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Abstract

Since the information explosion; analyzing data by using statistical methods pro-
gressively becomes norm. Nowadays, the problem we are faced with large sample
size analysis gradually transformed into high dimensional model analysis. How to
find the optimal model for the data is our most important issue. In our study,
we compare EBIC, which proposed by Chen & Chen (2008) for high dimensional
model, with common model selection methods, AIC and BIC, and use simulations

illustrating the difference and the pros and cons of these methods.
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1 Introduction

Since the information explosion, information science is flourishing and the data volume
owned by humans is increasing exponentially. For example, according to Technorati, an
internet search engine for searching blogs, the number of blogs doubles about every 6
months with a total of 35.3 million blogs as of April 2006.

Today, we are faced with the era of “big data”. So we are most concerned about
an issue of how to analyze data using statistical methods. One of the problem is an
appropriate model for a given data set. For example, in financial world, enterprises use a
variety of its value creation information for building a financial model, so as to complete
such as analysis, prediction and assessment of the financial performance of the enterprise.

There are two ordinary.model selection methods,; Akaike Information Criterion, AIC
(Akaike, 1974) and Bayesian Information Criterion; BIC (Schwarz, 1978). In many areas,
we can see examples of using AIC or BIC for model selection; such as in finance, use
for stock-recruitment model selection (Wang & Liu, 2006) and in bioinformatics, use for
mixed graphical model selection (Edwards, Abreu & Labouriau, 2010). Unfortunately,
the problems we are faced with changing from large sample data analysis gradually to
high dimensional model analysis today. In order tosolveit, Chen & Chen (2008) proposed
a new model selection'method, Extended Bayesian Information Criterion (EBIC), which
is particularly useful in genome-wide association studies.

In the following, we introduce three model selection methods mentioned above, AIC,
BIC and EBIC in Section 2. For AIC and BIC, we refer the book “Information Criterion
and Statistical Modeling” (Konishi & Kitagawa, 2008), which also includes GIC, TIC,
PIC, DIC, etc., but in our study, we only focus on AIC, BIC and the new method, EBIC.
In Section 3, we compare these three methods by simulation under general linear model
case and AR(1) model case. Furthermore, we also consider the high dimensional model
to illustrate the difference and the pros and cons of these three methods. Finally, we will

give a conclusion about which is the best method in these three methods in Section 4.



2 Model Selection Methods

In this section, we describe two model selection methods, Akaike Information Crite-
rion (AIC, 1974) and Bayesian Information Criterion (BIC, 1978), and introduce a new
method, Extended Bayesian Information Criterion (EBIC, 2008), which is particularly

useful in high dimensional model analysis.

2.1 Akaike Information Criterion

In the middle of the 20th century, a new financial instrument — “stock” rise, and
the stock market is booming. ‘The old statistical method, hypothesis testing, has been
insufficient to analyze such time-series data sets. In 1974, Hirotugu Akaike first proposed
the Akaike Information Criterion-(AIC), which is designed for the purpose of statistical
identification. In statistics, a model must.be identifiable so as to infer its possible prop-
erties accurately. That is, we can use AIC to select a better model.

When we build'a model by data, we assume that the data x = {xq,--- ,x,} are gen-
erated from the true distribution f(«). In order to capture the structure of the given
phenomena, we assume a k-dimensional parametric model {g(2|0);0 € © C RF} and we
estimate it by the maximum likelihood method. In other words; we construct a statistical
model g(x|é) by replacing the unknown parameter @, which contained in the probability
distribution, with the maximum likelihood estimator 0.

Kullback-Leibler information I(f,§) is the information lost when statistical model

§ = g(z|0) is used to approximating true distribution f = f(z); it is defined as the

o NETAW
1(7,9) = / f()log (g(x‘ é)) dr. (2.1.1)

Obviously, the best model loses the least information relative to other models in the set;

integral

this is equivalent to minimizing I(f, ) over §g. Furthermore, K-L information also can be

conceptualized as a “distance” between true distribution and a statistical model.



Equation (2.1.1) can be expressed as
114.9)= [ f@)og f@)do - [ fla)logg(alb)is
~ [1og@)ir () - [1ogglaB)ar ()

I(f,§) = Epllog f(X)] — Er[log g(X|0)],

where the expectations are taken with respect to true distribution F'(z) and the quantity

Erllog f(X)] is a constant (say C) across models. Hence,
1(f.9) = C — Er[log g(X|)].

where
= / log £ (2)AF(Z)
does not depend on the data or the statistical model. Thus, only relative expected K-L

information, Ep[log¢(X|@)], needs to be éstimated for.each model in the set.

One such estimator is
B llog g(X]6)} = [ Togg(+16)dA ()
e ilo (2,]0)
=g n 3 g I\T;

1 A
=—1 0
n og g(x[6),

in which the unknown probability distribution /' eontained in the expected log-likelihood
is replacing with an empirical distribution function F.. So the log-likelihood log g(x|8) is
an estimator of the expected log-likelihood nEx[log g(X8)].

The bias of the log-likelihood as an estimator of the expected log-likelihood Ex[log g(X|6)]
is defined by

bias(F) = EF(x) [log g(X|9(X)) — nEF(z) [10g g(X|é(X))H,

where the expectation Epx) and Ep(,) are taken with respect to the joint distribution,
[Ii, F(z;) = F(x), of the sample x and true distribution F(z) respectively, x and x are
independent.

According to Konishi & Kitagawa (2008), suppose that the maximum likelihood esti-

mator 6 converges in probability to 8y when n — oo, then the bias can be decomposed

3



as follow:
Epo[log 9(X|0(x)) — nEp ) [log g(X]0(x))]]

= Bpollog g(X[6(x)) — log g(X|60)]
+ Ergx[log 9(X[00) — nLp( [log g(X|60)]]
+ Epo[nEr () [log 9(X60)] — nEr[log g(X|0(x))]].
By writing ¢(0) = log g(x|@) and applying a Taylor series expansion around the maximum

likelihood estimator 9, we obtain

A

M (0_0)+ . (2.1.2)

00

+le-o)7 4e)

0(0) = 1(0) + (8 — 0)T - 77
(0) = £(0) + ( ) T 06067 |,

oLe)

50~ | . = 0 and the quantity

;

~1.0%log g(x|0)
P n  0000"

Here, the quantity 0 satisfies the equation

0

/ 82 9 log g(x]0)
L ey
o 0800

when n tends to oo.-Then we can obtain the approximation

converges in probability to

0% log ¢(X10)

d 2.1.3
5006" v (2.13)

0o

J(60) = — Er) [

p n ~ A
{(6,) —€0) = —5(60 = 0)" 7(60)(6, - 6)
for (2.1.2). Based on thisresult, we obtain approximately

Er(sllog 9(X10(x)) — 108.9(X180)l =587 (05 — )" T (60)(8, — 0)]

n

= S Erpoftr{J(80) (60 — 8)(8, — )"}

n

= §tr{J(00)EF(x)[(é —60)(6 — 6)"]}.

By substituting the asymptotic variance covariance matrix

A A

Frog|(8 — 00)(6 — 60)7] = —(66) " 1(80)(80) " (2.1.4)

of the maximum likelihood estimator é, where

01 X10) 01 X|0
1(6y) = Epx) Oggé 5) Og(;;ir ) ]
)
0 (2.1.5)
/f 810gg (x]0) 0log g(x|0) du
06" g,




we have
. 1 _
Ero[log g(X[0(x)) —log g(X|80)] = 5tr{I(60)J(60) '} (2.1.6)
Now we evaluate the easiest part
Er(x[log 9(X[00) — nEp([log g(X|60)]],
which does not contain an estimator. It can easily be seen that

Erx[log 9(X[600) — nEr)[log g(X|60)]]

> log g(Xil6o)

=1

= Erw) — nEp|log g(X100)] (2.1.7)

= 0.
The final part

Erp ) [nEpglog 9(X180)] — nBpeyllog g(X0(x))]]

can be calculated approximately as follows:
Bt [n B 108 9(X (80)}=~n By llog 9 (X[B(x))]
~ nEF(x)[%(eO —9)7J(80)(8, — 6)]
= g Epoo[tr{.(80)(8y = 0)(8y — 6)" }]
= gtr{J(eo)EF(x)[(é — 00)(9 —60)']}.

By the asymptotic variance covariance matrix (2.1.4) of the maximum likelihood estimator

9, we have
Frog [n o log (X [00)] — 1By log (X 18(0)]] = 5tr{1(60)7(60) ). (218)

Therefore, combining (2.1.6), (2.1.7) and (2.1.8), the bias resulting from the estimation

of the expected log-likelihood of the model is asymptotically obtained as
1 1
bias(F) = étr{I(OU)J(HO)fl} +0+ §tr{[(00)J(00)*1} = tr{1(09)J(60) '},

where I(60y) and J(6,) are respectively given in (2.1.5) and (2.1.3).

Now assume that the true distribution f(z) can be expressed as f(z) = g(x|6) for
properly specified 8, € © C R*. Under this assumption, the equality 1(8y) = J(6) holds
for the k x k matrix I(68) given in (2.1.5) and J(6,) given in (2.1.3). Therefore, the bias
of the log-likelihood is asymptotically given by

bias(F) = tr{1(00)J(00) "'} = tr{l}} = k,

5



where [}, is the identity matrix of dimension k. Hence, the AIC

AlIC = —QZlogg(aﬂé) + 2k
i=1

can be obtained by correcting the asymptotic bias k of the log-likelihood.
Then we give an example to calculate the value of its AIC. Suppose there is a linear
model
Y=1-X;+1-X;5+eE,
where Y = (Y1, Ys, .-+, Y,) !, Xy = (X1, Xon, -+, Xon) T, X = (X2, Xoo, -+, X2)T and

n
.9.
Y

€ = (e, 60, ,6,)7, 6 =~ N(0,1), i = 1,2,--- ;n. We use rnorm() in R to generate
the data of covariates X; and X, each covariate contains 50 records. We also generate
the data of € by rnorm(). And we use 1Im(). and AIC() to compute the AIC value of the
simulated data of the linear model. Consider the following two models:

M;: Y =70X;+e€

My : Y = 051X+ 52Xy +€
and let M, be the true model, the coefficients f; = S, = 1. By the function AIC() in
R, we get the AIC values for M; and M; equal to 189.0057 and 161.9824 respectively.

Therefore, in this simulation, we will prefer the true model M, rather than the model M;.

2.2 Bayesian Information Criterion

The maximum likelihood prineiple-in._some-cases; such as the choice of degree for a
polynomial regression and the choice of order for a multi-step Markov chain, invariably
leads to choosing the highest possible dimension, but not the “right” dimension. Although
there is a general model selection method, AIC, which is an extension of the maximum
likelihood principle, Schwarz (1978) proposed an alternative method, Baysian Information
Criterion (BIC), especially for this problem. It is derived as follows.

According to Konishi & Kitagawa (2008), let My, My, --- , M, be r candidate models,
and assume that each model M; is characterized by a parametric distribution g;(x|6;) (8; €
©; C R*) and the prior distribution 7;(8;) of the k;-dimensional parameter vector 6.
When n observations x = {x1,- -+ ,x,} are given, then, for the ith model M;, the marginal

distribution or probability of x is given by
m(x|M;) = /gi(x|0i)77i(0i)d0i7 (2.2.1)

6



This quantity can be considered as the likelihood of the ith model and is referred to as
the marginal likelihood of the data.

According to Bayes’ theorem, if we suppose that the prior probability of the 7th model
is p(M;), the posterior probability of the ith model is given by

m(x|M;)p(M;)
> i1 m(x|M;)p(M;)

This posterior probability indicates the probability of the data being generated from the

p(M;|x) = =121 (2.2.2)

1th model when data x are observed. Therefore, if one model is to be selected from r
models, it would be natural to adopt the model that has the largest posterior probability.
This principle means that the model that maximizes the numerator m(x|M;)p(M;) must
be selected, since all models share the same denominator in (2.2.2).

If we further assume that the prior-probabilities p(4/;) are equal in all models, it
follows that the model that maximizes the marginal likelihood m(x|M;) of the data must
be selected. Therefore, if an approximation to the marginal likelihood expressed in terms
of an integral in (2.2:1) can readily be obtained, the need to compute the integral on a
problem-by-problem basis will vanish, thus making the BIC suitable for use as a general
model selection criterion.

Equation (2.2.1) may be written as

AT Y / exp{log g(x|0) }(6)d6. (2.2.3)

The Laplace approximation (Laplace;.1774) takes advantage of the fact that when the
number n of observations is sufficiently large, the integrand is concentrated in a neigh-
borhood of the mode of log g(x|@) or, in this case, in a neighborhood of the maximum
likelihood estimator é, and that the value of the integral depends on the behavior of the

function in this neighborhood.

dlog g(x|0)

=0 =0 holds for the maximum likelihood estimator @ of the parameter

0=6
0, the Taylor expansion of the log-likelihood function log ¢g(x|@) around 6 yields

Since

A

log g(x|0) = log g(x|0) — g(o —0)TIO)O—6)+ -, (2.2.4)

where
1 8*logg(x|0)

J(6) = .
n 8980T 0=0



Similarly, we can expand the prior distribution 7(0) in a Taylor series around the maxi-

mum likelihood estimator  as

TR (2.2.5)

Substituting (2.2.4) and (2.2.5) into (2.2.3) and simplifying the results lead to the ap-

proximation of the marginal likelihood as follows:

Taking the logarithm of this expression and multiply it by —2, we obtain

—2log m(x| M) ~ —2log 4(x|0) + k logn-log ’J(é) ~ klog(2m) — 2logm(0). (2.2.6)

Then the following model evaluation criterion BIC can be obtained by ignoring terms
with order less than O(1) with respect to the sample size n.
Let g(x|@) be a'statistical model estimated by the maximum likelihood method. Then

the Bayesian information criterion BIC is given by
BIC = —2log g(x|0) + klog n.

For example, under the same assumptions of the-example in Subsection 2.1, but we use
BIC(Q) instead of AIC() to compute the BIC walue of the simulated data in here. Then,
we get the BIC values for M; and M, (true model) equal to 190.1232 and 159.6058 re-
spectively. Therefore, in this simulation, we will prefer the true model M; rather than
the model M;.

From the above argument, it can be seen that, BIC is an evaluation criterion for mod-
els estimated by using the maximum likelihood method and that the criterion is obtained
under the condition that the sample size n is made sufficiently large. We also see that
it was obtained by approximating the marginal likelihood associated with the posterior
probability of the model by Laplace’s method for integrals and that it is not an informa-

tion criterion, leading to an unbiased estimation of the K-L information.



2.3 Extended Bayesian Information Criterion

In a typical genome-wide association study with single-nucleotide polymorphisms, the
number of covariates is of the order of tens or hundreds or thousands while the sample
size is only in the hundreds. To solve the problem with a moderate sample size but with a
huge number of covariates, a new model selection method, Extended Bayesian Information
Criterion (EBIC), proposed by Chen & Chen (2008).

Suppose that the number of covariates under consideration is P = 1000. The class of
models containing a single covariate, S, has size 1000, while the class of models containing
two covariates, So, has size 1000 x 999/2. The constant prior behind BIC amounts to
assigning probabilities to the S; proportional to their sizes. Thus, the probability assigned
to Sy is 999/2 times that assigned to S;. The size of Sy increases as k increases to
k = P/2 = 500, so that the probability assigned to Sj by the prior increases almost
exponentially. Models with a larger number of covariates, 50 or 100 say, receive much
higher probabilities than models with fewer covariates. This is obviously unreasonable,
being strongly against the principle of parsimony.

This re-examination of BIC prompts us to consider other reasonable priors over the
model space in the Bayesian approach. Assume that the model space S is partitioned into

UL, Sk, such that models within each S have equal dimension. Let7(Sy) be the size of Sy
P

k
We assign the prior distribution over.S as follows. For each model M in the same subspace

For example, if Sy, is the collection of all models with % covariates, then 7(Sy) =

Sk, assign an equal probability, i.e. pr(M|S;) = 1/7(Sk) for any M € Sy. This implies
that all the models in Sy are equally plausible. Then, instead of assigning probabilities
pr(Sk) proportional to 7(Sk), as in the ordinary BIC, we assign pr(Sk) proportional to
75(S) for some & between 0 and 1. This results in the prior probability p(M) for M € S,
being proportional to 777(Sk), where v = 1 — &£. This type of prior distribution on the

model space gives rise to an extended BIC family
BIC, (M) = —2log L{B(M)} + klogn + 2ylog 7(S;), 0 <y <1,

where @(M) is the maximum likelihood estimator of @(M) given model M and k is the
number of components in M. The first two terms in BIC, (M) are the Laplace approx-
imation to —2logm(x|M) and the last term is —2logp(M) up to a common constant.

The criterion BIC, is referred to as an extended Bayes information criterion.

9



Let’s give an example to calculate its EBIC value. Suppose there is a model which
contained 50 covariates, but we only have 30 records of this model. Consider the following
two models:

My Y =5X;+e€

My: Y = 51X + 32X + €,
and let Ms be the true model, the coefficients 5, = 5 = 1. Using the formula of EBIC to
calculate the EBIC values, and we get its for M; and M, equal to 123.8225 and 109.6918
respectively. Since the EBIC value of Ms is less than M;’s, we may think that M, is the
true model rather than M.

In the targeted application, P can be very large but the cardinality of the candidate
models is small. If some of the covariates are heavily collinear, the effective number of
different models might be smaller than that indicated by 7(Sy), and one might fear that
our method is affected. Consider an extreme case in which half of the covariates are du-
plicates. Thus, in considering 7(Sg); P should be replaced by P/2. However, it is easy to
see that, when P is xreplaced by P/2; the change in ylog7(S) is-of a smaller order than
the order logn + log P of the leading terms. Thus, some adjustment might be helpful but

the effect will not be important when n or P is large.

10



3 Comparison of AIC, BIC and EBIC

3.1 Large Sample Size (n > p)
3.1.1 Linear Model

Suppose there are three covariates X;, Xy and X3 in a data, but the true model is
Y:1'X1+1'X2+€,

where Y = (Y1, Yy, .-+, V)T, X; = (X1, Xog, -+, Xoi)T, @ = 1,2,3 and each component

T is normally distributed independent with mean 0 and variance

of € = (e1,€9,++ ,€,)
1. We generate the data of covariates X;, Xy and X3 separately from standard normal
distribution, that is, X;, Xy and X3 are independent standard normally distributed.

Consider all possible models:

M;: Y =00hX4+e€

My: Y = [,X5+€

Ms;: Y =[3X5+€

My: Y = Xy + 52X + € (true)

Ms: Y =0, Xy + 33X3 + €

M : Y = 5X5 + X3+ €

M;: Y = 51Xy + 0oXg + 3X3 + €,
and we compute the value of AIC, BIC and EBIC, finding which information criterion
has the best performance. Since the difference between calculation results of function in
R and the original formula are insignificant (see Table 3.1), we will use function in R
to compute the value of AIC, BIC and EBIC in the following. (Suppose that the prior
distributions of the coefficients (5, B2 and (3 are independent exponential distribution
with A =1 in BIC.)

First, we compare three information criterions under different sample size n. In each
case, we simulate 1000 times and fix the parameter v of EBIC to 1.0. In Table 3.2, when
n is large enough (n > 30), the performances of three information criterions are good,
and in this time, the result of BIC better than AIC is more significant than when n is
not large enough. In addition, three information criterions indeed exist the large models
tendency mentioned in Schwarz (1978) and Chen & Chen (2008). And no matter n is

how much, the results of EBIC are worse than BIC, even worse than AIC in the case of

11



Table 3.1: AIC, BIC and EBIC values of one simulated data set (n = 100) of the true
model My calculated under the original formula, approximative formula and function in
R. The original values of AIC, BIC and EBIC are calculated by the joint distribution of
the sample x, (2.2.6) and (2.2.6) plus the the correction term, respectively. The approxi-

mations are calculated by the formula for the three criterions.

Criterion | Original Value Approximation function in R
AIC 283.7878 281.1892 283.6349
BIC 286.8539 286.3996 294.0556

EBIC 289.0512 288.5968 296.2528

Table 3.2: Probability of model selection respectively using AIC; BIC and EBIC within M,
to M7 under different sample size n.-Each case simulated 1000 times and the parameter

~ of EBIC fixed to 1.0.

n | Criterion | M, M, M; M, M5 M M
AIC 0.07L - 0.06. 0.014 0.562. 0.024" "0.03  0.239
10 BIC 0.084 0.07 0.017 0.565 0.026 -0.031 0.207
EBIC 1 0.065 0.054 0.014 0.164 0.005 0.005 0.693
AIC 0.006 0.009--0 0775 0.001  0.005 0.204
20 BIC 0.02 0.014 0 0.843 0.003 0.007 0.113
EBIC |0.019 0.012 0 0.542 0 0.002 0.425
AIC 0.001 0 0 0.808 0 0 0.191
30 BIC 0.001 0.002 0 0.909 0 0.001 0.087
EBIC | 0.001 0.001 0 0.674 0 0 0.324
AIC 0 0 0 0.824 0 0 0.176
50 BIC 0 0 0 0.932 0 0 0.068
EBIC |0 0 0 0.796 0 0 0.204
AIC 0 0 0 0.811 0 0 0.189
100 BIC 0 0 0 0.951 0 0 0.049
EBIC |0 0 0 0.85 0 0 0.15

—_
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n = 10. Therefore, we compare information criterions under different ~, the parameter
involved in the correction term of EBIC, in the following.

Because v only involve in the correction term of EBIC, it has nothing to do with AIC
and BIC. So we only focus on comparing the impact of different v on EBIC. In Table 3.3,
the performance of EBIC is good but not better than BIC, and the larger ~, the worse
performan-
ce of EBIC. Since EBIC is applied suitably in the situation p greater than n, this result

is expectable and acceptable.

Table 3.3: Probability of model selection respectively using AIC, BIC and EBIC within
M to M7 under different parameter . Fach case simulated 1000 times and the sample

size n is 100.

~ | Criterion | M; M M3 My M M M-
AIC 0 0 0 0.841 0 0 0.159
0.1 BIC 0 0 0 0.973 0 0 0.027
EBIC |0 0 0 0.968, 0 0 0.032
AIC 0 0 0 084 O 0 0.16
0.5 BIC 0 0 0 0.96.+ 0 0 0.04
EBIC |0 0 0 0:929, 0 0 0.071
AIC 0 0 0 0.82 0 0 0.18
1.0 BIC 0 0 0 0.963 0 0 0.037
EBIC |0 0 0 0.852 0 0 0.148

3.1.2 Autoregressive Model

Suppose that the true model is an AR(2) model with the paramters ¢ = (¢, ¢2) =
(0.6,0.3), it can be written as

Xt:0.6'Xt71+0.3'Xt,2+6t, t:2,3,4,"',
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where ¢; is followed standard normal distribution. Given Xy = 0 and X; = 0, and then

we generate the data of the model by above formula.

Table 3.4: Probability of model selection respectively using AIC, BIC and EBIC under
different model sets. Each case simulated 1000 times and the sample size n is 100, the

parameter v of EBIC fixed to 1.0.

Max Order | Criterion | M; My M;5 My M5 Ms M
AIC 0 0.01  0.99
2 BIC 0 0.158 0.842
EBIC |0 01067 © 0.933
AIC 0 0.004 0.092.0.904
3 BIC 0 0:128 - 0:618 . 0.254
EBIC |0 0.086 = 0.183 0.731
AIC 0 0.003 " 0.02 0.079 0.898
4 BIC 0 0.127 #0.539 0.185: 0.149
EBIC |0 0.101 0.174 0.005 0.72
AlC 0 0 0:005-20:014 0.094 0.887
5 BIC 0 0.11 049 0.169 0.112 0.119
EBIC [0 0.134 0.186 0.021 0 0.659
AIC 0 0 0.002° 0.008 0.019 0.092 0.879
6 BIC 0 0.107 “0.502 0.127 0.109 0.068 0.087
EBIC |0 0.138 0.206 0.015 0.001 0O 0.64

Consider the following models:
M,: X =¢
My: Xy =i Xi 1+
M;s: Xy = ¢1 X1+ 02Xy o+ € (true)
My: Xo =01 Xo1+ @2 X0+ @3X3+ €
Ms: Xy =01 Xi 1+ 02Xy 0+ 03Xy 3+ 0u Xy g+ &
Ms: Xi =01 X1 + 02 Xi0+ 03Xi3 + QaXia + 05 Xi 5 + &
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M7 Xy =01 Xi 1+ 02Xy 2+ 93Xy 3+ 0a Xy g + 05Xy 5+ P6Xi 6 + €,
and we use function in R to compute the value of AIC, BIC and EBIC, discovering which
information criterion has the best performance.

In Table 3.4, since the maximum order of model is 2, (i.e. the true model has the
maximum order in the model set,) the performance of AIC is the best, but if the max-
imum order of model is larger than 2, the performance of AIC is the worst, and it has
the maximum order tendency in the model sets. Therefore, we are unable to determine
whether the best performance of AIC, when the maximum order equals 2, is based on
the maximum order tendency or not. EBIC also has the same problem, maximum order
tendency, but not so serious, better than AIC a little bit. Overall, BIC has the best
performance, but not very good, when the order is greater than 3, only about half of the

correct model selection rate.

3.1.3 Log-Normal Distribution vs. Exponential Distribution

Suppose we have.a data set x = {x, 2, -+, 2z}, which is generated from the log-
normal distribution In N(0,1). We want to use criterions to help us find the true dis-
tribution. Since our problem is finding the true distribution, it is not involved in the
models of different dimension} we only consider the comparison of models by AIC and
BIC, regardless of EBIC.

Consider the following two models:

M;: X;~InN(p,0%), i =1,2,--- ,n (true)

My : X;~ Ezp(\), i=1,2,--- n,
and we use the formulas of AIC and BIC to help us determine which model is true distri-
bution.

For M, the probability density function of a log-normal distribution is

1 (Inz — pu)?
€T N 2 = e _
Pl o) = P g

}7

where p = In(E(X)) — %2 and 02 = In (1 + E;&ﬁg) Let E(X) = X and Var(X) = s%,

then we use the estimators of u, i = In(X) — %, and o2, 6 = In <1 + }%), to replace

the parameters p and o? respectively. For M,, the probability density function of an
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exponential distribution is
fx(@N) = Aexp{-Az}, = >0,

where A = ﬁ Let E(X) = X, then we have the estimator of \, A = +, and use it to
replace the parameter A\ similarly.

In Table 3.5, when n is not large enough, either AIC or BIC are only about half of
the correct model selection rate. With n greater, the correct model selection rates of AIC

and BIC will increase, and when n = 1000, the correct model selection rates of AIC and

BIC are almost 1.

Table 3.5: Probability of model selection respectively using AIC and BIC within M; and
M;. Each case simulated 1000 times.

n | Criterion | Log-N-——Exp n | Criterion | Log-N  Exp
AIC 0.458--0.542 AIC 0.842 0.158
10 100
BIC 0.412 0.588 BIC 0.805 0.195
AIC 0.549  0.451 AIC 0.947  0.053
20 200
BIC 0.448  0.552 BIC 0.923 0.077
AIC 0.631.4,0.369 AIC 0:992  0.008
30 500
BIC 0.528 0.472 BIC 0.989 0.011
AIC 0.697 "0.303 AIC 0.999  0.001
50 1000
BIC 0.606 0.394 BIC 0.999  0.001

3.2 High Dimensional Model (p > n)

Suppose there are p covariates Xy, Xg, -+, X, in a data, but the true model is
Y:1'X1+1'X2+€,

where Y = (Y1, Y, .-+ . YV,)T, X, = (X4, Xoiy -+, Xi)T, i = 1,2,-- -, p and each compo-
nent of € = (€1, €z, , €,)7 is normally distributed independent with mean 0 and variance

1. The data of covariates X, Xy, -+, X, are generated separately from standard normal
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distribution.
Consider the following model sets:
Sy ={M;:Y=0,X;+€ j=1,2,---,p}
Sy ={M;,: Y =3,X;+B.X, +€ jr=12--,p, j#r} (true)
Sz ={Mj,s Y = 3;X; + 3, X, + B X+ € j,r,s=1,2,---,p, j#£TF#5Fj},
and we compute the value of AIC, BIC and EBIC of each model in the above model sets,

finding which model sets has the model of minimum value.

Table 3.6: Probability of model selection respectively using AIC, BIC and EBIC within
S1 to S3 and the status of model selection if given the model set Sy or S3. Each case

simulated 100 times and the sample size n is 30, the parameter ~ of EBIC fixed to 1.0.

P | Criterion | S5 Sy #Sg dl-pr(Mgp|So) || pr(Mp C Mc|Ss)
AlC 0 0 1 0 1
30 BIC 0 0.08 0.92 1 1
EBIC 0.04 0.71 0.25 1 1
AIC 0 0 1 0 1
35 BIC 0 0.04 0.96 1 1
EBIC 0.08 " 0:.09 0.23 1 1
AlIC 0 0 1 0 1
40 BIC 0 0 1 0 1
EBIC 0.08 0.727 0.2 1 1
AIC 0 0 1 0 1
45 BIC 0 0.04 0.96 1 1
EBIC 0.09 0.71 0.2 1 1
AIC 0 0 1 0 1
20 BIC 0 0.02 0.98 1 1
EBIC 0.12 0.64 0.24 0.969 1

In Table 3.6, the result of EBIC with respect to the AIC and BIC is pretty good;
BIC only has less than one tenth correct rate, AIC completely tends to large model set
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(the probability of Sy being chosen is 0). In addition, we further discuss the situation of
model selection if Sy or S3 being chosen. If S5 being chosen, then the rate of choosing
true model is greater than 96.9%; while in the case of S3 being chosen, the model which
be chosen must include the true covariates (X; and X5), that is, the covariates of the

model is {X17X2,X3}7 {X17X27X4}7 etc.

Table 3.7: Probability of model selection respectively using AIC, BIC and EBIC within
M; to Ms under different model space p. Each case simulated 1000 times and the sample
size n is 100, the parameter v of EBIC fixed to 1.0.

p | Criterion | My M M M, M;

AIC 0 0.7460.131 0:085 0.038
100 BIC 0 0.9534 .0:045 0.002. 0
EBIC 0 0.998 0.002, 0 0

AIC 0 0.764 0.12 0.077 0.039
200 BIC 0 0.962 0.035 0.003 0O
EBIC |0 0:999 0.001 0 0

AIC 0 0:751 014~ 0.075 0.034

300 BIC 0 0.964 ~0.033 0.003 0

0

0

0

0

0

0

0

EBIC
AIC
400 BIC
EBIC
AIC
500 BIC
EBIC

0.749 0136 - 0.078 0.037
0.958" 0.039 0.003 0
0.999 0.001 O 0

0.757 0.119 0.077 0.047
0.965 0.032 0.003 O
1 0 0 0

Now we consider the similar situation with previous case n > p. Consider the fol-
lowing models:
My: Y=0X+e
My : Y = 51Xy + X5 + € (true)
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M;: Y =51X; + 2Xo+ 53X3+ €

My: Y = B1Xy + 02Xy + B3X3 + fuXy + X5 + €

Ms: Y = 51X + B2Xo + -+ + B10X10 + €,
and we compute the value of AIC, BIC and EBIC, finding which information criterion
has the best performance.

In Table 3.7, even in the situation p greater than n (n = 100), AIC, BIC and EBIC

still have very good performance, EBIC even achieve almost error-free result. This means
that the additional correction term of EBIC, based on BIC, indeed can eliminate the large

models tendency.
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4 Conclusion

In the situation n greater than p, three information criterions mentioned in our study
still have the large models tendency, especially when the data is generated from autore-
gressive model. Inversely, in the situation p greater than n, it seems that we get a good
solution when the data is generated from standard normal distribution. We maybe com-
pare the data which is generated from other distributions, or furthermore, comparing and

analyzing the real data in the future.
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