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From performance tests on 27 registered people, it is clear that most Similarity Measures Between
genuine signatures can be successfully verified and most forgeries can Vague Sets and Between Elements
be pointed out. With suitable setting of the order of LPC cepstrum,
verification threshold, the number of hidden nodes in MLP and Shyi-Ming Chen

the number of frames of a word in the signature, this verification
scheme performs very well. In addition, because we logically equip

each registered person with a number of single-output MLP’s, theAbstractA’hls paper presents some S|m||ar|ty measures between vague
sets and between elements. An example is also presented to illustrate

verification system can be expanded by simply equipping MLP's f@fe appiication of the proposed similarity measures in handling behavior
each new customer and training these MLP’s independently. Thisalysis problems. The proposed method can provide a useful way in
verification scheme thus possesses the merits of flexibility, scalabilitgndling the behavior analysis problems.
and system expansion.

Although the term “signature” is generally known in western |. INTRODUCTION

countries to refer to a handwritten name written in an alphabeticSince the theory of fuzzy sets [15] was proposed in 1965, many
script, there is no doubt that this term could also refer to handwritt?'qeasures of similarity between fuzzy sets have been devel’oped in
names in character form, such as Chinese characters. Section IV YRESjiterature (2], [4], [6], [12], [13], [17]. In [2], we presented a
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form, for simulation. But, in fact, this work can easily be adapted t&], we presented a method for calculating the degree of similarity
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3 against, and 2 abstentions.” LEt be the universe of discourse, Definition 2.7: Let A be a vague set of the universe of discourse
U = {u1,u2,...,us}, and letta and f4 be the truth-membership U, U = {ui,uz2,...,un}, where
function and the false-membership function of the vaguesef )
A:t/ -1_A' i t';z.l—,’g U
vague setd of the universe of discoursdé can be represented by [ta ), Falwn)l/ur + [tauz), Faluz)]/u
+- [fA(“/n)a 1- fA("n)]/“/n-
A=T[ta(ur), 1= fa(u)]/ur + [ta(uz), 1 = fa(us)]/uz

If Vi,ta(u;) = 0 and fa(u;) = 1, then A is called a zero vague
ot talun). 1= fa(un)l/un ) set, wherel < i < n.
Definition 2.8: Let A be a vague set of the universe of discourse
where0 < ta(u;) < 1— fa(u;) < 1andl < i < n. When the U, U = {ur,us ) wherge

universe of discours& is an infinite set, then the vague sétcan
be represented by A=[ta(u1),1 = fa(ur)]/ur + [ta(uz), 1l — fa(uz)]/uz

4004 [tA(U,,L), 1- fA(un)]/u’”'

If Vi, ta(u;) =0andfa(u;) =0, thenA is called an empty vague

Lo .set, wherel < i < n.
In [3], we have presented two similarity measures for measuring - =

the degree of similarity between vague sets. In [5], we have presented
new techniques for handling multicriteria fuzzy decision-making
problems based on vague set theory. In [12], Leekwengl. has
considered an example of behavior analysis in an organization. Inin this section, we present some similarity measures between vague
this paper, we will extend the work of [12] to apply the vague s&gets and between elements.
theory in behavior analysis of an organization.

The rest of this paper is organized as follows. In Section Il, w&. Similarity Measure Between Vague Sets
introduce some basic definitions of vague values and vague set§.g¢ , andy be two vague values
In Section Ill, we present some similarity measures between vague
sets and between elements. In Section IV, we present an example w = [ts, 1= fu]
to apply the proposed similarity measures in behavior analysis of an y=[ty, 1 — fy]
organization. The conclusions are discussed in Section V.

A= [’V[tA(ui),l — Fa(ui)]/us, Vui €U @)

IIl. SIMILARITY MEASURES BETWEEN
VAGUE SETS AND BETWEEN ELEMENTS

0<t,<1—-f,<1,and0<t¢t, <1-f, <1.Based on the score

function we presented in [3] and [5], the score of the vague vatues
Il. BASIC DEFINITIONS OF VAGUE VALUES AND VAGUE SETS andy can be evaluated by the score functi§nrespectively,

In this section, we review some basic definitions of vague values S(x) =ts — f» (5)
and vagues sets from [3], [5], and [7]. Sy =t — f ©)

Definition 2.1: Let = be a vague valuey = [t,,1 — f.], where : v
0<t, <1-f, <1.The vague value can be divided into three where S(») € [-1,1] and S(y) € [-1,1]. Then, based on the
parts: the truth-membership part (i.e.), the false-membership part function A/ we presented in [3], the degree of similarity between

(i.e., fz), and the unknown part (i.el, — t, — f.). the vague values andy can be evaluated, where
Definition 2.2: Let = be a vague value, whete = [t.,1 — f.]. [S(x) — S(y)]
If t. = 1andf. =0 (i.e., « = [1,1]), thenz is called a unit M(x,y) =1~ 5
vague value. [te — fo— (ty — fy)l
Definition 2.3: Let » be a vague value, where = [t.,1 — f.]. =1- 2
If ¢, = 0 andf, = 1 (i.e., z = [0,0]), thenz is called a zero —t, = (f, —
vague value. -1 et Q(fr Ll %

Definition 2.4 Let » and y be two vague values, where =
[te, 1 — fe] @andy = [ty,1 — fy]. If t- =ty and f. = f,, then the S ,
vague values andy are called equal (i.elt,, 1— f] = [ty 1— f,]). the similarity between the vague valuesandy.

e . ) . Example 3.1: Let  andy be two vague values, where= [1, 1]
Definition 2.5: Let A and B be vague sets of the universe Ofandy —10,0]. Thatis,t, = 1, f, =0, t, =0, andf, = 1. Then,

where M (z,y) € [0,1]. The larger the value o} (x,y), the more

. R ‘ ,
discoursell, U = {u,uz,..,un}, where based on (7), the degree of similarity between the vague values
A=[taur).1 = fa(u)]/us + [ta(u2)1 = faluz)]/uz andy can be evaluated as follows:
oo [t (), L= Fa ()] Mryy=1- 1202021
B =[tg(u1),1 = fe(u)]/ui + [te(uz),1 — fa(uz)]/us =0. (8)
+- + [tB(un). 1 = fe(un)]/tn. That is, the degree of similarity between the vague valuesd y
If Vi w1 L u). 1 w1 then th is equal to 0.
tti4[tA(du‘lB)’ - f“l‘l(‘g)] = [TB(L;;)’E <_‘,fi(“’)]’ then the vague g, ample 3.2: Let = andy be two vague values, where= [1, 1]
seDs i an 2a6r_eLca j bequa, wher —fl h e £ di andy = [1,1]. Thatis,t. =1, f. =0, t, =1, andf, = 0. Based
U E'Ttloyn - et € ar\:ague set of the universe o IScoursg, (7), the degree of similarity between the vague valueand y
U= {ur,uz.... un}, where can be evaluated as follows
A=[ta(ui), 1= fa(u)]/ur + [ta(uz), 1 = fa(uz)]/us M(z,y)=1- w
+"'+[t/4(un)31 - f4('u")]/u"‘ =1 (9)
If Vi, ta(u;) =1 and fa(u;) = 0, then A is called a unit vague That is, the degree of similarity between the vague valuesd y

set, wherel < i < n. is equal to 1.
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Example 3.3: Let z andy be two vague values, where=y = a =1, b = —1, andc = 0, then (12) and (13) will be reduced into
[a,a] and0 < a < 1. Thatis,t, =t, =a andf. = fy, =1 —a. (5) and (6), respectively. The weighted similarity measure between
Then, based on (7), the degree of similarity between the vague valties vague values andy can be evaluated by the functiod,,

z andy can be evaluated as follows:

My (x,y)
R e e L [Su() = Sutw)
=1 (10) o-b o ‘ .
o _ :1_|”’*(fr_fy)+b*(fx_fy>+c*(ty+fy_(f$+fr))|
That is, if the vague values andy are equal (i.e.x = y), then a—15
M(z,y) = 1. (14)
Let A and B be vague sets of the universe of discouise
U = {u1,uz....,u,}, where whereM,, (z,y) € [0, 1]. The larger the value a¥/..(z, y), the more
) ) the similarity between the vague valuesandy.
A=[talur), 1= fa(u)]/u1 + [faluz),1 = faluz)]/ue Example 3.4:Let » and y be two vague values, where =
4+ [talun), L = fa(un)]/un [0.2,0.6] andy = [0.3,0.6]. That is,t, = 0.2, f. = 0.4, t, = 0.3,
B = [ta(u1),1 = fa(u)]/ur + [ts(uz),1 = fa(us)]/uz and f, = 0.4. Then:

Fo b s (un) 1 = Fis(un)] Case 1: If the weight of the truth-membership part, the weight of

pLEn ), pm 1 the false-membership part, and the weight of the unknown part of
Then, based on the functidhiwe presented in [3] and (7), the degredhe vague values are —1, and0, respectively, then based on (14),
of similarity between the vague sets and B can be evaluated as the degree of similarity between the vague valueandy can be

follows evaluated as shown in (15) at the bottom of page. That is, the degree
of similarity between the vague valuesandy is equal to 0.95.
T(A, B) Case 2: If the weight of the truth-membership part, the weight of
1w the false-membership part, and the weight of the unknown part of
) ]; M([ta(ue). 1 = falur)] [t (ur). 1 = Fi(ur)]) the vague values a2 —1, and0, respectively, then based on (14),

N the degree of similarity between the vague valueand y can be
1 Z <1 _talur) = te(ur) = (fa(ur) — fB(’Uk))|> (11) evaluated as shown in (16) at the bottom of page. That is, the degree
n 2 of similarity between the vague valuesandy is about 0.933.

Let A and B be two vague sets in the universe of discourse
whereT' (A, B) € [0, 1]. The larger the value 6f (4, B), the more 7 ;7 — (w1, ua,. .., .}, where

the similarity between the vague setsand B. B

k=1

We can see some properties of the function A=[ta(ur),1 = fa(u)]/ur 4 [talua), 1 — falusz)]/us
(1) The similarity degree is bounded, i.6.< T'(A4, B) < 1. e [Eaun) 1 = Fa(un)]/un
B ie A =B o . / ' .
(2) IJE(tZeB\gagiuel setsd and B are equal (i.e.A ), then B =[ta(u1).1— fa(u)]/ur + [ts(us).1 — fa(us)]/us
(3) If A is a unit vague set and is a zero vague set, then +- o+ [tB(un) 1 = fB(un)]/tn.
T(A,B) = 0.

(4) The similarity measure is commutative, i.€)(A, B) = Assume that the We_ight of the truth-m_embership part, the weight of
T(B, A). the false-membership part, and the vyelght of the unknown part of the

vague values are, b, andc, respectively, where > ¢ > 0 > b,

then the degree of similarity between the vague setand B can

x=[ty, 1 — fu] be evaluated by the functidfi, (see (17) at the bottom of the next

Y=ty 1= 1] page) wherel, (A, B) € [0,1]. The larger the value df’..(A, B),

: v v the more the similarity between the vague deand B. It is obvious

The weighted scores of the vague valueandy can be evaluated thatifa =1, b = —1, andc = 0, then (17) will be reduced into (11).

Let + andy be two vague values, where

by the weighted score functiofi,,, respectively, In the following, we present the weighted similarity measure
) ) between vague sets based on (16). Heaind B be vague sets of
Su(r)=axte+bxfotex(1—t: — fo) (12)  the universe of discourse, U = {uy. us,....u,}, where
Sw(y)=axty+bxfy+ecx(l—t,— f,) (13)

o b and " aht of th o bershi A=[talur), 1= fa(u)]/ur + [ta(uz),1 = fa(uz)]/uz
where a, b, and ¢ represent the weight of the truth-membership B

part, the weight of the false-membership part, and the weight of te ftalun) 1= fawa)l/un

the unknown part of the vague values, respectively> ¢ > B =[ta(u1).1 = fa(u)]/ui + [te(uz),1 = fa(uz)]/us
0> b, Su(x) € [b,a], and S, (y) € [b,a]. It is obvious that if 4+ [tr(un), 1 — fa(un)]/tn.

1% (0.2-0.3) 4 (=1) % (0.4 = 0.4) + 0% (034 0.4 — (0.2+0.4)| _

M (z,y) =1
M., (x.y) =)

0.95. (15)

L 25(0.2=0.3) + (=1) % (0.4 — 0.4) + 0% (0.3 + 0.4 — (0.2 +0.4)]
2= (1)

My (2.y) =1 =0.933. (16)
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TABLE |
TABULATION OF VAGUE SETS

Ay . Av ... A,
u; [tm(m) , l—fAl(Ul)] s [tAk(ul) , l—fAk(UI)] s [tm(ul) , 1— fm(m)]
[tm(uz) s %— fAl(UZ)] [tAk(u2) , -1— fo(uz)] [tAm(uz) , }— fm(uz)]

éi [taus) . %-fm(m)] [tas(s) {-fM(ui)] [tan(us) {_fAm(Ui)]

u

S)

U;

[tAl(uj) , 1:— fm(u,')] [tAk(uj) , 1:— fAk(Uj)] [tm(uj') , l:— fA:..(uj)]
[ta(wn), 1-fa(un)] - [ts(wn), 1-fafun)] - [tan(un), 1— Fan(un)

.
(S

U,

]

Assume that the weight of the elementin the universe of discourse A, = [ta,, (v1),1 — fa, (w1)]/ur + [ta,, (u2),1 = fa, (u2)]/uz

U is w;, respectively, whera; € [0,1] and1 < i < n, and assume o [ta, ()i = fa, (wn)]/tn.

that the weight of the truth-membership part, the weight of the false-

membership part, and the weight of the unknown part of the vaglibese vague sets can be tabulated as shown in Table I. Assume that
values arer, b, andc, respectively, where > ¢ > 0 > b, then the the weight of the truth-membership part, the weight of the false-
degree of similarity between the vague sétand B can be evaluated membership part, and the weight of the unknown part of the vague
by the weighting functiori¥, (see (18) at the bottom of the page)values area, b, and ¢, respectively, wherex > ¢ > 0 > b,
whereWW (A, B) € [0,1]. The larger the value df (A, B), the more the similarity measure between two elements w; in fuzzy set

the similarity between the vague setsand B. Ar € U, k =1,2,...,m, is defined as shown in (19) (see top of
the next page) wheré. (u;,u;) € [0,1]. The larger the value of
Se(u;, uj), the more the similarity between the elemeatsandu;.

B. Similarity Measure Between Elements . i ! -
It is obvious that ife = 1, b = —1, ande = 0, then (19) will be

Let Ay, Ao, ..., andA,, be vague sets in the universe of discours?educed into
U, U = {ui,uz2,...,u,}, where
| Selussuy)
Ay = [ta (w),1 - fay(w)]/ua ’+ [fAyl('Lu)- 1= fay(u2)]/us 1 Z 1 Mta (o) =ty (ug) = (Fa,, (o) = Fa, (w1
+"'+[t’11(11n)71_f/‘l(un)]/“’n m = 2
Ay = [tAz ('ulk): 1- fAz(ul)]/ul + [t“‘z (u2)7 1- f<42 (’LL?‘)]/”'Z (20)

F o [Fag (un), 1 = fay (un)]/un o . . :
The similarity measure of (19) satisfies the following properties:

1) 0 < Se(ui,uj) < 1.

Tu(A B) = = 3" Maullta(un), 1 = Falun)] [s(us). 1 = fis(ua)])
k=1

n
k=1

AN S e

1— la * (ta(ur) —tp(ug)) +bx (falux) = frlup)) +ex (tplur) + folur) — (alu) + fa ('uk))|> 17)
a—b
LZ wg x Mu([ta(ur), 1 = falur)l [tB(ue). 1 = fB(ur)])
W(A, B) ==
> wi
k=1
i wyg * (1 - |a*(t-4(uk)7“3(“‘1»'))Jfb*(fA(uk)*J"B(uk))JrC*(tB(u‘k)JrfB(uk)*(f_A(uk)+f'_4(uk))|)
_ k=1 : (18)

n
> w
k=1
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1 n ’
Selusuy) = - ;(Aﬂu([mk(uz), L= fap ()l [tay (), 1= fa, (uj)])
_ l - 1_ |“’ * (tAk(’u,;) - t*‘k(”j)) +bx (fAk(ui) - fAk(u.f)) + % (t“k(u.i) + fAk(u.f) - (tAk(ui) + f“k(u’)”
m a—">
k=1
(19)

TABLE 1
FOUR MEMBERS AND THREE GROUPS IN AN ORGANIZATION

A B C

u [0.4, 0.6] [0.6, 0.7] 0, 0]
u, [0.8, 0.9] [0.3, 0.5] [0.4, 0.6]
us [0.9, 0.9] [0, 0] [0.8, 0.9]
ua [0, 0] [0.5, 0.8] [, 1]

2) If uw; = uj, thenSc(u;,u;) = 1.

3) If Vk, the grade of membership af; in A, is a unit vague
value (i.e,,[1,1]) and the grade of membership of in A,
is a zero vague value (i.€0,0]), thenS. (u;,u;) = 0, where
1<k < m.

4) The measure is commutative

Se(uiyug) = Se(uj, ui).

IV. AN APPLICATION IN BEHAVIOR ANALYSIS IN AN ORGANIZATION

(19), the degree of similarity betweenr andus can be evaluated
as follows:

S.(us, us) = % Kl (0.8 - 0.9) = (0.1 — 0.1)|)
+<1 _10.3-0) - (0.5 - 1))
+<1 104 -10.8) - (0.4 — 0.1)|)}
= 0.7333. 22)

That is, the degree that the membessandu«; can be in the same
group is about 0.7333.

V. CONCLUSION

In this paper, we have presented some similarity measures between
vague sets and between elements. We also used an example to
illustrate the application of the proposed similarity measures in
handling the behavior analysis problems. The proposed similarity
measures can provide a useful way for behavior analysis in a vague
environment, where the degree that each member belongs to each
group is represented by a vague value rather than a fuzzy value

Let us consider an example of behavior analysis problems. Theesented in [12]. Consequently, our method for behavior analysis
example is essentially a modification of the one shown in [12f more flexible than the one presented in [12].

Assume that there are four membérs, u2, us, u4) and three groups
(A, B,C). A member is involved in groups with the membership
degrees represented by vague values shown in Table Il.
Based on (17) and (19), we can answer the following two typeél]
of questions [12]: 2]
Type 1: At what degree the groupd and B can be cooperated?
Type 2: At what degree the members andz3 can be in the [
[4]

same group?

In the following, we assume that the weight of the truth-
membership part, the weight of the false-membership part, and
the weight of the unknown part of the vague values are—1,  [9]
and 0, respectively. By applying (17), we can answer the Type 1
guestion. In this case, the degree that the gradipand B can be [6]
cooperated is evaluated as follows:

— (0.4 -10.3)|
Fe)

1 Kl _1(0.4-0.6)
(0.8~ 0.3) = (0.1 - 0.5)|

Tu(4.B) = ;
§¢ ;
+ <1 (0.9 -0) = (0.1 - 1)|)

2
+<1 _[(0-0.5) = (1-0.2)]

That is, the degree that the grougsand B can be cooperated is

equal to 0.4625.

2
By applying (19), we can answer the Type 2 question. For examp
consider the elements, and us shown in Table Il. By applying

(7]
(8]

)

El
[20]

(11]

= 0.4625. (21)

[12]
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DYNAMIC ¢GROUPING
LEXICON PROGRAMMING | ®NEURAL NETWORK BASED
MATCHING CONFIDENCE ASSIGNMENT
Handwritten Word Recognition with Character Fig. 1. Overview of the word recognition system.

and Inter-Character Neural Networks

Paul D. Gader, Magdi Mohamed, and Jung-Hsien Chiang M

Abstract—An off-line handwritten word recognition system is de- “Cowlesville”
scribed. Images of handwritten words are matched to lexicons of candi-
date strings. A word image is segmented into primitives. The best match m
between sequences of unions of primitives and a lexicon string is found us- AV, al [P 4 @
ing dynamic programming. Neural networks assign match scores between Avenue
characters and segments. Two particularly unique features are that neural
networks assign confidence that pairs of segments are compatible with
character confidence assignments and that this confidence is integrated
into the dynamic programming. Experimental results are provided on
data from the U.S. Postal Service.

Fig. 2. The character recognition scores of the individual fifth and sixth
segments match well against the characters “u” and “e,” but the sizes of the
segments are not spatially compatible.

“Cowlesville” matches well to the string “avenue”. The fifth and sixth
I. INTRODUCTION segments together do not look much like “ue” since the fifth segment

An off-line, handwritten word recognition algorithm has twolS much larger than the sixth segment and “u” and “e” are about the
inputs: a digital image (assumed to be an image of a word), andf@mne size. However, as individual characters, the fifth segment looks
list of strings called a lexicon, representing possible identities for th@ry much like “u” and the sixth segment very much like “e”. Of
word image. The goal is to assign a match score to each candidé@8'se, the “ue” hypothesis is possible and should be assigned some
in the lexicon. nonzero confidence.

A variety of approaches have been reported since 1990. Several he spatial relationships and relative sizes between segments are
researchers [1]-[7] have used hidden Markov models. Others h&Hes that should be considered in assigning a match score between
tried to use “wholistic approaches” in which a word is recognized & Word image and a lexicon string. One method for doing so is to
an entity. These algorithms do well at providing auxiliary informatiort/se @ post processor that modifies the match score after dynamic
but not as stand-alone recognizers [8]-[13]. Some of the mdyegramming. This approach cannot correct for segmentation errors
successful results have come from segmentation-based techniquesd®idged by bad matches.
rely on dynamic programming [5], [14]-[20]. In these approaches, anThe novel approach described here builds the confidence modifi-
optimal segmentation is generated for each lexicon string. cation due to spatial relationships into the dynamic programming.

Our baseline system is based on dynamic programming andAiscompatibility score is assigned to pairs of adjacent segments
illustrated in Fig. 1. A word image is segmented into subimagé§in9 a neural network. This compatibility score is combined with
called primitives without using a lexicon. Each primitive ideally the character recognition score to assign match scores between
consists of a single character or a subimage of a single characié&gments and characters. A related concept was used by Obaidat
A segment is defined as either a primitive or a union of primitive@nd Macchairolo who used time intervals between typed characters
and a segmentation as a sequence of segments using all the primititeddentify computer users [21]. We now describe the system and
Dynamic programming is used to find the segmentation that matciBgn provide experimental results for the character recognition and
a given string best. The match score is assigned by matching e§efPatibility modules and the entire system.
segment in the segmentation to the corresponding character in the
string using a character recognizer that returns confidence values. Il. SEGMENTATION

This approach does not consider important inter-character re-the segmentation module is very similar to that described in [22]
lationships. For example, in Fig. 2, a segmentation of the woigy e therefore do not discuss it much here. The segmentation

Manuscript received December 22, 1993; revised August 12, 1995. TiiEocess initially detects connected components. Some simple group-
work was supported by the U.S. Postal Service through the Environmeritag) and noise removal is performed. The results are referred to as the
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