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From performance tests on 27 registered people, it is clear that most
genuine signatures can be successfully verified and most forgeries can
be pointed out. With suitable setting of the order of LPC cepstrum,
verification threshold, the number of hidden nodes in MLP and
the number of frames of a word in the signature, this verification
scheme performs very well. In addition, because we logically equip
each registered person with a number of single-output MLP’s, the
verification system can be expanded by simply equipping MLP’s for
each new customer and training these MLP’s independently. This
verification scheme thus possesses the merits of flexibility, scalability
and system expansion.

Although the term “signature” is generally known in western
countries to refer to a handwritten name written in an alphabetic
script, there is no doubt that this term could also refer to handwritten
names in character form, such as Chinese characters. Section IV uses
Chinese signatures, which are often written in character-by-character
form, for simulation. But, in fact, this work can easily be adapted to
other types of signatures.
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Similarity Measures Between
Vague Sets and Between Elements

Shyi-Ming Chen

Abstract—This paper presents some similarity measures between vague
sets and between elements. An example is also presented to illustrate
the application of the proposed similarity measures in handling behavior
analysis problems. The proposed method can provide a useful way in
handling the behavior analysis problems.

I. INTRODUCTION

Since the theory of fuzzy sets [15] was proposed in 1965, many
measures of similarity between fuzzy sets have been developed in
the literature [2], [4], [6], [12], [13], [17]. In [2], we presented a
similarity measure for weighted reasoning for medical diagnosis. In
[4], we presented a method for calculating the degree of similarity
between fuzzy sets for handling fuzzy decision-making problems. In
[12], Leekwanget al. presented two similarity measures for behavior
analysis. In [13], Pappiset al. made a comparative assessment
of measures of similarity of fuzzy values. In [6], we extended
the work of [13] to present and compare the properties of some
similarity measures of fuzzy values. In [17], Zwick reviewed 19
similarity measures of fuzzy sets and compared their performance
in an experiment.

Roughly speaking, a fuzzy set is a class with fuzzy boundaries. A
fuzzy setA of the universe of discourseU , U = fu1; u2; . . . ; ung,
can be represented by

A = �A(u1)=u1 + �A(u2)=u2 + � � �+ �A(un)=un (1)

where�A is the membership function of the fuzzy setA; �A:U !

[0; 1], and�A(ui) indicates the grade of membership ofui in the
fuzzy setA. When the universe of discourseU is an infinite set, then
a fuzzy setA is often written in the form

A =
U

�A(ui)=ui; 8ui 2 U: (2)

It is obvious that8ui 2 U , the membership value�A(ui) is a
single value between zero and one. In [7], Gauet al. pointed out
that this single value combined the evidence forui 2 U and the
evidence againstui 2 U , without indicating how much there is
of each. Therefore, in [7], Gauet al. presented the concepts of
vague sets, where the notion of vague set is similar to that of
intuitionistic fuzzy sets [1]. They used a truth-membership function
tA and a false-membership functionfA to characterize the lower
bound on�A. The lower bounds are used to create a subinterval
on [0; 1], namely[tA(ui); 1 � fA(ui)], to generalize the�A(ui) of
fuzzy sets, wheretA(ui) � �A(ui) � 1 � fA(ui). For example, if
[tA(ui); 1 � fA(ui)] = [0:5; 0:7], then we can see thattA(ui) =

0:5; 1 � fA(ui) = 0:7, and fA(ui) = 0:3. It can be interpreted
as “the degree that objectui belongs to the vague setA is 0.5,
the degree that objectui does not belong to the vague setA
is 0.3.” As another example, in a voting model, the vague value
[0:5; 0:7] can be interpreted as “the vote for resolution is 5 in favor,
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3 against, and 2 abstentions.” LetU be the universe of discourse,
U = fu1; u2; . . . ; ung, and lettA and fA be the truth-membership
function and the false-membership function of the vague setA. A
vague setA of the universe of discourseU can be represented by

A = [tA(u1); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un (3)

where0 � tA(ui) � 1 � fA(ui) � 1 and 1 � i � n. When the
universe of discourseU is an infinite set, then the vague setA can
be represented by

A =
U

[tA(ui); 1� fA(ui)]=ui; 8ui 2 U: (4)

In [3], we have presented two similarity measures for measuring
the degree of similarity between vague sets. In [5], we have presented
new techniques for handling multicriteria fuzzy decision-making
problems based on vague set theory. In [12], Leekwanget al. has
considered an example of behavior analysis in an organization. In
this paper, we will extend the work of [12] to apply the vague set
theory in behavior analysis of an organization.

The rest of this paper is organized as follows. In Section II, we
introduce some basic definitions of vague values and vague sets.
In Section III, we present some similarity measures between vague
sets and between elements. In Section IV, we present an example
to apply the proposed similarity measures in behavior analysis of an
organization. The conclusions are discussed in Section V.

II. BASIC DEFINITIONS OF VAGUE VALUES AND VAGUE SETS

In this section, we review some basic definitions of vague values
and vagues sets from [3], [5], and [7].

Definition 2.1: Let x be a vague value,x = [tx; 1 � fx], where
0 � tx � 1� fx � 1. The vague valuex can be divided into three
parts: the truth-membership part (i.e.,tx), the false-membership part
(i.e., fx), and the unknown part (i.e.,1 � tx � fx).

Definition 2.2: Let x be a vague value, wherex = [tx; 1 � fx].
If tx = 1 and fx = 0 (i.e., x = [1; 1]), then x is called a unit
vague value.

Definition 2.3: Let x be a vague value, wherex = [tx; 1 � fx].
If tx = 0 and fx = 1 (i.e., x = [0; 0]), then x is called a zero
vague value.

Definition 2.4: Let x and y be two vague values, wherex =

[tx; 1� fx] andy = [ty; 1� fy]. If tx = ty andfx = fy, then the
vague valuesx andy are called equal (i.e.,[tx; 1�fx] = [ty; 1�fy]).

Definition 2.5: Let A and B be vague sets of the universe of
discourseU; U = fu1; u2; . . . ; ung, where

A = [tA(u1); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un

B = [tB(u1);1� fB(u1)]=u1 + [tB(u2);1� fB(u2)]=u2

+ � � �+ [tB(un);1� fB(un)]=un:

If 8i; [tA(ui); 1� fA(ui)] = [tB(ui); 1� fB(ui)], then the vague
setsA andB are called equal, where1 � i � n.

Definition 2.6: Let A be a vague set of the universe of discourse
U; U = fu1; u2; . . . ; ung, where

A = [tA(ui); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un:

If 8i; tA(ui) = 1 and fA(ui) = 0, thenA is called a unit vague
set, where1 � i � n.

Definition 2.7: Let A be a vague set of the universe of discourse
U; U = fu1; u2; . . . ; ung, where

A = [tA(u1); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un:

If 8i; tA(ui) = 0 and fA(ui) = 1, thenA is called a zero vague
set, where1 � i � n.

Definition 2.8: Let A be a vague set of the universe of discourse
U; U = fu1; u2; . . . ; ung, where

A = [tA(u1); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un:

If 8i; tA(ui) = 0 andfA(ui) = 0, thenA is called an empty vague
set, where1 � i � n.

III. SIMILARITY MEASURES BETWEEN

VAGUE SETS AND BETWEEN ELEMENTS

In this section, we present some similarity measures between vague
sets and between elements.

A. Similarity Measure Between Vague Sets

Let x and y be two vague values

x = [tx; 1� fx]

y = [ty; 1� fy]

0 � tx � 1� fx � 1, and0 � ty � 1� fy � 1. Based on the score
function we presented in [3] and [5], the score of the vague valuesx

andy can be evaluated by the score functionS, respectively,

S(x) = tx � fx (5)

S(y) = ty � fy (6)

where S(x) 2 [�1; 1] and S(y) 2 [�1; 1]. Then, based on the
function M we presented in [3], the degree of similarity between
the vague valuesx and y can be evaluated, where

M(x; y) = 1�
jS(x)� S(y)j

2

= 1�
jtx � fx � (ty � fy)j

2

= 1�
jtx � ty � (fx � fy)j

2
(7)

whereM(x; y) 2 [0; 1]. The larger the value ofM(x; y), the more
the similarity between the vague valuesx and y.

Example 3.1: Let x andy be two vague values, wherex = [1; 1]

andy = [0; 0]. That is,tx = 1; fx = 0; ty = 0, andfy = 1. Then,
based on (7), the degree of similarity between the vague valuesx

and y can be evaluated as follows:

M(x; y) = 1�
j1� 0� (0� 1)j

2

= 0: (8)

That is, the degree of similarity between the vague valuesx and y
is equal to 0.

Example 3.2: Let x andy be two vague values, wherex = [1; 1]

andy = [1; 1]. That is,tx = 1; fx = 0; ty = 1, andfy = 0. Based
on (7), the degree of similarity between the vague valuesx and y
can be evaluated as follows

M(x; y) = 1�
j1� 1� (0� 0)j

2

= 1: (9)

That is, the degree of similarity between the vague valuesx and y
is equal to 1.
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Example 3.3: Let x andy be two vague values, wherex = y =

[a; a] and0 � a � 1. That is,tx = ty = a andfx = fy = 1 � a.
Then, based on (7), the degree of similarity between the vague values
x and y can be evaluated as follows:

M(x; y) = 1�
ja� a� (1� a� (1� a))j

2
= 1: (10)

That is, if the vague valuesx and y are equal (i.e.,x = y), then
M(x; y) = 1.

Let A and B be vague sets of the universe of discourseU ,
U = fu1; u2; . . . ; ung, where

A = [tA(u1); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un

B = [tB(u1);1� fB(u1)]=u1 + [tB(u2);1� fB(u2)]=u2

+ � � �+ [tB(un);1� fB(un)]=un:

Then, based on the functionT we presented in [3] and (7), the degree
of similarity between the vague setsA andB can be evaluated as
follows

T (A;B)

=
1

n

n

k=1

M([tA(uk);1� fA(uk)]; [tB(uk);1� fB(uk)])

=
1

n

n

k=1

1�
jtA(uk)� tB(uk)� (fA(uk)� fB(uk))j

2
(11)

whereT (A;B) 2 [0; 1]. The larger the value ofT (A;B), the more
the similarity between the vague setsA andB.

We can see some properties of the functionT :

(1) The similarity degree is bounded, i.e.,0 � T (A;B) � 1.
(2) If the vague setsA and B are equal (i.e.,A = B), then

T (A;B) = 1.
(3) If A is a unit vague set andB is a zero vague set, then

T (A;B) = 0.
(4) The similarity measure is commutative, i.e.,T (A;B) =

T (B;A).

Let x and y be two vague values, where

x = [tx; 1� fx]

y = [ty; 1� fy]:

The weighted scores of the vague valuesx and y can be evaluated
by the weighted score functionSw, respectively,

Sw(x) = a � tx + b � fx + c � (1� tx � fx) (12)

Sw(y) = a � ty + b � fy + c � (1� ty � fy) (13)

where a; b, and c represent the weight of the truth-membership
part, the weight of the false-membership part, and the weight of
the unknown part of the vague values, respectively,a � c �
0 � b; Sw(x) 2 [b; a], and Sw(y) 2 [b; a]. It is obvious that if

a = 1; b = �1, andc = 0, then (12) and (13) will be reduced into
(5) and (6), respectively. The weighted similarity measure between
the vague valuesx andy can be evaluated by the functionMw

Mw(x; y)

= 1�
jSw(x)� Sw(y)j

a� b

= 1�
ja � (tx � ty) + b � (fx � fy) + c � (ty + fy � (tx + fx))j

a� b
(14)

whereMw(x; y) 2 [0; 1]. The larger the value ofMw(x; y), the more
the similarity between the vague valuesx and y.

Example 3.4: Let x and y be two vague values, wherex =

[0:2; 0:6] andy = [0:3; 0:6]. That is,tx = 0:2; fx = 0:4; ty = 0:3,
and fy = 0:4. Then:

Case 1: If the weight of the truth-membership part, the weight of
the false-membership part, and the weight of the unknown part of
the vague values are1; �1, and0, respectively, then based on (14),
the degree of similarity between the vague valuesx and y can be
evaluated as shown in (15) at the bottom of page. That is, the degree
of similarity between the vague valuesx andy is equal to 0.95.

Case 2: If the weight of the truth-membership part, the weight of
the false-membership part, and the weight of the unknown part of
the vague values are2; �1, and0, respectively, then based on (14),
the degree of similarity between the vague valuesx and y can be
evaluated as shown in (16) at the bottom of page. That is, the degree
of similarity between the vague valuesx andy is about 0.933.

Let A and B be two vague sets in the universe of discourse
U; U = fu1; u2; . . . ; ung, where

A = [tA(u1); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un

B = [tB(u1);1� fB(u1)]=u1 + [tB(u2);1� fB(u2)]=u2

+ � � �+ [tB(un);1� fB(un)]=un:

Assume that the weight of the truth-membership part, the weight of
the false-membership part, and the weight of the unknown part of the
vague values area; b, and c, respectively, wherea � c � 0 � b,
then the degree of similarity between the vague setsA andB can
be evaluated by the functionTw (see (17) at the bottom of the next
page) whereTw(A;B) 2 [0; 1]. The larger the value ofTw(A;B),
the more the similarity between the vague setA andB. It is obvious
that if a = 1; b = �1, andc = 0, then (17) will be reduced into (11).

In the following, we present the weighted similarity measure
between vague sets based on (16). LetA andB be vague sets of
the universe of discourseU; U = fu1; u2; . . . ; ung, where

A = [tA(u1); 1� fA(u1)]=u1 + [tA(u2); 1� fA(u2)]=u2

+ � � �+ [tA(un); 1� fA(un)]=un

B = [tB(u1);1� fB(u1)]=u1 + [tB(u2);1� fB(u2)]=u2

+ � � �+ [tB(un);1� fB(un)]=un:

Mw(x; y) = 1�
j1 � (0:2� 0:3) + (�1) � (0:4� 0:4) + 0 � (0:3 + 0:4� (0:2 + 0:4)j

1� (�1)
= 0:95: (15)

Mw(x; y) = 1�
j2 � (0:2� 0:3) + (�1) � (0:4� 0:4) + 0 � (0:3 + 0:4� (0:2 + 0:4)j

2� (�1)
= 0:933: (16)
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TABLE I
TABULATION OF VAGUE SETS

Assume that the weight of the elementui in the universe of discourse
U is wi, respectively, wherewi 2 [0; 1] and1 � i � n, and assume
that the weight of the truth-membership part, the weight of the false-
membership part, and the weight of the unknown part of the vague
values area; b, andc, respectively, wherea � c � 0 � b, then the
degree of similarity between the vague setsA andB can be evaluated
by the weighting functionW; (see (18) at the bottom of the page)
whereW (A;B) 2 [0; 1]. The larger the value ofW (A;B), the more
the similarity between the vague setsA andB.

B. Similarity Measure Between Elements

LetA1; A2; . . ., andAm be vague sets in the universe of discourse
U; U = fu1; u2; . . . ; ung, where

A1 = [tA (u1);1� fA (u1)]=u1 + [tA (u2);1� fA (u2)]=u2

+ � � �+ [tA (un);1� fA (un)]=un

A2 = [tA (u1);1� fA (u1)]=u1 + [tA (u2);1� fA (u2)]=u2

+ � � �+ [tA (un);1� fA (un)]=un

...

Am = [tA (u1);1� fA (u1)]=u1 + [tA (u2);1� fA (u2)]=u2

+ � � �+ [tA (un);1� fA (un)]=un:

These vague sets can be tabulated as shown in Table I. Assume that
the weight of the truth-membership part, the weight of the false-
membership part, and the weight of the unknown part of the vague
values area; b, and c, respectively, wherea � c � 0 � b,
the similarity measure between two elementsui; uj in fuzzy set
Ak 2 U; k = 1; 2; . . . ; m, is defined as shown in (19) (see top of
the next page) whereSe(ui; uj) 2 [0; 1]. The larger the value of
Se(ui; uj), the more the similarity between the elementsui anduj .
It is obvious that ifa = 1; b = �1, and c = 0, then (19) will be
reduced into

Se(ui; uj)

=
1

m

m

k=1

1�
jtA (ui)� tA (uj)� (fA (ui)� fA (uj))j

2
:

(20)

The similarity measure of (19) satisfies the following properties:

1) 0 � Se(ui; uj) � 1.

Tw(A;B) =
1

n

n

k=1

Mw([tA(uk); 1� fA(uk)]; [tB(uk);1� fB(uk)])

1

n

n

k=1

1�
ja � (tA(uk)� tB(uk)) + b � (fA(uk)� fB(uk)) + c � (tB(uk) + fB(uk)� (tA(uk) + fA(uk))j

a� b
(17)

W (A;B) =

n

k=1

wk �Mw([tA(uk); 1� fA(uk)]; [tB(uk);1� fB(uk)])

n

k=1

wk

=

n

k=1

wk � 1� ja�(t (u )�t (u ))+b�(f (u )�f (u ))+c�(t (u )+f (u )�(t (u )+f (u ))j

a�b

n

k=1

wk

(18)
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Se(ui; uj) =
1

m

n

k=1

(Mw([tA (ui);1� fA (ui)]; [tA (uj); 1� fA (uj)])

=
1

m

m

k=1

1�
ja � (tA (ui)� tA (uj)) + b � (fA (ui)� fA (uj)) + c � (tA (uj) + fA (uj)� (tA (ui) + fA (ui))j

a� b

(19)

TABLE II
FOUR MEMBERS AND THREE GROUPS IN AN ORGANIZATION

2) If ui = uj , thenSe(ui; uj) = 1.
3) If 8k, the grade of membership ofui in Ak is a unit vague

value (i.e.,[1; 1]) and the grade of membership ofuj in Ak

is a zero vague value (i.e.,[0; 0]), thenSe(ui; uj) = 0, where
1 � k � m.

4) The measure is commutative

Se(ui; uj) = Se(uj ; ui):

IV. A N APPLICATION IN BEHAVIOR ANALYSIS IN AN ORGANIZATION

Let us consider an example of behavior analysis problems. The
example is essentially a modification of the one shown in [12].
Assume that there are four members(u1; u2; u3; u4) and three groups
(A;B;C). A member is involved in groups with the membership
degrees represented by vague values shown in Table II.

Based on (17) and (19), we can answer the following two types
of questions [12]:

Type 1: At what degree the groupsA andB can be cooperated?
Type 2: At what degree the membersu2 and u3 can be in the

same group?
In the following, we assume that the weight of the truth-

membership part, the weight of the false-membership part, and
the weight of the unknown part of the vague values are1; �1,
and 0, respectively. By applying (17), we can answer the Type 1
question. In this case, the degree that the groupsA andB can be
cooperated is evaluated as follows:

Tw(A;B) =
1

4
1�

j(0:4� 0:6)� (0:4� 0:3)j

2

+ 1�
j(0:8� 0:3)� (0:1� 0:5)j

2

+ 1�
j(0:9� 0)� (0:1� 1)j

2

+ 1�
j(0� 0:5)� (1� 0:2)j

2

= 0:4625: (21)

That is, the degree that the groupsA andB can be cooperated is
equal to 0.4625.

By applying (19), we can answer the Type 2 question. For example,
consider the elementsu2 and u3 shown in Table II. By applying

(19), the degree of similarity betweenu2 and u3 can be evaluated
as follows:

Se(u2; u3) =
1

3
1�

j(0:8� 0:9)� (0:1� 0:1)j

2

+ 1�
j(0:3� 0)� (0:5� 1)

2

+ 1�
j(0:4� 0:8)� (0:4� 0:1)j

2

= 0:7333: (22)

That is, the degree that the membersu2 andu3 can be in the same
group is about 0.7333.

V. CONCLUSION

In this paper, we have presented some similarity measures between
vague sets and between elements. We also used an example to
illustrate the application of the proposed similarity measures in
handling the behavior analysis problems. The proposed similarity
measures can provide a useful way for behavior analysis in a vague
environment, where the degree that each member belongs to each
group is represented by a vague value rather than a fuzzy value
presented in [12]. Consequently, our method for behavior analysis
is more flexible than the one presented in [12].

REFERENCES

[1] K. Atanassov, “Intuitionistic fuzzy sets,”Fuzzy Sets Syst.vol. 20, no.
1, pp. 87–96, 1986.

[2] S. M. Chen, “A weighted fuzzy reasoning algorithm for medical
diagnosis,”Decision Support Syst.,vol. 11, no. 1, pp. 37–43, 1994.

[3] , “Measures of similarity between vague sets,”Fuzzy Sets Syst.,
vol. 74, no. 2, pp. 217–223, 1995.

[4] S. M. Chen, J. S. Ke, and J. F. Chang, “Techniques for handling
multicriteria fuzzy decision-making problems,” inProc. 4th Int. Symp.
Computer and Information Sciences,Cesme, Turkey, 1989, pp. 919–925.

[5] S. M. Chen and J. M. Tan, “Handling multicriteria fuzzy decision-
making problems based on vague set theory,”Fuzzy Sets Syst.,vol.
67, no. 2, pp. 163–172, 1994.

[6] S. M. Chen, M. S. Yeh, and P. Y. Hsiao, “A comparison of similarity
measures of fuzzy values,”Fuzzy Sets Syst.,vol. 72, no. 1, pp. 79–89,
1995.

[7] W. L. Gau and D. J. Buehrer, “Vague sets,”IEEE Trans. Syst., Man,
Cybern., vol. 23, no. 2, pp. 610–614, 1993.

[8] M. B. Gorzalczany, “A method of inference in approximate reasoning
based on interval-valued fuzzy sets,”Fuzzy Sets Syst.,vol. 21, no. 1,
pp. 1–17, 1987.

[9] , “An interval-valued fuzzy inference method-some basic proper-
ties,” Fuzzy Sets Syst.,vol. 31, pp. 243–251, 1989.

[10] A. Kaufmann and M. M. Gupta,Introduction to Fuzzy Arithmetic.New
York: Van Nostrand Reinhold, 1985.

[11] , Fuzzy Mathematical Models in Engineering and Management
Science. Amsterdam, The Netherlands: North-Holland, 1988.

[12] H. Lee-Kwang, Y. S. Song, and K. M. Lee, “Similarity measure between
fuzzy sets and between elements,”Fuzzy Sets Syst.,vol. 62, no. 3, pp.
291–293, 1994.

[13] C. P. Pappis and N. I. Karacapilidis, “A comparative assessment of
measures of fuzzy values,”Fuzzy Sets Syst.,vol. 56, no. 2, pp. 171–174,
1993.



158 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997

[14] H. Xingui, “Weighted fuzzy logic and its applications,” inProc. 12th
Annu. Int. Computer Software Application Conf.,Chicago, IL, 1988, pp.
485–489.

[15] L. A. Zadeh, “Fuzzy sets,”Inform. Contr.,vol. 8, pp. 338–356, 1965.
[16] H. J. Zimmermann,Fuzzy Set Theory and Its Applications.Dordrecht,

The Netherlands: Kluwer-Nijhoff, 1991.
[17] R. Zwick, E. Carlstein, and D. Budescu, “Measures of similarity among

fuzzy sets: A comparative analysis,”Int. J. Approx. Reas.,vol. 1, pp.
221–242, 1987.

Handwritten Word Recognition with Character
and Inter-Character Neural Networks

Paul D. Gader, Magdi Mohamed, and Jung-Hsien Chiang

Abstract—An off-line handwritten word recognition system is de-
scribed. Images of handwritten words are matched to lexicons of candi-
date strings. A word image is segmented into primitives. The best match
between sequences of unions of primitives and a lexicon string is found us-
ing dynamic programming. Neural networks assign match scores between
characters and segments. Two particularly unique features are that neural
networks assign confidence that pairs of segments are compatible with
character confidence assignments and that this confidence is integrated
into the dynamic programming. Experimental results are provided on
data from the U.S. Postal Service.

I. INTRODUCTION

An off-line, handwritten word recognition algorithm has two
inputs: a digital image (assumed to be an image of a word), and a
list of strings called a lexicon, representing possible identities for the
word image. The goal is to assign a match score to each candidate
in the lexicon.

A variety of approaches have been reported since 1990. Several
researchers [1]–[7] have used hidden Markov models. Others have
tried to use “wholistic approaches” in which a word is recognized as
an entity. These algorithms do well at providing auxiliary information,
but not as stand-alone recognizers [8]–[13]. Some of the most
successful results have come from segmentation-based techniques that
rely on dynamic programming [5], [14]–[20]. In these approaches, an
optimal segmentation is generated for each lexicon string.

Our baseline system is based on dynamic programming and is
illustrated in Fig. 1. A word image is segmented into subimages
called primitives without using a lexicon. Each primitive ideally
consists of a single character or a subimage of a single character.
A segment is defined as either a primitive or a union of primitives
and a segmentation as a sequence of segments using all the primitives.
Dynamic programming is used to find the segmentation that matches
a given string best. The match score is assigned by matching each
segment in the segmentation to the corresponding character in the
string using a character recognizer that returns confidence values.

This approach does not consider important inter-character re-
lationships. For example, in Fig. 2, a segmentation of the word
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Fig. 1. Overview of the word recognition system.

Fig. 2. The character recognition scores of the individual fifth and sixth
segments match well against the characters “u” and “e,” but the sizes of the
segments are not spatially compatible.

“Cowlesville” matches well to the string “avenue”. The fifth and sixth
segments together do not look much like “ue” since the fifth segment
is much larger than the sixth segment and “u” and “e” are about the
same size. However, as individual characters, the fifth segment looks
very much like “u” and the sixth segment very much like “e”. Of
course, the “ue” hypothesis is possible and should be assigned some
nonzero confidence.

The spatial relationships and relative sizes between segments are
cues that should be considered in assigning a match score between
a word image and a lexicon string. One method for doing so is to
use a post processor that modifies the match score after dynamic
programming. This approach cannot correct for segmentation errors
caused by bad matches.

The novel approach described here builds the confidence modifi-
cation due to spatial relationships into the dynamic programming.
A compatibility score is assigned to pairs of adjacent segments
using a neural network. This compatibility score is combined with
the character recognition score to assign match scores between
segments and characters. A related concept was used by Obaidat
and Macchairolo who used time intervals between typed characters
to identify computer users [21]. We now describe the system and
then provide experimental results for the character recognition and
compatibility modules and the entire system.

II. SEGMENTATION

The segmentation module is very similar to that described in [22]
and we therefore do not discuss it much here. The segmentation
process initially detects connected components. Some simple group-
ing and noise removal is performed. The results are referred to as the
initial segments. An element of an initial segmentation is generally
a significant connected component in the word, or a grouping of
connected components. Those components which are not “bars” (such
as the top of a “T” or the vertical bar in a “D”) are sent to a splitting
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