

國 立 交 通 大 學

資訊學院

資訊工程學系

博 士 論 文

ZigBee 無線感測網路之通訊協定與應用設計

Communication Protocols and Applications for ZigBee-Based
Wireless Sensor Networks

研 究 生：潘孟鉉

指導教授：曾煜棋 教授

中 華 民 國 九 十 七 年 四 月

ZigBee 無線感測網路之通訊協定與應用設計
Communication Protocols and Applications for

ZigBee-Based Wireless Sensor networks

研 究 生：潘孟鉉 Student：Meng-Shiuan Pan

指導教授：曾煜棋 Advisor：Yu-Chee Tseng

國 立 交 通 大 學 資 訊 學 院
資 訊 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

April 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年四月

ZigBee��������	
��
�Æ�

������ ��	
���
	

�Æ���������� (���)���

� �

��������	
��
�Æ��
������	������ZigBee

����� !"#$%����	�����&'()*+�,-./012

%ZigBee��34+5����67$8'()*9:;<=
�>+?@<=

,-.ABZigBee��C����5DE�FG9:HIZigBee������

JK5
�LZigBeeMN5OPQ��
�R�ZigBeeSQ��TUVWXY8

&Z[<=
![<\]2%^DE5��C��5_	ZigBee������7

$�`a!IbcdeFfghi6jJklR�bmnopqirkl8

&sb<
�=
+�,-
�ZigBee����	JKt
�&ZigBeeuv

+�b<wxyzÆb<��	{|!I}wx~�Æb<�wx~���}w

xbZigBee������wx-\�$ZigBee^��5`����`�����

����wx-��b<�������Ǳ������r�b<wx"�\G

�5�wx<�R�����	���,-��Æ�� $ZigBee^��5��

JK���¡ �����	 $¢£¤�¥¦§Kwx��¨_���©ª&

')*+�,-/0#$%ZigBe5��JK���,-	«¬�!~� ���

_	wx~�­®¯°±²³Kb<\��5��8

&s´<
�=
+�,-ABbµ¶�� -OPQ���&�b��+wx

-�·¸!�<O{Q¹º��»O{Q¹º-¨¼Kb<���±²½¾�<

¿ÀÁ¾5vÂ��b��ÃÄ!b<µÅo°�����,-��Æ}��o

°��ǱÇÈ%��������57$+8')*AB}�É.ZigBee��$

%ªbµ¶��ÇÈ5¹º+8,-Ê��C���ËzB)�ÌÍÎHZigBee

I

��5������6�Ï��±Ð#$%ªOPQ���©ª,-	«¬!/

0��ÑHÒ5#$%OPQ��5���Ó��R��Ï����8

&s@<
�=
+�,-
�ZigBeeSQ��Ô9XY�&�������

�	7$+���_	wx�ÀÕÖ×TU�b<TUØÙÚÛÜ�ÝÞ^/0

5TUÖ×ßXY��àáâ%Àwã��wxäåæç6è¤Ö×éê���

}»��àÐ~#$%ZigBee��8&ëåZigBee	µìí�')*.AB}�

ÉXYwx	î¬�ï�±./0î¬XYðñ��«¬!òóTUß5µì�

X���wx5ôõö÷�RøÆãä5«	8

&sù<
�=
+�,-/0búcdeFfghi6jJkl�}kl

\12%_û^/05������5_�'klüH�ý��1þ��L\ÿ

¹ºâ1R�fg����jJ@�µx8&��·¸�KZ�,-	wx.ô

õ%ãä���hieF��Q°�¦Ǳ��Hcd	|ÌJö�wx-
��

�ãä��RÆöhi����ö��Ü�¡��d�ö��Æ	T��/�

fg	jJ����eF��j���Í������%��Í���	J�f

g8

"Z,-DEbeFmnopqirkl�/�b���R� #	J!�

��M%�-&Ê	"#Ð�5!®%àH\~$ÀÐ�5%&$Õ�Å�'

(LÃä)8'kl\�� $�5$Õ*R��Ü	Ö×�­®+,ieF

	pq�,i	«¬-�À./ $�5$Õ0�12,$øÆw~5«	8Ï

')*^/05�������,-3\R&>_4J��57$��5�67

%8Lcd9:�;0<=>�h�)8

�?@I��`Ó�Ö×�IEEE 802.15.4�mno1A�pqir�OPQ�

��BCt
�����^Ð&	ôñ�XY��������ZigBee8

II

Communication Protocols and Applications for
ZigBee-Based Wireless Sensor Networks

Student: Meng-Shiuan Pan Advisor: Prof. Yu-Chee Tseng

Department of Computer Science

National Chiao Tung University

ABSTRACT

ZigBee is a standard which is considered to be suitable for wireless sensor networks

(WSNs). In this dissertation, we propose communication protocols and applications based

on the ZigBee protocol stack. This dissertation is composed of five works. In the first three

works, we put our attention on designing ZigBee-compatible network layer protocols. The

first work and second work discuss network formation problems in general ZigBee networks

and in a special type of ZigBee network, respectively. Based on the observation that data gath-

ering is a major application of WSNs, in the third work, we design data collection strategies

for ZigBee networks. In the last two works, we propose two applications, an emergency guid-

ing and monitoring system and an intelligent light control system, which can operate based on

the proposed network layer protocols.

In the first work, we discuss network formation issues in general ZigBee network. Ac-

cording to ZigBee, a device is said to join a network if it can obtain a network address from a

parent device. Devices calculate addresses for their child devices by a distributed address as-

signment scheme. This assignment is easy to implement, but it restricts the number of children

of a device and the depth of the network. We observe that if one uses the random formation

policy specified in ZigBee, the utilization of the address pool may be very low. Those devices

that can not receive network addresses will be isolated from the network and become orphan

nodes. In this dissertation, we divide the orphan problem by two subproblems: the bounded-

degree-and-depth tree formation (BDDTF) problem and the end-device maximum matching

III

(EDMM) problem. We then propose network formation strategies to relieve the orphan prob-

lem. The simulation results show that, compared to the ZigBee network formation strategy,

the proposed schemes can effectively reduce the number of orphan devices.

Although WSNs have been extensively researched, its deployment is still a big concern.

In the second work, we promote a new concept of long-thin (LT) topology for WSNs, where a

network may have a number of linear paths of nodes as backbones connecting to each other.

These backbones are to extend the network to the intended coverage areas. At the first glance, a

LT WSN only seems to be a special case of numerous WSN topologies. However, we observe,

from real deployment experiences, that such a topology is quite general in many applications

and deployments. We show that the address assignment and thus the tree routing scheme

defined in the original ZigBee specification may work poorly, if not fail, in a LT topology. We

then propose simple, yet efficient, address assignment and routing schemes for a LT WSN.

Simulation results are reported.

In most WSN applications, sensors are required to report their sensory data to a sink.

This operation is defined as convergecast, which means the reverse of broadcast. Existing

convergecast solutions have focused on reducing latency and energy consumption. However,

a good design should be compliant to standards, in addition to considering these factors. In the

third work, we defines a minimum delay beacon scheduling problem for quick convergecast

in ZigBee tree-based wireless sensor networks and proves that this problem is NP-complete.

Our formulation is compliant with the low-power design of IEEE 802.15.4. We then propose

optimal solutions for special cases and heuristic algorithms for general cases. Simulation

results show that the proposed algorithms can indeed achieve quick convergecast.

In the fourth work, we show a novel indoor emergency guiding and monitoring system

by ZigBee WSN. At normal time, the network is responsible for monitoring the environment

in low-power mode. When emergency events are detected, all sensors switch to active mode

to deal with these events. And the network can adaptively modify its topology to ensure

transportation reliability, quickly identify hazardous regions that should be avoided, and find

safe navigation paths that can lead people to exits.

IV

In the last work, we introduce an intelligent light control system, which aims to provide a

more convenient and comfortable indoor environment for users. Users are considered to have

different requirements when doing different activities. The system can automatically decide

illuminations for users by sensors’ reports and users’ demands. The goal is to satisfy all

users and to conserve power. Based on the designed network layer protocols, we can further

develop more applications, such as elder health-care application, emergency rescue, river level

monitoring, and so on.

Keywords: address assignment, convergecast, IEEE 802.15.4, intelligent buildings, light

control, long-thin network, orphan problem, navigation, pervasive computing, scheduling,

wireless sensor network, ZigBee.

V

Acknowledgement

Special thanks goes to my advisor Prof. Yu-Chee Tseng for his guidance in my dissertation

work. I would also like to thank my dissertation committee members: Prof. Chin-Liang Wang,

Prof. Rong-Hong Jan, Prof. Hsiao-kuang Wu, Prof. Ming-Whei Feng, Prof. Robert K. Lai,

and Prof. Wen-Chih Peng. They asked me some good questions and gave me useful comments

so that I can improve my work in the future.

Let me also say thank to those HSCC members who co-work with me and all guys I meet

in NCTU. Because of you, I can have a great time during these years. Finally, I will dedicate

this dissertation to my families and my girl friend, Ms. Wu, for their love and support.

VI

Contents

DÀ I

Abstract III

Acknowledgement VI

Contents VII

List of Figures IX

List of Tables XIII

1 Introduction 1

2 Overview of IEEE 802.15.4 and ZigBee Standards 8

2.1 IEEE 802.15.4 Basics . 9

2.1.1 Physical Layer (PHY) . 10

2.1.2 Data Link Layer . 10

2.1.3 Summary of IEEE 802.15.4 . 15

2.2 ZigBee Network Layer . 16

2.2.1 Network Formation . 16

2.2.2 Address Assignment in a ZigBee Network 17

2.2.3 Routing Protocols . 18

2.2.4 Summary of the ZigBee Network Layer 21

VII

3 Network Formation Protocols for General ZigBee Networks 23

3.1 Observations and Motivations . 23

3.2 The Orphan Problem . 25

3.3 Algorithms for the BDDTF Problem . 26

3.3.1 Centralized Span-and-Prune Algorithm 28

3.3.2 Distributed Depth-then-Breadth-Search Algorithm 30

3.4 Algorithms for the EDMM Problem . 32

3.5 Simulation Results . 33

4 Network Formation Protocols for Long-Thin ZigBee Networks 39

4.1 Motivations . 39

4.2 Long-Thin Network: Formation, Addressing, and Routing 40

4.2.1 Node Placement . 41

4.2.2 Node Ranking . 42

4.2.3 Distributed Address Assignment . 45

4.2.4 Routing Rules . 47

4.3 Simulation Results . 48

5 Data Collection Strategies for ZigBee Networks 55

5.1 Observations and Motivations . 55

5.2 The Minimum Delay Beacon Scheduling (MDBS) Problem 56

5.3 Algorithms for the MDBS Problem . 60

5.3.1 Optimal Solutions for Special Cases 60

5.3.2 A Centralized Tree-Based Assignment Scheme 64

5.3.3 A Distributed Assignment Scheme 66

5.4 Simulation Results . 67

5.4.1 Comparison of Different Convergecast Algorithms 67

5.4.2 Periodical Reporting Scenarios . 70

5.4.3 Event-Driven Reporting Scenarios 73

VIII

6 An Emergency Guiding and Monitoring System by ZigBee WSNs 75

6.1 System Overview . 75

6.2 Network and Guidance Initialization . 77

6.2.1 Network Initialization . 78

6.2.2 Guidance Initialization . 78

6.3 Emergency Guiding and Monitoring Schemes 79

6.3.1 Emergency Guiding Protocol . 79

6.3.2 Tree Reconstruction Protocol . 84

6.4 Simulation Results . 85

6.5 Prototyping Results . 90

7 An Intelligent Light Control System by ZigBee WSNs 91

7.1 System Overview . 91

7.2 System Models . 93

7.3 Illumination Decision Algorithm . 96

7.4 Device Control Algorithm . 101

7.5 Prototyping Results . 102

7.6 Performance Evaluations . 105

8 Conclusions and Future Directions 109

Bibliography 112

Vita 116

IX

List of Figures

1.1 An example ZigBee tree network. 3

1.2 An example of convergecast in a ZigBee tree-based network. 4

1.3 The relationship between the proposed works and the ZigBee stack. 6

2.1 The ZigBee/IEEE 802.15.4 protocol stack. 9

2.2 Arrangement of channels in IEEE 802.15.4. 10

2.3 IEEE 802.15.4 superframe structure. 11

2.4 The basic slotted CSMA/CA mechanism in IEEE 802.15.4. 14

2.5 The association procedure in IEEE 802.15.4. 15

2.6 Zigbee network topologies: (a) star, (b) tree, and (c) mesh. 16

2.7 An address assignment example in a ZigBee network. 19

2.8 An example of route request dissemination in a ZigBee network. 21

3.1 A ZigBee network formation example. Isolated dots are orphan nodes. 24

3.2 Examples of priority assignment in our algorithm. 27

3.3 An example of the Span-and-Prune algorithm. 30

3.4 Network formation results by (a) SP and (b) DBS algorithms when applying

to the environment in Fig. 3.1. 33

3.5 Network formation results in a 90◦-sector environment when using (a) ZB, (b)

SP, and (c) DBS algorithms. 34

3.6 Network formation results in a 24 × 24 grid environment when using (a) ZB,

(b) SP, and (c) DBS algorithms. 35

X

3.7 Comparison on the number of orphan routers with N = 800, R = 200 m, and

TR = 35 m. 36

3.8 Comparison on the number of orphan routers with N = 1600, R = 200 m,

and TR = 35 m. 37

3.9 Comparison on the number of orphan routers with N = 800, R = 200 m, and

TR = 60 m. 38

3.10 Comparison on the number of orphan end devices at various transmission ranges. 38

4.1 Long-thin networks. 40

4.2 (a) A LT WSN. (b) Role assignment. 41

4.3 The logical network of Fig. 4.2(b). 42

4.4 Some ranking examples. 45

4.5 A network planning result. 49

4.6 Some ranking results. 49

4.7 (a) A random generated Delaunay triangulation. (b) A LT-WSN generated

from the Delaunay triangulation. (c) The ranking result of the region A. (d)

The ranking result of the region B. 50

4.8 Simulation results of the numbers of not-in-order ranked and not-as-planned

nodes. 51

4.9 The percentages of 100% in-order ranking and no-orphan cases. 52

4.10 Comparison on (a) delay and (b) goodput at various data rates. 53

4.11 Comparison on (a) delay and (b) goodput at various transmission ranges. . . . 54

5.1 An example of reduction from the 3-CNF-SAT to the BDBS problem. 60

5.2 Examples of optimal slot assignments for regular linear and ring networks

(h = 2). Dotted lines mean interference relations. 61

5.3 (a) Slot assignment after phase 2. (b) Slot compacting by phase 3. 65

5.4 Slot assignment examples by CTB and DSA. 69

5.5 Comparison of report latencies under different configurations. 69

XI

5.6 An example of report scheduling under different values of BO. 71

5.7 Simulations considering buffer limitation and contention effects: (a) theoreti-

cal v.s. actual report latencies and (b) goodput, channel utilization, and num-

ber of dropped frames. 72

5.8 A log of the number of frames received by a sink’s child router when BO = 14. 72

5.9 Simulations considering data compression: (a) theoretical v.s. actual report

latencies and (b) goodput, channel utilization, and number of dropped frames. 73

5.10 Simulation results of event-driven scenarios: (a) theoretical v.s. actual report

latencies and (b) goodput. 74

6.1 Some navigation scenarios when the hazardous region is defined as two hops

from the emergency size. 77

6.2 (a) Communication graph Gc and (b) guidance graph Gg. 78

6.3 Some navigation examples of our algorithm. 83

6.4 Examples of altitude changes when three emergency events occur in coordi-

nates (S2, 4), (S6, 7), and (S5, 2). 84

6.5 Comparison of packet count and convergence time (in ms) in a 10×10 grid

network. 86

6.6 Navigation results in various forms of networks. 87

6.7 (a) The effect of D on the quality of escaping paths and message overheads.

(b) The effects of δ and Aemg on the quality of escape paths and message

overheads. 88

6.8 Simulation results of (a) convergence time, (b) communication cost, and (c)

temporary cycle rate under perfect channels. 89

6.9 Simulation results vs. experimental results. 90

7.1 The network scenario of our system. 92

7.2 The system architecture of our light control system. 94

7.3 An experiment for characterizing the degradation of light signals. 95

XII

7.4 An example of illumination decision. 100

7.5 The closed-loop device control procedure. 101

7.6 (a) System architecture and (b) components of our intelligent light control

system. 103

7.7 The implemented sensor board. 103

7.8 The scenario to verify the measured LD. 105

7.9 Experiments on computed and measured LD when the environment is (a) with-

out and (b) with sunlight effect. 106

7.10 Activity-requirement pools: (a) AR1 and (b) AR2. 106

7.11 Comparison of the proposed IDA and the FIX schemes when the network

scenario and user-activity are (a) S1 and AR1, (b) S1 and AR2, (c) S2 and

AR1, and (d) S2 and AR2, respectively. 108

XIII

List of Tables

2.1 Comparison of different wireless technologies [15]. 8

2.2 Relationship of BO − SO, duty cycle, and the number of active portions in a

superframe. 13

2.3 Pros and cons of different kinds of ZigBee network topologies. 22

3.1 Relationship between Cm, Rm, Lm, and network capacity. 35

4.1 Simulation parameters (for the proposed LT routing protocol). 53

5.1 Simulation parameters (for realistic convergecast scenarios). 68

XIV

Chapter 1

Introduction

The recent progress of wireless communication and embedded micro-sensing MEMS tech-

nologies has made wireless sensor networks (WSNs) more attractive. A lot of research works

have been dedicated to WSN, including energy-efficient MAC protocols [29][33][71], routing

and transport protocols [23][24][33][39][60], self-organizing schemes [41][62][67], sensor

deployment and coverage issues [35][49], and localization schemes [16][18][25][50][55]. In

the application side, habitat monitoring is explored in [8], the FireBug project aims to monitor

wildfires [6], mobile object tracking is addressed in [20][45][63], and navigation applications

are explored in [21][40][44][57].

Recently, many WSN platforms have been developed, such as MICA [11] and Dust Net-

work [3]. For interoperability among different systems, standards such as ZigBee/IEEE 802.15.4

[74][37] protocols have been developed. ZigBee/IEEE 802.15.4 specifies a global standard on

physical, MAC, and network layers for WSNs requiring high reliability, low cost, low power,

scalability, and low data rate.

In this dissertation, we propose communication protocols and applications based on Zig-

Bee protocol stack. This dissertation is composed of five works. In the first three works, we

put our attention on designing ZigBee-compatible network layer protocols. The first work and

second work discuss network formation problems in general ZigBee networks and in a spe-

cial type of ZigBee network, respectively. Some network formation strategies are proposed.

Considering that data gathering is a major operation of WSNs, in the third work, we design

1

data collection strategies for ZigBee networks. The proposed solution can indeed achieve

low-latency and energy-efficient data collection. Then, based on the above designs, in the last

two works, we propose an emergency guiding and monitoring system for indoor surveillance

and an intelligent light control system considering user activities. The former system can not

only monitor the environment, but also can help safely guide people to a building exit when

emergencies happen. And the latter system utilizes sensors’ reports to automatically control

lighting devices to satisfy users and to conserve power.

In the first work, we discuss network formation issues in general ZigBee networks. Ac-

cording to ZigBee, a device is said to join a network successfully if it can obtain a network

address from the coordinator or a router. Before forming a network, the coordinator deter-

mines the maximum number of children of a router (Cm), the maximum number of child

routers of a router (Rm), and the depth of the network (Lm). Note that a child of a router can

be a router or an end device, so Cm ≥ Rm. ZigBee specifies a distributed address assignment

using parameters Cm, Rm, and Lm to calculate nodes’ network addresses. While these pa-

rameters facilitate address assignment, they also prohibit a node from joining a network. We

say that a node becomes an orphan node when it can not associate with the network but there

are still unused address spaces remaining. We call this the orphan problem. For example,

in Fig. 1.1, the router-capable device A has two potential parents B and C. Router B can

not accept A as its child because it has reached its maximum capacity of Cm = 5 children.

Router C can not accept A either because it has reached the maximum depth of Lm = 2. So

A will become an orphan node. Given Cm, Rm, and Lm, we model the orphan problem by

two subproblems. The first one considers router-capable devices only. We model this sub-

problem as a bounded-degree-and-depth tree formation (BDDTF) problem, which discusses

how to include as many routers as possible into a tree with a bounded degree and depth. We

show that this subproblem is NP-complete. After connecting routers, end devices need to be

connected to routers. We model this as an end-device maximum matching (EDMM) problem.

To summarize, we design a two-stage network formation policy to relieve the orphan problem.

The first stage is to relieve the BDDTF problem so as to connect as many routers as possible.

2

Cm = 5
Rm = 3
Lm = 2

ZigBee coordinator ZigBee router

ZigBee router-capable deviceZigBee end device

Tree link Communication link

Addr = 0
Cskip = 6

CE

BD

A

Addr = 1
Cskip = 1

Addr = 2

Addr = 3
Addr = 5

Addr = 8

Addr = 7
Cskip = 1

Addr = 9
Addr = 10

Addr = 19

Addr = 15 Addr = 13
Cskip = 1

Addr = 14

Addr = 17

Addr = 18

Addr = 11

Addr = 12

Figure 1.1: An example ZigBee tree network.

And then, based on the result of the first stage, the second stage algorithm, which is designed

for the EDMM problem, is used to reduce the number of orphan end devices. For example,

the orphan problem in Fig. 1.1 can be relieved if router E is connected to router D, so router

B has capacity to accept A.

Although WSNs have been extensively researched, its deployment is still a big concern. In

the second work, we promote a new concept of long-thin (LT) topology. The LT architecture

is commonly seen in many WSN deployments in many applications, such as gas disclosure

detection of fuel pipes, carbon dioxide concentration monitoring in tunnels, and so on. In

such a network, nodes may form several long backbones and these backbones are to extend

the network to the intended coverage areas. A backbone is a linear path which may contain

tens or hundreds of ZigBee routers and may go beyond hundreds or thousands of meters. So

the network area can be scaled up easily with limited hardware cost. While the ZigBee address

assignment scheme has low complexity, it also prohibits the network from scaling up and thus

can not be used in LT networks. In this work, we propose address assignment and routing

schemes for ZigBee-based LT WSNs. To assign addresses to nodes, we design rules to divide

3

A

B

C

Sink

ZigBee router (FFD)
ZigBee end device (RFD)
Interference neighbor

k-th superframe

CAP

CAP

Schedule
of A

Schedule
of C

CAP

CAP
Schedule

of B

report

report

CAP
Schedule

of D report
to sink

CAP

report

report

CAP

(k+1)-th superframe

data from
end devices

data from
end devices

data from
end devices

data from
end devices

data from
end devices

data from
end devices

data from
end devices

C

A

B

D

Figure 1.2: An example of convergecast in a ZigBee tree-based network.

nodes into clusters. Each node belongs to one cluster and each cluster has a unique cluster

ID. All nodes in a cluster have the same cluster ID, but different node IDs. The structure of a

ZigBee network address is divided into two parts: one is cluster ID and the other is node ID.

Following the same ZigBee design philosophy, the proposed scheme is simple and has low

complexity. Existing works [17][52][59][73] have discussed address assignment for WSNs,

but they are not designed for ZigBee or LT WSNs. To the best of our knowledge, this is the

first work addressing this issue. Moreover, similar to the ZigBee tree routing protocol, the

proposed routing protocol can also utilize nodes’ network addresses to facilitate routing. In

addition, routing can take advantage of shortcuts for better efficiency, so our scheme does not

restrict nodes to relay packets only to their parent or child nodes as ZigBee does.

The third work introduces efficient convergecast solutions for WSNs that are compliant

with the ZigBee/IEEE 802.15.4 standards. Assuming a tree topology, Fig. 1.2 shows the

4

problem scenario. The network contains one sink (ZigBee coordinator), some full function

devices (ZigBee routers), and some reduced function devices (ZigBee end devices). Each

ZigBee router is responsible for collecting sensed data from end devices associated with it and

relaying incoming data to the sink. According to the ZigBee specification, a ZigBee router

can announce a beacon to start a superframe. Each superframe consists of an active portion

followed by an inactive portion. On receiving its parent router’s beacon, an end device has

also to wake up for an active portion to sense the environment and communicate with its parent

device. However, to avoid collision with its neighbors, a router should shift its active portion

by a certain amount. Fig. 1.2 shows a possible allocation of active portions for routers A, B,

C, and D. The collected sensory data of A in the k-th superframe can be sent to C in the k-th

superframe. However, because the active portion of B in the k-th superframe appears after that

of C, the collected data of B in the k-th superframe can only be relayed to C in the (k + 1)-th

superframe. The delay can be eliminated if the active portion of B in the k-th superframe

appears before that of C. The delay is not negligible because of the low duty cycle design of

IEEE 802.15.4. For example, in 2.4 GHz PHY, with 1.56% duty cycle, a superframe can be up

to 251.658 seconds (with an active portion of 3.93 seconds). Clearly, for large-scale WSNs,

the convergecast latency could be significant if the problem is not carefully addressed. The

quick convergecast problem is to schedule the beacons of routers to minimize the convergecast

latency.

In the fourth work, we propose to use a ZigBee WSN in an indoor environment for provid-

ing emergency guiding and monitoring services. At normal time, the network is responsible

for monitoring the environment. When emergency events are detected, all sensors switch to

active mode to deal with these events. And the network can adaptively modify its topology

to ensure transportation reliability, quickly identify hazardous regions that should be avoided,

and find safe navigation paths that can lead people to exits. Our emergency guiding proto-

col is distributed, and allows multiple emergency events and multiple exits coexisting in the

sensing field. A concept called hazardous region, which people should avoid, is introduced.

Moreover, we propose a distributed tree reconstruction protocol that can quickly rebuild the

5

IEEE 802.15.4 PHY/MAC

ZigBee application framework

ZigBee
app.
layer

ZigBee
network
layer

Indoor
Surveillance applications

W3: Data collection strategies for ZigBee networks

W1: Network formation
protocols for general

ZigBee networks

W2: Network formation
protocols for long-thin

ZigBee networks

W4: Emergency guiding/
monitoring system

W5: Intelligent light
control system

Figure 1.3: The relationship between the proposed works and the ZigBee stack.

reporting tree at low communication cost when emergency. Our design emphasizes on local

recovery and stability. We will address how to conquer the unstable radio link problem that is

frequently seen in short-distance wireless systems, like the ZigBee. Prototyping and simula-

tion results show that our protocols can react to emergencies quickly at low message cost and

can find safe paths to exits.

In the last work, we propose an intelligent light control system for indoor environments

using ZigBee WSNs. Wireless sensors are responsible for reporting current illuminations

to a control host. Two kinds of lighting devices, namely whole lighting and local lighting

devices, are used to provide background and concentrated illuminations, respectively. Users

may have various illumination requirements according to their activities. An illumination

requirement is as the combination of background and concentrated illumination demands and

users’ locations. We propose a decision algorithm to determine the proper illuminations of

devices to satisfy users. Then a closed-loop device control algorithm is applied to adjust the

illumination levels of lighting devices. Prototyping and simulation results verify that our ideas

are practical and feasible.

The proposed five works can be compliant to the ZigBee standard. Fig. 1.3 shows the re-

lationship between the proposed works and the ZigBee stack. Based on the designed network

layer protocols, we can further develop some outdoor surveillance applications, such as stage

6

measurements in sewers, vibration detection of bridges, and so on.

This dissertation is organized as follows. ZigBee/IEEE 802.15.4 standards are surveyed

in Chapter 2. Chapter 3 and Chapter 4 presents network formation problems in general and

long-thin ZigBee networks, respectively. In Chapter 5, we discuss the convergecast issues

in ZigBee networks. Chapter 6 and Chapter 7 present the proposed emergency guiding and

monitoring system and intelligent light control system by ZigBee WSNs, respectively. Finally,

we conclude our results and propose some future directions in Chapter 8.

7

Chapter 2

Overview of IEEE 802.15.4 and ZigBee
Standards

ZigBee/IEEE 802.15.4 is a global hardware and software standard designed for WSN requir-

ing high reliability, low cost, low power, scalability, and low data rate. Table 2.1 compares

ZigBee/IEEE 802.15.4 against several other wireless technologies. The ZigBee alliance [15]

is to work on the interoperability issues of ZigBee/IEEE 802.15.4 protocol stacks. The IEEE

802.15 WPAN Task Group 4 [37] specifies physical and data link layer protocols for Zig-

Bee/IEEE 802.15.4. The relationship of ZigBee and IEEE 802.15.4 is shown in Fig. 2.1. In

the current development, IEEE 802.15 WPAN working group creates two task groups 15.4a

and 15.4b. The former is to specify an alternate physical layer, the ultra wide band (UWB)

technologies. The latter is to enhance the IEEE 802.15.4 MAC protocol so that it can tightly

couple with the network layer functionalities specified by ZigBee. ZigBee alliance published

the version 2.0 standard in Dec. 2006 [74].

Companies such as Chipcon [1], Ember [5], and Freescale [7] provide system-on-chip so-

Table 2.1: Comparison of different wireless technologies [15].
Standard ZigBee/IEEE 802.15.4 Bluetooth UWB IEEE 802.11 b/g
Working frequency 868/915 MHz, 2.4GHz 2.4 GHz 3.1 - 10.6 GHz 2.4 GHz
Range (m) 30 – 75+ 10 – 30 ~10 30 – 100 +
Data rate 20/40/250 kbps 1 Mbps 100+ Mbps 2 – 54 Mbps
Devices 255 – 65k 8 50 – 200
Power consumption ~1 mW ~40 – 100 mW ~80 – 300 mW ~160 mW – 600W
Cost ($US) ~2 – 5 ~4 – 5 ~5 – 10 ~20 – 50

8

PHY Layer

MAC Layer

Network & Security

Application Framework

Applications

802.15.4

ZigBee
Specification

Hardware

ZigBee stack

Application

Figure 2.1: The ZigBee/IEEE 802.15.4 protocol stack.

lutions of ZigBee/IEEE 802.15.4. For home networking, ZigBee/IEEE 802.15.4 can be used

for light control, heating ventilation air conditioning (HVAC), security monitoring, and emer-

gency event detection. For health case, ZigBee/IEEE 802.15.4 can integrate with sphygmo-

manometers or electronic thermometers to monitor patients’ statuses. For industrial control,

ZigBee/IEEE 802.15.4 devices can be used to improve the current manufacturing control sys-

tems, detect unstable situations, control production pipelines, and so on.

2.1 IEEE 802.15.4 Basics

IEEE 802.15.4 specifies the physical layer and data link layer protocols for low-rate wire-

less personal area networks (LR-WPAN), which emphasize on simple, low-cost applications.

Devices in such networks normally have less communication capabilities and limited power,

but are expected to operate for a longer period of time. As a result, energy-saving is a criti-

cal design issue. In IEEE 802.15.4, there are two basic types of network topologies, the star

topology and the peer-to-peer topology. Devices in a LR-WPAN and can be classified as full

function devices (FFDs) and reduced function devices (RFDs). One device is designated as

the PAN coordinator, which is responsible for maintaining the network and managing other

devices. A FFD has the capability of becoming a PAN coordinator or associating with an

existing PAN coordinator. A RFD can only send or receive data from a PAN coordinator that

it associates with. Each device in IEEE 802.15.4 has a unique 64-bit long address. After

associating to a coordinator, a device will be assigned a 16-bit short address. Then packet

9

902 MHz 928 MHz

2400 MHz 2483.5 MHz

868.3 MHz

Channel 11-26 5 MHz

2 MHz
Channel 1-10Channel 0

2.4 GHz PHY

868/915 MHz
PHY

Figure 2.2: Arrangement of channels in IEEE 802.15.4.

exchanges between the coordinator and devices will use short addresses. In the following, the

IEEE 802.15.4 physical layer and data link layer protocols are introduced.

2.1.1 Physical Layer (PHY)

In IEEE 802.15.4 PHY, there are three operating frequency bands with 27 radio channels.

These bands are 868 MHz, 915 MHz, and 2.4 GHz. The channel arrangement is shown in

Fig. 2.2 Channel 0 is in the frequency 868.0 to 868.6 MHz, which provides a data rate of 20

kbps. Channels 1 to 10 work in frequency 902.0 to 928.0 MHz and each channel provides a

data rate of 40 kbps. Channels 11 to 26 are located in frequency 2.4 to 2.4835 GHz and each

channel provides a data rate of 250 kbps.

Channels 0 to 10 use the binary phase shift keying (BPSK) as their modulation scheme, and

channels 11 to 26 use the offset quadrature phase shift keying (O-QPSK) as their modulation

scheme. The required receiver sensitivity should be larger than -92 dBm for channels 0 to

10, and larger than -85 dBm for channels 11 to 26. The transmit power should be at least -3

dBm (0.5 mW). The transmission radius may range from 10 meters to 75 meters. Targeting

at low-rate communication systems, in IEEE 802.15.4, the payload length of a PHY packet is

limited to 127 bytes.

2.1.2 Data Link Layer

In all IEEE 802 specifications, the data link layer is divided into two sublayers: logical link

control (LLC) sublayer and medium access control (MAC) sublayer. The LLC sublayer in

10

0 10987654321 14131211 15

Received
Beacon

Transmitted
Beacon

Inactive

BI = aBaseSuperframeDuration×2BO symbols

Inactive

Received
Beacon

Start Time >SD

0 10987654321 14131211 15

SD = aBaseSuperframeDuration×2SO symbols
(Incoming superframe)

SD = aBaseSuperframeDuration×2SO symbols
(Outgoing superframe)

0 10987654321 14131211 15

GTS
1

GTS
2

Beacon Beacon

Inactive

CAP CFP

BI = aBaseSuperframeDuration×2BO symbols

GTS
0

SD = aBaseSuperframeDuration×2SO symbols
(Active)

(a)

(b)

Figure 2.3: IEEE 802.15.4 superframe structure.

IEEE 802.15.4 follows the IEEE 802.2 standard. The MAC sublayer manages superframes,

controls channel access, validates frames, and sends acknowledgements. The IEEE 802.15.4

MAC sublayer also supports low power operations and security mechanisms. In the following

subsections, we introduce the MAC layer protocols in IEEE 802.15.4.

Superframe Structure

In IEEE 802.15.4, the superframe structure of a network is defined by its coordinator. The

length of a superframe is equal to the time interval of two adjacent beacons sent by a co-

ordinator. A superframe can be divided into an active portion and an inactive portion. An

active portion consists of 16 equal-length slots and can be further partitioned into a con-

tention access period (CAP) and a contention free period (CFP). The CAP may contain i

slots, i = 1, 2, ..., 16, and the CFP, which follows the CAP, may contain 16 − i slots. The co-

ordinator and network devices can exchange packets during the active portion and go to sleep

during the inactive portion. The superframe structure is shown in Fig. 2.3(a).

11

Beacons are used for starting superframes, synchronizing with other devices, announcing

the existence of a PAN, and informing pending data in coordinators. In a beacon-enabled

network, devices use the slotted CAMA/CA mechanism to contend for the usage of channels.

FFDs which require fixed rates of transmissions can ask for guarantee time slots (GTS) from

the coordinator. A CFP can include multiple GTSs, and each GTS may contain multiple slots.

For example, in Fig. 2.3(a), GTS 0 and GTS 2 use two slots and GTS 1 uses three slots. A

coordinator can allocate at most seven GTSs for network devices.

In IEEE 802.15.4, the structure of superframes is controlled by two parameters: beacon

order (BO) and superframe order (SO), which decide the length of a superframe and its active

potion, respectively. For a beacon-enabled network, the setting of BO and SO should satisfy

the relationship 0 ≤ SO ≤ BO ≤ 14. For channels 11 to 26, the length of a superframe

can range from 15.36 ms to 215.7 s, so can an active potion. Specifically, the length of a

superframe is

BI = aBaseSuperframeDuration × 2BOsymbols

, where each symbol is 1/62.5 ms and aBaseSuperframDuration = 960 symbols. Note

that the length of a symbol is different for channels 0 to 10. The length of each active portion

is

SD = aBaseSuperframeDuration × 2SOsymbols

Therefore, each device will be active for 2−(BO−SO) portion of the time, and sleep for 1 −
2−(BO−SO) portion of the time. Changing the value of (BO − SO) allows us to adjust the

on-duty time of devices. However, for a beacon-enabled tree network, routers have to choose

different times to start their active portions to avoid collision. Once the value of (BO−SO) is

decided, each router can choose from 2BO−SO slots as its active portion. In the revised version

of IEEE 802.15.4 [38], a router can select one active portion as its outgoing superframe, and

based on the active portion selected by its parent, the active portion is called its incoming su-

perframe (as shown in Fig. 2.3(b)). In an outgoing/incoming superframe, a router is expected

12

Table 2.2: Relationship of BO − SO, duty cycle, and the number of active portions in a
superframe.

BO − SO 0 1 2 3 4 5 6 7 8 ≥ 9
Duty cycle (%) 100 50 25 12.5 6.25 3.13 1.56 0.78 0.39 ≤ 0.195

Number of active portions (slots) 1 2 4 8 16 32 64 128 256 ≥ 512

to transmit/receive a beacon to/from its child routers/parent router. When choosing a slot,

neighboring routers’ active portions (i.e., outgoing superframes) should be shifted away from

each other to avoid interference. Table 2.2 lists possible choices of (BO−SO) combinations.

CSMA/CA Mechanisms

There are two channel access mechanisms in IEEE 802.15.4. One is unslotted CSMA/CA

and the other is slotted CSMA/CA. The operations of unslotted CSMA/CA are similar to the

ones in IEEE 802.11 CSMA/CA. A device that has a data or command frame to send will

randomly backoff a period of time. If the medium is idle when the backoff expires, this device

can transmit its frame. On the other hand, if the medium is busy, this device will increase its

backoff window and waits for another period of time.

The slotted CSMA/CA works differently from unslotted CSMA/CA. In the slotted CSMA/CA

mechanism, the superframe structure is needed. A superframe can be further divided into

smaller slots called backoff periods, each of length 20 symbols1. The start of the first backoff

period in a superframe is aligned to the start of beacon transmission. Before transmission, a

device first calculates a random number of backoff periods. After timeout, the device should

perform clear channel assessment (CCA) twice in the upcoming two backoff periods. If the

channel is found to be clear in two CCAs, the device can start to transmit a frame to the coor-

dinator. If the channel is found to be busy in any of the two CCAs, the device should double

its contention window and perform another random backoff. Fig. 2.4 shows the procedures of

the slotted CSMA/CA mechanism in IEEE 802.15.4.
1The time required to transmit a symbol varies according to working bands of PHY. For example, in the 2.4

GHz band, the length of a symbol is 16us; hence, in the 2.4 GHz band, a unit backoff period is 320us.

13

Slotted CSMA/CA

NB=0, CW=2

BE=macMinBE

Locate backoff period
boundary

Delay a random backoff period
from 0 to 2BE-1

Perform CCA on backoff
period boundary

Channel idle?

CW=2, NB=NB+1,
BE=min(BE+1, aMaxBE)

Failure

CW=CW-1

CW=0

Success

YES

NB >
macMaxCSMABackoffs?

Double contention
window

Retry at most
macMaxCSMABackoff

times

NO

NO

YES

NO

YES

Figure 2.4: The basic slotted CSMA/CA mechanism in IEEE 802.15.4.

Association and Disassociation Procedures

A device becomes a member of a PAN by associating with its coordinator. At the beginning,

a device should scan channels to find potential coordinators. After choosing a coordinator, the

device should locate the coordinator’s beacons and transmit an association request command

to the coordinator. In a beacon-enabled network, the association request is sent in the CAP of a

superframe. In a non-beacon-enabled network, the request is sent by the unslotted CSMA/CA

mechanism. On receipt of the association request, the coordinator will reply an ACK. Note

that correctly receiving an ACK does not mean that device has successfully associated to the

coordinator; the device still has to wait for an association decision from the coordinator. The

coordinator will check its resource to determine whether to accept this association request or

not. In IEEE 802.15.4, association results are announced in an indirect fashion. A coordinator

responds to association requests by appending devices’ long addresses in beacon frames to

indicate that the association results are available. If a device finds that its address is appended

14

Beacon
(pending address)

ACK

Association req.

Coordinator Device

Data req.

ACK

Association resp.

ACK

Scan
channel

Wait for
response

Make
decision

Figure 2.5: The association procedure in IEEE 802.15.4.

in a beacon, it will send a data request to the coordinator to acquire the association result. Then

the coordinator can transmit the association result to the device. The association procedure is

summarized in Fig. 2.5.

When a coordinator would like an associated device to leave its PAN, it can send a disas-

sociation notification command to the device. After receiving this command, the device will

reply an ACK. If the ACK is not correctly received, the coordinator will still consider that

the device has been disassociated. When an associated device wants to leave a PAN, it also

sends a disassociation notification command to the coordinator. On receipt of the command,

the coordinator will reply an ACK and remove the records of the correspond device. Similar

to the above case, the device considers itself disassociated even if it does not receive an ACK

from the coordinator.

2.1.3 Summary of IEEE 802.15.4

IEEE 802.15.4 specifies the physical layer and data link layer protocol for low-rate wireless

personal area networks. However, this specification only concerns communications between

devices that are within each other’s transmission range. For larger sensor networks, the support

of network layer protocols is needed. In the next section, we will introduce a developing

standard, ZigBee, which supports protocols above the data link layer for connecting IEEE

802.15.4 devices together.

15

ZigBee coordinator ZigBee router ZigBee end device

(a) (b) (c)

Figure 2.6: Zigbee network topologies: (a) star, (b) tree, and (c) mesh.

2.2 ZigBee Network Layer

In ZigBee, the network layer provides reliable and secure transmissions among devices. Zig-

Bee supports three kinds of networks, namely star, tree, and mesh networks. A ZigBee coordi-

nator is responsible for initializing, maintaining, and controlling the network. A star network

has a coordinator with devices directly connecting to the coordinator. For tree and mesh net-

works, devices can communicate with each other in a multihop fashion. The network is formed

by one ZigBee coordinator and multiple ZigBee routers. A device can join a network as an

end device by the associating with the coordinator or a router. In a tree network, the coordina-

tor and routers can announce beacons. However, in a mesh network, regular beacons are not

allowed. Beacons are an important mechanism to support power management. Therefore, the

tree topology is preferred, especially when energy saving is a desirable feature. Devices in a

mesh network can only communicate with each other by peer-to-peer transmissions specified

in IEEE 802.15.4. Some example of ZigBee network topologies are shown in Fig. 2.6.

2.2.1 Network Formation

Devices that are coordinator-capable and do not currently join a network can be candidates of

ZigBee coordinators. A device that desires to be a coordinator will scan all channels to find

16

a suitable one. After selecting a channel, this device broadcasts a beacon containing a PAN

identifier to initialize a PAN. A device that hears beacons of an existing network can join this

network by performing the association procedures and specifying its role, as a ZigBee router

or as an end device. Note that if there are multiple beacons, the device will choose the sender

that is located closer to the sink. When a beacon sender receives a request, it will determine

whether to accept the request sender or not by considering its current capacity and its permitted

association duration. Then the association response can be carried by its beacons. If a device

is successfully associated, the association response will contain a short 16-bit address for the

request sender. This short address will be the network address for that device.

2.2.2 Address Assignment in a ZigBee Network

In a ZigBee network, network addresses are assigned to devices by a distributed address as-

signment scheme. After forming a network, the ZigBee coordinator determines the maximum

number of children (Cm) of a ZigBee router, the maximum number of child routers (Rm) of

a parent node, and the depth of the network (Lm). Note that Cm ≥ Rm and a parent can have

(Cm−Rm) end devices as its children. In this algorithm, addresses of devices are assigned by

their parents. For the coordinator, the whole address space is logically partitioned into Rm+1

blocks. The first Rm blocks are to be assigned to the coordinator’s child routers and the last

block is reserved for the coordinator’s own child end devices. In this scheme, a parent device

utilizes Cm, Rm, and Lm to compute a parameter called Cskip, which is used to compute the

starting addresses of its children’s address pools. The Cskip for the ZigBee coordinator or a

router in depth d is defined as:

Cskip(d) =

{
1 + Cm × (Lm − d − 1), if Rm = 1. (a)
1 + Cm − Rm − Cm · RmLm−d−1

1 − Rm , otherwise. (b)
(2.1)

The coordinator is said to be at depth 0; a node which is a child of another node at depth d is

said to be at depth d + 1. Consider any node x at depth d, and any node y which is a child

of x. The value of Cskip(d) indicates the maximum number of nodes in the subtree rooted at

y (including y itself). For example, in Fig. 2.7, since the Cskip value of B is 1, the subtree

17

of C will contain no more than 1 node; since the Cskip value A is 7, the subtree of B will

contain no more than 7 nodes. To understand the formulation, consider again the nodes x and

y mentioned above. Node y itself counts for one node. There are at most Cm children of

y. Among all children of y, there are at most Rm routers. So there are at most Cm · Rm

grandchildren of y. It is not hard to see that there are at most Cm · Rm2 great grandchildren

of y. So the size of the subtree rooted at y is bounded by

Cskip(d) = 1 + Cm + CmRm + CmRm2 + ... + CmRmLm−d−2, (2.2)

since the depth of the subtree is at most Lm − d − 1. We can derive that

Eq. (2.2) = 1 + Cm(1 + Rm + Rm2 + ... + RmLm−d−2)

= 1 + Cm(1 − RmLm−d−1)/(1 − Rm) = Eq. (2.1)(b) (2.3)

Address assignment begins from the ZigBee coordinator by assigning address 0 to itself and

depth d = 0. If a parent node at depth d has an address Aparent, the n-th child router is

assigned to address Aparent + (n − 1) × Cskip(d) + 1 and n-th child end device is assigned

to address Aparent + Rm × Cskip(d) + n. An example of the ZigBee address assignment is

shown in Fig. 2.7. The Cskip of the ZigBee coordinator is obtained from Eq. (2.1) by setting

d = 0, Cm = 6, Rm = 4, and Lm = 3. Then the first, second, and third child routers of the

coordinator will be assigned to addresses 0+ (1−1)×31+1 = 1, 0+ (2−1)×31+1 = 32,

and 0 + (3 − 1) × 31 + 1 = 63, respectively. And the two child end devices’ addresses are

0 + 4 × 31 + 1 = 125 and 0 + 4 × 31 + 2 = 126.

2.2.3 Routing Protocols

In a ZigBee network, the coordinator and routers can directly transmit packets along the tree

without using any route discovery. When a router receives a packet, it first checks if it is

the destination or one of its child end devices is the destination. If so, this router will accept

the packet or forward this packet to the designated child end device. Otherwise, it will relay

packet along the tree. Assume that the depth of this router is d and its address is A. This packet

18

C

A

B

Cm=6
Rm=4
Lm=3

Addr = 0,
Cskip = 31

Addr = 1,
Cskip = 7

Addr = 32,
Cskip = 7

Addr = 63,
Cskip = 7

Addr = 125

Addr = 126

Addr = 30

Addr = 31

Addr = 33,
Cskip = 1

Addr = 38

Addr = 40,
Cskip = 1

Addr = 39

Addr = 45

Addr = 64,
Cskip = 1

Addr = 92

Figure 2.7: An address assignment example in a ZigBee network.

is for one of its descendant devices if the destination address Adest satisfies A < Adest <

A + Cskip(d − 1), and this packet will be relayed to the child router with address

Ar = A + 1 +

⌊
Adest − (A + 1)

Cskip(d)

⌋
× Cskip(d).

If the destination is not a descendant of this device, this packet will be forwarded to its parent.

In a mesh network, ZigBee coordinators and routers are said to have routing capacity

if they have routing table capacities and route discovery table capacities. Devices that are

routing-capable can initiate routing discovery procedures and directly transmit packets to relay

nodes. Otherwise, they can only transmit packets through tree links. In the latter case, when

receiving a packet, a device will perform the same routing operations as described in tree

networks. When a node needs to relay a received packet, it will first check whether it is

routing-capable. If it is routing-capable, the packet will be unicast to the next hop. Otherwise,

the packet will be relayed along the tree.

A device that has routing capacity will initiate route discovery if there is no proper route

19

entry to the requested destination in its routing table. The route discovery in a ZigBee network

is similar to the AODV routing protocol [56] . Links with lower cost will be chosen into the

routing path. The cost of link l is defined based on the packet delivery probability on link l.

However, how to calculate the packet delivery probability is not explicitly stated in the ZigBee

specification.

At the beginning of a route discovery, the source broadcasts a route request packet. A

ZigBee router that receives a route request packet first computes the link cost. If this device

has routing capacity, it will rebroadcast this request if it does not receive this request before or

the link cost recorded in route request plus the cost it just computed is lower than the former

received request. Otherwise, it will discard this request. For the case that a ZigBee router

that is not routing capable receives a route request, it also determines whether to resend this

request based on the same comparison. If this device determines to resend this route request,

it will check the destination address and unicast this route request to its parent or to one of

its children (in the tree network). An example is shown in Fig. 2.8. In Fig. 2.8, device S

broadcasts a route request for destination T and devices A and D receive this packet. Since

device A has no routing capacity, it will check the address of destination T and unicast this

request to device C. Since device D has routing capacity, it will rebroadcast this request. A

device that has resent a route request packet will record the request sender in its route discovery

table. This information will be discarded if this device does not receive a route reply within a

time interval.

When the destination receives route request packets from multiple paths, it will choose

the routing path with the lowest cost and send a route reply packet to the source. The route

reply packet will be sent by unicast. An intermediate node that receives the route reply packet

checks its route discovery table and sends the route reply to the request sender. After the

source node successfully receives the route reply, it can send data packets to the destination

node along the discovered route.

The ZigBee network layer also specifies route maintenance mechanisms for mesh and tree

networks. In a mesh network, route failure is detected by a failure counter. If the counter of a

20

S

a
C

T

D

Discard route
request B

Unicast
Broadcast
Without routing capacity

route replyroute req.

route req.

route req.
route req.

route req.

Figure 2.8: An example of route request dissemination in a ZigBee network.

ZigBee router exceeds a threshold, the router can start the route maintenance procedure. For

those routers that have routing capacity, they can flood route request packets to find destina-

tions. For routers that do not have routing capacity, they will unicast route request packets to

their parents or children according to the destination addresses. However, in a tree network,

a router does not broadcast route request packets when it loses its parent. Instead, it disasso-

ciates with its parent and tries to re-associate with a new parent. After re-association, it will

receive a new short 16-bit network address and can transmit packets to its new parent. Note

that a device that re-associates to a new parent will disconnect all its children. Those children

that lose their parents will also try to find new parents. On the other hand, when a router

cannot send packets to a child, it will directly drop this packet and send a route error mes-

sage to the packet originator. Then this router will send a disassociation notification command

to the child. The disassociated child may reconnect to the same parent or find a new parent

depending on its new scan result.

2.2.4 Summary of the ZigBee Network Layer

ZigBee is designed to support low-cost network layer. It supports three kinds of network

topologies, which are star, tree, and mesh networks. Network developers can choose a suit-

able network topology for their applications. The pros and cons of these three topologies are

21

Table 2.3: Pros and cons of different kinds of ZigBee network topologies.
 Pros Cons
Star 1. Easy to synchronize

2. Support low power operation
3. Low latency

1. Small scale

Tree 1. Low routing cost
2. Can form superframes to support

sleep mode
3. Allow multihop communication

1. Route reconstruction is costly
2. Latency may be quite long

Mesh 1. Robust multihop communication
2. Network is more flexible
3. Lower latency

1. Cannot form superframes (and
thus cannot support sleep mode)

2. Route discovery is costly
3. Needs storage for routing table

summarized in Table 2.3.

22

Chapter 3

Network Formation Protocols for General
ZigBee Networks

3.1 Observations and Motivations

In this work, we propose network formation protocols for general ZigBee networks. By the

ZigBee network formation rules, some devices may not be able to join the network even if

there are remaining address spaces. Fig. 1.1 is a small-scale example. Here, we present a

large-scale simulation result in a circular field of a radius 200 m with a coordinator at the

center. There are 800 router-capable devices randomly deployed in the field. The transmission

range of nodes is 35 m. We set Cm = Rm = 3 and Lm = 7, which implies that this network

can accommodate up to 3280 routers. Our simulation result shows that, in average, more

than 25% of devices (about 207.45 devices) will become orphan nodes. Fig. 3.1 shows one

simulation scenario, where many devices near the network boundary can not join the network.

We see that some devices near the center do not have any child, which means that the address

spaces are underutilized. In fact, assuming Cm = Rm, a router at depth d serving as a leaf

implies a loss of 1−RmLm−d+1

1−Rm
address spaces. Therefore, maintaining sufficient children for

nodes near the coordinator is critical.

There could be a misconception that the orphan problem can be trivially solved by en-

larging Cm, Rm, or Lm. In practice, devices’ capabilities and application demands should

be carefully deliberated before doing so. Larger Cm or Rm imposes more memory space

23

Figure 3.1: A ZigBee network formation example. Isolated dots are orphan nodes.

requirement on routers. A larger Lm may induce longer network delay. Also, enlarging these

values incurs longer address space (ZigBee specifies a 16-bit address space). Besides, in the-

ory, it can not be guaranteed that there are no orphan devices with any given Cm, Rm, and

Lm (this will be shown in Section 3.2). Therefore, orphans are an inherent problem given the

Cm, Rm, and Lm constraints. Our simulation results show that proper network formation

strategy can effectively reduce the number of orphan devices without enlarging Cm, Rm, or

Lm. To the best of our knowledge, this is the first work that discusses the orphan problem in

ZigBee-based WSNs.

Several works have investigated the bounded-degree spanning tree problem. Reference

[28] proposes polynomial-time solutions when additional connectivity and maximum degree

of a graph are given. However, the depth constraint is not considered. Reference [43] intro-

duces an approximation algorithm, which can find a spanning tree with a maximum degree of

O(K + log|V |), where K is the degree constraint and V is the set of nodes in the graph. The

result is not applicable to our case because it does not consider the depth constraint and the

number of children of a node is not bounded. In [42], a polynomial time algorithm is proposed

to construct a spanning tree with a bounded degree and diameter. However, this algorithm is

designed for complete graphs, which is not the case in a ZigBee network.

24

3.2 The Orphan Problem

Given a sensor network, we divide the orphan problem by two subproblems. In the first

problem, we consider only router-capable devices and model the network by a graph Gr =

(Vr, Er), where Vr consists of all router-capable devices and the coordinator t and Er contains

all symmetric communication links between nodes in Vr. We are given parameters Cm, Rm,

and Lm such that Cm ≥ Rm. The goal is to assign parent-child relationships to nodes such

that as many vertices in Vr can join the network as possible. Below, we translate this problem

to a tree formation problem.

Definition 1 Given Gr = (Vr, Er), Rm, Lm, and an integer N ≤ |Vr|, the Bounded-Degree-

and-Depth Tree Formation (BDDTF) problem is to construct a tree T rooted at t from Gr such

that T satisfies the ZigBee tree definition and T contains at least N nodes.

In [32], it is shown that the Degree-Constrained Spanning Tree (DCST) as defined below

is NP-complete.

Definition 2 Given G = (V, E) and a positive integer K ≤ |V |, the Degree-Constrained

Spanning Tree (DCST) problem is to find a spanning tree T from G such that no vertex in T

has a degree larger than K.

Theorem 1 The BDDTF problem is NP-complete.

Proof. 1) Given a tree T in Gr, we can check if T satisfies the constraints of Rm and Lm and

if T contains more than N nodes in polynomial time. 2) The DCST problem can be reduced

to a special case of the BDDTF problem when Rm = K, Lm → ∞, and N = |Vr|. �

In the second subproblem, we will connect non-router-capable devices to the tree T con-

structed earlier following the ZigBee definition such that as many end devices are connected

to T as possible. Toward this goal, we model the sensor network by a bipartite graph Gd =

({V̂r∪Ve}, Ed), where V̂r consists of the routers, excluding the ones at depth Lm, in T formed

25

in the first subproblem, Ve consists of all end devices, and Ed contains all symmetric commu-

nication links between V̂r and Ve. Each vertex v ∈ V̂r can accept at most Cv ≥ (Cm − Rm)

end devices. From Gd, we construct another bipartite graph G̃d = ({Ṽr ∪ Ṽe}, Ẽd) as follows.

1. From each vertex v ∈ V̂r, generate Cv vertices v1, v2, ..., vCv in Ṽr.

2. From each vertex u ∈ Ve, generate a vertex u in Ṽe.

3. From each edge (v, u) in Ed, where v ∈ V̂r and u ∈ Ve, connect each of the Cv vertices

v1, v2, ..., vCv generated in rule 1 with the vertex u generated in rule 2. These edges

form the set Ẽd.

It is clear that G̃d is a bipartite graph with edges connecting vertices in Ṽr and vertices in

Ṽe only. Intuitively, we duplicate each v ∈ V̂r by Cv vertices, and each edge (v, u) ∈ Ed into

Cv edges. Since each vertex in Ṽr is connected to at most one vertex in Ṽe, this translates the

problem to a maximum matching problem as follows.

Definition 3 Given a graph G̃d = ({Ṽr ∪ Ṽe}, Ẽd), the End-Device Maximum Matching

(EDMM) problem is to find a maximum matching of G̃d.

Theorem 1 implies that the first subproblem is intractable. On the contrary, the maximum

matching problem in Definition 3 is solvable in polynomial time. Below, we will propose

solutions to these problems.

3.3 Algorithms for the BDDTF Problem

We propose two algorithms to reduce orphan routers in a ZigBee network. In our algorithms,

we will repeatedly generate several BFS trees from Gr. For each tree, we may decide to

truncate some nodes if the tree is not conformed to the ZigBee definition. The truncation is

done based on nodes’ association priorities in the tree. Below, we show how such priorities

are defined.

Given a BFS tree T in Gr:

26

3

50

500

100
100

150

depth: 0

depth: 1

depth: 2

BFS tree link Communication link

BA

F
E

D

G

C depth: 1

depth: 1

depth: 2depth: 2
depth: 2

depth: 2

depth: 1 depth: 1

Figure 3.2: Examples of priority assignment in our algorithm.

• A node x has a higher priority than another node y if the subtree rooted at x in T has

more nodes than the subtree rooted at y.

• If the subtrees rooted at nodes x and y have the same number of nodes, the one with less

potential parents has a higher priority. A node regards a neighbor as a potential parent

if this neighbor has a smaller hop count distance to the root in T than itself.

The above definitions are based on the considerations of address space utilization. The

first rule is so defined because node x may have a better utilization. The second rule is so

defined because a node with less potential parents may encounter difficulty to attach to the

network. For example, in Fig. 3.2, if Rm = 3, the coordinator will choose nodes A, B, and

C as its child routers since they have larger subtrees. Similarly, B will choose D, E, and F

as its child routers. However, if Rm = 2, the coordinator will choose A and B as its child

routers. Further, B will choose D and E as its child routers. Node F is not selected because

it has more (two) potential parents and thus has a higher probability to be connected in later

stages of the formation.

27

3.3.1 Centralized Span-and-Prune Algorithm

Given a graph Gr = (Vr, Er), our goal is to find a tree T = (VT , ET) from Gr conforming

to the ZigBee tree definition. The algorithm consists of a sequence of iterations. Initially, T

contains only the coordinator t. Then in each iteration, there are two phases: Span and Prune.

In the Span phase, we will pick a node in T , say x, and span from x a subtree T ′ to include as

many nodes not yet in T as possible. Then we attach T ′ to T to form a larger tree. However,

the new tree may not satisfy the ZigBee definition. So in the Prune phase, some of the newly

added nodes in T ′ may be trimmed. The resulting tree is then passed to the next iteration for

another Span and Prune phases. This is repeated until no more nodes can be added. Each node

in the network will be spanned at most once. To keep track of the nodes yet to be spanned, a

queue Q will be maintained. The algorithm is presented below.

1. Initially, let queue Q contains only one node t. Let the depth of t to zero. Also, let the

initial tree T = ({t}, ∅).

2. (Span Phase) Check if Q is empty. If so, the algorithm is terminated and T is the final

ZigBee tree. Otherwise, let x = dequeue(Q) and construct a spanning tree T ′ from x as

follows. Assuming the depth of x in T to be depth(x), we try to span a subtree from x

with height not exceeding Lm − depth(x) in Gr in a breadth-first manner by including

as many nodes in Vr − VT ∪ {x} as possible. Let the resulting tree be T ′.

3. (Prune Phase) Attach T ′ to T by joining node x. Still, name the new tree T . Since some

of the nodes in T ′ may violate the Rm parameter, we traverse nodes in T ′ from x in a

breadth-first manner to trim T .

(a) When visiting a node, say y, set y as “traversed” and check the number of children

of y. If y has more than Rm children, we will compute their priorities based on T ′

(refer to the definitions of nodes’ priorities in a tree given in the beginning of this

section). Only the Rm highest prioritized children will remain in T , and the other

children will be pruned from T .

28

(b) When each node, say y′, that is pruned in step 3(a) or 3(b), let tree(y ′) be the pruned

subtree rooted at y′. Since tree(y′) is pruned, we will try to attach y ′ to another node

n in T ′ if n satisfies the following conditions: 1) n is neighboring to y ′ but not a

descendant of y′, 2) n is not traversed yet, and 3) depth(n)+1+height(tree(y ′)) ≤
Lm. If so, we will connect the subtree tree(y ′) to node n. If there are multiple such

candidates, the one with a lower depth is connected first. If no such node n can

be found, y prunes all its children. Then for each pruned child, we recursively

perform this step 3(b) to try to reconnect it to T ′. This is repeated until no further

reconnection is possible.

4. After the above pruning, call the resulting tree T . For nodes that are newly added into

T in step 3, insert them into queue Q in such a way that nodes with lower depth values

are inserted first (these nodes will go through Span and Prune phases again). Then, go

back to step 2.

To summarize, step 3(a) is to prune those nodes violating the Rm constraint. In order to

allow more vertices to join the network, step 3(b) tries to recursively reconnect those pruned

subtrees to T ′. Step 4 prepares newly joining nodes in Q for possible spanning in step 2.

Fig. 3.3 illustrates an example. When being traversed, y decides to prune y ′ and keep A,

B, and C as children. Step 3(b) will try to reconnect y ′ to C or D, which are the neighbors of

y′ in T ′ and are not traversed. In this example, only C can be considered because connecting

to D violates the depth constraint Lm.

The computational complexity of this algorithm is analyzed as follows. The iteration from

step 2 to step 4 will be executed at most |Vr| times. In each iteration, the complexity of

constructing the tree T ′ in step 2 is O(N 2), where N = |Vr| − |VT |. Step 3 checks all nodes

in T ′ and will be executed at most O(N) times. For a run in Step 3 (assume visiting node

y), the cost contains: 1) In step 3(a), y can use a linear search method to find Rm highest

prioritized children and the computational cost is O(D), where D is the degree of Gr. 2)

Since the subtree size of y is at most O(N) and a pruned node checks at most O(D) neighbors

29

y

A

depth: Lm-3

depth: Lm-2

depth: Lm-1

depth: Lm

C y'B

D

x

t

T

Figure 3.3: An example of the Span-and-Prune algorithm.

to find its new parent, the cost of step 3(b) in a run is O(ND). So, in one iteration, the time

complexity of step 3 will be O(N(D + ND)) = O(N 2D). Step 4 sorts new nodes of T

according to their depth values, so the time complexity is O(N 2). The complexity in each

iteration is O(N 2 + N2D + N2) = O(N2D) = O(|Vr|2D). Since there are at most |Vr|
iterations, the overall time complexity of this algorithm is |Vr| × O(|Vr|2D) = O(|Vr|3D). In

practice, the value of N may degrade quickly. So, after several iterations, the time complexity

of an iteration will be close to O(1).

3.3.2 Distributed Depth-then-Breadth-Search Algorithm

The above Span-and-Prune algorithm is a centralized one. In this section, we present a distrib-

uted algorithm, which does a depth-first search followed by a breadth-first-like search. The

depth-first search tries to form some long, thin backbones, which are likely to pass through

high-node-density areas. Then from these backbones, we span the tree in a breadth-first-like

manner. The algorithm is presented below.

1. (Depth Probing) Given a graph Gr = (Vr, Er), the coordinator t needs to probe the

30

depth of the tree first. A Probe(sender addr, current depth, Lm) packet is used for

this purpose. The Probe packets are flooded in a BFS-like manner, until a depth Lm is

reached. Note that following the definition of ZigBee, before the final tree is determined,

nodes will use their 64-bit MAC addresses to communicate with each other in this stage.

This algorithm begins by the coordinator t flooding a Probe(Addr(t), 0, Lm) packet in

the network, where Addr(t) is t’s address. When a node v receives a Probe(sender addr,

current depth, Lm) packet, it does the following:

(a) If this is the first time v receiving a Probe() packet, v sets its parent par(v) =

sender addr and its depth depth(v) = current depth + 1. If depth(v) < Lm, v

rebroadcasts a Probe(Addr(v), depth(v), Lm) packet.

(b) If this is not the first time v receiving a Probe() packet, it checks if depth(v) >

current depth+1 is true. If so, a shorter path leading to the coordinator is found. So

v sets its parent par(v) = sender addr and its depth depth(v) = current depth+1.

If depth(v) < Lm, v rebroadcasts a Probe(Addr(v), depth(v), Lm) packet.

Note that to ensure reliability, a node may periodically rebroadcast its Probe() packet.

And each node can know the number of its potential parents by the Probe() packet.

2. (Probe Response) After the above probing, a BFS-like tree is formed. Each node then

reports to its parent a Report() packet containing (i) the size of the subtree rooted by

itself and (ii) the height of the subtree rooted by itself. In addition, each node v will

compute a tallest child(v), which records the child of v whose subtree is the tallest

among all child subtrees.

3. (Backbone Formation) After the coordinator t receives all its children’s reports, it will

choose at most Rm children with the larger subtree sizes as backbone nodes. This

is done by sending a Backbone() message to each of the selected children. When a

node v receiving a Backbone() message, it further invites its child with the tallest sub-

tree, i.e., node tallest child(v), into the backbone by sending a Backbone() packet to

31

tallest child(v). After this phase, t has constructed a backbone with up to Rm subtrees,

each as a long, thin linear path.

4. (BFS-like Spanning) After the above backbone formation, the coordinator can broadcast

beacons to start the network. A node can broadcast beacons only if it has successfully

joined the network as a router (according to ZigBee, this is achieved by exchanging

Association Request and Association Response with its parent). In our rule, a backbone

node must associate to its parent on the backbone, and its parent must accept the request.

For each non-backbone node, it will compete with each other in a distributed manner

by its association priority, where the association priority is defined by the size of the

subtree rooted by this node in the BFS-like tree formed in step 1. A non-backbone

node sends its association requests by specifying its priority. A beacon sender should

wait for association requests for a period of time and sorts the received requests by their

priorities. Then the beacon sender can accept the higher-priority ones until its capacity

(Rm) is full.

Compared to the ZigBee protocol, this algorithm requires nodes to broadcast two extra

packets (Probe() and Report() packet) to accomplish step 1 and step 2. Also, in step 3, an

extra Backbone() packet is needed.

3.4 Algorithms for the EDMM Problem

After connecting routers in the BDDTF problem, we can obtain a graph G̃d = ({Ṽr∪ Ṽe, Ẽd}),
as defined in Section 3.2. We can apply a bipartite maximum matching algorithm in [27] on

G̃d to solve the EDMM problem. It is known that an optimal solution exists, so the number of

orphan end devices can be minimized under the given G̃d.

Since the above maximum matching algorithm is a centralized one, we present a distrib-

uted algorithm as follows. End devices overhear beacons from routers for opportunity of

association. Also, each end device e computes its weight as (N e
r)−1, where Ne

r is the number

of e’s neighbor routers. Intuitively, an end device has a larger weight if it has less potential

32

(a) (b)

Figure 3.4: Network formation results by (a) SP and (b) DBS algorithms when applying to the
environment in Fig. 3.1.

parents, which also implies that it has less chances to join the network. When performing as-

sociation procedures, each end device specifies its weight in its association requests. Routers

simply accept the end devices that have larger weights.

3.5 Simulation Results

In this section, we first compare the proposed Span-and-Prune algorithm (SP) and Depth-

then-Breadth-Search algorithm (DBS) for the BDDTF problem against the ZigBee network

formation (ZB) algorithm, i.e., we simulate the networks that have only router-capable de-

vices. To visualize how SP and DBS algorithms work, we first re-simulate the environment in

Fig. 3.1. As shown in Fig. 3.4, the proposed algorithms can effectively reduce the number of

orphan routers.

Next, we test a 90◦-sector environment with radius 200 m and with 400 randomly deployed

router-capable nodes. We set Cm = Rm = 2 and Lm = 8 and set the transmission range of

nodes to 32 m. Our simulation result show that the ZB, SP, and DBS algorithms incur 110.2,

13.7, and 37.9 orphan routers, respectively, in average. Fig. 3.5 shows one scenario. In par-

ticular, we see that the SP algorithm may leave some nodes near the coordinator unconnected

33

(a) (b)

(c)

Figure 3.5: Network formation results in a 90◦-sector environment when using (a) ZB, (b) SP,
and (c) DBS algorithms.

due to the Rm constraint and its greedy nature.

Fig. 3.6 shows a result where routers are placed regularly in a 24 × 24 grid. The grid size

is 10× 10 m2. The transmission ranges of routers are set to 23 m. We set Cm = Rm = 4 and

Lm = 7. In this simulation, ZB, SP, and DBS incur 92, 24, and 24 orphan routers, respectively.

Again, ZB will result in the most number of orphan routers. The performances of SP and DBS

are the same in this case.

In the following simulations, router-capable devices are randomly distributed in a circular

region and a coordinator is placed at the center of the network. We set the number of router-

34

(a) (b)

(c)

Figure 3.6: Network formation results in a 24 × 24 grid environment when using (a) ZB, (b)
SP, and (c) DBS algorithms.

Table 3.1: Relationship between Cm, Rm, Lm, and network capacity.
(Cm = Rm, Lm) (3, 7) (3, 8) (3, 9) (4, 6) (4, 7) (5, 6) (6, 6)
Total address spaces 3280 9841 29524 5461 21845 19531 55987

(Cm = Rm, Lm) (6, 4) (7, 4) (8, 4) (9, 4) (10, 4) (11, 4) (12, 4)
Total address spaces 1555 2801 4681 7381 11111 16105 22621

35

 0

 50

 100

 150

 200

 250

 300

 350

 400

 (3, 7) (3, 8) (3, 9) (4, 6) (4, 7) (5, 6) (6, 6)

N
um

be
r

of
 o

rp
ha

n
ro

ut
er

s

Network parameters (Cm=Rm, Lm)

SP
DBS
PTY

ZB

Figure 3.7: Comparison on the number of orphan routers with N = 800, R = 200 m, and
TR = 35 m.

capable nodes N = 800, the network radius R = 200 m, and devices’ transmission range

TR = 35 m. Here, we restrict Cm = Rm and vary Rm and Lm to observe the number of

orphan routers. The settings of Cm, Rm, and Lm are summarized in Table 3.1, which shows

that total address spaces are large enough to contain all 800 nodes.

Fig. 3.7 shows the results. Here, we further compare to a priority-based (PTY) algorithm.

PTY works similar to DBS, except that PTY do not form backbones, i.e., the step 3 of DBS is

not executed and all nodes are taken as non-backbone nodes in step 4 of DBS. In all cases, SP

performs the best, followed by DBS, PTY, and then ZB. DBS can perform better than PTY,

which implies that backbones can effectively reduce orphan routers. In fact, our schemes can

effectively reduce orphan routers even with smaller Lm values. For example, the number of

orphan routers of SP with Rm = 3 and Lm = 7 (resp., Lm = 8) are nearly the same as the

number of orphan routers of ZB with Rm = 3 and Lm = 8 (resp., Lm = 9). Fig. 3.8 shows

another result with N = 1600, R = 200 m, and TR = 35 m. The similar trend is seen.

Next, we set N = 800, R = 200 m, TR = 60 m, and Lm = 4 and vary Rm(= Cm)

to compare the performances of different network formation algorithms. Fig. 3.9 shows our

simulation results. In particular, we see that our schemes can allow more devices to join the

network even with small Rm. For example, the number of orphan routers of SP when Rm = 6

36

 0

 100

 200

 300

 400

 500

 600

 (3, 7) (3, 8) (3, 9) (4, 6) (4, 7) (5, 6) (6, 6)

N
um

be
r

of
 o

rp
ha

n
ro

ut
er

s

Network parameters (Cm=Rm, Lm)

SP
DBS
PTY

ZB

Figure 3.8: Comparison on the number of orphan routers with N = 1600, R = 200 m, and
TR = 35 m.

are nearly the same as the number of orphan routers of ZB when Rm = 11.

Next, we simulate the networks that contain both router-capable devices and end devices.

We place 800 routers in a circular area of radius 200 m. The coordinator is located at the center

of the network. The transmission range of routers are 35 m. We randomly place 8000 end

devices in this network. In this simulation, the transmission distance of end devices set to 15

to 30 m. An end device can only associate to a router located within its transmission range. We

set Cm = 15, Rm = 3, and Lm = 9. The proposed SP algorithm is used to connect router-

capable devices. Then we compare the proposed centralized algorithm, denoted as OPT, and

distributed algorithm, denoted as DIS, against the ZigBee protocol, denoted as ZB. Fig. 3.10

shows the simulation results. We can see that the number of orphan end devices decreases as

the transmission range of devices increases. Compare to ZB, the proposed algorithms perform

pretty well.

37

 0

 20

 40

 60

 80

 100

 120

 140

 (6, 4) (7, 4) (8, 4) (9, 4) (10, 4) (11, 4) (12, 4)

N
um

be
r

of
 o

rp
ha

n
ro

ut
er

s

Network parameters (Cm=Rm, Lm)

SP
DBS
PTY

ZB

Figure 3.9: Comparison on the number of orphan routers with N = 800, R = 200 m, and
TR = 60 m.

 0

 200

 400

 600

 800

 1000

 1200

 14 16 18 20 22 24 26 28 30 32

N
um

be
r

of
 o

rp
ha

n
en

d
de

vi
ce

s

Transmission range (m)

OPT
DIS
ZB

Figure 3.10: Comparison on the number of orphan end devices at various transmission ranges.

38

Chapter 4

Network Formation Protocols for
Long-Thin ZigBee Networks

4.1 Motivations

In this work, we discuss the long-thin (LT) network topology, which seems to have a very

specific architecture, but may be commonly seen in many WSN deployments in many appli-

cations, such as gas leakage detection of fuel pipes (Fig. 4.1(a)), carbon dioxide concentration

monitoring in tunnels (Fig. 4.1(b)), stage measurements in sewers (Fig. 4.1(c)), street lights

monitoring in highway systems (Fig. 4.1(d)), flood protection of rivers (Fig. 4.1(e)), and vi-

bration detection of bridges (Fig. 4.1(f)). In such a network, nodes may form several long

backbones and these backbones are to extend the network to the intended coverage areas. A

backbone is a linear path which may contain tens or hundreds of ZigBee routers and may go

beyond hundreds or thousands of meters. So the network area can be scaled up easily with

limited hardware cost.

The address assignment and tree routing schemes defined in the original ZigBee specifi-

cation may work poorly, if not fail, in a LT topology. Since the length of a network address is

16 bits, the maximum address capacity of a ZigBee network is 216 = 65536. Obviously, the

ZigBee address assignment is much suitable for regular networks, but not for LT WSNs. For

example, when setting Cm = 4 and Rm = 2, the depth of the network can only be 14. Also,

when there are some LT backbones, the address space will not be well utilized. Moreover, in

39

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Long-thin networks.

ZigBee tree routing, each node can only choose its parent or child as the next node. Since no

shortcut can be taken, this strategy may cause longer delay in LT networks.

4.2 Long-Thin Network: Formation, Addressing, and Rout-
ing

Our goal is to automatically form a LT WSN, give addresses to nodes, and conduct routing.

Fig. 4.2(a) shows an example of a LT WSN. For simplicity, we assume that all nodes are

router-capable devices. To form the network, nodes are divided into multiple clusters, each as

a line segment. For each cluster, we define two special nodes, named cluster head and bridge.

The cluster head (resp., the bridge) is the first (resp., last) in the line segment. As a special

case, the coordinator, is also considered as a cluster head. The other nodes are network nodes

(refer to Fig. 4.2(b)). A cluster C is a child cluster of a cluster C ′ if the cluster head of C is

connected to the bridge of C ′. Reversely, C ′ is the parent cluster of C. Note that a cluster

must have a linear path as its subgraph. But it may have other extra links beside the linear

path. For example, in Fig. 4.2(b), there are two extra radio links (A, A2) and (A1, A3) in A’s

cluster. To be compliant with ZigBee, we divide the ZigBee 16-bit network address into two

parts, an m-bit cluster ID and a (16 − m)-bit node ID. The value of m will be discussed later

40

(addr: 0x1000)
(addr: 0x1001)

(addr: 0x1003)

(a) (b)

A (addr: 0x0100)

B

C

D

E

F

B1 B2 B3

A1(addr: 0x0101)

A2(addr: 0x0102)

A3(addr: 0x0103)
Node

A highway system

Coordinator

Coordinator

Network node

Cluster head node
Bridge node

(addr: 0x1002)

Figure 4.2: (a) A LT WSN. (b) Role assignment.

on. The network address of a node v is thus expressed as (Cv, Nv), where Cv and Nv are v’s

cluster ID and node ID, respectively.

4.2.1 Node Placement

Before deploying a network, the network manager needs to carefully plan the placement of

cluster heads, bridges, and network nodes. There are some basic principles:

1. The network contains a number of linear paths, each called a cluster.

2. For each cluster, the first and the last nodes are pre-assigned (manually) as cluster head

and bridge, respectively.

3. A cluster head that is not the coordinator should have a link to the bridge of its parent

cluster.

4. Conversely, the bridge of a cluster which has child clusters should have a link to the

cluster head of each child cluster.

5. A cluster does not cross other clusters and does not have links with other clusters except

those locations nearby the cluster head and bridge areas.

41

A

B

C

D

E

F

CCoor: 0
CCskip=15

CA: 1
CCskip=7

CB: 16
CCskip=7

CC: 17
CCskip=3

CD: 24
CCskip=3

CE: 25
CCskip=1

CF: 28
CCskip=1

CCm=2
CLm=4

Figure 4.3: The logical network of Fig. 4.2(b).

After planning the network, the network manager can construct a logical network GL, in which

each cluster is converted into a single node and the parent-child relationships of clusters are

converted into edges. For example, Fig. 4.3 is the logical network of Fig. 4.2(b). From GL, we

can determine the maximum number of children CCm of a node in GL and the depth CLm of

GL. By CCm and CLm, we can know that this network will have at least CN = 1−CCmCLm+1

1−CCm

clusters. Then the network manager can decide the value of m such that 2m−1 < CN ≤ 2m is

satisfied.

To initialize the network, each node should periodically broadcast HELLO packets includ-

ing its IEEE 64-bit MAC address, 16-bit network address (initially set to NULL), and role. In

this work, we consider only symmetric links. A communication link (u, v) is established only

if u receives v’s HELLO including u as its neighbor and the HELLO’s signal quality is above

a threshold. Note that the signal quality should be the average of several packets. Then each

node can maintain a neighbor table containing its neighbors’ addresses, roles, and ranks. After

such HELLO exchanges, the coordinator will start a node ranking algorithm to differentiate

nodes’ distances to it (Section 4.2.2). Then, a distributed address assignment procedure will

be conducted to assign network addresses to nodes (Section 4.2.3).

4.2.2 Node Ranking

We extend the concept of one-dimensional ranking algorithm in [46] to assign a rank to each

node. In this algorithm, all nodes except the coordinator will perform the same procedure.

42

Initially, the rank of the coordinator is 0 and all other nodes have a rank of K, where K is a

positive constant. At the end of the algorithm, each node will have a stable rank, which will

reflect its distance to the sink. Note that here “distance” is not necessarily a hop count. In fact,

it reflects its physical distance to the sink following some line segments to the sink.

Except the coordinator, all other nodes will continuously change their ranks. The coordi-

nator will periodically broadcast a Heartbeat packet with its rank. On receiving a Heartbeat, a

node will rebroadcast it by including its current rank. After receiving all its neighbors’ Heart-

beat packets, a node will calculate its new rank by averaging its neighbors’ ranks. Since the

coordinator’s rank is fixed, after receiving several Heartbeat packets, nodes that locate closer

to the coordinator will have lower ranks.

Now we give the details of the ranking algorithm. The format of Heartbeat is Heart-

beat(sender’s 64-bit address, seq, rank). In the beginning, the coordinator broadcasts a Heart-

beat(coordinator, 0, 0). Then it periodically broadcasts Heartbeat packets, each time with

an incremented seq, until seq > h, where h is the maximum hop count distance from the

coordinator to any node. The operations taken by a non-coordinator node v are defined as

follows.

1. On receiving a Heartbeat(u, u’s seq, u’s rank), v checks if it has broadcast a Heartbeat

with this sequence number seq. If not, v updates its sequence number to this received

seq and broadcasts a Heartbeat(v, v’s seq, v’s rank). Then v keeps a record of the pair

(u’s seq, u’s rank). If v has received all its neighbors’ Heartbeat packets with the same

seq as its own, it updates its rank to the average of its neighbors’ ranks (not including

its own rank). Otherwise, it sets a timer WaitHeartbeat.

2. When timer WaitHeartbeat times out, v broadcasts a NACK(L), where L is the list of

neighbors whose Heartbeats are still missing. Then it sets another WaitHeartbeat timer,

until the maximum number of retries is reached.

3. When v receives a NACK(L) such that v ∈ L, it broadcasts a Heartbeat(v, v’s seq, v’s

rank).

43

The above step 1 enforces a node to broadcast its rank whenever a new seq is received.

New seqs are issued by the sink. A node can update its rank after receiving ranks of all its

neighbors with the same seq as its own. Steps 2 and 3 are to improve the procedure proposed

in [46] to guarantee reliability due to the fact the broadcast is unreliable in wireless networks.

Note that the coordinator needs to broadcast at least h+1 Heartbeat packets to guarantee that

every node can modify its initial rank. The rank of the coordinator will gradually diffuse to

the rest of the nodes and thus decrease their ranks. Nodes’ ranks will reflect their distances

(not Euclidean distances) following the linear paths of the LT WSN to the coordinator. At the

end of the algorithm, each node can record its neighbors’ final ranks in its neighbor table. We

say that a ranking result is in-order if for each cluster, (i) the cluster head (resp., bridge) has

the smallest (resp., largest) rank value, (ii) the ranks of cluster members correspond to their

distances to the cluster head, and (iii) the bridge node’s rank value is smaller than the ranks of

the cluster’s child cluster members.

Reference [46] shows that in a linear path topology, the above ranking method can ef-

fectively achieve in-order ranking. However, a LT WSN may have some branches, and thus

the ranking result may not always be in-order. Fig. 4.4 shows some results, where the inter-

node distance is 20 m and the transmission range is 45 m. The ranking result in Fig. 4.4(a)

is in-order. In Fig. 4.4(b), the ideal ranking result should satisfy B < C < D < E < F .

Unfortunately, the result satisfies B < C < E < D < F . The ranks of some members

of E’s cluster are smaller than the ones of some members of H’s cluster because some E’s

members are affected by some members of its parent cluster. We see that D and E have the

same number of neighbors but D’s rank is affected by some H’s cluster members. This makes

D’s rank higher than E’s, causing the final ranking result not in-order. In Fig. 4.4(c), F and G

have smaller ranks than E because they are affected by A’s and B’s ranks. To summarize, we

observe that if some members of a cluster have links to the cluster’s parent cluster members,

the ranking result may not be in-order.

Here we make two remarks. First, if a ranking result is in-order, it will facilitate our address

assignment and thus network formation. Second, even if a ranking result is not in-order, in

44

C D

G

F

E

H I

(b)

(c)

9.8669.789

9.865

9.870

9.931

9.905

20m

(a)

B
9.674

130 o

A
9.353 9.943

C D

F

E

H

I

9.842
9.730

9.894

B
9.521

A
9.288

9.935

9.894

9.935

C D

G

F

E

H I
9.8779.826

9.861

9.829

9.832

9.915
B

9.738

150 o

A
9.562 9.948

135o

135o

extra communication link

Figure 4.4: Some ranking examples.

some cases we can still assign addresses, and thus route packet, successfully. These will be

elaborated further later on.

4.2.3 Distributed Address Assignment

The basic idea of our address assignment is as follows. The assignment of cluster IDs depends

on the maximum number of branches in the logical network GL. If CCm = 1, then the

network is a linear path and the address assignment is a trivial job. If CCm ≥ 2, then we

follow the style of ZigBee to assign addresses in a recursive manner. The coordinator has an

ID of 0. For each node at depth d in GL, if its cluster ID is C, then its i-th child cluster is

45

assigned a cluster ID of C + (i − 1) × CCskip(d) + 1, where

CCskip(d) =
1 − CCmCLm−d

1 − CCm
. (4.1)

Fig. 4.3 shows the assignment result for the network in Fig. 4.2(b). Since each cluster is a

linear path, node IDs of the cluster members can be assigned sequentially. Starting from the

cluster head with an address of 0, the rest of the nodes can gradually increment their node

IDs following the former ranking results, until the bridge node is reached. In Fig. 4.2(b), we

have shown some assignment results, where each address is expressed in Hex and the first two

symbols represent the cluster ID and the last two represent the node ID.

Now we present the detail algorithm. It is started by the coordinator by broadcasting bea-

cons with the predefined CCm and CLm. When a node without a network address receives

a beacon, it will send an Association Request to the beacon sender. If it receives multiple

beacons, the node with the strongest signal strength will be selected. When the beacon sender,

say, v at a logical depth d, receives the association request(s), it will do the following:

1. If v is not a bridge node, it sets a parameter N = Nv + 1 (note that when entering this

procedure, v already obtains its address (Cv, Nv)). Then it sorts these request senders

according to their ranks in an ascending order into a list L. Then v sequentially examines

each node u ∈ L. There are two cases:

• If u is a cluster head node, v skips u and continues to examine the next node in L.

• Otherwise, v assigns address (Cv, N) to u and increments N by 1. Then v replies

an Association Response to u with this address. In case that u is a bridge node,

v stops examining L; otherwise v loops back and continues to examine the next

node in L.

After finishing the above iteration, let u be the last node in L receiving an address. Then

v delegates u as the next beacon sender by sending a command next beacon sender(u)

to u.

46

2. If v is a bridge node, it only accepts requests from cluster heads. At most CCm requests

will be accepted, and v will reply to the i-th least ranked cluster head, i ≤ CCm,

an Association Response with an address (Cv + (i − 1) × CCskip(d) + 1, 0) and a

next beacon sender command. Note that, these cluster heads need to set their logical

depths to d + 1.

For each node u which receives a next beacon sender(u) in the above steps, it will use

the MLME-START primitive defined in IEEE 802.15.4 to start its beacons. Then the same

procedure repeats. Note that we allow a beacon sender to accept multiple children so as to

reduce the communication cost of address assignment.

We say that an address assignment result is as planned if (i) each pair of cluster head and

bridge are assigned to the same cluster ID and (ii) each bridge is correctly connected to its

child cluster heads. Below, we make two observations about the address assignment results.

First, if the ranking result is in-order and the nodes near-by each cluster head can receive

stronger signal from its own cluster head than from others, the address assignment will be as

planned. For example, in Fig. 4.4(a), the network will be formed as planned. Second, there

are some cases that the formed network is as planned even if the ranking result is not in-order.

For example, in Fig. 4.4(b), assuming B as the beacon sender, B will accept nodes C and

D with D as the bridge. Although F may send an Association Request to B, B will not

accept F because the address assignment will stop when a bridge is encountered. However,

in Fig. 4.4(c), the assignment may not be as planned. Assuming A as the beacon sender, A

will accept B, C, F , and G, and then will choose G as the next beacon sender. So H and the

descendants of H will not be able to join the network.

4.2.4 Routing Rules

Routing in our LT WSN can be purely based on the above address assignment results. Through

HELLO packets, a node can collect its neighbors’ network addresses. Suppose that a node

v at logical depth d receives a packet with a destination address (Cdest, Ndest). If v is the

destination, it simply accepts this packet. Otherwise, v performs the following procedures.

47

1. If the destination is a neighbor of v, v sends this packet to the destination directly.

2. If Cdest = Cv, the destination is within the same cluster. Node v can find an ancestor

or a descendant in its neighbor table, say, u such that Cu = Cdest and the value of

|Nu − Ndest| is minimized, and forward this packet to u.

3. If Cdest is a descendant cluster of Cv, i.e., Cv < Cdest ≤ Cv+(CCm−1)×CCskip(d)+

1, then v checks if it has a neighbor u which satisfies Cu ≤ Cdest ≤ Cu +(CCm− 1)×
CCskip(d+1)+1. If such a u exists, then v forwards the packet to u. In case that there

are multiple candidates, the one with the smallest |Nu − Ndest| is selected. Otherwise,

v finds a neighbor u which is located in the same cluster and has the maximum Nu and

forwards the packet to u.

4. For all other cases, Cdest must be an ancestor cluster of Cv or not within the same logical

subtree. Then v checks if it has a neighbor u which satisfies Cu < Cv ≤ Cu + (CCm−
1) × CCskip(d − 1) + 1. If such a u exists, v forwards the packet to u. Note that

the above condition confines that Cu is the parent cluster of Cv. Otherwise, v finds a

neighbor u which is located in the same cluster and has the minimum Nu and forwards

the packet to u.

Note that the above design tries to strike a balance between efficiency and simplicity. It

basically follows the ZigBee tree-like routing. However, making shortcut along the linear

paths of the LT WSN is possible due to the existence of neighbor tables and our design of

hierarchical network addresses. Therefore, unlike the original ZigBee tree routing, nodes are

not restricted to relay packets only to their parents or children.

4.3 Simulation Results

We start by giving three scenarios to demonstrate how our schemes work. The first one is

an “imaginary” network planning example on a highway system as shown in Fig. 4.5. After

planning, we can obtain CCm = 3 and CLm = 5. The network can accommodate at most

48

CCm=3
CLm=5

Figure 4.5: A network planning result.

0
0

1.909
4.316

3.179
5.179

5.529
7.607

7.106
8.542

9.421
9.247

9.601
9.486

9.780
9.621

9.831
9.692

9.882
9.733

9.052
9.229

9.421
9.359

9.601
9.598

9.780
9.708

9.831
9.773

9.882
9.807

9.601
9.486

9.780
9.621

9.831
9.692

9.882
9.733

8.683
9.009

9.421
9.2479.052

9.035

9.052
9.035

20m

20m

 red: tx range 21 m
 black: tx range 41 m

0 3.24 3.88 5.43 6.23 7.57 8.87 9.12 9.37 9.47 9.487.14

(a)

(b)

Figure 4.6: Some ranking results.

49

A

B

(a) (b)

97.72
98.21

98.46
98.66

98.79

98.84
98.92

98.98
99.04

98.91
98.98

99.04

95.85
98.77

98.78

98.89

98.98

A1
A2 A3 A4 A5

B1

B2

B3

B4

C1

D1

C2 C3 C4

D2

D3

D4

98.2997.49 99.0298.76 99.4199.24 99.5899.52 99.6599.62 99.7399.68 99.75

99.65

99.73
99.68

99.75

99.65

99.73

99.68

99.75

99.54

99.45
99.33

99.27
99.16

99.15
99.35

A1 A2 A3 A4 A5 A6 A7 A8 A9

B1

B2

B3

B4

B5

B6

B7

B8

(c) (d)

Figure 4.7: (a) A random generated Delaunay triangulation. (b) A LT-WSN generated from
the Delaunay triangulation. (c) The ranking result of the region A. (d) The ranking result of
the region B.

(1 − 36)/(1 − 3) = 364 clusters, which can be expressed in 9 bits and each of which can

have at most 216−9 = 128 members. We also simulate the node ranking algorithm in two

LT networks as shown in Fig. 4.6, where adjacent nodes are evenly separated by a distance

of 20 m. After 20 Heartbeat packets from the coordinator, we see that both networks will

have in-order ranking. In particular, note that the linear path in Fig. 4.6(b) has irregular links

between nodes.

Next, we simulate some LT-WSNs that are generated by a systematical method as follows.

An n1 × n2 rectangle region is simulated, on which k nodes are generated randomly to serve

as bridge nodes. From these bridges, we conduct Delaunay triangulation. Using the bridge

nearest to the upper-left corner of the rectangle as the root, we build a shortest path tree from

50

 0

 30

 60

 90

 120

 150

20 25 30 35 40 45 50
 0

 1

 2

 3

 4

 5

 6

 7

 8

N
um

be
r

of
 n

od
es

P
er

ce
nt

ag
e

(%
)

Number of clusters

not-in-order ranked node
not-as-planned node (orphan)

not-as-planned node (not orphan)
percentage of not-as-planned nodes

percentage of orphan nodes

Figure 4.8: Simulation results of the numbers of not-in-order ranked and not-as-planned
nodes.

the edges of the Delaunay triangulation to connect to the other k − 1 bridges. The root is

then connected to the coordinator at the left-top corner. Then we traverse the tree from the

coordinator and generate nodes at every distance of d on each edge of the shortest path tree.

Fig. 4.7(a) shows an example of a random generated Delaunay triangulation. A LT topology

based on Fig. 4.7(a) is illustrated in Fig. 4.7(b).

Based on the above model, we generate networks in a 4.8 km×3.2 km field with d = 20 m.

As mentioned in Section 4.2.3, the address assignment may not be as planned if the ranking

result is not in-ordered. For example, in Fig. 4.7(b) the nodes marked in black small circles

are not in-ordered ranked. Fig. 4.7(c) shows the network topology for region A (the dotted

lines are the order of address assignment). We can see that the descendant of B1 is not as

planned since B2 connects to B1’s parent cluster. Fig. 4.7(d) shows the ranking result and

the network topology of region B. In this case, nodes B2, B3 ,..., B6, which are planned to

be the descendants of B1, are connected by B1’s parent cluster members. B1 can not find a

neighbor to form its cluster, resulting in the descendants of B6 being disconnected from the

network. Here, we call these disconnected nodes orphans. Fig. 4.8 shows that nodes can

still be assigned to the desired address with high probability (≥ 94%) even when there are

not-in-order ranked nodes. In average, less than 3% of the nodes will become orphans in our

51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 25 30 35 40 45 50

P
er

ce
nt

ag
e

(%
)

Number of clusters

100% in-order ranking
no orphan

Figure 4.9: The percentages of 100% in-order ranking and no-orphan cases.

simulations. This result demonstrates that the network formation can connect all nodes with

high probability. Fig. 4.9 further shows the percentages of 100% in-order ranking and no

orphan. We can see that only few cases can achieve 100% in-ordered ranking. But, in most

cases, all nodes can be connected to the network. We observe that to avoid the above orphan

problem, the network manager should lower down the density of nodes near by bridges to

reduce the numbers of links in such areas.

Next, we evaluate the proposed routing protocol. The results are from networks with 50

with d = 20 m. IEEE 802.15.4 unslotted CSMA/CA mechanism is implemented. Packets

are generated from each node to random destinations with a poisson process at a rate λ. The

buffer size of each node is 6.4 KB. When a node’s buffer overflows, no further packets will

be accepted. We measure the goodput of the network, which is defined as the ratio of packets

successfully received by the specified destinations. We compare the proposed routing scheme

(denoted as OUR) with the ZigBee scheme (denoted as ZB). When using ZB, the node v that

receives a packet will do the following procedures. If v is a normal node, it simply judges to

relay the incoming packet to (Cv, Nv + 1) or (Cv, Nv − 1). For the case that if v is a cluster

head (resp., bridge node), it relays the packet to the bridge node (resp., cluster head) of its

parent (resp., the corresponding child) cluster. Some other parameters are list in Table 4.1.

We first set the transmission ranges of nodes to 81 m and vary λ. Fig. 4.10 shows the

result. Note that packets may be delayed or dropped due to buffer constraint. Our scheme

52

Table 4.1: Simulation parameters (for the proposed LT routing protocol).
Parameter Value

length of a frame’s header and tail 18 Bytes
length of data payload 46 Bytes
bit rate 250k bps
symbol rate 62.5k symbols/s
aUnitBackoffPeriod 20 symbols
aCCATime 8 symbols
macMinBE 3
aMaxBE 5
macMaxCSMABackoffs 4
maximum number of retransmissions 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2.4x1.6 3.6x2.4 4.8x3.2 6.0x4.0 7.2x4.8 8.4x5.6

A
ve

ra
ge

d
de

la
y

(m
s)

Network size (km x km)

OUR, λ=(1/10)s
OUR, λ=(1/20)s
OUR, λ=(1/30)s

ZB, λ=(1/10)s
ZB, λ=(1/20)s
ZB, λ=(1/30)s

 0

 0.2

 0.4

 0.6

 0.8

 1

2.4x1.6 3.6x2.4 4.8x3.2 6.0x4.0 7.2x4.8 8.4x5.6

A
ve

ra
ge

d
go

od
pu

t (
%

)

Network size (km x km)

OUR, λ=(1/10)s
OUR, λ=(1/20)s
OUR, λ=(1/30)s

ZB, λ=(1/10)s
ZB, λ=(1/20)s
ZB, λ=(1/30)s

(a) (b)

Figure 4.10: Comparison on (a) delay and (b) goodput at various data rates.

53

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2.4x1.6 3.6x2.4 4.8x3.2 6.0x4.0 7.2x4.8 8.4x5.6

A
ve

ra
ge

d
de

la
y

(m
s)

Network size (km x km)

OUR, Tx range=41m
OUR, Tx range=61m
OUR, Tx range=81m

ZB, Tx range=41m
ZB, Tx range=61m
ZB, Tx range=81m

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2.4x1.6 3.6x2.4 4.8x3.2 6.0x4.0 7.2x4.8 8.4x5.6

A
ve

ra
ge

d
go

od
pu

t (
%

)

Network size (km x km)

OUR, Tx range=41m
OUR, Tx range=61m
OUR, Tx range=81m

ZB, Tx range=41m
ZB, Tx range=61m
ZB, Tx range=81m

(a) (b)

Figure 4.11: Comparison on (a) delay and (b) goodput at various transmission ranges.

outperforms ZB in averaged delay in all cases. In terms of the goodput, our scheme can

guarantee almost 100% packet delivery when λ = (1/20) s or (1/30) s, where ZB suffers

from lower goodputs as the traffic load increases or the number of clusters increases. Fig. 4.11

shows another result when we vary the transmission ranges of nodes when λ = (1/30) s. It

shows that when the transmission range increases, our scheme induces less delay. But this is

not the case for ZB because it restricts packets to be transmitted hop-by-hop while ours allows

taking shortcuts. The trend is similar when we look at the goodputs.

54

Chapter 5

Data Collection Strategies for ZigBee
Networks

5.1 Observations and Motivations

This work discuss data collection strategies for ZigBee networks. We aim at designing quick

convergecast solutions for ZigBee tree-based, beacon-enabled WSNs. This work is motivated

by the following observations. First, we see that most related works are not compliant to

the ZigBee standard. Second, we believe that tree-based topology is more suitable if power

management is a main concern in WSNs. Third, the specification does not clearly define how

to choose the locations of routers’ active portions such that the convergecast latency can be

reduced.

Convergecast has been investigated in several works [26][30][34][47][66][72]. With the

goals of low latency and low energy consumption, reference [66] shows how to connect sen-

sors as a balanced reporting tree and how to assign CDMA codes to sensors to diminish inter-

ference among sensors, thus achieving energy efficiency. The work [72] aims to minimize the

overall energy consumption under the constraint that sensed data should be reported within

specified time. Dynamic programming algorithms are proposed by assuming that sensors can

receive multiple packets at the same time. As can be seen, both [66] and [72] are based on

quite strong assumptions on communication capability of sensor nodes and they do not fit

into the ZigBee specification. In [47], the authors propose an energy-efficient and low-latency

55

MAC, called DMAC. Sensors are connected by a tree and stay in sleep state for most of the

time. When sensors change to active state, they are first set to the receive mode and then to

the transmit mode. DMAC achieves low-latency by staggering wake-up schedules of sensors

at the time instant when their children switch to the transmit mode. Similar to [47], reference

[34] arranges wake-up schedule of sensors by taking traffic loads into account. Each parent pe-

riodically broadcasts an advertisement containing a set of empty slots. Children nodes request

empty slots according to their demands. In [30], the authors propose a distributed converge-

cast scheduling algorithm. The basic concept is to connect nodes by a spanning tree. Then

the algorithm reduces the tree to multiple lines. For each line, the algorithm schedules nodes’

transmission times in a bottom-up manner. Reference [26] presents a centralized solution to

convergecast. The algorithm divides nodes into many segments such that the transmission of a

node in a segment does not cause interference to other transmissions in the same segment. The

aim is to increase the degree of parallel transmissions to decrease latencies. Although these re-

sults [26][30][34][47] are designed for quick convergecast, the solutions are not compliant to

the ZigBee standard for the following two reasons. Firstly, in these works, nodes’ wake/sleep

times are dynamically changed according to their schedules. However, in a ZigBee beacon-

enabled tree network, nodes’ wake/sleep times must be fixed in the way that each router wakes

up twice in each cycle to receive its children’s packets and to transmit packets to its parent,

respectively. The coordinator (resp., an end device) wakes up once to receive its children’s

packets (resp., to transmit packets to its parent). Secondly, the scheduling of [26][30][34][47]

is transmission-based, while ours are receiving-based. The implication is that the former may

cause a router to be active multiple times per cycle. This is incompatible with the ZigBee

specification.

5.2 The Minimum Delay Beacon Scheduling (MDBS) Prob-
lem

This section formally defines the convergecast problem in ZigBee networks. Given a ZigBee

network, we model it by a graph G = (V, E), where V contains all routers and the coordina-

56

tor and E contains all symmetric communication links between nodes in V . The coordinator

also serves as the sink of the network. End devices can only associate with routers, but are

not included in V . In our work, we consider two kinds of interference between routers. Two

routers have direct interference if they can hear each others’ beacons. Two routers have in-

direct interference if they have at least one common neighbor. Both interferences should be

avoided when choosing routers’ active portions. From G, we can construct an interference

graph GI = (V, EI), where edge (v, u) ∈ EI if there are direct/indirect interferences between

v and u. There is a duty cycle requirement α for this network. From α and Table 2.2, we can

determine the most appropriate value of BO−SO. We denote by k = 2BO−SO the number of

active portions (or slots) per beacon interval.

The beacon scheduling problem is to find a slot assignment s(v) for each router v ∈ V ,

where s(v) is an integer and s(v) ∈ [0, k− 1], such that router v’s active portion is in slot s(v)

and s(v) 	= s(u) if (v, u) ∈ EI . Here the slot assignment means the position of the outgoing

superframe of each router (the position of the incoming superframe, as clarified earlier, is

determined by the parent of the router). Motivated by Brook’s theorem [69], which proves

that n colors are sufficient to color any graph with a maximum degree of n, we would assume

that k ≥ DI , where DI is the maximum degree of GI .

Given a slot assignment for G, the report latency from node v to node u, where (v, u) ∈ E,

is the number of slots, denoted by dvu, that node v has to wait to relay its collected sensory

data to node u, i.e.,

dvu = (s(u) − s(v)) mod k. (5.1)

Note that the report latency from node v to node u (dvu) may not by equal to the report latency

from node u to node v (duv). Therefore, we can convert G into a weighted directed graph

GD = (V, ED) such that each (v, u) ∈ E is translated into two directed edges (v, u) and (u, v)

such that w((v, u)) = dvu and w((u, v)) = duv. The report latency for each v ∈ V to the sink

is the sum of report latencies of the links on the shortest path from v to the sink in GD. The

latency of the convergecast, denoted as L(G), is the maximum of all nodes’ report latencies.

57

Definition 4 Given G = (V, E), G’s interference graph GI = (V, EI), and k available slots,

the Minimum Delay Beacon Scheduling (MDBS) problem is to find an interference-free slot

assignment s(v) for each v ∈ V such that the convergecast latency L(G) is minimized.

To prove that the MDBS problem is NP-complete, we define a decision problem as follows.

Definition 5 Given G = (V, E), G’s interference graph GI = (V, EI), k available slots, and

a delay constraint d, the Bounded Delay Beacon Scheduling (BDBS) problem is to decide if

there exists an interference-free slot assignment s(v) for each v ∈ V such that the converge-

cast latency L(G) ≤ d.

Theorem 2 The BDBS problem is NP-complete.

Proof. First, given slot assignments for nodes in V , we can find the report latency of each

v ∈ V by running a shortest path algorithm on GD. We can then check if L(G) ≤ d. Clearly,

this takes polynomial time.

We then prove that the BDBS problem is NP-hard by reducing the 3 conjunctive normal

form satisfiability (3-CNF-SAT) problem to a special case of the BDBS problem in polynomial

time. Given any 3-CNF formula C, we will construct the corresponding G and GI . Then we

show that C is satisfiable if and only if there is a slot assignment for each v ∈ V using no

more than k = 3 slots such that L(G) ≤ 4 slots.

Let C = C1 ∧ C2 ∧ · · · ∧ Cm, where clause Cj = xj,1 ∨ xj,2 ∨ xj,3, 1 ≤ j ≤ m,

xj,i ∈ {X1, X2, ..., Xn}, and Xi ∈ {xi, x̄i}, where xi is a binary variable, 1 ≤ i ≤ n. We first

construct G from C as follows:

1. For each clause Cj , j = 1, 2, ..., m, add a vertex Cj in G.

2. For each literal Xi, i = 1, 2, ..., n, add four vertices xi1, xi2, x̄i1, and x̄i2 in G.

3. Add a vertex t as the sink of G.

4. Add edges (t, xi2) and (t, x̄i2) to G, for i = 1, 2, ..., n.

58

5. Add edges (xi1, xi2) and (x̄i1, x̄i2) to G, for i = 1, 2, ..., n.

6. For each i = 1, 2, ..., n and each j = 1, 2, ..., m, add an edge (Cj , xi1) (resp., (Cj , x̄i1))

to G if xi (resp., x̄i) appears in Cj.

Then we construct GI as follows.

1. Add all vertices and edges in G into GI .

2. Add edges (xi1, x̄i1) and (xi2, x̄i2) to GI , for i = 1, 2, ..., n.

3. Add edges (Cj , xi2) and (Cj, x̄i2) to GI , for i = 1, 2, ..., n and j = 1, 2, ..., m.

Then we build a one-to-one mapping from each truth assignment of C to a slot assignment

of G. We establish the following mapping:

1. Set s(t) = 0.

2. Set s(Cj) = 0, j = 1, 2, ..., m.

3. Set s(xi1) = 1 and s(x̄i2) = 1, i = 1, 2, ..., n, if xi is true; otherwise, set s(xi1) = 2 and

s(x̄i2) = 2.

4. Set s(xi2) = 1 and s(x̄i1) = 1, i = 1, 2, ..., n, if x̄i is true; otherwise, set s(xi2) = 2 and

s(x̄i1) = 2.

The above reduction can be computed in polynomial time. By the above reduction, vertices

xi1 or x̄i1, i = 1, 2, ..., n, that are assigned to slot 1 (resp. slot 2) will have a report latency

of 2 (resp. 4) and vertices xi2 or x̄i2, i = 1, 2, ..., n, that are assigned to slot 1 (resp. slot

2) will have a report latency of 2 (resp. 1). Hence, for those vertices xi1, x̄i1, xi2, and x̄i2,

i = 1, 2, ..., n, the longest report latency will be 4.

To prove the if part, we need to show that if C is satisfiable, there is a slot assignment

such that k = 3 and L(G) ≤ 4. Since C satisfiable, there must exist an assignment such

that each clause Cj , j = 1, 2, ..., m, is true. If a clause Cj is true, at least one variable in

59

1 2

0 0

2 1

0

1 2

2 1

2 1

1 2

0
C1 C2 C3

x11

x12

x11

x12 x22

x31x21

x32

x21

x22

x31

x32

t

Figure 5.1: An example of reduction from the 3-CNF-SAT to the BDBS problem.

Cj is true. According to the reduction, Cj can always find an edge (Cj, xi1) or (Cj , x̄i1) with

w((Cj, xi1)) = 1 or w((Cj, x̄i1)) = 1, where i = 1, 2, ..., n. Thus, when C is satisfiable, the

reporting latency for each clause is 3. This achieves L(G) = 4.

For the only if part, if each vertex Cj, j = 1, 2, ..., m, can find at least an edge with weight

1 to one of xi1 and x̄i1, for i = 1, 2, ..., n, to achieve a report latency of 3, it must be that each

clause has at least one variable to be true. So formula C is satisfiable. Otherwise, the report

latency of Cj , j = 1, 2, ..., m, will be 6. �

For example, given C = (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3), Fig. 5.1 shows

the corresponding G. The truth assignment (x1, x2, x3) = (T, F, T) makes C satisfiable.

According to the reduction and the mapping in the above proof, we can obtain the network G

and its slot assignment as shown in Fig. 5.1 such that L(G) = 4.

5.3 Algorithms for the MDBS Problem

5.3.1 Optimal Solutions for Special Cases

Optimal solutions can be found for the MDBS problem in polynomial time for regular linear

networks and regular ring networks, as illustrated in Fig. 5.2. In such networks, each vertex is

connected to one or two adjacent vertices and has an interference relation with each neighbor

within h hops from it, where h ≥ 2. In a regular linear network, we assume that the sink t is

60

0 1 2 0
t

(a)

(b)

1 2 0 1 2 0

1

0 2

3

1

3

2

1

2

0

3

size:11

t

left group right group

l1

r1

r2

1
0

23

12

3

2
0

01

3

size:12

t

left group
right group

l1

r1

r2

Figure 5.2: Examples of optimal slot assignments for regular linear and ring networks (h = 2).
Dotted lines mean interference relations.

at one end of the network. Clearly, the maximum degree of GI is 2h. We will show that an

optimal solution can be found if the number of slots k ≥ h + 1. The slot assignment can be

done in a bottom-up manner. The bottom node is assigned to slot 0. Then, for each vertex v,

s(v) = (k′ + 1) mod k, where k′ is the slot assigned to v’s child.

Theorem 3 For a regular linear network, if k ≥ h + 1, the above slot assignment achieves a

report latency of |V | − 1, which is optimal.

Proof. Clearly, the slot assignment is interference-free. Also the report latency of |V | − 1 is

clearly the lower bound. �

For a regular ring network, we first partition vertices excluding t into left and right groups

as illustrated in Fig. 5.2(b) such that the left group consists of the sink node t and � |V |−1
2

 other

nodes counting counter-clockwise from t, and the right group consists of those � |V |−1
2

� nodes

counting clockwise from t. Now we consider the ring as a spanning tree with t as the root and

left and right groups as two linear paths. Assuming that � |V |−1
2

 ≥ 2h and k ≥ 2h, the slot

assignment works as follows:

61

1. The bottom node in the left group is assigned to slot 0.

2. All other nodes in the left group are assigned with slots in a bottom-up manner. For each

node v in the left group, we let s(v) = (j + 1) mod k, where j is the slot of v’s child.

3. Nodes in the right group are assigned with slots in a top-down manner. For each node

v in the right group, we let s(v) = (j − c) mod k, where j is the slot assigned to v’s

parent and c is the smallest constant (1 ≤ c ≤ k) that ensures that s(v) is not used by

any of its interference neighbors that have been assigned with slots.

It is not hard to prove the slot assignment is interference-free because nodes receives slots

sequentially and we have avoided using the same slots among interfering neighbors. Although

this is a greedy approach, we show that c is equal to 1 in step 3 in most of the cases except

when two special nodes are visited. This gives an asymptotically optimal algorithm, as proved

in the following theorem.

Theorem 4 For a regular ring network, assuming that k ≥ 2h and � |V |−1
2

 ≥ 2h, the above

slot assignment achieves a report latency L(G) = � |V |−1
2

 + h, which is optimal within a

factor of 1.5.

Proof. We first identify three nodes on the ring (refer to Fig. 5.2(b)):

• l1: the bottom node in the left group.

• r1: the first node in the right group.

• r2: the node that is h hops from l1 counting counterclockwise.

The report latency of each node can be analyzed as follows. The parent of node x is

denoted by par(x).

A1. For each node v in the left group except the sink t, the latency from v to par(v) is 1.

A2. The latency from r1 to t is h.

62

A3. For each node v next to r1 in the right group but before r2 (counting clockwise), the

latency from v to par(v) is 1.

A4. The latency from r2 to par(r2) is 1 if the ring size is even; otherwise, the latency is 2.

A5. For each node v in the right group that is a descendant of r2, the report latency from v to

par(v) is 1.

It is not hard to prove that A1, A2, and A3 are true. To see A4 and A5, we make the

following observations. The function pari(x) is to apply i times the par() function on node

x. Note that par0(x) means x itself.

O1. When the ring size is even, the equality s(pari−1(l1)) = s(pari(r2)) holds for i =

1, 2, ..., � |V |−1
2

 − h − 1. More specifically, this means that (i) l1 and par(r2) will re-

ceive the same slot, (ii) par(l1) and par2(r2) will receive the same slot, etc. This can

be proved by induction by showing that the i-th descendant of t in the right group will

be assigned the same slot as the (h + i − 1)-th descendant of t in the left group (the

induction can go in a top-down manner). This property implies that when assigning a

slot to r2 in step 3, c = 1 in case that the ring size is even. Further, r2 and its descendants

will be sequentially assigned to slots k − 1, k − 2, ..., k − h, which implies that c = 1

when doing the assignments in step 3. So properties A4 and A5 hold for the case of an

even ring.

O2. When the ring size is odd, the equality s(pari(l1)) = s(pari(r2)) holds for i = 1, 2, ...,

� |V |−1
2

 − h. This means that (i) par(l1) and par(r2) will receive the same slot, and

(ii) par2(l1) and par2(r2) will receive the same slot, etc. Again, this can be proved by

induction as in O1. This property implies that c = 2 when assigning a slot to r2 in step

3, and c = 1 when assigning slots to descendants of r2. So properties A4 and A5 hold

for the case of an odd ring.

The equality of slot assignments pointed out in O1 and O2 is illustrated in Fig. 5.2(b) by

those numbers in gray nodes. In summary, the report latency of the left group is � |V |−1
2

.

63

When the ring size is even, the report latency of the right group is the number of nodes in this

group, |V |
2

, plus the extra latency h − 1 incurred at r1. So L(G) = |V |
2

+ h − 1 = � |V |−1
2

 + h.

When the ring size is odd, the report latency of right group is the number of nodes in this

group, |V |−1
2

, plus the extra latency h − 1 incurred at r1 and the extra latency 1 incurred at r2.

So L(G) = � |V |−1
2

 + h.

A lower bound on the report latency of this problem is the maximum number of nodes in

each group excluding t. Applying � |V |−1
2

 as a lower bound and using the fact that � |V |−1
2

 ≥
2h, L(G) will be smaller than 1.5 × � |V |−1

2

, which implies the algorithm is optimal within a

factor of 1.5. Note that the condition � |V |−1
2

 ≥ 2h is to guarantee that t will not locate within

h hops from r2. Otherwise, the observation O2 will not hold. �

5.3.2 A Centralized Tree-Based Assignment Scheme

Given G = (V, E), GI = (V, EI), and k, we propose a centralized slot assignment heuristic

algorithm. Our algorithm is composed of the following three phases:

phase 1. From G, we first construct a BFS tree T rooted at sink t.

phase 2. We traverse vertices of T in a bottom-up manner. For these vertices in depth d,

we first sort them according to their degrees in GI in a descending order. Then we

sequentially traverse these vertices in that order. For each vertex v in depth d visited,

we compute a temporary slot number t(v) for v as follows.

1. If v is a leaf node, we set t(v) to the minimal non-negative integer l such that for

each vertex u that has been visited and (u, v) ∈ EI , (t(u) mod k) 	= l.

2. If v is an in-tree node, let m be the maximum of the numbers that have been

assigned to v’s children, i.e., m = max{t(child(v))}, where child(v) is the set of

v’s children. We then set t(v) to the minimal non-negative integer l > m such that

for each vertex u that has been visited and (u, v) ∈ EI , (t(u) mod k) 	= (l mod k).

After every vertex v is visited, we make the assignment s(v) = t(v) mod k.

64

(a) (b)

5 1 0

0

6

5 4 3

3

6

E
EI

t

A B C

D

t

A B C

D

Figure 5.3: (a) Slot assignment after phase 2. (b) Slot compacting by phase 3.

phase 3. In this phase, vertices are traversed sequentially from t in a top-down manner. When

each vertex v is visited, we try to greedily find a new slot l such that (s(par(v)) − l)

mod k < (s(par(v))− s(v)) mod k, such that l 	= s(u) for each (u, v) ∈ EI , if possible.

Then we reassign s(v) = l.

Note that in phase 2, a node with a higher degree means that it has more interference

neighbors, implying that it has less slots to use. Therefore, it has to be assigned to a slot

earlier. Also note that, the number t(v) is not a modulus number. However, in step 2 of phase

2, we did check that if t(v) is converted to a slot number, no interference will occur. Intuitively,

this is a temporary slot assignment that will incur the least latency to v’s children. At the end,

t(v) is converted to a slot assignment s(v). Phase 3 is a greedy approach to further reduce

the report latency of routers. For example, Fig. 5.3(a) shows the slot assignment after phase

2. Fig. 5.3(b) indicates that B, C, and D can find another slots and their report latencies are

decreased. This phase can reduce L(G) in some cases.

The computational complexity of this algorithm is analyzed below. In phase 1, the com-

plexity of constructing a BFS tree is O(|V | + |E|). In phase 2, the cost of sorting is at most

O(|V |2) and the computational cost to compute t(v) for each vertex v is bounded by O(kDI),

where DI is the degree of GI . So the time complexity of phase 2 is O(|V |2 + kDI |V |). Phase

3 performs a similar procedure as phase 2, so its time complexity is also O(kDI |V |). Overall,

the time complexity is O(|V |2 + kDI |V |).

65

5.3.3 A Distributed Assignment Scheme

In this section, we propose a distributed slot assignment algorithm. Each node has to compute

its direct as well as indirect interference neighbors in a distributed manner. To achieve this,

we will refer to the heterogeneity approach in [70], which adopts power control to achieve this

goal. Assuming routers’ default transmission range is r, interference neighbors must locate

within range 2r. From time-to-time, each router will boost its transmission power to double

its default transmission range and send HELLO packets to its neighbor routers. Each HELLO

packet further contains sender’s 1) depth1, 2) the location of outgoing superframe (i.e., slot),

and 3) number of interference neighbors. Note that all other packets are transmitted by the

default power level. When booting up, each router will broadcast HELLO packets claiming

that its depth and slot are NULL. After joining the network and choosing a slot, the HELLO

packets will carry the node’s depth and slot information. The algorithm is triggered by the

sink t setting s(t) = k − 1 and then broadcasting its beacon. A router v 	= t that receives a

beacon will decide its slot as follows.

1. Node v sends an association request to the beacon sender.

2. If v fails to associate with the beacon sender, it stops the procedure and waits for other

beacons.

3. If v successfully associates with a parent node par(v), it computes the smallest positive

integer l such that (s(par(v)) − l) mod k 	= s(u) for all (u, v) ∈ EI and s(u) 	= NULL.

Then v chooses s(v) = (s(par(v)) − l) mod k as its slot.

4. Then, v broadcasts HELLOs including its slot assignment s(v) for a time period twait.

If it finds that s(v) = s(u) for any (u, v) ∈ EI , v has to change to a new slot if one of

the following rules is satisfied and goes back to step 3.

(a) Node u has more interference neighbors than v.

1The depth of a node is the length of the tree path from the root to the node. The root node is at depth zero.

66

(b) Node u and v have the same number of interference neighbors but the depth of u

is lower than v, i.e. u is closer to the sink than v.

(c) Node u and v have the same number of interference neighbors and they are at the

same depth but the u’s ID is smaller than v’s.

5. After twait, v can finalize its slot selection and broadcast its beacons.

In this distributed algorithm, slots are assigned to routers, ideally, in a top-down manner.

However, due to transmission latency, some routers at lower levels may find slots earlier than

those at higher levels. Also note that the time twait is to avoid possible collision on slot

assignments due to packet loss.

5.4 Simulation Results

This section presents our simulation results. We first assume that the size of sensory data is

negligible and that all routers generate reports at the same time, and compare the performances

of different convergecast algorithms. Then we simulate more realistic scenarios where the size

of sensory data is not negligible and routers need to generate reports periodically or passively

driven by events randomly appearing in certain regions in the sensing field. More specifically,

sensors generate reports according to certain application specifications. Devices all run Zig-

Bee and IEEE 802.15.4 protocols to communicate with each other. Routers can aggregate

child sensors’ reports and report to their parents directly. Each router has a fix-size buffer.

When a router’s buffer overflows, this router will not accept further incoming frames. We also

measure the goodput of the network, which is defined as the ratio of sensors’ reports success-

fully received by the sink. Some parameters used in our simulation are listed in Table 5.1.

5.4.1 Comparison of Different Convergecast Algorithms

We compare the proposed slot assignment algorithms against a random slot assignment (de-

noted by RAN) scheme and a greedy slot assignment (denoted by GDY) scheme. In RAN,

67

Table 5.1: Simulation parameters (for realistic convergecast scenarios).
Parameter Value

length of a frame’s header and tail 18 Bytes
length of a sensor’s report 16 Bytes
beacon length 18 Bytes
maximum length of a frame 127 Bytes
bit rate 250k bps
symbol rate 62.5k symbols/s
aBaseSuperframeDuration 960 symbols
aUnitBackoffPeriod 20 symbols
aCCATime 8 symbols
macMinBE 3
aMaxBE 5
macMaxCSMABackoffs 4
maximum number of retransmissions 3

the slot assignment starts from the sink and each router, after associating with a parent router,

simply chooses any slot which has not been used by any of its interference neighbors. In

GDY, routers are given a sequence number in a top-down manner. The sink sets its slot to

k − 1. Then the slot assignment continues in sequence. For a node v, it will try to find a slot

s(v) = s(u) − l mod k, where u is the predecessor of v and l is the smallest integer letting

s(v) is the slot which does not assign to any of v’s interference neighbors. In the simulations,

routers are randomly distributed in a circular region of a radius r and a sink is placed in the

center. Our centralized tree-based scheme and distributed slot assignment scheme are denoted

as CTB and DSA, respectively. We compare the report latency L(G) (in terms of slots).

Fig. 5.4 shows some slot assignment results of CTB and DSA when r = 35 m and k = 64.

Devices are randomly distributed. The transmission range of routers is set to 20 m. In this

case, CTB performs better than DSA.

Next, we observe the impact of different r, CR (number of routers), and TR (transmission

distance). Fig. 5.5(a) shows the impact of r when k = 64, TR = 25 m, and CR = 3 ×
(r/10)2. CTB performs the best. DSA performs slightly worse than CTB, but still significantly

outperforms RAN and GDY. It can be seen that RAN and GRY could result in very long

68

L(G)=22

k = 64 k = 64

L(G)=19

Figure 5.4: Slot assignment examples by CTB and DSA.

 0

 50

 100

 150

 200

 250

 300

11010090807060504030

A
ve

ra
ge

 L
(G

)

Network radius (m)

CTB
DSA
RAN
GDY

 0

 50

 100

 150

 200

 250

 300

 17 18 19 20 21 22 23 24 25 26

A
ve

ra
ge

 L
(G

)

Transmission range (m)

CTB
DSA
RAN
GDY

(a) (b)

 0

 100

 200

 300

 400

 500

 600

 700

 200 300 400 500 600 700 800 900

A
ve

ra
ge

 L
(G

)

Number of ZigBee routers

CTB
DSA
RAN
GDY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

0.0980.1950.390.781.56

A
ve

ra
ge

 L
(G

)

Network duty cycle (%)

CTB
DSA
RAN
GDY

(c) (d)

Figure 5.5: Comparison of report latencies under different configurations.

69

convergecast latency. Both CTB and DSA are quite insensitive to the network size. But this

is not the case for RAN and GDY. Fig. 5.5(b) shows the impact of TR when CR = 300,

r = 100 m, and k = 64. Since a larger transmission range implies higher interference among

routers, the report latencies of CTB and DSA will increase linearly as TR increases. The report

latency of RAN also increases when TR = 17 ∼ 21 m because of the increased interference.

After TR ≥ 22 m, the latency of RAN decreases because that the network diameter is reduced.

Basically, GDY behaves the same as CTB and DSA. But when the transmission range is larger,

the report latency slightly becomes small.

Fig. 5.5(c) shows the impact of CR when r = 100 m, TR = 20 m, and k = 128. As a

larger CR means a higher network density and thus more interference, the report latencies of

CTB and DSA increase as CR increases. Since the network diameter is bounded, the report

latency of RAN is also bounded. GDY is sensitive to the number of routers when there are

less routers. This is because that each router can own a slot and the report latency increases

proportionally to the number of routers. With r = 100 m, CR = 300, and TR = 20 m,

Fig. 5.5(d) shows the impact of routers’ duty cycle. Note that a lower duty cycle means a

larger number of available slots. Interestingly, we see that the report latencies of CTB, DSA,

and GDY are independent of the number of slots. Contrarily, with a random assignment, RAN

even incurs a higher report latency as there are more freedom in slot selection.

5.4.2 Periodical Reporting Scenarios

Next, we assume that sensors are instructed to report their data in a periodically manner. We

set r = 100 m, TR = 20 m, and CR = 300 with 6000 randomly placed sensors associated to

these routers, and we further restrict a router can accept at most 30 sensors. BO−SO is fixed

to six, so k = 2BO−SO = 64. Since the earlier simulations show that CTB and DSA perform

quite close, we will use only CTB to assign routers’ slots. Sensors are required to generate a

report every 251.66 second (the length of one beacon interval when BO = 14). We set the

70

BO=13
of groups = 2

beacon beacon

 group 0 report

beacon

...

n th superframe (n+4)th superframe

beacon

(n+1)th superframe (n+2)th superframe

beacon

(n+3)th superframe

 group 1 report group 0 report group 1 report

beacon beacon

 group 0
report

beacon

...

n th
superframe

beacon

(n+1)th
superframe

beacon

 group 1
report

(n+2)th
superframe

(n+3)th
superframe

(n+4)th
superframe

(n+5)th
superframe

(n+6)th
superframe

(n+7)th
superframe

(n+8)th
superframe

beaconbeacon beaconbeacon

 group 2
report

 group 3
report

 group 0
report

 group 1
report

 group 2
report

 group 3
report

BO=12
of groups = 4

BO=14
of groups = 1

beacon beacon

all sensors report

beacon

...

n th superframe (n+2)th superframe(n+1)th superframe

all sensors report

Figure 5.6: An example of report scheduling under different values of BO.

buffer size of each router is 10 KB.2 We allocate two mini-slots for each child router of the

sink as the GTS slot. 3

Since (BO − SO) is fixed, a small BO implies a smaller slot size (and thus a smaller unit

size of L(G)). So, a smaller slot size seemingly implies higher contention among sensors if

they all intend to report to their parents simultaneously. In fact, a smaller BO does not hurt the

overall reporting times of sensors if we can properly divide sensors into groups. For example,

in Fig. 5.6, when BO = 14, all sensors of a router can report in every superframe. When

BO = 13, if we divide sensors into two groups, then they can report alternately in odd and

even superframes. Similarly, when BO = 12, four groups of sensors can report alternately.

Since the length of superframes are reduced proportionally, the report intervals of sensors

actually remain the same in these cases. In the following experiments, we groups sensors

according to their parents’ IDs. A sensor belongs to group m if the modulus of its parent’s ID

is m.

Fig. 5.7 shows the theoretical and actual report latencies under different BOs. Note that

a report may be delayed due to buffer constraint. As can be seen, the actual latency does

not always favor a smaller BO. Our results show that BO = 10 ∼ 12 performs better.

2Currently, there are some platforms which are equipped with larger RAMs. For example, Jennic JN5121 [9]
has a 96KB RAM and CC2420DBK [2] has a 32KB RAM.

3There are sixteen mini-slots per active portion (slot).

71

 0

 20

 40

 60

 80

 100

 120

 140

 160

141312111098

L(
G

)
x

sl
ot

-s
iz

e
(in

 s
ec

on
ds

)

BO

Theoretical
Actual

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

141312111098
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

G
oo

dp
ut

 o
r

ch
an

ne
l u

til
iz

at
io

n
(%

)

N
um

be
r

of
 d

ro
pp

ed
 fr

am
es

BO

Goodput
Channel utilization

The number of dropped frames

(a) (b)

Figure 5.7: Simulations considering buffer limitation and contention effects: (a) theoretical
v.s. actual report latencies and (b) goodput, channel utilization, and number of dropped frames.

Report (Beacon) interval: 251.66 s Report (Beacon) interval: 251.66 s

Active portion:
3.932 s

Active portion:
3.932 s

Active portion:
3.932 s

time (s)

N
um

be
r o

f f
ra

m
es

 re
ce

iv
ed

0

5

10

15

20

25

30

134 135 136 137 138 139 385 386 387 388 389 390 391 636 637 638 639 640 641 642 643

Figure 5.8: A log of the number of frames received by a sink’s child router when BO = 14.

Fig. 5.7(b) shows the goodput of sensory reports, channel utilization at the sink, and the num-

ber of dropped frames at the sink. When BO = 14, although there is no frames being dropped

at the sink, the goodput is still low. This is because a lot of collisions happen inside the net-

work, causing many sensory reports being dropped at intermediate levels (a frame is dropped

after exceeding its retransmission limit). Fig. 5.8 shows a log of the numbers of frames re-

ceived by a sink’s child router when BO = 14. We can see that more than half of the active

portion is wasted. Overall, BO = 10 produces the best goodput and a shorter report latency.

Some previous works can be also integrated in this periodical reporting scenario, such as

the adaptive GTS allocation mechanism in [36] and the aggregation algorithms for WSNs in

72

 0

 20

 40

 60

 80

 100

 120

 140

 160

9070503010

L(
G

)
x

sl
ot

-s
iz

e
(in

 s
ec

on
ds

)

Compression rate (%)

Theoretical
Actual

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

9070503010
 0

 0.5

 1

 1.5

 2

G
oo

dp
ut

 o
r

ch
an

ne
l u

til
iz

at
io

n
(%

)

N
um

be
r

of
 d

ro
pp

ed
 fr

am
es

Compression rate (%)

Goodput
Channel utilization

Number of dropped frames

(a) (b)

Figure 5.9: Simulations considering data compression: (a) theoretical v.s. actual report laten-
cies and (b) goodput, channel utilization, and number of dropped frames.

[19][31]. Fig. 5.9 shows an experiment that routers can compress reports from sensors with a

rate cr when BO = 10. If a router receives n reports and each report’s size is 16 Bytes (as in

Table 5.1), it can compress the size to 16 × n × (1 − cr). The report latencies decrease when

the cr becomes larger. By compressing the report data, the goodput can up to 98% and the

report can arrive to the sink more quickly.

5.4.3 Event-Driven Reporting Scenarios

In the following, we assume that sensors’ reporting activities are triggered by events occurred

at random locations in the network with a rate λ. The sensing range of each sensors is 3 meters

and each event is a disk of a radius of 5 meters. A sensor can detect an event if its sensing

range overlaps with the disk of that event. Each router has an 1 KB buffer. When a sensor

detects an event, it only tries to report that event once. All other settings are the same as those

in Section 5.4.2.

Fig. 5.10 shows the simulation results when λ = 1/5s, 1/15s, and 1/30s. From Fig. 5.10(a),

we can observe that when BO is small, the report latency can not achieve to the theoretical

value. This is because that an active portion is too small to accommodate all reports from

sensors, thus lengthening the report latency. When BO becomes larger, the theoretical and

73

 0

 5

 10

 15

 20

 25

 30

 35

 40

 7 8 9 10 11 12

L(
G

)
x

sl
ot

-s
iz

e
(in

 s
ec

on
d)

BO

Theoretical
Actual(λ=1/5s)

Actual(λ=1/15s)
Actual(λ=1/30s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 7 8 9 10 11 12

G
oo

dp
ut

 (
%

)

BO

λ=1/5s
λ=1/15s
λ=1/30s

(a) (b)

Figure 5.10: Simulation results of event-driven scenarios: (a) theoretical v.s. actual report
latencies and (b) goodput.

actual curves would meet. However, the good put will degrade, as shown in Fig. 5.10(b). This

is because reports are likely to be dropped due to buffer overflow. How to determine a proper

BO, which can contain most of the reports and guarantee low latency, is an important design

issue for such scenarios.

74

Chapter 6

An Emergency Guiding and Monitoring
System by ZigBee WSNs

6.1 System Overview

In this work, we design a novel emergency service that aims to guide people to safe places

when emergencies happen. At normal time, the network is responsible for monitoring the

environment in low-power mode. When emergency events are detected, all sensors switch to

active mode to deal with these events. And the network can adaptively modify its topology

to ensure transportation reliability, quickly identify hazardous regions that should be avoided,

and find safe navigation paths that can lead people to exits. We adopt the idea in TORA [54]

to develop our protocol. TORA is a distributed multi-path routing algorithm for mobile ad

hoc networks. In TORA, each mobile node is assigned a temporal-order sequence number to

support multi-path routing from a source to a specific destination node. TORA expresses the

sequence number as a quintuple. To handle mobility, TORA adopts a link reversal procedure

when some hosts lose all their outgoing paths. The concept of multi-path routing in TORA fits

well to our needs in emergency navigation services. However, TORA cannot be directly ap-

plied to our environment due to several reasons. First, TORA involves a quintuple to express

a node’s weight. This may be too costly for sensors with weak communication capability.

Second, TORA looks for shorter and multi-path routes, while our navigation service looks

for safer, but not necessarily shorter, escape paths. Third, there are different considerations

75

for users located at hazardous and non-hazardous regions. Our navigation service is essen-

tially like an all-to-many routing (from all locations to one or multiple exits), and emergency

locations will disturb the discovery of safe paths.

In our scheme, each sensor is assigned an altitude which can be seen as a degree of danger.

Sensors near the exits will be assigned smaller altitudes, and sensors near the emergency loca-

tions will be assigned higher altitudes. The escape paths to exits are along sensors with higher

attitudes to those with lower attitudes. Initially, each sensor is assigned an altitude according

to its distance to the nearest exit. When emergency situations happen, sensors within a certain

distance from emergency locations will form hazardous regions by raising their altitudes. Af-

ter the above step, local-minimum sensors have to re-compute their altitudes to find ways out.

The link reversal concept in TORA is used to solve this problem. In particular, for quick con-

vergence, we use the variation of neighboring sensors’ altitudes to increase a local-minimum

sensor’s altitude. The algorithm converges as long as all sensors (excluding exit sensors lo-

cated on exits) finds their ways out. Our simulation and implementation results show that the

proposed scheme can achieve the goals of navigation safety and quick convergence.

Reference [44] has a similar goal as our work. In [44], it is assumed that there are multiple

emergency points (called obstacles) and one exit in the environment. The goal is to find a

navigation path from each sensor to the exit without passing any obstacle. The concept of

artificial potential is used. The exit will generate an attractive potential, which pulls sensors

to the exit, and each obstacle will generate a repulsive potential, which pushes sensors away

from it. Each sensor will calculate its potential value and tries to find a navigation path with

the least total potential value. Although the algorithm in [44] is shown to be able to find a

shorter and safer path from each sensor to the exit, it has the following drawbacks. First, it

may incur high message overheads. Since the construction is rippled from the exit to other sen-

sors, a minor change of potential nearby the exit may cause many sensors to recompute their

potentials, thus causing a lot of message exchanges and even delays in making the naviga-

tion decision. Second, the algorithm has no concept of hazardous regions. With shortest-path

routing, this algorithm may determine a path that is very close to the emergency location.

76

A

Navigation path

B

Hazardous region
(a) (b)

A

B
C C

Exit
Emergency location

Figure 6.1: Some navigation scenarios when the hazardous region is defined as two hops from
the emergency size.

Consider Fig. 6.1(a), where there are two exits, A and B. When an emergency is detected in

C, according to [44], some users may be directed to B, which is undesirable because they will

pass the hazardous region. Guiding users as in Fig. 6.1(b) will be more desirable because only

users inside the hazardous region are directed to exit B.

6.2 Network and Guidance Initialization

We are given a set of sensors deployed in a building. Sensors’ roles are designated at the

deployment stage. Sensors located at the exits of the building are called exit sensors, and

those located at stairs are called stair sensors. Otherwise, they are called normal sensors. One

sensor is designated as the sink, which is connected to the control host.

From the network, we will construct a communication graph Gc = (V, Ec) and a guidance

graph Gg = (V, Eg), where V is the set of sensors. Each edge (u, v) ∈ Ec represents a

communication link between u and v ∈ V , while each edge (u, v) ∈ Eg represents a walking

path between u and v. Note that a walking path is a physical route that human can pass. So

Eg has to be constructed manually based on the floor plane of the building. Fig. 6.2 shows this

concept. In the following, the network and guidance initialization procedures are presented.

77

room room

room room

(a) (b)

room room

room room

Figure 6.2: (a) Communication graph Gc and (b) guidance graph Gg.

6.2.1 Network Initialization

The purpose of network initialization is to construct a reliable spanning tree rooted at the

sink for reporting purpose. Before establishing the reporting tree, each sensor periodically

sends HELLO packets including its ID, parent (initiate to itself), and hop count to the sink

(initiate to infinite). A communication link (u, v) is established only if u receives v’s HELLO

including u as its neighbor and the HELLO’s signal quality is above a threshold. Each sensor

will maintain a neighbor table based on this rule. Note that the signal quality should be the

average of several packets. This design is to take the unreliability problem in most short-

distance radio systems into consideration. Network initialization is started by the control host

flooding an INIT N packet. A node that receives an INIT N selects a set of neighbors with

the smallest hop count to the sink and then chooses a neighbor with the best signal quality as

its parent. Then this node will rebroadcast the INIT N if it changes its parent. As a result, a

minimum spanning tree is formed and dynamically maintained by periodic HELLO packets.

In our design, sensors also report their neighbor information. The control host can know the

Gc.

6.2.2 Guidance Initialization

The purpose of guidance initialization is to find escape paths leading to exits at normal times

on the graph Gg.

After planning Gg, we will compute for each sensor an altitude according to its hop dis-

tance on Gg to the nearest exit. Sensors locating at exits are called exit sensors, which will

78

broadcast INIT G packets to start this phase. An INIT G packet is composed of three fields:

sender ID, exit sensor ID, and hop count. In exit sensors’ broadcasts, the hop count field is

set to zero. A sensor receiving an INIT G packet from its guidance neighbor should increment

the hop count by one and accept this value as its initial altitude unless it has a smaller alti-

tude. Then it rebroadcasts the INIT G packet with the updated hop count. After each sensor

had its altitude, the initialization phase completes. From time to time, exit sensors have to

restart the initialization phase to take care of possible topology changes. Through the above

process, each sensor also keeps a guidance neighbor table, in which each entry is of the format

<neighbor ID, is exit, altitude> to keep track of each guidance neighbor’s status.

6.3 Emergency Guiding and Monitoring Schemes

In this section, we introduce emergency guiding protocol and tree reconstruction protocol for

emergency guiding and monitoring.

6.3.1 Emergency Guiding Protocol

Our design emphasizes on the correctness in discovering escape paths even if passing haz-

ardous areas is inevitable. When emergencies happen, sensors will update their altitudes in

response to these events. Sensors near the emergency locations will raise their altitudes to

form hazardous regions. Our protocol will avoid guiding users passing the hazardous regions,

if possible. After hazardous regions are formed, some sensors may have local minimum alti-

tudes. The partial link reversal concept in [54] will be used to solve this problem. Navigation

is done by simply following a sequence of sensors with decreasing altitudes. Below, we first

introduce some notations.

• D: a constant such that any sensor whose distance to any emergency location is less

than or equal to this value is considered within a hazardous region. In this paper, we use

hop count to calculate the distance.

• Aemg: a large constant to be assigned to a sensor that detects an emergency event.

79

• Ai: the altitude of sensor i.

• Ii: the altitude of sensor i obtained in the initialization phase.

• ei,j : the hop count from an emergency sensor i to a sensor j.

• EMG packet: the emergency notification packet, which has five fields: (1) event se-

quence number, (2) ID of the sensor which finds the emergency event, (3) sender’s ID,

(4) altitude of the sender, and (5) hop count from the sender to the emergency sensor.

Let’s assume that a sensor x detects an emergency. It will set its altitude to Aemg and

immediately broadcast an EMG(seq, x, x, Aemg, 0) packet. The packet will be flooded in Gg.

The following rules summarize the actions to be taken when a sensor y in Gg receives from a

sensor w an EMG(seq, x, w, Aw, h) packet originated from x.

1. y judges if this is a new emergency by checking the tuple (seq, x).

(a) If this is a new emergency event to y, y records this event and sets ex,y to h + 1.

(b) Otherwise, y checks if h + 1 < ex,y. If so, y changes ex,y to h + 1.

Then y records w’s altitude (Aw) in its neighbor table. Moreover, if w = x and x is an

exit sensor, y should clear the flag is exit in the entry for x in its neighbor table to avoid

guiding users into this emergency location.

2. If ex,y was changed in step 1 and ex,y ≤D, y considers itself within the hazardous region

formed by sensor x. Then y re-calculates its altitude as follows:

Ay = max{Ay, Aemg × 1

e2
x,y

+ Iy}. (6.1)

In our design, the altitude of a sensor inside a hazardous region is increased by an

amount inversely proportionate to the square of its distance to the emergency location.

The value Iy is included because we intend to reflect y’s distance to its nearest exit. The

max function is to take into account that y may be located within multiple hazardous

80

regions and thus may receive multiple EMG packets from different sources. In this case,

the new altitude of y should reflect its distance to the nearest emergency location.

3. Sensor y has to check if it has a local minimum altitude, unless y is an exit sensor. If y

is a local minimum (i.e., its altitude is less than all its neighbors’), it adjusts its altitude

as follows:

Ay = STA(ANy) ×
1

|Ny| + min{ANy} + δ, (6.2)

where Ny is the set of all neighbors of y, STA(ANy) is the standard deviation of the

altitudes of sensors in Ny, and δ is a small constant. The basic idea of using standard

deviation is for quick response to emergency situations. When altitudes of sensors in

Ny vary significantly, it is likely that y is near a hazardous region. Then it should

increase its altitude more quickly to avoid becoming a local minimum again. The fixed

constant δ is to guarantee convergency. Its value should be carefully chosen because a

large δ may easily guide sensors to cross hazardous regions. On the other hand, a small

δ may cost too many message exchanges although it may help find safer paths. The

reciprocal of |Ny| is to reflect the number of possible choices that a sensor has to select

escape directions. A sensor that has less neighbors will increase its altitude in a faster

manner to get away from its local minimum situation. These designs will speed up the

convergency time of our algorithm. Also note that each sensor has to keep on going

back to this step to check if it becomes a local minimum again.

4. Finally, y broadcasts an EMG(seq, x, y, Ay, ex,y) packet if any of the following condi-

tions is true:

(a) This is a new emergency packet heard by y.

(b) Sensor y has changed Ay or ex,y in the previous steps.

We remark that the above step 3 adopts the concept of partial reversal to adjust local

minimum nodes’ altitudes. We do not adopt the full reversal approach in our design because

81

it may easily guide users in a non-hazardous region to pass through a hazardous region even

unnecessarily. Using partial reversal can help guide users to route around a hazardous region.

This will be justified by our simulation.

Finally, we discuss how a sensor chooses its escape direction when emergencies happen.

When a user is inside a hazardous region and there is an exit sensor nearby, we may guide

users either to this exit or to other exits in non-hazardous regions. In our work, we choose a

hybrid approach. Sensors inside hazardous regions can choose an exit sensor that is also in

hazardous regions if the former is within one-hop from the latter. However, sensors in non-

hazardous regions will never choose an exit inside hazardous regions unless it is surrounded

by hazardous regions or there are not proper exits in safe areas. If this case, sensors will keep

on increasing their altitudes until reaching a level higher than those of sensors in hazardous

regions. We summarize the escape rules for any sensor y as follows:

1. If y is in hazardous regions and it sees an exit sensor which is in Ny and which is also

in hazardous regions, then y chooses this exit sensor.

2. In all other cases, y directs users to its neighboring sensor which has the lowest altitude.

We claim that as long as there exists at least one exit sensor which is not located in an

emergency location, the protocol can find an escape path for each non-exit sensor in a finite

number of steps. To prove this, observe that disregarding exit sensors, a sensor has no escape

path only if it is a local minimum. Since δ is a non-zero constant, the protocol has a progress

property in the sense that the number of sensors which have no escape paths will reduce. So

this protocol will converge.

Finally, we comment on the value of Aemg, which will affect the navigation results. A

value that is too small may result in altitudes at the boundaries of hazardous regions that

are smaller than some sensors’ initial altitudes. To avoid this problem, assuming that the

maximum altitude in initial phase is MAXini, the value of Aemg should be at least larger than

MAXini×(D+1)2.

82

(a) (b)

(c) (d)

A A

B

CB

DC

D

AC

B

E

A

B C

D

Figure 6.3: Some navigation examples of our algorithm.

Some Navigation Examples

In the following, we show some typical navigation scenarios in our scheme. Fig. 6.3(a) rep-

resents the scenario where hazardous regions do not form a closed region. After forming

hazardous regions, sensors A, B, and C may temporarily become a local minimum. However,

suppose that sensor D already found an escape path. Later on, A, B and C will eventually find

their escape paths via D. In Fig. 6.3(b), sensors A, B, and C are surrounded by a hazardous

region. In this scenario, these three sensors should raise their altitudes to a level higher than

the altitude of at least one sensor in the hazardous region. Assume that sensor D has the small-

est altitude in the hazardous region. With a proper δ, our algorithm will likely to guide users

via D in most cases. Fig. 6.3(c) is similar to the previous case except that sensors A, B and

C are all inside the hazardous region. So the escape paths for these sensors would be similar.

In Fig. 6.3(d), there is an exit sensor in the hazardous region. Sensors A, B, C, and D, which

are direct neighbors of the exit sensor, will guide users to that exit. Sensors that are not direct

neighbors of the exit will guide users to leave the hazardous region via shortest paths first, and

then to other exits outside the hazardous region, unless there are no such exits.

Fig. 6.4 shows how altitudes change in a 7×7 grid network with D=2. Three emergency

events occur in coordinates (S2,4), (S6,7), and (S5,2), in that order. An exit is located in (S1,

7). Changes of altitudes are shown in both side views and top views. Altitudes are expressed

83

Figure 6.4: Examples of altitude changes when three emergency events occur in coordinates
(S2, 4), (S6, 7), and (S5, 2).

in dB. Navigation paths are from sensors with higher altitudes to sensors with lower altitudes.

6.3.2 Tree Reconstruction Protocol

In the following, we introduce a tree reconstruction protocol to support emergency monitoring.

Emergencies are usually accompanied by damage to communication links, so this protocol is

triggered when the reporting tree in Gc is broken.

The protocol works in a distributed manner. When a sensor x loses its parent by receiving

a HELLO with a larger hop count than its current record or an emergency announcement EMG

from its parent, x sets NO PARENT = true and executes the following steps:

1. Check its neighbor table to find another sensor, say y, with a hop count smaller than or

equal to that of its original parent.

(a) If y exists, x sets y as its parent. If multiple candidates exist, the one with the best

signal quality is chosen. Then, go to step 2.

(b) Otherwise, x deletes all its children in its neighbor table. If x’s neighbor table is

84

still non-empty, it chooses a neighbor with the smallest hop count as its parent and

goes to step 2. Otherwise, it goes to step 3.

2. Broadcast a HELLO packet with its new hop count and parent, sets NO PARENT=false,

and ends the procedure.

3. Set its hop count to infinity and broadcasts a HELLO packet with hop count = ∞. Then

x waits for HELLO packets. Any HELLO with a finite hop count will cause x to choose

the sender as its parent. Then go back to step 2.

The above reconstruction protocol is for quick recovery by avoiding cycles. Step 1(a) is to

choose a new parent with at least the same hop count as its original one. Step 1(b) is to find

a new parent in other subtrees. Both steps are to guarantee that no internal loops are formed.

When there are multiple emergencies, two sensors may set each other as their parents. This

can be resolved when an up-to-date HELLO is received. Although HELLO packets may suffer

from loss, up-to-date HELLOs will remove temporary cycles.

6.4 Simulation Results

This section presents our simulation results. We first consider a 10×10 grid networks. Each

sensor has four navigation links to neighboring sensors on its east, west, north, and south.

Aemg is set to 200 and δ is set to 0.1. We compare our algorithm with the one in [44]. We use

packet count and convergence time as performance metrics. Note that the packet count does

not include packets used during the initialization phase. An unslotted CSMA/CA protocol

following the IEEE 802.15.4 [37] is simulated with a data rate of 20 kbps. The convergence

time is measured in ms.

Fig. 6.5 shows our simulation results. In case 1, the sensor located in the middle of the

network detects an emergency event. However, this emergency event does not change the

relative altitudes of neighboring sensors. So our algorithm only spends very few messages

and quickly converges. In case 2, the placement of sensors is the same as the first case, except

85

660 /
350.62

100 /
59.95

1215 /
530.81

130 /
87.5

742 /
442.52

137 /
87.89

pkt. count/
cnvg. time

Method of Li et al. Our method (D=2)

1

2

3

No pkt. count/
cnvg. time

A

A A

A

pkt. count/
cnvg. time

Method of Li et al. Our method (D=2)
No pkt. count/

cnvg. time

979 /
468.83

252 /
78.99

731 /
372.0

264 /
107.15

4

5

1254 /
350.1

408 /
67.296

Path Path Path Path

Figure 6.5: Comparison of packet count and convergence time (in ms) in a 10×10 grid net-
work.

that an emergency is detected by the exit sensor A. Although both algorithms will compute

the same navigation paths, the algorithm in [44] will incur more messages, because sensors

near A will first be attracted to, and then repelled from, A. In case 3, an emergency event

is detected near exit A. As shown in the figure, without the concept of hazardous region,

[44] will guide some users to pass through the hazardous region, which is undesirable. Our

algorithm can effectively avoid guiding users through the hazardous region. In case 4, some

sensors are bounded by hazardous regions. Although guiding users through hazardous regions

is inevitable, our scheme will choose paths that are as farther away from emergency locations

as possible. In case 5, we add one more exit in the lower-left corner. The algorithm in [44]

will direct some sensors to pass the hazardous regions to reach that exit, but the problem can

be avoided in our algorithm. Case 6 shows a scenario that the network is almost partitioned

by emergencies. Again, we see that the navigation paths discovered by our algorithm are safer

than what are discovered by [44].

Fig. 6.6 illustrates our navigation results in networks with various forms. As can be seen,

86

205 /
79.6

309 /
286.6

164 /
107.9

83 /
72.2

148 /
93.6

94 /
78.9

pkt. count/
cnvg. time

1

2

3

No Path

4

5

6

pkt. count/
cnvg. timePathNo

Figure 6.6: Navigation results in various forms of networks.

our scheme can effectively lead people to exits and avoid hazardous regions. These results also

imply that our protocol can be applied to variable forms of buildings. We have also simulated

our algorithm in a large-scale sensor network with 2500 sensor nodes. There are 1% to 5% of

random sensors being selected as exits, and 1% of random sensors as emergency points. The

parameter D is set to 5. The convergence times of 1%, 2%, 3%, 4%, and 5% exit sensors are

21.6s, 10s, 9.1s, 2.9s, and 2.0s, respectively. This result demonstrates that our algorithm is

quite scalable when applying to large networks.

D is an important parameter in our algorithm, which is used to form hazardous regions.

While the value of D is to reflect the dangerous range affected by an emergency event, its value

may also affect the navigation results and system performance. For a small network, a D that

is too large is meaningless, because a few emergency events may result in a network which

is all covered by hazardous regions. Fig. 6.7(a) shows different settings of D in a 10×10

grid network. A small D may result in users being guided via paths close to emergency

sources. On the contrary, a large D can help find safer paths, but the message overhead also

increases. Fig. 6.7(b) shows the effects of δ and Aemg on the quality of escape paths and

87

204

211

398

1

3

5

D Pkt.
countNetwork(10x10)

(a)

274

257

249

292

256

244

Aemg=
150

Aemg=
300Network(10x10)

(b)

δ=0.3 δ=0.3

δ=1.1 δ=1.1

δ=2.0 δ=5.0

Pkt.
count

Pkt.
count

Pkt.
count

Pkt.
count

Pkt.
count

Pkt.
count

Figure 6.7: (a) The effect of D on the quality of escaping paths and message overheads. (b)
The effects of δ and Aemg on the quality of escape paths and message overheads.

message overheads. We observe that using a smaller Aemg with a larger δ may make it easier

to guide users to cross hazardous regions (as the third case in Fig. 6.7(b)). This is because a

larger δ may quickly increase the altitudes of sensors with local minimum to values larger than

those a sensors in hazardous regions. We thus recommend to use a relatively larger Aemg with

a relatively smaller δ. In our current design, these parameters, D, Aemg and δ, are configured

at the deployment stage, and can be determined via simulations by manual involvement.

Next, we compare our emergency monitoring scheme against DD [39] and PEQ [23]. We

consider a grid sensing field ranging from 10m × 10m to 24m × 24m. In each 1m × 1m

grid, we deploy a sensor at a random location. Sensors’ transmission distance ranges from

2 to 3 m. A sink is placed at the upper left corner of the network. We randomly generate

20% sensors as emergency nodes so as to trigger our tree reconstruction protocol, and observe

the convergence time, number of packet exchanges, and number of temporary cycles. Each

result is the average of 100 simulations. Assuming perfect channels, Fig. 6.8(a) compares the

88

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

10x10 12x12 14x14 16x16 18x18 20x20 22x22 24x24

C
on

ve
rg

en
ce

 ti
m

e
(m

s)

Network size

DD
PEQ
OUR

 0

 200

 400

 600

 800

 1000

 1200

10x10 12x12 14x14 16x16 18x18 20x20 22x22 24x24

N
um

be
r

of
 p

ac
ke

ts

Network size

DD
PEQ
OUR

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10x10 12x12 14x14 16x16 18x18 20x20 22x22 24x24

T
em

po
ra

ry
 c

yc
le

 r
at

e
(%

)

Network size

DD
PEQ
OUR

(c)

Figure 6.8: Simulation results of (a) convergence time, (b) communication cost, and (c) tem-
porary cycle rate under perfect channels.

convergence time of different schemes. In all cases, our scheme performs better than DD and

PEQ. In PEQ, it takes long for a child of a failed node to broadcast SEARCH and to wait for

responses to determine a new path. In DD, its negative reinforcements may go several hops to

arrive at the children of failed nodes, thus causing long latency. Fig. 6.8(b) compares that the

communication costs required to reach convergence. Fig. 6.8(c) shows the rates that temporary

cycles are generated during our simulations under perfect channels. PEQ may cause cycles

when sensors simultaneously change routes and DD may easily cause cycles when sensors

select new parents from their interest data caches regardless of their hop counts to the sink.

Our scheme causes no temporary cycles. Note that when HELLO packets may be lost, our

scheme may cause temporary cycles.

89

Simulation Experiment Pkt. Count
Sim./Exp.

128

106

25/26

36/40

40/44

1

2

3

No Simulation Pkt. Count
Sim./Exp.No

39/47

38/44

36/40

4

5

6

Experiment

128

106

Meanings of directions

Figure 6.9: Simulation results vs. experimental results.

6.5 Prototyping Results

We have developed a prototyping system by MICAz motes [11]. We use photo sensors, which

can read light degrees, to simulate and trigger emergency events. A sensor which senses a

light degree above a threshold is considered detecting an emergency event and will broadcast

EMG packets. Since broadcast communications are not reliable [64], packets may be lost. So

we enforce sensors to periodically rebroadcast EMG packets to improve reliability.

A 4×5 grid network is tested, as shown in Fig. 6.9. Fig. 6.9 also shows both our simulation

and real experimental message costs and navigation paths. Due to packet loss, slightly higher

message overheads can be seen in experimental results. Navigation directions are reflected by

LEDs of motes. Since the network scale is small, the navigation paths in both simulations and

experiments are exactly the same.

90

Chapter 7

An Intelligent Light Control System by
ZigBee WSNs

7.1 System Overview

In this work, we propose an intelligent light control system which considers users’ activities

in indoor environments. Fig. 7.1 shows the network scenario. The network field is divided

into regular grids. Each grid has a fixed sensor. Together, these sensors form a multi-hop ad

hoc network. One of the nodes is designated as the sink of the network and is connected to a

control host. The control host can issue light control commands. In our system, there are two

kinds of lighting devices, called whole lighting and local lighting devices. A whole lighting

device is one such as a fluorescent light, which can provide illuminations for multiple grids.

For example, in Fig. 7.1, the light in G13 is a whole lighting device, which covers grids G7,

G8, G9, G12, G13, G14, G17, G18, and G19. A local lighting device is one such as a table lamp,

which can only provide concentrated illumination.

In our system, we assume that the location of each user is known and each user carries a

wireless sensor, which can detect its local light intensity. Users are considered to have vari-

ous illumination requirements according to their activities. For example, in Fig. 7.1, user A

is watching television in G25 and user B is reading in G16. Both A and B require sufficient

background illuminations in their surroundings, and B needs concentrated illumination for

reading. In this work, we model an illumination requirement as the combination of back-

91

Control
Host

Whole Lighting
Device

User

Sensor

Local Lighting
Device

SinkG1 G2 G3 G4 G5

G6 G7 G8 G10G9

G11 G15G14G13G12

G16 G18G17

G21 G23G22

G20G19

G25G24

A

B

Figure 7.1: The network scenario of our system.

ground and concentrated lighting according to the user’s current activity. An illumination

requirement consists of an illumination interval and a coverage range. A user is said to be

satisfied if the provided light intensity is in the specified interval for all grids in the coverage

range. We design an illumination decision algorithm trying to satisfy all users such that the

total power consumption is minimized. However, it may not be possible to satisfy all users si-

multaneously. In this case, we will gradually relax users’ illumination intervals until all users

are satisfied. Then the outputs are sent to a closed-loop device control algorithm to adjust the

illuminations of lighting devices. Our prototyping results and system demonstrations verify

that our ideas are practical and feasible.

Several works [51][53][61][68] have investigated using WSNs in light control for energy

conservation. References [51] and [68] introduce light control using wireless sensors to save

energy for commercial buildings. Lighting devices are adjusted according to daylight inten-

sity. Reference [53] defines several kinds of user requirements and their corresponding cost

functions. The goal is to adjust lights to minimize the total cost. However, the result is mainly

for media production. The work [61] models the light control problem as a trade-off between

92

energy conservation and user requirements. Each user is assigned a utility function with re-

spect to light intensity. The goal is to maximize the total utility. However, it does not consider

the fact that people need different illuminations under different activities. Also, some users

may suffer from very low utilities, while others enjoy high utilities. In [53][61], it is necessary

to measure all combinations of dimmer settings of all devices and the resulting light intensities

at all locations. If there are k interested locations, d dimmer levels, and m lighting devices, the

complexity is O(kdm). Moreover, the above works only consider one type of lighting devices.

In real life, lighting devices can be classified as whole lighting and local lighting ones.

7.2 System Models

In this system, there are k grids, n users, m whole lighting devices, and m′ local lighting

devices. All lighting devices are adjustable. The k grids represent the network area and are

labeled as G1, G2, ..., and Gk. In each grid Gi, i = 1..k, there is a fixed sensor fi, and each

user uj, j = 1..n, also carries a portable wireless sensor pj. Users can specify their current

activities to the control host via their portable devices. We also assume that via a localization

scheme (such as [20]), users’ current grid locations are known to the control host.

The whole lighting devices are named D1, D2, ..., Dm, and the local lighting devices

are named d1, d2, ..., dm′ . The fixed sensor that is closest to Di, i = 1..m, is denoted as

fc(Di). However, since users are mobile, we use a function bound(uj), j = 1..n, to denote the

association between users and local lighting devices. This function restricts a local lighting

device to serve at most one user at one time. If there is no local lighting device near user

uj, bound(uj) = ∅; otherwise, bound(uj) is the ID of the nearest local lighting device. Light

intensities sensed by fi, i = 1..k, and pj, j = 1..n, are denoted by s(fi) and s(pj), respectively.

Since the value of s(fi) may be contributed by multiple sources, we denote by l(Di), i = 1..m,

the portion of light intensity contributed by Di to the fixed sensor closest to Di, i.e., fc(Di).

Note that l(Di) ≤ s(fc(Di)) because s(fc(Di)) may be affected by other whole lighting devices

and sunlight. Similarly, we denote by l(di), i = 1..m′, the portion of light intensity contributed

by di to portable sensor pj if user uj satisfies bound(uj) = i. If there exists no uj such that

93

End
Adjustment of
whole lighting

devices

Decision for
whole lighting

devices

AD AdDecision for
local lighting

devices

Adjustment of
local lighting

devices

User Movement or
environment change

Figure 7.2: The system architecture of our light control system.

bound(uj) = i, we let l(di) = 0. Note that in reality, the values of l(Di) and l(di) can

not be directly known, unless there are no other light sources. We will address this issue in

Section 7.2.

In the system, sensors periodically report their readings to the sink. For simplicity, we

define the following column vectors:

Sf =
[
s(f1), s(f2), . . . , s(fk)

]T
,

Sp =
[
s(p1), s(p2), . . . , s(pn)

]T
,

LD =
[
l(D1), l(D2), . . . , l(Dm)

]T
,

Ld =
[
l(d1), l(d2), . . . , l(dm′)

]T
.

Note that in practice, each Di has its limitation. So we let lmax(Di) be the upper bound of

l(Di) and let

Lmax
D =

[
lmax(D1), lmax(D2), . . . , lmax(Dm)

]T
.

We make some assumptions about lighting devices. First, we assume that a local lighting

device can always satisfy a user’s need when the user is underneath this device. Second, we

assume that there is no obstacle between whole lighting devices and fixed sensors. Third, the

illumination provided by a local lighting device does not affect the measured light intensity of

fixed sensors.

Fig. 7.2 shows our system architecture. Light adjustments are triggered by users’ move-

ments or environment changes. First, the illuminations of whole lighting devices are deter-

mined, followed by those of the local lighting devices. Feedbacks from sensors are then sent

to the sink to decide further adjustment of lighting devices so as to satisfy users’ demands.

94

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

0 0.5 1 1.5 2

Li
gh

t i
nt

en
si

ty
 (

lu
x)

Horizontal Distance to fc(Di)
 (m)

on-level 30%
on-level 40%
on-level 50%
on-level 60%
on-level 70%
on-level 80%
on-level 90%

on-level 100%

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.5 1 1.5 2

N
or

m
al

iz
ed

 li
gh

t i
nt

en
si

ty

Horizontal Distance to fc(Di)
 (m)

on-level 30%
on-level 40%
on-level 50%
on-level 60%
on-level 70%
on-level 80%
on-level 90%

on-level 100%

(a) (b)

Figure 7.3: An experiment for characterizing the degradation of light signals.

Computing LD and Ld

Earlier, we mentioned that the values of LD and Ld can not be known directly. Below, we first

use an experimental method to derive LD. Assuming no other light source existing, Fig. 7.3(a)

shows the measured intensities of a whole lighting device Di by fc(Di) and other fixed sensors

at different distances from fc(Di), under different on-levels of Di. We see that the measured

intensity degrades following a similar trend. In fact, if we further normalize the value to the

intensity measured by fc(Di), we see that the degrading trends are almost the same, as shown

in Fig. 7.3(b). Therefore, assuming the impact factor of Di on fc(Di) to be wi
c(Di)

= 1, the

impact factor of Di on any other fj can be written as a weighted factor wi
j, where 0 ≤ wi

j ≤ 1.

Putting all impact factors together, we define a weight matrix

W =

⎡
⎢⎢⎢⎣

w1
1 w2

1 · · · wm
1

w1
2 w2

2 · · · wm
i

...
... · · · ...

w1
k w2

k · · · wm
k

⎤
⎥⎥⎥⎦ .

Since light intensities are additive [61], the light intensity measured by fc(Di) is the sum of

intensities from sunlight, Di, and neighboring devices. The intensities of the sunlight to all

fixed sensors are written as a k × 1 column vector Ssun. So we have

Sf = W · LD + Ssun. (7.1)

95

In Eq. (7.1), there are m unknowns in LD and k equations, where m ≤ k. Any typical k-means

algorithm [48] can solve Eq. (7.1) by inducing the least mean square error. Here, we simply

construct a new m×m matrix Ŵ by keeping all c(Di)-th rows, i = 1..m, in W and removing

the other k − m rows. So, Eq. (7.1) can be rewritten as

Sf − Ssun = Ŵ · LD ⇒ LD = Ŵ−1 · (Sf − Ssun). (7.2)

The weight matrix W can be measured at the deployment stage, vector Ssun can be measured

on-line when all lights are off, and vector Sf can be obtained on-line. So the calibration

complexity is O(km). This is lower than those of [53][61].

The calculation of Ld is quite straightforward. Due to the property of our approach, before

a user arrives at a di, no measurement can be obtained for l(di). At this time, l(di) = 0. When

a portable sensor, say, pk is getting close to and bounded with di, the local lighting device di

may be triggered. Here, we simply use the reading of the fixed sensor, say, fj located at the

same grid as di as the background light intensity. We let the light intensity provided by d i to

pk be

l(di) = s(pk) − s(fj).

7.3 Illumination Decision Algorithm

Each user profile consists of a number of activity-requirement pairs. Given an activity, the

system should try to satisfy the corresponding requirement. Each requirement of a user ui has

three parts:

1. Expected illumination interval of whole lighting: [B l
D(ui), B

u
D(ui)] (in lux), where

Bl
D(ui) and Bu

D(ui) are the lower and the upper bounds, respectively.

2. Expected illumination interval of local lighting: [B l
d(ui), B

u
d (ui)], where Bl

d(ui) and

Bu
d (ui) are the lower and the upper bounds, respectively.

3. Coverage range of whole lighting: Ri = [ri(G1), ri(G2), . . . , ri(Gk)]
T , where for each

j = 1..k, ri(Gj) = 1 if grid Gj is expected to receive a light intensity within [B l
D(ui), B

u
D(ui)]

96

for user ui; otherwise, ri(Gj) = 0. This array defines the range of grids which should

meet the whole lighting requirement.

For example, a possible requirement of a reading user B in Fig. 7.1 can be [B l
D(uB), Bu

D(uB)] =

[200, 600], [Bl
d(uB), Bu

d (uB)] = [500, 1000], and RB = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1,

0, 0, 0, 1, 1, 0, 0, 0]T .

Let LD and Ld be the current intensity vectors provided by whole and local lighting de-

vices, respectively. To facilitate the presentation, let XK =
[
1 1 · · · 1

]
be a 1 × K row

vector, and R̄i a k × k matrix such that

R̄i =

⎡
⎢⎢⎢⎣
ri(G1) 0 · · · 0

0 ri(G2) · · · 0

0
... · · · ...

0 0 · · · ri(Gk)

⎤
⎥⎥⎥⎦ .

We formulate our problem P as a linear programming problem with inputs Sf , Sp, LD, Ld,

W , and user requirements. Our goal is to find the adjustment vectors

AD =
[
a(D1), a(D2), . . . , a(Dm)

]T

Ad =
[
a(d1), a(d2), . . . , a(dm′)

]T

for whole and local lighting devices, respectively, where a(Di), i = 1..m, and a(dj), j =

1..m′, are the amounts of adjustment required for Di and dj, respectively, such that the fol-

lowing two objectives are satisfied:

min Xm(AD + LD) (7.3)

min Xm′(Ad + Ld) (7.4)

subject to:

Bl
D(ui)Ri ≤ R̄i(Sf + WAD) ≤ Bu

D(ui)Ri, ∀i ∈ [1, n] (7.5)

O ≤ AD + LD ≤ Lmax
D (7.6)

Bl
d(ui) ≤ a(dj) + s(pi) ≤ Bu

d (ui), if bound(ui) = j, ∀i ∈ [1, n]. (7.7)

97

Eq. (7.3) and Eq. (7.4) mean that the total power consumptions of both whole and local light-

ing devices after the adjustment should be minimized. Eq. (7.5) imposes the whole lighting

requirement, where Sf + WAD is the light intensity vector after adjustment and matrix R̄i is

to filter out those grids not in the coverage range of whole lighting. Eq. (7.6) is to confine the

adjustment result within the maximum and the minimum capacities of devices, where O is a

zero vector. Eq. (7.7) is to impose the requirement of each local lighting if a user is bounded to

it. Here we assume that local lighting can always provide extra illuminations to satisfy users’

requirements. So we do not specify upper bounds as that in Eq. (7.6).

Since we assume that the illuminations of local lighting devices do not affect the measured

light intensity of fixed sensors, the decision of whole lighting levels can be made indepen-

dently of the decision of local lighting levels. (However, the reverse is not true because the

decision of whole lighting levels does affect the decision of local lighting levels.) This allows

us to solve problem P in two stages as formulated below.

P1: Given Sf , LD, W , and user requirements, solve AD for Eq. (7.3), Eq. (7.5), and Eq. (7.6).

P2: Given Sp, Ld, and user requirements, solve Ad for Eq. (7.4) and Eq. (7.7).

Theorem 5 Problem P is equivalent to the joint problems P1 and P2.

Problem P1 is a linear programming problem, which can be solved by the Simplex method

[27], unless the problem itself is infeasible, which may happen when two users have conflict-

ing requirements on the same grid. When no feasible solution can be found, our system will

try to eliminate some constraints to make P1 feasible. Reference [58] already shows that find-

ing a feasible subsystem of a linear system by eliminating the fewest constraints is NP-hard.

Hence, we propose a heuristic below.

The idea is to gradually relax some requirements until a feasible solution appears. We first

define some notations. Given the current values of Sf , LD, and Lmax
D , it is easy to compute the

minimum and maximum possible illuminations of grids by S min
f = Sf − WLD and Smax

f =

Sf + W (Lmax
D − LD). Also, consider c intervals on R (the set of reals) which define c users’

requirements on whole lighting. We say that an interval [a, b] ∈ R has an overlapping degree

98

of d if for each point p ∈ [a, b], p falls in at least d of the above c intervals. An interval

[a, b] is said to be a max-interval if there exists no other interval [a′, b′] which has a higher

overlapping degree than [a, b] and [a′, b′] is a superset of [a, b]. It is not hard to see that given

any c intervals, there must exist a max-interval. Also it is easy to design a polynomial-time

linear search algorithm to find a max-interval (we omit the details here). Our algorithm works

as follows.

1. For each grid Gi, i = 1..k, find the set of users Ui whose coverage ranges contain Gi, i.e.,

Ui = {uj|rj(Gi) = 1, ∀j ∈ [1, n]}. For each user uj ∈ Ui, check if [Bl
D(uj), B

u
D(uj)] ∩

[Smin
f [i], Smax

f [i]] = ∅. If so, the requirement cannot be satisfied. So we set rj(Gi) = 0

and update R̄j.

2. Again, for each grid Gi, i = 1..k, consider the set Ui. Check if there is a common

overlapping interval for the requirements of all users in Ui. If not, find a max-interval,

say, [a, b] for the requirements of all users in Ui. For each user uj ∈ Ui, check if

[Bl
D(uj), B

u
D(uj)] ∩ [a, b] = ∅. If so, we will give up the requirement of uj. So we set

rj(Gi) = 0 and update R̄j .

3. Try to solve problem P1. If there exists no feasible solution AD, relax the whole lighting

requirement of each user ui, i = 1..n, to [Bl
D(ui) − α, Bu

D(ui) + α], where α is a

predefined constant. Then repeat this step again.

4. After deciding AD, solve problem P2 as follows. For each dj, j = 1..m′, check if there

is a user ui such that bound(ui) = j. If so, set a(dj) = Bl
d(ui) − s(pi); otherwise, we

can inform the system to turn dj off.

Example 1: Fig. 7.4 shows a scenario with three grids, two users, two whole lighting

devices, and two local lighting devices. User u1’s requirements are [Bl
D(u1), B

u
D(u1)] =

[200, 400], [Bl
d(u1), B

u
d (u1)] = [700, 900], and R1 = [1, 0, 0]T . User u2’s requirements are

[Bl
D(u2), B

u
D(u2)] = [300, 500], [Bl

d(u2), B
u
d (u2)] = [800, 1000], and R2 = [0, 1, 0]T . Prob-

lem P1 has the objective:

99

G1 G2 G3

1f 2f 3f

1D 2D

2u1u

10
6.06.0

01
W

T
fS 100100100

T
DL 00 Tmax

DL 10001000

d1 d2

1)(1ubound 2)(2ubound

Figure 7.4: An example of illumination decision.

min
[
1 1

]([
a(D1)
a(D2)

]
+

[
0
0

])
≡ min (a(D1) + a(D2))

subject to:

200

⎡
⎣1

0
0

⎤
⎦ ≤

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦

⎛
⎝

⎡
⎣100

100
100

⎤
⎦ +

⎡
⎣ 1 0

0.6 0.6
0 1

⎤
⎦[

a(D1)
a(D2)

] ⎞
⎠ ≤ 400

⎡
⎣1

0
0

⎤
⎦

≡
⎡
⎣200

0
0

⎤
⎦ ≤

⎡
⎣100 + a(D1)

0
0

⎤
⎦ ≤

⎡
⎣400

0
0

⎤
⎦

⎡
⎣ 0

300
0

⎤
⎦ ≤

⎡
⎣ 0

100 + 0.6a(D1) + 0.6a(D2)
0

⎤
⎦ ≤

⎡
⎣ 0

500
0

⎤
⎦

[
0
0

]
≤

[
a(D1)
a(D2)

]
+

[
0
0

]
≤

[
1000
1000

]
.

Since P1 is feasible, the results are a(D1) = 184 and a(D2) = 150.

After adjusting whole lighting devices, Sp = [s(p1), s(p2)]
T = [284, 300]T and Ld =

[l(d1), l(d2)]
T = [0, 0]T . So problem P2 has the objective:

100

Lighting devices

Sensors

Control
host

Sink

Figure 7.5: The closed-loop device control procedure.

min
[
1 1

]([
a(d1)
a(d2)

]
+

[
284
300

])
≡ min (a(d1) + a(d2) + 584)

subject to:

700 ≤ a(d1) + 284 ≤ 900

800 ≤ a(d2) + 300 ≤ 1000.

The adjustments of local lighting devices are as a(d1) = Bl
d(u1) − s(p1) = 416 and a(d2) =

Bl
d(u2) − s(p2) = 500.

7.4 Device Control Algorithm

Given the light intensities contributed by devices to sensors, i.e., LD and Ld, the algorithm in

Section 7.3 will determine the target adjustment amounts, i.e., AD and Ad. However, since

what reported by sensors are accumulated values, we have to convert these values to the actual

adjustment amounts. If the actual amounts do not match the target amounts, we will adopt a

binary search technique to gradually approach these amounts.

Below, let L
(1)
D and L

(1)
d be the current contributed intensities of whole and local lighting

devices, respectively, and L
(∗)
D = L

(1)
D + AD and L

(∗)
d = L

(1)
d + Ad be the target ones. Our

101

algorithm contains multiple iterations. In the i-th iteration, i ≥ 1, based on L
(i)
D and L

(i)
d , we

will adjust devices leading to new intensities L
(i+1)
D and L

(i+1)
D . This will be repeated until the

target values are reached or no further improvement is possible. Such a closed loop control

is illustrated in Fig. 7.5. The binary search procedure can be explained by the following

example. Suppose that device Di’s current on-level is 40% with contribution l(0)(Di) = 300

lux to sensor fc(Di) and l(∗)(Di) = 200 lux. The control host will first adjust the on-level of

Di to (0 + 40)/2 = 20%. After first iteration, the control host will collect sensors’ reports to

compute L
(1)
D and thus l(1)(Di). With l(1)(Di), the next guess will be an on-level of 10% or

30%. The similar trial will be done for all whole and local lighting devices.

In practice, the on-levels of dimmers are discrete and have finite levels. The termina-

tion conditions of the above binary search can be controlled by a threshold, say, β when

|l(i+1)(Dj) − l(i)(Dj)| ≤ β. To accelerate the decision, the control host can even record the

relationship between the contributed light intensities and on-levels of devices (we omit the

details here).

7.5 Prototyping Results

This section presents our implementation of the intelligent light control system. Fig. 7.6 shows

the system architecture and the related protocol components. The system can be divided into

three parts: wireless sensor network, actuators, and control host. In the following, we describe

each part in details.

Wireless Sensor Network

Our sensor nodes are developed using Jennic JN5121 [9] as the radio module and Si photo-

diode IC [12] as the photo sensor (Fig. 7.7). Users can indicate their current activities to the

system by clicking the buttons on the sensor board. Fixed sensors are used to form the back-

bone of the network. A portable sensor will associate with the nearest fixed sensor. Fixed and

portable sensors periodically report aggregated light intensity values to the sink. The sink for-

wards sensing data to the control host via an RS232 interface. Note that when a sensor finds

102

EDX-F04

Sink

PowerLinc LampLinc

RS232/RS485

PowerLineRS232

Local lighting
devices

Whole lighting
devices

UPnP
control server

Ethe
rne

t

RS232

5-pin signal cable

Portable
sensors

Fixed
sensors

Sensor data handler

User
status
handler

Decision
handler

Dimmer handler

Illumination
requirement

database
Administrative user interface

Control Host

Report forwarding Commands

On-level settings

Trigger

Light intensity reportUser status update

WSN Actuators

Sink node

Device control algorithm

Illumination decision
algorithms

INSTEON

Lighting devices

UPnP

Query

(a) (b)

Figure 7.6: (a) System architecture and (b) components of our intelligent light control system.

Buttons

Photo
sensor

Jennic
module

Figure 7.7: The implemented sensor board.

that its surrounding light intensity changes rapidly, it will also report. This happens when

the control host is adjusting lighting devices. Moreover, we implement a reduced version of

the localization scheme in [20] to trace users’ locations. Once a portable sensor decides its

owner’s location, it issues a location update to the control host.

Actuators

In our current implementation, whole and local lighting devices are controlled by different

ways. We implement the UPnP Lighting Controls V1.0 standard [14] to control whole lighting

devices. The control host issues UPnP device control commands to the UPnP control server

through the Internet. Then the UPnP control server controls some dimmer EDX-F04 dimmers

103

[4], which are connected to whole lighting devices. On the other hand, we use the INSTEON

LampLinc dimmer and PowerLinc controller manufactured by SmartHome [13] to control

local lighting devices. Each local lighting device is plugged in a LampLinc dimmer. The

PowerLinc controller is connected to the control host. When receiving control commands

from the control host, the PowerLinc controller can control dimmers through the power-line

network.

Control Host

The control host is implemented by Java. It consists of five components.

• Sensor data handler: Its main task is to classify the report data from the sink into two

types: user status update and light intensity report. Then it relays these data to the

corresponding components.

• User status handler: This component tracks the latest locations and activities of users.

When detecting any change of users’ locations or activities, it triggers the decision han-

dler component to compute new illumination requirements.

• Decision handler: This component implements the algorithms in Section 7.3 and Sec-

tion 7.4. It is triggered by the user status handler component or by any change in the

environment. We use Matlab to implement our algorithms in Section 7.3. The Mat-

lab program is translated to a Java program by the Matlab builder for Java [10]. After

making device control decisions, it sends on-level settings to the dimmer handler.

• Dimmer handler: This component serves as the interface between the control host and

the actuators and issues commands to the UPnP control server and the INSTEON Pow-

erLinc controller.

• Administrative user interface: We implement a graphical user interface (GUI), which

contains three panels: 1) The monitor panel shows the locations of users, fixed sensors,

and lighting devices. 2) The configuration panel is for the system manager to plan

104

G1 G2 G3

G4 G5 G6

G7 G8 G9

G10 G11 G12

D1

D3D2

Figure 7.8: The scenario to verify the measured LD.

the network and set system parameters. 3) The information panel shows the reported

sensory readings, the connection statuses of sensor nodes, and so on.

We build the light control system in a room of size 5 m× 5 m, which is divided into 3× 3

grids. More details and demo videos can be found in http://wsn-research.blogspot.com/.

7.6 Performance Evaluations

We use some experiments and simulations to verify our results.

A) Verification of the estimation of LD: In Section 7.2, we show how to evaluate LD. Here

we use the network scenario in Fig. 7.8 with 12 grids and three whole lighting devices to verify

the result. Here, we simply use lamps as whole lighting devices. With different on-levels for

lamps, we compute LD and compare it against the actual measured value. Fig. 7.9 shows the

comparison without and with sunlight effect. We can see that the computed and the measured

values are quite close.

B) Verification of the illumination decision algorithm (IDA): We set up two scenarios, S1

and S2. Scenario S1 has 5× 5 grids with 9 whole lighting devices as in Fig. 7.1. Scenario S2

has 9 × 9 grids with 25 whole lighting devices. In both scenarios, each whole lighting device

can cover its nearby 9 grids. The weighted factors of each whole lighting device Di on nearby

fixed sensors are set as follows. (1) The weighted factor of Di on the fixed sensor at Gc(Di) is

1. (2) For fixed sensors in left, right, up, and down grids of Gc(Di), the weights are set to 0.5.

105

 0

 50

 100

 150

 200

 250

(50, 50, 50) (80, 80, 80) (90, 90, 90) (75, 95, 85) (85, 65, 75)

Li
gh

t i
nt

en
si

ty
 (

lu
x)

On-level percentage of (D1, D2, D3)

computed l(D1)
measured l(D1)
computed l(D2)
measured l(D2)
computed l(D3)
measured l(D3)

 0

 50

 100

 150

 200

 250

(50, 50, 50) (80, 80, 80) (90, 90, 90) (75, 95, 85) (85, 65, 75)

Li
gh

t i
nt

en
si

ty
 (

lu
x)

On-level percentage of (D1, D2, D3)

computed l(D1)
measured l(D1)
computed l(D2)
measured l(D2)
computed l(D3)
measured l(D3)

(a) (b)

Figure 7.9: Experiments on computed and measured LD when the environment is (a) without
and (b) with sunlight effect.

500 600 700 800 900 1000

act1

act3
act4

Lux400

500 600 700 800200100 Lux400300

act1
act2

act3

act2

act4
act5

act6

(a)

(b)

act5

Figure 7.10: Activity-requirement pools: (a) AR1 and (b) AR2.

(3) For fixed sensors in upper-left, lower-left, upper-right, and lower-right grids of Gc(Di), the

weights are 0.25. (4) For all other fixed sensors, the weights are 0. Local lighting devices are

not simulated since they have no impact on performance. All lighting devices are initially set

to be turned off.

We define two activity-requirement pools, called AR1 and AR2, as shown in Fig. 7.10.

Each acti in Fig. 7.10 represents an expected illumination interval of whole lighting. In our

simulations, users randomly select their activities from a pool. The coverage range of a user’s

requirement is the five nearest grids. We compare our algorithm against a fixed adjustment

scheme (denoted by FIX), where lighting devices are set to fixed levels. If a user’s requirement

106

coverage range overlaps a lighting device’s coverage range, this device is turned to that level.

Below, we use FIX-n to indicate that each device can provide at most n lux.

We consider two performance indices. First, considering that our algorithm may enlarge

users’ illumination requirements when conflicts occur, we define a metric GAP to represent

the difference between the provided light intensity and the original requirement of a user. For

user ui with coverage range Ri, if grid Gj satisfies ri(Gj) = 1, we compute a gap value as

gap(ui, Gj) =

{
0 if Bl

D(ui) ≤ s(fj) ≤ Bu
D(ui)

min(|Bl
D(ui) − s(fj)|, |Bu

D(ui) − s(fj)|) o.w.,

where s(fj) is the final sensory value of fj. Then we define GAP of ui as the average of

gap(ui, Gj) for all Gj such that ri(Gj) = 1. The second index is XmAD, which represents the

energy consumption of one control decision.

Fig. 7.11(a), Fig. 7.11(b), Fig. 7.11(c), and Fig. 7.11(d) show our simulation results under

different combinations of S1/S2 and AR1/AR2. In the left figure of Fig. 7.11(a), we see that

the average GAP of users is almost zero for IDA. This is because the illumination intervals

in AR1 have common overlapping, which allows our algorithm to satisfy all users in most

cases. The right figure of Fig. 7.11(a) compares the energy consumption of different schemes.

FIX-500 has a slightly lower value than ours because some users’ requirements are violated.

Fig. 7.11(b) adopts AR2. Since some requirements are violated, we see that our scheme also

induces some gaps (note that act6 has no overlapping with others). In terms of energy cost,

IDA outperforms the other schemes. Fig. 7.11(c) and Fig. 7.11(d) adopt S2 and the trends are

similar. This demonstrates that our scheme is quite scalable to network size.

107

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 5 7 10 12 15

A
ve

ra
ge

 G
A

P
 (

lu
x)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

 0

 2000

 4000

 6000

 8000

 10000

2 5 7 10 12 15

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

(X
m

A
D

)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

(a)

 0

 50

 100

 150

 200

 250

 300

 350

2 5 7 10 12 15

A
ve

ra
ge

 G
A

P
 (

lu
x)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

 0

 2000

 4000

 6000

 8000

 10000

2 5 7 10 12 15

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

(X
m

A
D

)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

5 10 15 20 25 30 35 40

A
ve

ra
ge

 G
A

P
 (

lu
x)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

 0

 5000

 10000

 15000

 20000

 25000

5 10 15 20 25 30 35 40

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

(X
m

A
D

)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

(c)

 0

 50

 100

 150

 200

 250

 300

 350

5 10 15 20 25 30 35 40

A
ve

ra
ge

 G
A

P
 (

lu
x)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

 0

 5000

 10000

 15000

 20000

 25000

5 10 15 20 25 30 35 40

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

(X
m

A
D

)

Number of users

IDA
FIX-500
FIX-750

FIX-1000

(d)

Figure 7.11: Comparison of the proposed IDA and the FIX schemes when the network sce-
nario and user-activity are (a) S1 and AR1, (b) S1 and AR2, (c) S2 and AR1, and (d) S2 and
AR2, respectively.

108

Chapter 8

Conclusions and Future Directions

This dissertation contain five works. In the first three works, we discuss communication pro-

tocols in ZigBee network layer. In the last two works, we introduce two applications, which

can operate based on the designed network layer protocols. In the following, we summarize

this dissertation.

In Chapter 3, we have identified a new orphan problem in ZigBee-based wireless sensor

networks. We show that the problem is non-trivial because a device is not guaranteed to join

a network even if there are remaining address spaces. We model this orphan problem in two

subproblems, namely the BDDTF problem and the EDMM problem. We prove the BDDTF

problem is NP-complete and propose a two-stage network formation policy, which can greatly

relieve the orphan problem. Compared to the network formation scheme defined in ZigBee,

our algorithms can effectively reduce the number of orphan devices.

In Chapter 4, we have proposed hierarchical address assignment and routing schemes for

ZigBee-based LT WSNs. The proposed address assignment scheme divides nodes into several

clusters and then assigns each node a cluster ID and a node ID as its network address. With

such a hierarchical structure, routing can be easily done based on addresses of nodes and the

spaces required for the network addresses can be significantly reduced. We also show how to

allow nodes to utilize shortcuts. With our design, not only network addresses can be efficiently

utilized, but also the network scale can be enlarged to cover wider areas without suffering from

address shortage. We verify our schemes by simulation programs.

109

In Chapter 5, we have defined a new minimum delay beacon scheduling (MDBS) problem

for convergecast with the restrictions that the beacon scheduling must be compliant to the

ZigBee standard. We prove the MDBS problem is NP-complete and propose optimal solutions

for special cases and two heuristic algorithms for general cases. Simulation results indicate

the performance of our heuristic algorithms decrease only when the number of interference

neighbors is increased. Compared to the random slot assignment and greedy slot assignment

scheme, our heuristic algorithms can effectively schedule the ZigBee routers’ beacon times to

achieve quick convergecast.

In Chapter 6, we have proposed an emergency guiding and an emergency monitoring ser-

vices for indoor environments. The proposed emergency guidance scheme can quickly con-

verge and find safe guidance paths to exits when emergencies occur. The tree reconstruction

protocol reduces the occurrence of temporary cycles and further shortens the convergence

time. We verify both our schemes by real implementation and simulation programs.

In Chapter 7, we have presented an intelligent light control system considering user activ-

ities. In this system, there are two types of lighting devices. We use wireless sensors to collect

light intensities in the environment. Considering users’ activities, we model the illumination

requirements of users. An illumination decision algorithm and a device control algorithm

are presented to meet user requirements and to conserve energy. The proposed schemes are

verified by real implementation in an indoor environment.

Based on the results presented above, several issues worth further investigation are sum-

marized as follows.

• According to the result of our first work, we can know that the orphan problem is hard

to solve. In the future, we can further discuss how to set Cm, Rm, and Lm, which can

induce less than p % of orphan devices if some parameters (ex. node density, network

size, node’s transmission range, and so on) are provided.

• It deserves to further discuss address assignment and routing schemes for more compli-

cated topologies such as meshes that are connected by “long-thin” links.

110

• According to ZigBee standard, regular beacons are not allow in mesh networks. It de-

serves to consider an asynchronous sleep scheduling method to support energy-efficient

convergecast in ZigBee mesh networks.

• In our current guiding system, the hazardous region is defined by the numbers of hops

in Gg and the altitudes of nodes in hazardous regions are adjusted by a static function.

In fact, the definition of hazardous regions and altitude adjustments can be application-

or scenario-dependent. For example, if the temperature is larger than 100◦C, sensors

will trigger a fire emergency. In this case, sensors detecting a temperature larger than

70◦C can consider themselves as in a hazardous region. The altitude adjustment func-

tion can be designed according to the sensed temperature. No matter how sensors in

hazardous regions adjust their altitudes, the proposed local minimum adjustment rules

can be applied.

• In the light control application, the current user requirement is defined as a binary model,

i.e., a user who is satisfied returns a satisfaction value of one. We can further model

users’ satisfaction values as a function, which return value is decided by users’ sur-

rounding light intensities. Moreover, we can also enhance the user interfaces at the

portable sensor nodes.

111

Bibliography

[1] Chipcon corporation. http://www.chipcon.com/.

[2] Chipcon CC2420DBK. http://www.chipcon.com/.

[3] Dust network Inc. http://dust-inc.com/flash-index.shtml.

[4] Edx-f04. http://www.liteputer.com.cn/china/liteputer-tw/product.asp.

[5] Ember - wireless semiconductor. http://www.ember.com/.

[6] Design and construction of a wildfire instrumentation system using networked sensors.
http://firebug.sourceforge.net/.

[7] Freescale semiconductor. http://www.freescale.com/.

[8] Habitat monitoring on great duck island. http://www.greatduckisland.net/technology.php.

[9] Jennic JN5121. http://www.jennic.com/.

[10] Matlab Builder for Java. http://www.mathworks.com/products/ javabuilder/.

[11] Motes, smart dust sensors, wireless sensor networks. http://www.xbow.com/.

[12] Si photodiode s1133. http://jp.hamamatsu.com/en/index.html.

[13] SmartHome Inc. http://www.smarthome.com.

[14] UPnP forum. http://www.upnp.org.

[15] Zigbee Alliance. http://www.zigbee.org/.

[16] A. A. Ahmed, H. Shi, and Y. Shang. SHARP: A new approach to relative localization in
wireless sensor networks. In Proc. of Int’l Conference on Distributed Computing Systems
Workshops (ICDCSW), 2005.

[17] M. Ali and Z. A. Uzmi. An energy-efficient node address naming scheme for wireless
sensor networks. In Proc. of IEEE Int’l Networking and Communications Conference
(INCC), 2004.

[18] J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe. Experimental results and theoreti-
cal analysis of a self-organizing global coordinate system for ad hoc sensor networks.
Telecommunications Systems Journal, 26(2-4):213–234, 2004.

112

[19] S.-J. Baek, G. de Veciana, and X. Su. Minimizing energy consumption in large-scale sen-
sor networks through distributed data compression and hierarchical aggregation. IEEE
Journal on Selected Areas in Communications, 22(6):1130–1140, 2004.

[20] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user location and
tracking system. In Proc. of IEEE INFOCOM, 2000.

[21] M. A. Batalin, G. S. Sukhatme, and M. Hattig. Mobile robot navigation using a sensor
network. In Proc. of IEEE Int’l Conference on Robotics and Automation (ICRA), 2004.

[22] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica, 45(1):1–
51, 1995.

[23] A. Boukerche, R. W. N. Pazzi, and R. B. Araujo. A fast and reliable protocol for wireless
sensor networks in critical conditions monitoring applications. In Proc. of ACM/IEEE
Int’l Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), 2004.

[24] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Proc. of
ACM Int’l Workshop on Wireless Sensor Networks and Applications (WSNA), 2002.

[25] S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad-hoc net-
works. In Proc. of Hawaii Int’l Conference on Systems Science (HICSS), 2001.

[26] H. Choi, J. Wang, and E. A. Hughes. Scheduling for information gathering on sensor
network. ACM/Kluwer Wireless Networks, 2007 (Published online).

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
2001.

[28] A. Czumaj and W.-B. Strothmann. Bounded degree spanning trees. In Proc. of European
Symposium on Algorithms (ESA), 1997.

[29] T. Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for wireless
sensor networks. In Proc. of ACM Int’l Conference on Embedded Networked Sensor
Systems (SenSys), 2003.

[30] S. Gandham, Y. Zhang, and Q. Huang. Distributed minimal time convergecast scheduling
in wireless sensor networks. In Proc. of IEEE Int’l Conference on Distributed Computing
Systems (ICDCS), 2006.

[31] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An evaluation
of multiresolution storage for sensor networks. In Proc. of ACM Int’l Conference on
Embedded Networked Sensor Systems (SenSys), 2003.

[32] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[33] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-
cation protocols for wireless microsensor networks. In Proc. of Hawaii Int’l Conference
on Systems Science (HICSS), 2000.

[34] B. Hohlt, L. Doherty, and E. Brewer. Flexible power scheduling for sensor networks.
In Proc. of ACM/IEEE Int’l Conference on Information Processing in Sensor Networks
(IPSN), 2004.

113

[35] C.-F. Huang, Y.-C. Tseng, and L.-C. Lo. The coverage problem in three-dimensional
wireless sensor networks. Journal of Interconnection Networks, 8(3):209–227, 2007.

[36] Y.-K. Huang, A.-C. Pang, and T.-W. Kuo. AGA: Adaptive GTS allocation with low
latency and fairness considerations for IEEE 802.15.4. In Proc. of IEEE Int’l Conference
on Communications (ICC), 2006.

[37] IEEE standard for information technology - telecommunications and information ex-
change between systems - local and metropolitan area networks specific requirements
part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifica-
tions for low-rate wireless personal area networks (LR-WPANs), 2003.

[38] IEEE standard for information technology - telecommunications and information ex-
change between systems - local and metropolitan area networks specific requirements
part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifica-
tions for low-rate wireless personal area networks (LR-WPANs)(revision of IEEE Std
802.15.4-2003), 2006.

[39] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed diffu-
sion for wireless sensor networking. IEEE/ACM Trans. Networking, 11(1):2–16, 2003.

[40] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar, G. Pereira, and J. Spletzer.
Distributed search and rescue with robot and sensor teams. In Proc. of Int’l Conference
on Field and Service Robotics (FSR), 2003.

[41] M. Kochhal, L. Schwiebert, and S. Gupta. Role-based hierarchical self organization for
wireless ad hoc sensor networks. In Proc. of ACM Int’l Workshop on Wireless Sensor
Networks and Applications (WSNA), 2003.

[42] J. Konemann, A. Levin, and A. Sinha. Approximating the degree-bounded minimum
diameter spanning tree problem. Algorithmica, 41(2):117–129, 2004.

[43] J. Konemann and R. Ravi. A matter of degree: Improved approximation algorithms for
degree-bounded minimum spanning trees. In Proc. of ACM Symposium on Theory of
Computing (STOC), 2000.

[44] Q. Li, M. DeRosa, and D. Rus. Distributed algorithm for guiding navigation across a
sensor network. In Proc. of ACM Int’l Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), 2003.

[45] C.-Y. Lin, W.-C. Peng, and Y.-C. Tseng. Efficient in-network moving object tracking in
wireless sensor networks. IEEE Trans. Mobile Computing, 5(8):1044–1056, 2006.

[46] Z. Lotker, M. M. de Albeniz, and S. Perennes. Range-free ranking in sensors networks
and its application to localization. In Proc. of Int’l Conference on Ad-Hoc Networks and
Wireless (ADHOC-NOW), 2004.

[47] G. Lu, B. Krishnamachari, and C. S. Raghavendra. An adaptive energy-efficient and
low-latency MAC for data gathering in wireless sensor networks. In Proc. of IEEE Int’l
Parallel and Distributed Processing Symposium (IPDPS), 2004.

[48] J. B. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proc. of Berkeley Symposium on Mathematical Statistics and Probability,
1967.

114

[49] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage prob-
lems in wireless ad-hoc sensor networks. In Proc. of IEEE INFOCOM, 2001.

[50] D. Niculescu and B. Nath. DV based positioning in ad hoc networks. Telecommunica-
tions Systems Journal, 22(1-4):267–280, 2003.

[51] F. O’Reilly and J. Buckley. Use of wireless sensor networks for fluorescent lighting
control with daylight substitution. In Proc. of Workshop on Real-World Wireless Sensor
Networks (REANWSN), 2005.

[52] E. Ould-Ahmed-Vall, D. M. Blough, B. S. Heck, and G. F. Riley. Distributed unique
global ID assignment for sensor networks. In Proc. of IEEE Mobile Adhoc and Sensor
Systems Conference (MASS), 2005.

[53] H. Park, M. B. Srivastava, and J. Burke. Design and implementation of a wireless sensor
network for intelligent light control. In Proc. of ACM/IEEE Int’l Conference on Infor-
mation Processing in Sensor Networks (IPSN), 2007.

[54] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile
wireless networks. In Proc. of IEEE INFOCOM, 1997.

[55] N. Patwari, I. Alfred O. Hero, M. Perkins, N. S. Correal, and R. J. OEDea. Rela-
tive location estimation in wireless sensor networks. IEEE Trans. Signal Processing,
51(8):2137–2148, 2003.

[56] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector (AODV)
routing protocol. In IETF RFC (3561), 2003.

[57] R. Peterson and D. Rus. Interacting with a sensor network. In Proc. of Australasian
Conference on Robotics and Automation (ICRA), 2002.

[58] J. Sankaran. A note on resolving infeasibility in linear programs by constraint relaxation.
Operations Research Letters, 13(1):19–20, 1993.

[59] C. Schurgers, G. Kulkarni, and M. B. Srivastava. Distributed on-demand address as-
signment in wireless sensor networks. IEEE Trans. Parallel and Distributed System,
13(10):1056–1065, 2002.

[60] C. Schurgers and M. B. Srivastava. Energy efficient routing in wireless sensor networks.
In Proc. of Military Communications Conference(MILCOM), pages 357–361, 2001.

[61] V. Singhvi, A. Krause, C. Guestrin, J. H. Garrett, and H. S. Matthews. Intelligent light
control using sensor networks. In Proc. of ACM Int’l Conference on Embedded Net-
worked Sensor Systems (SenSys), 2005.

[62] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-organization of a
wireless sensor network. IEEE Personal Communications, 7(5):16–27, October 2000.

[63] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang. Location tracking in a wireless
sensor network by mobile agents and its data fusion strategies. The Computer Journal,
47(4):448–460, 2004.

[64] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih. Adaptive approaches to relieving broadcast storms
in a wireless multihop mobile ad hoc network. IEEE Trans. Computer, 52(5):545–557,
2003.

115

[65] Y.-C. Tseng, M.-S. Pan, and Y.-Y. Tsai. Wireless sensor networks for emergency navi-
gation. IEEE Computer, 39(7):55–62, 2006.

[66] S. Upadhyayula, V. Annamalai, and S. K. S. Gupta. A low-latency and energy-efficient
algorithm for convergecast in wireless sensor networks. In Proc. of IEEE Global
Telecommunications Conference (Globecom), 2003.

[67] X. Wang, F. Silva, and J. Heidemann. Infrastructureless location aware configuration
for sensor networks. In Proc. of IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), 2004.

[68] Y.-J. Wen, J. Granderson, and A. M. Agogino. Towards embedded wireless-networked
intelligent daylighting systems for commercial buildings. In Proc. of IEEE Int’l Confer-
ence on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), 2006.

[69] D. B. West. Introduction to Graph Theory. Prentice Hall, 2001.

[70] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, and S. Singh. Exploiting
heterogeneity in sensor networks. In Proc. of IEEE INFOCOM, 2005.

[71] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless
sensor networks. In Proc. of IEEE INFOCOM, 2002.

[72] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-latency tradeoffs for data gather-
ing in wireless sensor networks. In Proc. of IEEE INFOCOM, 2004.

[73] H. Zhou, M. W. Mutka, and L. M. Ni. Reactive ID assignment for sensor networks. In
Proc. of IEEE Mobile Adhoc and Sensor Systems Conference (MASS), 2005.

[74] ZigBee specification version 2006, ZigBee document 064112, 2006.

116

Vita

���Meng-Shiuan Pan

Contact Information
Department of Computer Science
National Chiao Tung University
1001 Ta Hsueh Road, Hsinchu, Taiwan 300
Email: mspan@csie.nctu.edu.tw

Education

Ph.D.: Computer Science, National Chiao Tung University (2003.9 ∼ 2008.5)
M.S.: Communication Engineering, National Tsing Hua University (2001.2 ∼ 2003.6)
B.S.: Electrical Engineering, National Chung Cheng University (1997.9 ∼ 2001.1)

Awards

1. FG·��HIJ)K , “Indoor Security and Emergency Navigation Services by
Wireless Sensor Networks”, with Y.-Y. Tsai, C.-H. Tsai, C.-F. Huang, and Y.-C. Tseng
2005.

2. zLsùMACM MobiWACNO¡�Best paper awardPLQ� , 2006.

3. R�S�T�TY^U0
�K , 2006.

4. R�S�U0F��V , 2007

5. sbMmnWXYZ÷[��\]õHIs@Q , “R������!MN5
mnoeFpq,wkl ”, with^_` ,abc ,dGe ,fgh , 2007

117

Publication Lists

Journal papers

1. Y.-C. Tseng, M.-S. Pan, and Y.-Y. Tsai, “Wireless Sensor Networks for Emergency
Navigation”, IEEE Computer, vol. 39, no. 7, pp. 55- 62, July 2006. (SCI, EI)

2. M.-S. Pan, C.-H. Tsai, and Y.-C. Tseng, “Emergency Guiding and Monitoring
Applications in Indoor 3D Environments by Wireless Sensor Networks”, International
Journal of Sensor Networks, vol. 1, nos. 1/2, pp. 2-10, 2006.

3. M.-S. Pan and Y.-C. Tseng, “Quick Convergecast in ZigBee Beacon-enabled
Tree-based Wireless Sensor Networks”, Computer Communications (accepted). (SCIE,
EI)

4. M.-S. Pan, L.-W. Yeh, Y.-A. Chen, Y.-H. Lin, and Y.-C. Tseng, “A WSN-Based
Intelligent Light Control System Considering User Activities and Profiles”, IEEE
Sensors Journal (accepted). (SCIE, EI)

Conference papers

1. M.-S. Pan, C.-H. Tsai, and Y.-C. Tseng, “Implementation of an Emergency Guiding
System by Wireless Sensor Networks”, IEEE Int’l Symposium on Network Computing
Applications (NCA), 2006. (Fast Abstract)

2. Y.-C. Tseng and M.-S. Pan, “Quick Convergecast in ZigBee/IEEE 802.15.4
Tree-Based Wireless Sensor Networks”, ACM Int’l Workshop on Mobility Management
and Wireless Access (MobiWAC), 2006. (selected as a candidate of the Best Paper
Award) (EI)

3. M.-S. Pan and Y.-C. Tseng, “The Orphan Problem in ZigBee-based Wireless Sensor
Networks”, ACM/IEEE Int’l Symposium on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM), 2007.

4. M.-S. Pan, H.-W Fang, Y.-C. Liu, and Y.-C. Tseng, “Address Assignment and Routing
Schemes in ZigBee-Based Long-Thin Wireless Sensor Networks”, IEEE VTC-spring,
2008.

5. M.-S. Pan and Y.-C. Tseng, “Communication Protocols and Applications for
ZigBee-Based Wireless Sensor Networks”, The Fourth Taiwanese-French Conference
on Information Technology, 2008.

6. L.-W. Yeh, M.-S. Pan, and Y.-C. Tseng, “Minimum Delay Two-Way Beacon
Scheduling in ZigBee/IEEE 802.15.4 Tree-Based Wireless Sensor Networks”, IEEE
Int’l Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC), 2008.

118

7. M.-S. Pan, L.-W. Yeh, Y.-A. Chen, Y.-H. Lin, and Y.-C. Tseng, “Design and
Implementation of a WSN-Based Intelligent Light Control System”, IEEE Int’l
Workshop on Wireless Ad hoc and Sensor Networks (WWASN), 2008.

Book Chapters

1. M.-S. Pan and Y.-C. Tseng, “ZigBee Wireless Sensor Networks and Their
Applications”, Sensor Network and Configuration: Fundamentals, Techniques,
Platforms, and Experiments, Springer-Verlag.

2. Y.-C. Tseng, M.-S. Pan, and C.-W. Yi, “Wireless Sensor Networks”, McGraw Hill
2008 Yearbook of Science & Technology, McGraw Hill.

Patents

1. M.-S. Pan, L.-W. Yeh, Y.-C. Tseng, L.-C. Ko, H.-W. Fang, and C.-W. Teng, “Apparatus
for a Beacon-enabled Wireless Network, Transmission Time Determining Method, and
Computer Readable Medium Thereof”, Taiwan (pending), USA (pending), owned by
III.

2. T.-C. Chien, M.-S. Pan, C.-H. Tsai, and Y.-C. Tseng, “Dynamic Emergency Guiding
Device, Method, and System”, Taiwan (pending), owned by NTHU.

3. M.-S. Pan, Y.-A. Chen, T.-C. Chien, Y.-F. Lee, and Y.-C. Tseng, “Automatic Lighting
Control System and Method”, Taiwan (pending), USA (pending), China (pending),
owned by ITRI.

4. H.-W. Fang, Y.-C. Liu, M.-S. Pan, Y.-C. Tseng, “Long Thin Network Routing and
Address Assignment Methods”, Taiwan (pending), USA (pending), China (pending),
owned by III.

5. M.-S. Pan, Y.-C. Tseng, H.-W. Fang, Y.-C. Liu, “Address Assignment and Routing
Methods for Ultra Long Thin Networks”, Taiwan (pending), USA (pending), China
(pending), owned by III.

Book (in Chinese)

1. fghLijkLdlm , “��no�<���Ipq���Ü��5rs

67$ ”,tuvr , ISBN: 9868293316.

Submitted papers

1. M.-S. Pan and Y.-C. Tseng, “The Orphan Problem in ZigBee-based Wireless Sensor
Networks”, submitted to IEEE Trans. on Mobile Computing.

2. M.-S. Pan and Y.-C. Tseng, “ZigBee-Based Long-Thin Wireless Sensor Networks:
Address Assignment and Routing Schemes”, submitted to IEEE Trans. on Wireless
Communications.

119

