithms since there 

exist differences in the actual setup and the implementation. As a reasonable comparison, we 

divide the process into two stages: potential trajectory exploration and ball trajectory 

identification, and make the discussion. 

 

A. Potential Trajectory Exploration 

Kalman filter and particle filter are widely used in moving object tracking. However, 

particle filter is usually applied to tracking large objects with salient characteristics of edges 

or colors, such as cars and people [55]. Though particle filter can also be used in ball tracking, 

it is applicable to ball of big size, such as basketball [55], for which a distinguished target 

model can be built. Since most of the ball tracking algorithms in the literature [8,11,52] are 

Kalman filter-based, we make a comparison focusing on Kalman filter. We compare the 

performance between the Kalman filter-based algorithm (KF) and the proposed 

parabola-based algorithm (PB). The performance metrics include the number of potential 

trajectories produced and the number of the ball candidates linked on the potential trajectories. 

For each pitch sequence, fewer ball candidates linked on the potential trajectories need fewer 

updates of the prediction function or Kalman filter. The fewer number of the potential 

trajectories is, the less computation in trajectory identification is.  

Using the 86 testing sequences as in Table 4-5, the comparison is presented in Table 4-6. 

The notations #Seq, #PT and Avg. #PT represent the number of testing pitch sequences, the 

total number of potential trajectories produced in the pitch sequences and the average number 

of potential trajectories produced per pitch sequence. #Cand and Avg. #Cand denote the total 

number of ball candidates linked over all the potential trajectories and the average number of 

ball candidates linked per pitch sequence. It can be observed that KF algorithm produces 

more potential trajectories with more ball candidates linked, because KF algorithm may link 

neighboring non-ball objects in consecutive frames and form many potential trajectories 
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which are not parabolic and need to be eliminated. However, the proposed PB algorithm aims 

at extracting only the potential trajectories which form (near) straight lines in X-direction and 

(near) parabolic curves in Y-directions, simultaneously. Therefore, the proposed 

parabola-based algorithm is more efficient in potential trajectory exploration since fewer ball 

candidates linked cause fewer updates of prediction function, and it will save more time in 

trajectory identification due to the fewer potential trajectories need to be validated. 

 

Table 4-6. Comparison between the Kalman filter-based algorithm and the proposed 
physics-based algorithm in baseball video 

 KF algorithm Proposed PB algorithm 
Video #Seq #PT Avg. #PT #CandAvg. #Cand #PT Avg. #PT #Cand Avg. #Cand
MLB 30 645 21.5 3819 127.3 520 17.33 2803 93.43 
JPB 32 1120 35 6835 213.59 557 17.41 3352 104.75 

CPBL 24 510 21.25 3297 137.38 234 9.75 1435 59.79 
Total 86 2275 26.45 13951 162.22 1311 15.24 7590 88.26 

 

B. Trajectory Identification  

Extracting the true ball trajectory from lots of potential trajectories needs some 

identification mechanism. Chu et al. [52] simulate all the possible trajectories of ball pitching 

varying in different beginning velocities, releasing angles and spin rates to derive physical 

limitation for trajectory identification, which is time-consuming. To transform 2D trajectories 

into 3D trajectories for validation, they compute the ratio of “the vertical movement distance 

of pitches in the real world” (1 meter, assumed by the authors) to “the average vertical 

movement distance of pitches in the video frames of their dataset”, and then estimate the 

depth of each ball candidate proportionally. However, the positions of pitchers releasing the 

ball and catchers catching the ball vary. The variation in the vertical movements of numerous 

pitches should be large and a pitch with the vertical movement far from the average, e.g. an 

underhand pitch, may not be identified reliably.  



 106

In our proposed scheme, we maintain the best-fitting function of the trajectory, the 

component ball candidates linked and their associated coordinates and categories (isolated or 

contacted) for each potential trajectory. Then, the properties for pruning the false trajectories 

and extracting the true ball trajectory, including trajectory length, prediction error, the ratio 

of isolated candidates over all candidates on the trajectory, and the length of consecutive 

isolated candidates, can be computed quickly. Therefore, the ball trajectory can be identified 

efficiently and reliably. 

 

4.5.2  Results of strike zone determination  

The results of home plate detection are presented in Table 4-7, which lists the correct, 

missed and false detections. The home plate can be correctly detected in most clips. Only two 

misses occur as the home plate is stained with soil and is not clear in the frame, as shown in 

Fig. 4-27. For the clarity of strike/ball decision, the plate umpire has the responsibility to 

clean the home plate when the home plate is stained. Therefore, the home plate is clear in 

most of the sequences. On the other hand, there are seldom objects similar to the home plate 

in the center region of the pitch scene. Thus, we achieve a fairly good performance in home 

plate detection. 

 

Table 4-7. Performance of home plate detection. 
Video #Seq #Correct #Missed #False 
1. MLB 33 32 1 0 
2. JPB 33 33 0 0 
3.CPBL 34 33 1 0 
Overall 100 98 2 0 
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Fig. 4-27. Error cases of home plate detection. 

 

The ground truth of strike zone is established by manual positioning of the two sides of 

the home plate and the batter’s shoulders, hip and knees. For performance evaluation of the 

proposed strike zone determination system, two degrees P and R, as defined in Eq. (4-10) and 

Eq. (4-11) respectively, are proposed to measure the degree of the overlap between the 

computer-generated strike zone and the ground truth. 

P = Aov / Asz                                                    (4-10) 

R = Aov / Agt                                                    (4-11) 

As illustrated in Fig. 4-28, Asz is the area of the computer-generated strike zone, Agt is the 

area of the ground truth strike zone and Aov is the area of the overlap between the 

computer-generated strike zone and the ground truth.  

 

 
Fig. 4-28. Illustration of Asz, Agt and Aov. 

 

The P-R distributions of the sequences with correct home plate detection are presented 

in Fig. 4-29, where each point represents a testing sequence, the horizontal and vertical axes 

are the P and R degrees, respectively. It can be seen that for most of the sequences, we 
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achieve high P and high R degrees, both of which are around 0.9. That is, the 

computer-generated strike zone has great overlap with the ground truth in most of the 

sequences. Table 4-8 reports the average P and R degrees on the sequences with correct home 

plate detection. We can see good performance of the proposed strike zone system. Overall, 

both the average P and R degrees are over 0.9. Some examples of correctly determined strike 

zones (the superimposed rectangles) demonstrated in Fig. 4-30 make it convincing that the 

proposed framework performs well in broadcast baseball video captured from different 

channels, no matter whether the batter is right- or left-handed and no matter what color of 

uniform the batter is dressed in. 
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(a) MLB                 (b) JPB                  (c) CPBL 

Fig. 4-29. P-R distributions of MLB, JPB and CPBL sequences.  

 

Table 4-8. Performance of strike zone determination 
Video #sequence  Avg. P Avg. R 
1. MLB 32 0.884 0.914 
2. JPB 33 0.895 0.928 
3.CPBL 33 0.923 0.904 
Overall 98 0.901 0.915 
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Fig. 4-30. Example results of strike zone determination. 

 

Although we achieve quite good performance in automatic strike zone determination, 

the computer-generated strike zone is not so satisfying for a few sequences. We examine the 

experimental results and find that the inappropriate determinations of the strike zone are 

mainly caused by the faults in batter contouring. The dynamic advertising board, the audience 

moving or other noises behind the batter would lead to some errors in object segmentation. 

Fig. 4-31 gives two examples of the unsatisfying strike zone determination. In Fig. 4-31(a), 

the change of the dynamic advertising board behind the batter leads to the defect in the batter 

contouring and the dominant points cannot be located appropriately. However, the dynamic 

advertising board does not change very often. The influence of the dynamic advertising board 

is not so notable. In Fig. 4-31(b), the front contour of the batter is not extracted appropriately 

because the plate umpire behind the batter makes a sudden movement. Nevertheless, for the 

clarity of strike/ball decision, the plate umpire makes little movement in most cases, and we 
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can achieve good results in batter contouring. To the best of our knowledge, there is still no 

perfect solution to object segmentation in the dynamic background. However, our proposed 

object segmentation (batter contouring) algorithm is appropriate in most sequences and is 

sufficient to support strike zone determination. 

 

 
(a) Improper batter contouring due to the dynamic advertising board. 

 
(b) Improper batter contouring due to the movement of the plate umpire. 

Fig. 4-31. Examples of the improper strike zone determination 

 

4.5.3  Results of play region classification 

The ground truths of the play region types contained in each field shot are identified 

manually. Table 4-9 presents the experimental results. The second column “#Ground truth” 

represents the total number of field shots containing the play region type designated in the 

first column. Note that a field shot might comprise more than one play region type. The 

“Correct detection” and “False alarm” represent the number of correct detections and false 

alarms. Both the precision and recall are about 90% except for the precision of PS (player in 
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soil) and the recall of B2 (second base region). The false alarms of PS might result from no 

field object detected in the infield, and the missed detection of play region type B2 might 

result from the missed detection of field object 2B. These could be improved by enhancing 

field object detection and refining the rules of play region type classification. Overall, we 

achieve good performance. 

 

Table 4-9. Performance of play region classification. 

Play region 
type 

#Ground 
truth 

Correct 
detection

False alarm Precision (%) Recall (%) 

IL 34 33 2 94.3 97.1 

IC 31 30 2 93.8 96.8 

IR 51 49 1 98.0 96.1 

B1 48 47 2 95.9 97.9 

B2 12 10 1 90.9 83.3 

B3 9 8 0 100.0 88.9 

OL 18 18 2 90.0 100.0 

OC 17 15 2 88.2 88.2 

OR 25 25 1 96.2 100.0 

AD 18 18 2 90.0 100.0 

PS 38 34 7 82.9 89.5 

PG 54 52 7 88.1 96.3 

 

4.6 Summary 

In this chapter, we present a trajectory-based method for ball tracking in baseball video. 

Pitch evaluation and enriched visual presentation can be provided to the sports fans and 

professionals. To assist strike/ball judgment and position the pitch locations, a stance-based 

strike zone shaping algorithm is designed. Furthermore, we utilize the strictly-defined 

specifications of the baseball field to recognize the spatial patterns in each frame and identify 

what region of the baseball field is currently focused. Thus, we can infer the ball routing 
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patterns and defense process from the transitions of play regions. From ball tracking, strike 

zone shaping to play region classification for ball routing pattern inference, we have fairly 

extensive analysis for baseball video. Informative annotation and sports information enable 

the sports fans and professionals to go deep into the game. 
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Chapter 5. Conclusions and Future Work 

 

There is a saying, “To know both the opponent and yourself, and you can fight with no 

danger of defeat.”  We can stand a better chance if we know the opponent more. Hence, 

game study before the play is a task of vital importance for the coach and players. However, 

manual game logging, annotation and analysis via watching the whole sports video are 

laborious and time-consuming. Therefore, the coach and players keenly desire the assistance 

of computer technology in game study. On the other hand, the audience or sports fans 

recently are no longer satisfied with the video viewing systems providing quick browsing, 

indexing and summarization of sports video. They demand informative data to have a further 

insight into the games. Hence, our research in this thesis focuses on sports video content 

analysis, understanding and annotation so as to provide computer-assisted game study and 

content-based sports information retrieval.  

In sports games, significant events are mainly caused by the ball-player interaction and 

the ball trajectory brings much semantic/tactical information contributive to content 

understanding. Hence, we propose a physics-based ball tracking scheme to compute the ball 

trajectory, and furthermore design an innovative approach capable of reconstructing the 3D 

trajectory from single camera video. Since the ball is small and usually moves fast in frames, 

recognizing the ball within a single frame is almost impossible. We identify the ball trajectory 

via judging whether the trajectory conforms to the ball motion characteristics rather than 

recognize which object is the ball in each frame. The ball positions missed can also be 

recovered by the obtained trajectory. Moreover, the 2D-to-3D inference is intrinsically a 

challenging problem due to the loss of the depth information in picture capturing.  

Incorporating the court specifications for camera calibration and the physical characteristics 

of ball motion for 3D trajectory modeling, we are able to compute the motion parameter of 
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the modeled 3D trajectory and approximate the depth information. The challenge of 3D 

trajectory reconstruction from single camera video is thus overcome. Manifold 

trajectory-based applications are designed to comprehend the semantic or tactical content, 

including: shooting location estimation in basketball, pitch analysis in baseball, set type 

recognition, serve placement estimation and 3D virtual replay in volleyball, etc. Game 

watching becomes an entirely novel and exciting experience. 

The strike zone plays a crucial role in each pitch of the baseball games since the strike 

zone not only supports the strike/ball judgment but also provides the reference for 

determining the pitch location. Thus, we design a stance-based strike zone shaping scheme 

which integrates efficient algorithms of home plate detection, object contour and dominant 

point locating. No matter the batter is right- or left-handed, the strike zone can be shaped 

adaptively to the batter’s stance. In addition to the confrontation of the pitch vs. the batter, the 

ball motion and the defense process after the ball is batted into the field also catch the 

attention of the audience. Thus, we recognize the spatial patterns in the frames of the field 

shot, classify the play regions (the active regions of event occurrence), and infer the ball 

routing patterns and defense process from the transitions of play regions. From ball tracking, 

strike zone shaping to play region classification for ball routing pattern inference, we have 

fairly extensive analysis for baseball video. Informative annotation and sports information 

enable the sports fans and professionals to go deep into the game. 

Comprehensive experiments on basketball, volleyball and baseball videos have been 

conducted. The experimental results show that the proposed methods perform well in 

retrieving game information and even reconstructing 3D information from single camera 

video for different kinds of sports. The features and techniques proposed in this thesis lead to 

satisfactory solution for content understanding, tactics analysis sports information retrieval 

and computer-assisted game study in many kinds of sports videos. Although the 3D trajectory 

reconstruction method proposed in this thesis has good results, there is still some deviation 
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between the real-world ball trajectory and the reconstructed trajectory. This may result from 

the effects of the physical factors we do not involve, such as air friction, ball spin rate and 

spin axis, etc., and the intrinsic constraints, such as the loss of 3D information or depth 

information, lighting conditions, noises, the capturing angle and the frame rate of the 

capturing device, etc. Hence, one direction of our future work is to involve more physical 

factors in modeling the 3D trajectory for better approximating the reconstructed 3D trajectory 

to the real world ball trajectory. Moreover, single-view video analysis may be limited by the 

incomplete 3D information due to object occlusion and the loss of depth information. Another 

direction is to extend the proposed approaches to multi-view video analysis. In the future, we 

will integrate the information from multiple cameras to reinforce multimedia content analysis, 

understanding, indexing and annotation.  

On the other hand, we are currently working on deriving the intrinsic rules of region 

transitions for different defense patterns in baseball games, using temporal pattern mining 

based on the play region classification proposed in this thesis. The cooperation of players to 

achieve a successful defense is exciting and inspiring. Hence, we will utilize the transitions of 

the play region classified for ball route pattern deducing, content-based defense process 

recognition and similarity event retrieval with concise content presentation, so that the sports 

fans and professionals will be greatly assisted in game strategy studying, statistics collection, 

tactics analysis and even improving their own skills. 
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