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Chapter 1 

 

Introduction 

 
Due to the advances of sensor technology, smart power meters have been 

commonly deployed to collect electricity consumption of appliances in smart home 

environment. These usage data not only reveal the usage of appliances but also 

motivate us to extract useful knowledge by designing some mining techniques. 

Moreover, many applications also have been developed to utilize this knowledge for 

users to better understand how they use the household devices and to easily control 

their appliances. 

Recently, with the concern of electricity conservation, one of the important 

applications is abnormal usage detection of appliance. Due to the significant efforts in 

reducing the emissions of CO2 and other GHGs (greenhouse gases), many researchers 

focus on the electricity conservation in the residential sector.  Abnormal usage 

detection not only can help resident reduce electricity consumption, but also benefit our 

environment. Several previous researches [1-5] have focused on analysis of the usage 

behavior on single device and neglect the appliance correlation. However, in our daily 

life, we usually use different appliances simultaneously. For example, while the night, 

air conditioner and television in the living room may be turned on in the evening. 

Actually, the correlation among the usage of some appliances can provide valuable 

information to assist residents better detect abnormal usage of appliances. 

Obviously, the consideration of correlation among appliance is a challenge issue 

for anomaly detection. Since the usage of a device has duration time, the correlations 

among appliances can be treated as an interval sequence. The abnormal usage based on 

the interval sequence is significantly different than that of the previous researches 

which only includes the information of a single appliance. 
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Fig.  1: An example of a correlation pattern. 

 

Abnormal usage of the energy consumption for a particular period is significantly 

different than that of the previous time, during which some appliances are unexpectedly 

operating. In one of our companions’ paper [2], an algorithm to transform the data log 

into correlation patterns was proposed. This study reported our findings of abnormal 

usage from a set of correlation patterns and a usage behavior pattern at a certain time. 

Fig.  1 shows an example of a correlation pattern and includes a frequent sequence 

(A+B+AC+CB) and a corresponding probability density function set 

(𝑓𝐴+𝑓𝐵+𝑓𝐴−𝑓𝐶+𝑓𝐶−𝑓𝐵−  ). Appliances in a frequent sequence also show the correlation 

among the devices based on their locations in a house; for example, the usage of a 

television and a light is highly correlated when they are in the same room, but it is a 

coincidence when they are located in different rooms [2]. The correlation among the 

usage of some appliances can provide valuable information to assist residents better 

understand how they use their devices. The information of probability density function 

information is also very useful, which can be considered a normal distribution model 

for applying Extreme Value Theory (EVT). Fig.  2 illustrated the unknown behavior 

usage pattern at a certain time without information about the order of appliances turned 

on, which is useless. There follows in Fig.  2 a typical example of detecting abnormal 

usage, in which appliance A can be seen abnormal since Fig.  1 shows that Aoften 

operated before C+ based on the correlation pattern. An example of the problem of 

anomaly usage detection in the smart home environment is sketched out in both Fig.  1 
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and Fig.  2 that demonstrated the habit of a family member. After having dinner his 

family, he usually goes to his bedroom and turns on light (A), light (B), and computer 

(C). He always turns off all appliances before sleeping. One day, if light A and light B 

are turned off while computer (C) is still working in the evening, it should be 

considered that he forgot to turn off the computer when he went to sleep. Hence, one of 

the applications of abnormal usage detection, Home Management System (HMS), 

would detect the on working computer and send a notification message to the user’s 

smart phone. 

Detection of abnormal usage is an important issue in smart home research. 

However, this is a challenging task when designing a remarkably effective and 

computationally reasonable solution. Our appliance behavior usage usually varies 

according to different periods of time and season, i.e. many behaviors of the same 

appliances in summer and in winter are totally different. For instance, a heater can be 

used daily in winter, but is seldom turned on in summer. In contrast, an air conditioner 

is usually turned on in summer, but is almost never used in winter. Appliances also 

have unique patterns such as seasonal types or daily types; for example, while the 

heater, a seasonal appliance, is frequently operated only in the summer; the light, a 

daily appliance, is usually turned on and off every day. Noticeably, this work 

determines tools aimed at designing solutions which can improve existing techniques 

for detecting anomaly usage in smart homes. 

 

 

Fig.  2: An example of query patterns. 
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The proposed methods are advantageous. The first advantage is their simplicity in 

calculating anomaly score (these methods are easily comprehensible for all people, as 

well as the simplicity of its practical implementation). Another favor is these methods 

may be preferable when the observations are not exactly independent and identically 

distributed. For example, there may be a seasonal periodicity in terms of daily or yearly. 

Furthermore, it is the calculating speed which is very important when working in real 

time. 

In this paper, several methods are proposed to detect anomalies. The contributions 

of our work are as follows. We develop an intelligent system, called Abnormal 

Detection System (ADS) to determine abnormal usage behavior, which includes three 

methods, namely Extreme Value for Measuring Anomaly Score (abbreviated as 

EVMAS), Sequence Patterns for Measuring Anomaly Score (abbreviated as SPMAS), 

and Time Intervals for Abnormal Detection (abbreviated as TIAD), to detect 

anomalousness in an appliance usage pattern. First, we used the probability density 

function as a model of normality for each appliance. Then, we redefined the definition 

of the “tails” to apply to our problem, and we set a threshold border in these tails of the 

model. It is necessary to redefine the tails because they are expected to determine 

normal distributions toward both positive infinity and negative infinity; however, the 

horizontal axis should be between 0 and 24, which is equivalent 00:00 AM to 23:59 PM. 

In other words, we find the minima distributions of the probability density functions 

that lie under a threshold. After that, we computed the anomaly score. An observed 

event is classified as abnormal when it exceeds another threshold. Moreover, it is 

known that the correlation among appliances is intrinsically complex. This pattern is 

really crucial for designing detection algorithm. Thus, we also propose an anomaly 

score for each appliance, and set some rules to determine when they are abnormal. 

Finally, we may know when appliances often or seldom operate in a day. To get this 

knowledge, we define the time intervals for each appliance by using the probability 

density function, based on which the status of appliance is determined as normal or 

abnormal. Experimental studies on real datasets indicate that the proposed algorithms 

are both efficient and practicability. Our experiments also show that the suggested 

approach consumes a much smaller memory space. 
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The rest of this paper is organized as follows. Section 2 provides a background, 

related work, and preliminaries. Section 3 introduces our abnormal usage behavior 

detection methods.  Section 4 reports the experimental results in a performance study, 

and section 5 is our conclusion. 
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Chapter 2 

 

Background  

 

In this section, we review some related background knowledge which we apply to 

our approaches. First, we are summary the Extreme Value Theory (EVT), which is a 

branch of statistics which concerns the distributions of data of unusually low or high 

value. Second, we review several methods for estimation parameters which are used in 

EVT method. We also discuss some previous works utilized probability and sequence 

pattern for abnormal detection. Finally, we introduce some notions which will be used 

for our method. 

 

2.1 Extreme Value Theory (EVT) 

 

EVT is a tool used to consider probabilities associated with extreme and thus rare 

events, which has two major results. First, the asymptotic distribution of a series of 

maxima (minima) is modelled and under certain conditions the distribution of the 

standardized maximum of the series is shown to converge to the Gumbel, Fréchet, or 

Weibull distributions. The generalized extreme value (GEV) distribution is a standard 

form of these three distributions. All of these three distributions have one feature in 

common: If extreme value distributions are used to model empirical data, they will 

approximate the fat tail of the distribution with the highest precision. Second, the 

distribution of excess over a given threshold is modelled the behavior of the excess loss 

once a high threshold. The result is used to estimate the very high quantiles. The limit 
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distribution is a generalized Pareto distribution (GPD). In this paper, we adapt the first 

result for our problem. 

EVT forms representations for the tails of distributions. When discussing the 

properties of the tails of a distribution we will, for convenience, discuss the right-hand 

tail. 

Consider a set Xn={X1, X2, …,Xn} of n i.i.d (independent and identically 

distributed) random variables, where XiR is drawn from a distribution function F. The 

corresponding ordered sample in non-decreasing order is denoted by {X1:n, X2:n, …, 

Xn:n} where Xi:n, i = 1, …, n, stands for the i-th order statistic. In particular, X1:n and 

Xn:n represent the sample minimum and the sample maximum, respectively. In our 

paper, we focus only on the results about the sample minimum (the corresponding 

results for the sample maximum can be obtained from those of the sample minimum). 

We consider the sequence of minima M1=X1, Mn= Xn:n = min(X1, X2, …, Xn) for n≥ 

2, obtained from the above sample. As mentioned, all the results for the sample maxima 

can be obtained from those of the sample minima, since mn = max(X1, X2, …,Xn) =  

min(X1, X2, …, Xn), then Mn= mn. Hence, for large n, 

Pr{𝑀𝑛 ≤ 𝑥} = Pr{−𝑀𝑛 ≥ 𝑥} = 1 − Pr{𝑀𝑛 ≤ −𝑥}

≈ 1 − exp {− [1 + 𝛽 (
−𝑥 − 𝛼

𝜂
)]

−
1
𝛽

} = 1 − exp {−[1 − 𝛽(
𝑥 − 𝛼̂

𝜂
)]

−
1
𝛽} 

where 1 − 𝛽 (
𝑥−𝛼̂

𝜂
) > 0 and 𝛼̂ = −𝛼. 

This distribution is the GEV distribution for minima.  

Theorem If there exist sequences of constants {𝑎𝑛 > 0} and {𝑏𝑛} such that 

Pr {
𝑀𝑛 − 𝑏𝑛

𝑎𝑛
 ≤ 𝑧} → 𝐺(𝑧) 𝑎𝑠 𝑛 → ∞ 

For a non-degenerate distribution function G, then G is a member of the GEV 

family of distribution for minima: 

𝐺(𝑧) = 1 − exp {− [1 − 𝛽 (
𝑥 − 𝛼̂

𝜂
)]

−
1
𝛽

} 

on {z: 1 − 𝛽 (
𝑥−𝛼̂

𝜂
)> 0}, where −∞ < 𝛼 < ∞, 𝜂 > 0 𝑎𝑛𝑑 − ∞ < 𝛽 < ∞. 

The parameters α, β, η correspond, respectively, to location, shape, and scale. The 
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parameter β also called the tail index, indicates the thickness of the tail of the 

distribution. The larger the tail index, the thicker the tail. When the index is negative, it 

corresponds to a Weibull. When the index is equal to zero, the distribution H 

corresponds to a Gumbel. It corresponds to a Fréchet distribution when the index is 

greater than zero. The asymptotic distribution of the maximum which is estimated 

without making any assumptions about the original distribution, always belongs to one 

of these three distributions. 

The GEV provides a model for the distribution of block minima (maxima). Its 

application consists of blocking the data into blocks of equal length, and fitting the 

GEV to the set of blocks. But in implementing this model for any particular dataset, the 

choice of block size can be critical. The choice amounts to a trade-off between bias and 

variance: blocks is likely to be poor if they are too small, leading to bias in estimation 

and extrapolation; large blocks generate few block extreme, leading to large estimation 

variance. In our paper, the choice of block size is not easy. For example, as shown in 

Fig.  3, the appliance 1 is often turned on in two periods: 10:00 AM to 11:00 PM and 

18:00 PM to 04:00AM (of next day) and seldom turned-on from 05:00AM to 09:00AM 

and 12:00PM to 17:00PM. Therefore, we suggest a new method to choice minima 

values which will be introduced in next section. 

 

 

 

Fig.  3: An example of usage behavior log, turned on time information of three 

appliances for 5 weeks is illustrated. 
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2.2 Estimation of parameters in EVT 

The sequential pattern mining originally focuses on the time point-based database 

[11, 26]. Han et al. [11] propose an efficient sequential pattern mining method, named 

FreeSpan. The general idea of FreeSpan is to integrate the mining of frequent 

sequences with that of frequent patterns and use projected sequence databases to 

confine the search and the growth of subsequence fragments. Pei et al. [26] propose an 

efficient sequential mining algorithm, named PrefixSpan, based on divide-and-conquer 

inspiration. PrefixSpan explores prefix-projection in sequential pattern mining, which 

substantially reduces the size of projected databases. 

Estimating the GEV parameters (α, β, η) constitutes an important task in EVT 

approach, since it is a starting point for statistical inference about extreme values of a 

population. There are basically two approaches in order to obtain estimates for the GEV 

parameters, a parametric approach and a semi-parametric approach. In this paper, we 

follow a parametric approach that we can use the limiting distribution of the sample 

extremes as an exact distribution that can be fitted to data. The focus of this paper is on 

the sample minimum, Mn=  min(X1, X2, …, Xn). This method is distinguished 

according to how many specific observations are picked up among the available sample 

data.  

For this approach, the sample of size n is divided into m sub-samples size of k (or 

m blocks size of k), with 𝑛 = 𝑚 × 𝑘 and k sufficiently large. In each block, the 

smallest observation is selected, so that we obtain a sample of sample minima. 

𝑌 = 𝑀𝑘 = min (𝑋1, … , 𝑋𝑘) 

For considering m blocks, we get a collection of m sample minima, (Y1, 

Y2, …,Ym). The most popular estimation methods for the GEV are the Maximum 

Likelihood and the Method of Moments. These methods mainly focus on estimating 

Weibull parameters, namely, shape parameter (β) and scale parameter (η)[6, 7]. 

Maximum Likelihood Estimator (MLE) 

The method of maximum likelihood [8-10]is a commonly used procedure since it 

has desirable properties. Let {x1, …,xn} be a random sample of size n drawn from a 
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probability density function 𝑓𝑥(𝑥; 𝜃)  where  is an unknown parameter. The 

likelihood function of this random sample is 

𝐿 = ∏ 𝑓𝑥𝑖
(𝑥, 𝜃)

𝑛

𝑖=1

 

The maximum likelihood estimator of , say 𝜃, is the value of  that maximizes L 

or the logarithm of L. The MLE of  may be a solution of  

𝑑 log 𝐿

𝑑𝜃
= 0 

We apply the MLE to estimate the Weibull parameters (the shape and the scale). 

The likelihood function will be 

𝐿(𝑥1, … , 𝑥𝑛; 𝛽, 𝜂) = ∏(
𝛽

𝜂
)(

𝑥𝑖

𝜂
)𝛽−1𝑒

−(
𝑥𝑖
𝜂

)𝛽
𝑛

𝑖=1

 

We different with respect to β and η and equate to zero 

𝜕 ln 𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑ ln 𝑥𝑖 −

1

𝜂
∑ 𝑥𝑖

𝛽
ln 𝑥𝑖 = 0

𝑛

𝑖=1

𝑛

𝑖=1

 

𝜕 ln 𝐿

𝜕𝜂
= −

𝑛

𝜂
+

1

𝜂2
∑ 𝑥𝑖

𝛽
= 0

𝑛

𝑖=1

 

On eliminating η between these two above equations, we get 

∑ 𝑥𝑖
𝛽

ln 𝑥𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
𝛽𝑛

𝑖=1

−
1

𝛽
−

1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

= 0 

which can be solved to get the estimate of β. This can be accomplished by Newton 

– Raphson method. It will be given as 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

where 

𝑓(𝛽) =
∑ 𝑥𝑖

𝛽
ln 𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝛽𝑛

𝑖=1

−
1

𝛽
−

1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

and the computation of the derivative as [7] is 

𝑓′(𝛽) = ∑ 𝑥𝑖
𝛽

(ln 𝑥𝑖)2 −
1

𝛽2
∑ 𝑥𝑖

𝛽(𝛽 ln 𝑥𝑖 − 1)

𝑛

𝑖=1

− (
1

𝑛
∑ ln 𝑥𝑖

𝑛

𝑖=1

)(∑ 𝑥𝑖
𝛽

ln 𝑥𝑖

𝑛

𝑖=1

)

𝑛

𝑖=1
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Once β is determined, η can be estimated using the equation  

𝜂 =
∑ 𝑥𝑖

𝛽𝑛
𝑖=1

𝑛
 

There are two things different between EVT and classical EVT. First, the 

probability density function decreases with increasing distance to the modes. Hence, 

extreme in magnitude are also minima in probability density values. Second, selecting 

the most improbable sample with respect to f is equivalent to selecting the sample of 

minimal magnitude with respect to the density function over f(X). Therefore, univariate 

EVT may be applied to samples drawn in the probability space. 

Method of moments (MOM) 

The MOM is another technique commonly used to estimate parameters. Given 

{x1, …,xn} represent a set o data, an unbiased estimator is given as 

𝑚̂𝑘 =
1

𝑛
∑ 𝑥𝑖

𝑘

𝑛

𝑖=1

 

where 𝑚̂𝑘stands for the estimate of mk. The kth moment is given as  

𝜇𝑘 = (
1

𝜂𝛽
)

−
𝑘
𝛽

Γ(1 +
𝑘

𝛽
) 

where Г signifies the gamma function 

Γ(𝑠) = ∫ 𝑥𝑠−1𝑒−𝑥𝑑𝑥, (𝑠 > 0)
∞

0

 

We can compute the first and the second moment as  

𝑚1 = 𝜇̂𝑘 = (
1

𝜂
)

1
𝛽

Γ(1 +
1

𝛽
) 

and 

𝑚2 = 𝜇̂𝑘
2 + 𝜎̂𝑘

2 = (
1

𝜂
)

2
𝛽{Γ (1 +

2

𝛽
) − [Γ(1 +

1

𝛽
)]2} 

We get a function of β by dividing m2 by the square of m1 

𝜎̂𝑘
2

𝜇̂𝑘
2 =

Γ (1 +
2
𝛽

) − Γ2(1 +
1
𝛽

)

Γ2(1 +
1
𝛽

)
 

We have the coefficient of variation (CV) as 
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𝐶𝑉 =
√Γ (1 +

2
𝛽

) − Γ2(1 +
1
𝛽

)

Γ(1 +
1
𝛽

)
 

In order to estimate β and η, we need to calculate the coefficient of variation. The 

scale parameter (η) can be estimated as 

𝜂̂ = {𝑥̅/Γ[(
1

𝛽̂
+ 1)]}𝛽̂ 

where 𝑥̅ is the mean of the data. 

MLE is more popular and attractive but this method its primacy in a small sample 

case, where it is outperformed by MOM [6]. However, MLE is the preferred parametric 

estimation method because of its flexibility of modification, to incorporate more 

complex problems. On the opposite, MOM has a serious difficulty in dealing with more 

complex structures. In this paper, we adapt MLE for estimation some parameters for 

EVT approach. 
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Chapter 3 

 

Related Work 

 

 

To the best of our knowledge, with the consideration of abnormal usage detection 

based on sequence patterns, there have been many proposed methods for behavior 

recognition [11-16], and some discussion of detection abnormal usages of appliances in 

a smart home environment [1, 17-19]. Some studies utilized the behavior patterns to 

detect anomaly user behavior that include a temporal-based approach where temporal 

relations were built to detect anomalies [2, 5, 14, 17, 18]. RFID-based algorithm was 

experimented for human behavior modeling and abnormal detection for elderly care by 

several authors[12, 13]. Neural network approach has been done to predict the future 

values which are used to inform the caregiver in case anomalous behavior is predicted 

[14-16]. Besides, Chen and Cook [1] proposed a framework to mine energy data and 

extend a suffix tree data structure and then use a clustering algorithm to detect energy 

patterns outliers which are far from their cluster centroids. Moreover, conceptual 

studies and used cases reported for abnormal events in the smart home context were 

proposed by some authors in [20, 21]. Chen et al. [3, 5] introduce some frameworks and 

algorithms to describe users’ representative behaviors. Based on these patterns, we can 

be able to adapt our usage behavior for abnormal detection to conserve the energy 

easily. Jakkula  et  al. [18] propose  an  Apriori-based  algorithm  for  activity  

prediction and  anomaly  detection  from  sensor  data  in  a  smart  home.  

Previous researches of abnormal detection mainly focused on sequence pattern 

[22-25] and probability density function based on EVT [26-31]. To the best of our 

knowledge, very few studies facilitate the detection of abnormal usage in smart home 

with the utilization of distribution based on EVT. While these papers mainly discussed 

the ways for detecting abnormal usage by using the sequence patterns, we intend to 
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introduce the notion of the correlation pattern combined with probability density 

function into the detection of anomaly usage of appliances. Since we can see the 

probability function of happening time of each interval not only simply interprets the 

relations. The gap of happening time also make the patterns contain different meanings. 

With the probability function appended in the correlation patterns, we can employ it to 

our methods. There are several previous works using EVT for abnormal detection or 

novelty detection in some fields such as structural engineering, medical, finance, earth 

sciences, traffic prediction, and geological. Andreev et al. [27] use Extreme Value 

Theory for Stock Market in Russia. This paper utilized POT model and GPD 

distribution which give the description on tail distribution of financial returns/losses. 

They compute all necessary parameters, threshold and the value-at-risk for their method. 

However, they applied EVT and POT directly with no improvement or modification. 

Luca, S., et al. [26] Detect rare events using extreme value statistics applied to epileptic 

convulsions in children. They proposed an unsupervised method which uses EVT and 

seizure detection based on a model of normal behavior that is estimated using all 

recorded and unlabeled data. They also have several enhancements for EVT in their 

method but they lack of introducing how to determine threshold and parameters in 

detail.  Clifton, D. A., et al. [32] developed a technique that is generally applicable and 

has the additional advantage of translating a multivariate model of behavior to an 

univariate model of minimal densities, using classical EVT. The approach uses 

Gaussian Mixture Model (GMM) fitting the data to create the probabilistic model and 

MEVS to define the threshold for outliers. The MEVS approach uses the model of 

normality to perform novelty detection in the probability space. Roberts, S. J.[29, 30] 

proposed an extension of classical EVT to mixtures of multivariate Gaussians, with 

three applications in biomedical engineering. This work recommends, for a given 

sample x, that only the extreme value distribution (EVD) associated with the kernel 

closest to x (in the Mahalanobis sense) is considered, which may be calculated using 

the known EVD of the single-sided univariate Gaussian distribution. 
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Fig.  4: The integration of bimodal probability distribution p(x) (blue line) and 

the contour p(x)=0.2 (dashed line). 

 In some previous studies [33-36], a heuristic novelty threshold has set on the 

pdf f(x)=k, such that x is abnormal when f(x)<k. f(x) is used simply as abnormal score, 

and the threshold is set such that separation between normal and abnormal data is 

maximized on the validation dataset. Some other approaches[33] use the cumulative 

probability Fn associated with fn. They compute the probability mass obtained by 

integrating fn over the region R where fn exceeds the novelty threshold. The region 

𝑅 = {𝑥 ∈ 𝐷|𝑓𝑛(𝑥) ≥ 𝑘}: 

𝐹𝑛(𝑘) = ∫ 𝑓𝑛(𝑥)𝑑𝑥                  (1)
𝑅

 

 An example is shown in Fig.  4, in which the distribution fn is multimodal, 

and which has been approximated using GMM. A threshold is shown at f(x)=k=0.2 in 

the figure, in which the probability mass P enclosed by that threshold. Clifton et al. [28] 

have discussed some disadvantages of using Fn to identify the threshold. Setting a 

novelty threshold using Fn only has a valid when m=1 (with m is the number of 

observed data). 

In this paper, the number of observed training data will be fix. Each appliance in 

our training dataset has a fix sample for pdf f. One thing that we need to define is a 

threshold for F(x). One suitable way is based on the size of training dataset. If appliance 
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has m events then we set threshold at ln(m) size. Hence, we will find the set of yk 

such that F(k)=size%. The area of F(k) is shaded area in Fig.  4 where yk<f(x). 

 

Frequent sequences 

[A+|A-] : 65 

[A+|B+|A-|B-] : 12 

[A+|B+|C+|C-|A-|B-]:2 

[A+|B+|D+|B-|A-|D-]:2 

[B+|B-] : 66 

[B+|B-|C+|A+|A-|C-]:5 

[B+|B-|C+|C-] : 20 

[B+|B-|C+|C-|C+|C-]:6 

[B+|B-|C+|C-] : 4 

[C+|C-] : 67 

[C+|C-|C+|C-|C+|C-]:3 

[C+|C-|C+|C-|D+|D-]:22 

[D+|D-]:55 

[D+|D-|C+|C-]:25 

[D+|D-|C+|D+|D-|C-]:6 

[D+|D-|D+|A+|A-|D-]:2 

Probability density functions: 𝒇𝑨+ , 𝒇𝑨− , 𝒇𝑩+ , 𝒇𝑩− , 𝒇𝑪+ , 𝒇𝑪− , 𝒇𝑫+ , 𝒇𝑫−  

Table 1 – An example of a correlation pattern set, each frequent sequence has two 

part: the order of appliances' occurrence and number of occurrence’s times. 
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Chapter 4 

 

Preliminaries 

 

Definition 1 (Sub pattern at a time period and sub-patterns set at a 

time period)  

Given a correlation pattern P, a correlation sub-pattern at a time period of two 

appliances is a subset of correlation pattern P if end-time of the first appliance occurs 

after start-time of the second appliance. A set of sub-patterns at a time period is the 

collection of all sub-patterns at the time of all correlation patterns. 

We take the database in Table 1 as an example. Let P1 be [A+B+C+CAB], a 

sub-pattern is [A+], a set of sub-patterns at a time period is S1 = {[A+], [A+B+], 

[A+B+C+]}. Let P2 be [B+|B|C+|A+|A|C], a set of sub-patterns at a time period is 

S2 = {[B+], [C+], [C+A+]}. 

 

Definition 2 (Appliances’ Combinations) 

Given a pattern P, a combination is a way of selecting appliances from P, such that 

the order of selection does not matter. A subset S is a combination of appliances in P, 

denoted by SP.  

For example, P is [A+B+C+], there are seven subsets S= {[A+], [B+], [C+], 

[A+B+], [A+C+], [B+C+], [A+B+C+]}. A list of sub-patterns is a combination of all 

appliances with 2k-1 subsets. Notice that we do not use empty sub pattern. 
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Chapter 5 

 

Anomaly detection methods 

In this section, we propose three methods to detect anomalous usage behaviors by 

exploring the correlation patterns. The first method uses of Extreme Value Theory on 

the tails of the probability density function. The second method is that we compute the 

proportion of appliances’ occurrences in data set for each appliance using frequent 

sequences in correlation patterns data set. Final, we determine time intervals for each 

appliance which can be used to determine anomalous. 

Fig.  5 presents the system framework of Abnormal Detection. First, we collected 

the usage data of all appliances by smart meters and sent the data log to cloud server. 

After that we transform the data into correlation patterns using CoPMiner [2]. Then our 

Abnormal Detection System (ADS) uses this correlation patterns to detect abnormal 

usage behavior. Finally, we output all abnormal extraordinary behavior to users. 

 

Fig.  5. The system framework of Abnormal Detection. 
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5.1 Extreme Value for Measuring Anomaly Score 

(EVMAS) 

Anomaly detection using EVT approach is based on a model of normal behavior 

which was presented by the probability distribution function. In this section we borrow 

the methodology which was proposed in [26]. 

Density Modelling using Gaussian Mixture Models 

The first stage of the investigation is to construct a model of normality using 

normal training data. The model of normality is provided using two candidate 

techniques, Gaussian Mixture Model (GMM) and Parzen window estimation. These 

approaches estimate the unconditional probability density of training data, f(x). If we 

consider m training points from the input data x, the data density for the Parzen window 

estimator is defined as: 

𝑓𝑖(𝑥) = 〈𝐾(𝑥), ℎ, {𝑡𝑖1
, … , 𝑡𝑖𝑚

}〉 =
1

𝑚ℎ
∑ 𝐾 (

𝑥 − 𝑡𝑖𝑗

ℎ
)

𝑚

𝑗=1

, 

with ℎ =
𝑟𝑎𝑛𝑔𝑒({𝑡𝑖1 ,…,𝑡𝑖𝑚}

√𝑚
    

and where K is Gaussian Normal Kernel, 

𝐾(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2  

The data density is defined as: 

𝑓(𝑥) = ∑ 𝑃(𝑗)𝑝(𝑥|𝑗)

𝑀

𝑗=1

 

Where p(x|j) is the probability of x w.r.t kernel j, and P(j) is the prior probability 

that x was generate by kernel j. 

f(x) have to satisfy the following criteria: 

The function should be non-negative throughout. 

The function should integrate to 1.  

EVT in Multimodal  

Given a data set D (correlation pattern set), consisting of appliances, each 

appliance has the probability density function (pdf) y=f(x) which build from its training 

dataset. Anomaly detection address the question whether a query pattern Q={q1,…, qk} 



 

24 

is drawn from f(x) or not. Each appliance is Q has the corresponding density values 

based on pdf f(x). 

(y1, …,yk)=(f(q1), …, f(qk)) 

First, based on the equation (1), we compute a set of ymin in which the 

distribution is lower than the threshold. The threshold will be set based on the size of 

training dataset. If a training dataset has m events then setting threshold at 𝑠𝑖𝑧𝑒 =

ln(𝑚) Then, set F(x)=size/100, the F(x) is given as: 

𝐹(𝑥) = ∫ 𝑓𝑛(𝑥)𝑑𝑥
𝑅

= 𝑠𝑖𝑧𝑒% 

The set 𝑦𝑚𝑖𝑛 = {𝑦|𝑥 ∈ 𝐷𝑎𝑛𝑑𝐹(𝑥) = size/100}: The distribution of ymin 

describes the distribution of minima of training dataset. An anomaly may be located in 

the tails of pdf f or between the modes of f. We find ymin which is the tails of f or the 

low probability between the modes of f. 

The next step is that we apply the Weibull distribution for ymin. The form of the 

3-parameter Weibull distribution is commonly used in practice 

𝑤(𝑦𝑚𝑖𝑛) =
𝛽

η
(

𝑦𝑚𝑖𝑛 − 𝛾

η
)

β−1

exp (− (
𝑦𝑚𝑖𝑛 − 𝛾

𝜂
)

𝛽

) 

Where parameters β >0, η and γ are shape, scale, and location respectively. The 

location parameter, γ, locates the distribution along the abscissa. The distribution 

moves to the right (if γ >0) or to the left (if γ<0). We set γ=0, the distribution starts at 

the origin. The parameters β and η can be found by using maximum likelihood 

estimates. The 2-parameter Weibull is obtained by setting γ=0, and is given by 

𝑤(𝑦𝑚𝑖𝑛) =
𝛽

η
(

𝑦

η
)

β−1

exp (− (
𝑦

𝜂
)

𝛽

) 

Since the probability of these are likely to very close to zero, the use of log helps 

emphasize their differences. The transformation is given as: 

𝑡 = −log (w) 

Using this transformation, the short tail near zero of the Weibull distribution is 

then stretched out as the right tail of the Gumbel distribution for maxima. Hence, 

extreme values can be shown more clearly. The cumulative distribution function of the 

Gumbel distribution is  
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𝐺(𝑡) = exp (− 𝑒𝑥𝑝 (−
𝑡 − 𝑐

𝑑
)) 

Where c=1/β and d= ln(η). 

In abnormal detection, extrema are regarded as potentially anomaly. The final step 

is that we define an anomaly score for each appliance. Hence, we can compute the 

anomaly score for each appliance is query pattern Q. Anomaly score, AS1, can be 

defined as: 

𝐴𝑆1(𝑞𝑘) = 𝐺(t)     (2) 

Note that 𝐴𝑆1(𝑦𝑘) takes low values if x is close to the center of the distribution 

and increases as x becomes more abnormal. 

Symbols Meaning 

A … E Events or appliances 

Q Query pattern or unknown pattern 

f(x) Probability density function 

F(x) Cumulative probability distribution 

AS1(x) Anomaly score for appliance x. 

Table 2 – Notations of EVT based method 

 

Fig.  6.  Schematic of EVMAS algorithm. 

 

We use database in Table 1 as an example, we want to check that appliance D 

turnedon at 23:30PM is normal or abnormal. First, we compute the size and collect the 

minima distribution from pdf 𝒇𝑫+. We note that we do not use the pdf 𝒇𝑫−  since we 

do not have turned-off information in query pattern, and we only check appliances 



 

26 

which are turning on at a certain time. After collecting minima distribution, we fit 

parameters for Weibull distribution and Gumbel distribution, and then we compute the 

anomaly score for appliance D at 23:30PM. Appliance D in this dataset has ID 60 in 

real dataset, and the result is shown in Fig.  11. Appliance D is abnormal when turning 

on at 23:30PM. We can read more detail in section IV, and appliance 60 is described in 

more details. A schematic of the methodology is shown in Fig.  6. 

 

5.2 Sequence Patterns for Measuring Anomaly Score 

(SPMAS) 

We explore the frequent sequences of correlation patterns dataset to calculate the 

anomaly score for each appliance. Table 1 shows the set of frequent sequences which 

can be used to determine abnormal events. We assume that all sequence patterns in this 

dataset are normal patterns. All appliances occurred in normal scenarios. For example, 

a pattern, [A+|B+|D+|D-|B-|E+|E-|A-] describes a normal occurrence order of four 

appliances (A, B, D, and E). We can extract this sequence into four sub patterns as [A+], 

[A+B+], [A+B+D+], and [A+E+] as definition 1. This means that [A+] can turn on 

while [D+] turns on but [D+] and [E+] cannot turn on at the same time. This is 

necessary to decompose a correlation pattern into sub patterns because an appliance can 

occur many times and it is difficult to take out appliances which occur at a time period. 

 

Symbols Meaning 

A … E Events or appliances 

L Sub-pattern set 

Q Query pattern or unknown pattern 

P(x) The proportion of x in dataset. Ex: P(A+B+) is the proportion 

of occurrence of A+ and B+ in L. 

AS2(x) Anomaly score for appliance x. 

Table 3 – Notations of sequential pattern 

Algorithm 1: SPMAS(CP, Q) 

Input: a correlation pattern dataset CP, a query pattern Q. 
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Output: all abnormal appliances A. 

 

01: A; 

02: transform CP into sub pattern L by Definition 1; 

03: transform Q into a combination list QL by Definition 2; 

04: evaluate proportion P(x) for each element x in QL; 

05: compute anomaly score AS2 for each appliance; 

06: A min(AS2); 

07: output all appliances in A; 

 

For unknown pattern, we actually do not know the order of appliances in this 

pattern. The order in query pattern is random, which depends on users’ input. Therefore, 

it is not easy for us to compare the query pattern with existing correlation pattern set. 

Our method use probability theory to solve this problem.  

Given a dataset D (correlation pattern set), consisting of appliances and their 

occurrences in classical sense, denoted by Ω. It is then assumed that for each element 

xΩ. 

For the unknown pattern Q={X1, X1, X3} of space Ω, assume that all appliances 

in Q have occurred in dataset D. Anomaly score of Xi is defined as: 

𝐴𝑆2(𝑋1) = 𝑓(𝑋1) + 𝑓(𝑋1𝑋2) + 𝑓(𝑋1𝑋2) + 𝑓(𝑋1𝑋2𝑋3) 

where 𝑓(𝑋1) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑠𝑢𝑏 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
, 

𝑓(𝑋1𝑋2) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑋1&𝑋2 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑠𝑢𝑏 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
, 

𝑓(𝑋1𝑋3) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑋1&𝑋3 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑠𝑢𝑏 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
, 

 𝑓(𝑋1𝑋2𝑋3) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑋1, 𝑋2&𝑋3 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑠𝑢𝑏 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
 

We also define some rules helps us identify the anomalies.  

The rules are given as: 

If P(Q) > 0 then the query pattern Q has no abnormal usage behavior. 

If P(Q) = 0 then 

 Calculate AS2(Xi) for each appliance. 
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 Min(AS2(Xi)) is abnormal. 

Take the dataset in Table 1 as an example. First, we transform the correlation 

patterns into sub patterns by Definition 1. Table 4 shows the sub patterns corresponding 

to correlation patterns in Table 1. 

 

Sub-patterns set (L) 

[A+] : 65 

[A+],[A+B+]: 12 

[A+],[A+B+],[A+B+C+]:2 

[A+],[A+B+],[A+B+D+]:2 

[B+]:66 

[B+],[C+],[C+A+]:5 

[B+],[C+]:20 

[B+],[C+],[C+]:6 

 

[B+], [C+]: 4 

[C+] : 67 

[C+], [C+], [C+] : 3 

[C+], [C+], [D+] : 22 

[D+] : 55 

[D+], [C+] : 29 

[D+], [C+], [C+D+] : 6 

[D+], [D+], [D+A+]:2 

 

Table 4 – A sub pattern set is generated from Correlation pattern set as definition 2 

with 519 sub patterns. 

 

Given a query pattern Q= [A+B+C+D+]. As Definition 2, its subsets are 

QS={[A+], [B+], [C+], [D+], [A+B+], [A+C+], [A+D+], [B+C+], [B+D+], [C+D+], 

[A+B+C+], [A+B+D+], [A+C+D+], [B+C+D+], [A+B+C+D+]}. 

Using information about occurrence of appliances in L, we compute the proportion 

of each subset of the query pattern. The proportion of each subset is calculated as 

following: 

P(A+) = 108/519; P(A+B+) = 20/519; P(A+C+) = 7/519; P(A+D+) = 4/519; 

P(A+B+C+) = 2/519; P(A+B+D+) = 2/519; P(A+C+D+) = 0; P(A+B+C+D+) = 0; 

AS2(A+)=(108+20+7+4+2+2+0+0)/519=0.2755; 

AS2(B+)=0.2871; AS2(C+)=0.4277; AS2(D+)=0.2620; 

D+ is abnormal in this query pattern Q because min (AS2(QS)) = AS2(D+). 

 

Sub patterns  as Definition 1 was shown in Table 4, which correspond to the 
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correlation patterns set in Table 1. We need to decompose correlation patterns into sub 

patterns because of two reasons. First, we want to combine appliances which may turn 

on at a time period while an appliance can turn on and turn off many times in a 

correlation pattern. Each sub pattern indicates that appliances may turn on in the same 

period, which can be used for computing appliance anomaly scores. Second, we do not 

use turned off information in correlation patterns for our method because we have no 

turned off values of appliances in the query sequence. Therefore, we can eliminate 

turned off symbol () in sub patterns. 

The first advantage of SPMAS is that we do not need time information of 

appliances to determine abnormal usage behavior since there is no time information in 

frequent sequences of correlation patterns. Another advantage of this method is that we 

do not pay attention to the order of appliance when compute anomaly scores because 

we have no order information in query pattern. However, we cannot identify exactly 

abnormal usage behaviors when there is only one appliance in the query pattern. If 

there are many appliances with low scores, we can use a threshold instead of using the 

minimum value. 

5.3 Time Intervals for Abnormal Detection (TIAD) 

First, we define time intervals of occurrence of each appliance in the correlation 

pattern that is to identify appropriate time periods for each appliance. 

Symbols Meaning 

E Events or appliances 

T Timestamps of E 

P The probability density function of T 

M The sorted list [00:00, 23:59] 

Table 5 – Notations of time intervals 

One possible approach is to generate the intervals while the correlation patterns 

discovery part. However, the time complexity increases, since all possible intervals 

have to be considered.  

 

Algorithm 3: TIAD(pdf, Q) 
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Input: probability density function set pdf, a query pattern Q. 

Output: all abnormal appliances A. 

For each appliance: 

∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝑀 : 

Let 𝑥1 be 𝑡𝑖 ∈ 𝑀 such that {
𝑓(𝑡𝑖) ≥ 𝑘

𝑓(𝑡𝑖−1) < 𝑘 𝒐𝒓𝑡𝑖−1 ∉ 𝑀
 

Let 𝑥2 be 𝑡𝑗 ∈ 𝑀 such that {
𝑓(𝑡𝑗) ≥ 𝑘

𝑓(𝑡𝑗+1) < 𝑘 𝒐𝒓𝑡𝑗+1 ∉ 𝑀
 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑘 ⟵ [𝑥1, 𝑥2] 

Aappliance 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑘 

Output all appliance in A. 

Table 6 – Determining time intervals for each appliance 

The potential drawback is that the quality of accuracy can be affected by how we 

define the intervals. However, we can minimize this possibility if we do not fixed-width 

time intervals. Instead determine the intervals based on the original dataset, we use the 

probability density function. The area under the curve from time t1 to time t2 gives us 

the probability that an appliance will turn on between t1 and t2. 

We need to define the time intervals as intervals between local maxima of the 

probability density function. The main idea behind this approach is that a user often 

turn-on this appliance during a certain time period. For example, as illustrated in Fig.  

4, a user may usually turn-on in two periods as between 03:00AM and 06:30AM; 

between 17:30PM and21:00PM. Since some appliances turn on more frequently than 

others, we define the time intervals by computing probability density functions for each 

appliance separately. 

For anomaly detection, an appliance in the query pattern will be determined 

whether it is normal or abnormal. The appliance is normal when its time is in this 

appliance’s time intervals. Each appliance will be determined by its time intervals. All 

appliances in query pattern must be existed in dataset. 
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Chapter 6 

 

Experiment Evaluations and Results 

 

For performance discussion, we compare our methods EVMAS, SPMAS, and 

TIAD together. All algorithms were implemented in Python language and tested on an 

Intel Core 2 Quad CPU Q9400 @2.66GHz with 8GB of main memory running 

Windows 7 system. This performance study has been conducted on both real world and 

synthetic dataset. First, we implement our three methods on data set in detail. Second, 

we compare the execution time using real world dataset at different threshold size. 

Finally, we compare the accuracy of the three methods on real world dataset. 

 

6.1 Application 

First Kind Synthetic Data Generator 

Our aim is to illustrate the tail distribution estimation of a set of correlation 

patterns and use the results to quantify the anomaly score. Table 7 gives the list of the 

correlation patterns considered in our analysis. The illustration focuses mainly on the 

appliance ID 60, providing confidence intervals and graphical visualization of the 

estimates, whereas for the other appliances only point estimates are reported. The 

application has been executed in Python 3.3 programming environment. 

 

Appliance ID Appliance name Observations  

13 Kitchen outlet – 1500W 505 

17 Kitchen outlet – 30W 624 

24 Washer dryer 3W 497 

29 Outlets 238 

57 Furnace 258 
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60 Smoke alarm 682 

Table 7 – Data analyzed – Correlation Pattern sets. 

 

Fig.  7 shows the plot of the n=682 observed of the appliance ID 60. This is 

multimodal distributed such that anomalies possibly occur between the modes. Hence, 

we not only consider the left and the right tail of the distribution but also between the 

modes. We use maximum likelihood estimation, which is one of the most common 

estimation procedures used in practice. We also compute likelihood based interval 

estimates of the parameters and the quantities of interest which provide additional 

information related to the accuracy of the point estimates. These intervals, contrarily to 

those based on standard errors, do not rely on asymptotic theory results and restrictive 

assumptions. We expect them to be more accurate in the case of small sample size. 

Another advantage of the likelihood-based approach is the possibility to construct joint 

confidence intervals. The greater computational complexity of the likelihood-based 

approach is nowadays no longer an obstacle for its use. 

 

 

Fig.  7: Numbers of occurrences per hour for 45 days. 

 

 The implementation of the EVT method involves the following steps: select 

the threshold u, fit the Weibull and Gumbel distributions and then compute anomaly 

score. 

 

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

er
s 

o
f 

o
cc

u
rr

en
ce

s

24 Hours

Appliance ID: 60



 

33 

Selection of the threshold u 

We know that the higher the threshold the less observations are left for the 

estimation of the parameters of the tail distribution function. There is no automatic 

algorithm with satisfactory performance for the selection of the threshold u. In previous 

work [33-36] the threshold has been set on the pdf fn(x)=k. In this paper, we define the 

threshold for cdf F(x)=size. The size value is based on the size of samples dataset. 

Appliance 60 has 682 samples observations, we have ln(682)=6.525. Hence, we collect 

the set yk such that F(k)=6.525%. The number of observations exceeding the threshold 

is 53. 

Maximum Likelihood Estimation 

Given the theoretical results presented in the previous section, the distribution of 

the observations that we collect above should be drawn a Weibull distribution. We 

compute the value β and η that maximize the log-likelihood function for the sample yk. 

 

Appliance ID ln(n) β  η 

13 6.223 0.6124 3.8701 

17 6.436 1.2495 16.6069 

24 6.209 1.6596 134.082 

29 5.472 1.3199 21.026 

57 5.553 3.0131 284.27 

60 6.525 0.6873 2.3496 

Table 8 – Maximum Likelihood Estimation. 

Weibull and Gumbel distributions 

We obtain the estimates β=0.6873 and η=2.3496. Fig.  8 shows the pdf Weibull 

distribution for appliance 60. 
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Fig.  8: Weibull 2-Parameter probability density function at β=0.6873 and 

η=2.3496. 

We also obtain the estimates c = 1/β = 1.4545 and d = ln(η)= 0.8542. Fig.  9 

shows the pdf Gumbel distribution.  The corresponding cdf of Gumbel is illustrated in 

Fig.  10. 

 

Fig.  9: Gumbel probability density function (pdf) at c = 1.4545 and d = –0.8542. 
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Anomaly score 

An anomaly score of an appliance is defined as (2). An appliance which its 

anomaly score is high and between the Gumbel value of f(x) can be viewed as anomaly. 

In other words, an appliance is abnormal if this pdf value is lower than a threshold. 

Table 9 illustrates the pdf and Gumbel information of appliance 60 in a day. We can see 

that anomaly scores are higher than that of other scores when appliance turns on 

between 23:00 and 01:00. It means that the probability of appliance occurrence is lower 

than that of others in this period. 

 

Fig.  10: Gumbel cumulative distribution function (cdf) at c =1.4545 and d = 

0.8542. 

 

Time Pdf AS1 Time pdf AS1 

00:00 0.6412 4.0017 12:00 0.6463 3.0363 

00:30 0.6426 3.6585 12:30 0.6460 3.0724 

01:00 0.6437 3.4284 13:00 0.6458 3.1101 

01:30 0.6445 3.2906 13:30 0.6455 3.1405 
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02:00 0.6450 3.2212 14:00 0.6454 3.1591 

02:30 0.6451 3.1931 14:30 0.6453 3.1659 

03:00 0.6452 3.1819 15:00 0.6453 3.1652 

03:30 0.6453 3.1746 15:30 0.6454 3.1636 

04:00 0.6453 3.1709 16:00 0.6453 3.1651 

04:30 0.6453 3.1737 16:30 0.6453 3.1700 

05:00 0.6452 3.1821 17:00 0.6452 3.1788 

05:30 0.6451 3.1942 17:30 0.6451 3.1937 

06:00 0.6450 3.2110 18:00 0.6450 3.2137 

06:30 0.6449 3.2322 18:30 0.6449 3.2309 

07:00 0.6447 3.2524 19:00 0.6449 3.2353 

07:30 0.6447 3.2619 19:30 0.6449 3.2245 

08:00 0.6447 3.2549 20:00 0.6451 3.2068 

08:30 0.6449 3.2323 20:30 0.6451 3.1936 

09:00 0.6451 3.1978 21:00 0.6452 3.1924 

09:30 0.6454 3.1532 21:30 0.6451 3.2065 

10:00 0.6458 3.1015 22:00 0.6448 3.2392 

10:30 0.6462 3.0521 22:30 0.6444 3.2998 

11:00 0.6465 3.0198 23:00 0.6438 3.4066 

11:30 0.6465 3.0150 23:30 0.6429 3.5867 

Table 9 – The pdf value and Gumbel value (Anomaly score) of appliance 60 from 

00:00AM to 23:30PM 

 

Fig.  11 shows the anomaly score for appliance 60 in a day for each 30 minutes 

and the Gumbel values for the set of f(x). We can set the threshold based on the pdf 

(0.644) or Gumbel value (3.4). Appliance 60 will be abnormal when its pdf smaller 

than 0.644 or anomaly score greater than 3.4. For this example, we just only compute 

anomaly score for appliance 60 with 48 times for each 30 minutes. We can identify that 

appliance 60 will be abnormal when it turns on between 23:00PM to 01:00 AM. For 

precision discussion, we will evaluate anomaly score for all appliances in a query 

pattern at a certain time (ex: current time) 
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Fig.  11: Anomaly score and Gumbel values of f(x). 

6.2 Performance on real world datasets 

In this section, we describe our real-world dataset and show some correlation 

patterns that our algorithms discovered for each house. Although many smart home 

environment datasets are available, but little of them records the status along with space 

information for each appliance in smart home environment. Kolter et al. [18] collected 

the dataset REDD including detailed power readings of each appliance of six houses 

lasting for about five weeks. Therefore we can convert the raw data into suitable usage 

database. We use our sample house for the location information of each house. And we 

set the minimum space threshold fixed as 0.5 and mine the daily correlation patterns of 

each house. 

In the following experiments, we compare the running time of EVMAS and TIAD 

method with threshold varied from 5% to 10% on A17-N624 dataset, while SPMAS 

test with query patterns varied length from 1 appliance to 6 appliances. A17–N624 

dataset contains 624 events of appliance 17. Fig.  12 shows the running time of the 
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three methods with different threshold and number of appliances in the query patterns. 

Obviously, when we continue to higher the threshold, the runtime for EVMAS and 

TIAD remain unchanged at around 56 (seconds). We can see that when the number of 

appliances increases, the processing time required for SPMAS increases. This is partly 

because EVMAS and TIAD use the probability density function information while 

SPMAS uses frequent sequences dataset. Many appliances in a query pattern lead to 

generate more number of combination sequences. 

Fig.  13 shows the execution time of the three algorithms with threshold varied 

from 5% to 10% on A60–N682 dataset, while SPMAS test with query patterns varied 

length from 1 appliance to 6 appliances. A60–N682 dataset contains 682 events of 

appliance 60. From this figure, we can observe that SPMAS has the best running time 

performance. However, when the number of appliances in query patterns increases, 

number of combination sequences will be increased quickly. It leads to the runtime 

rising dramatically. On the contrary, EVMAS and TIAD stabilize at about 61 (seconds). 

 

Fig.  12. Running time performance testing on A17-N624 dataset. 
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Fig.  13. Running time performance testing on A60-N682 dataset.  

For testing the performances of anomaly detection, we have to generate the 

synthetic query because the original data does not label every day with normal or 

abnormal behavior. We take 1440 queries (1440 minutes per day), Q={t1, t2, …, 

ti|ti[0,24)}. As shows in Fig.  11, we can label normal or abnormal behavior for each 

minute. Fig.  14 shows the percentage of accuracy for each method. We can see that 

using probability density function information outperform taking frequent sequences. 

EVMAS and TIAD take more precise than that of SPMAS. 

 

Fig.  14.  Precision testing of the three methods on real world dataset. 
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6.3 Discussion on EVMAS 

 Anomaly detection using EVT approach is based on a model of normal 

behavior which was presented by the probability distribution function. There are five 

steps to execute the methods. First, we collect the information of appliances and then 

build the pdf for each appliance. This step will take a long time because it will read the 

original dataset and extract useful information for pdf. Second, we have to extract 

minimal value of y. We define where is the tails of the pdf and the collect the set of y 

that stay under the threshold. However, how to choose the best threshold is also a big 

problem for this method. We gradually increase value of threshold such that the area 

under the threshold equal to the size value (size=log(m)). This step takes the most 

running time of all steps in this method. 

 

Fig.  15 Threshold and the area of threshold and axis. 

 However, it only take long time for training. When user appliances want to 

send a query pattern, it will respond in a short time because it just calculate the anomaly 

score for the query pattern. 
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 About the performance of accuracy, we can see that EVMAS’ accuracy is 

better than that of SPMAS and TIAD. It is really true because the anomaly score was 

calculated throughout the Weibull and Gumbel distribution. SPMAS just only use the 

pdf to determine the anomalies. 

6.4 Discussion on SPMAS 

We explore the frequent sequences of correlation patterns dataset to calculate the 

anomaly score for each appliance. The set of frequent sequences which can be used to 

determine abnormal events. We assume that all sequence patterns in this dataset are 

normal patterns. All appliances occurred in normal scenarios. The main disadvantage of 

this method is that the running time is fastest compare to EVMAS and TIAD. Thanks to 

this benefit, we can use this method for online system. It takes less time consumption 

than that of EVMAS and TIAD.  

However, the first advantage of SPMAS is that we do not need time information of 

appliances to determine abnormal usage behavior since there is no time information in 

frequent sequences of correlation patterns. Another advantage of this method is that we 

do not pay attention to the order of appliance when compute anomaly scores because 

we have no order information in query pattern. However, we cannot identify exactly 

abnormal usage behaviors when there is only one appliance in the query pattern. If 

there are many appliances with low scores, we can use a threshold instead of using the 

minimum value. The accuracy of this method is also lower than that of EVMAS and 

TIAD.  

6.5 Discussion on TIAD 

Generating normal behavior time intervals using the pdf is easy way to define the 

normal time intervals. The advantage of this method is that we can use the threshold 

that we have done in EVMAS method. We save both running time and memory to find 

the threshold. The accuracy of this method is also better than that of SPMAS. 

The potential drawback is that the quality of accuracy can be affected by how we 

define the intervals. However, we can minimize this possibility if we do not fixed-width 

time intervals. Instead determine the intervals based on the original dataset, we use the 

probability density function. The area under the curve from time t1 to time t2 gives us 
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the probability that an appliance will turn on between t1 and t2. The running time of 

this method and EVMAS are nearly the same but the accuracy is a little bit lower than 

that of EVMAS.  
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Chapter 7 

 

Conclusion 

 

Recently, considerable concern has arisen over the electricity conservation due to 

the issue of greenhouse gas emissions. If abnormal behaviors of appliances usages are 

available, users can adapt abnormal behaviors information to conserve electricity 

effectively. In this paper, we explored the correlation patterns for abnormal detection 

and proposed three methods to detect abnormal usage behavior of appliances in a home. 

Our main method adapts the Extreme Value Theory on the tails of probability density 

function of appliances. Then, we can evaluate anomaly scores for appliances, and 

identify what the appliances usages are abnormal. One important thing is that the 

correlation patterns length need to be large enough for the Weibull and Gumbel 

distribution but too large values can lead to time-consuming.  Other two methods use 

frequent sequences of correlation patterns to compute the proportion of occurrence of 

appliances in dataset and adapt probability density function to extract time intervals for 

normal periods, then we can determine what appliances usages are not normal at the 

time. The experimental studies indicate that our methods are efficient and precise. 

Moreover, EVMAS, SPMAS, and TIAD are applied on a real world dataset to show the 

practicability of abnormal detection. 
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