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AIC、BIC 和 EBIC 之回顧

研究生：顏妤樺 指導教授：洪慧念　博士

國立交通大學統計學研究所碩士班

摘　要

自資訊爆炸以來，利用統計方法分析資料漸漸成為一種常態。而我們所面對的

問題也從過去的大樣本資料分析逐漸轉變成高維度資料分析。如何找出這些資料的

最適模型是我們最重要的課題。在這篇文章中，我們將 Chen & Chen (2008) 提出

之針對高維度模型選取方法 EBIC 與常見的模型選取方法 AIC、BIC 做比較，並

利用模擬的方式說明這些方法的差異與優劣。

關鍵詞：高維度模型、模型選取、AIC、BIC、EBIC
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Hsinchu 30010, Taiwan

Abstract

Since the information explosion, analyzing data by using statistical methods pro-

gressively becomes norm. Nowadays, the problem we are faced with large sample

size analysis gradually transformed into high dimensional model analysis. How to

find the optimal model for the data is our most important issue. In our study,

we compare EBIC, which proposed by Chen & Chen (2008) for high dimensional

model, with common model selection methods, AIC and BIC, and use simulations

illustrating the difference and the pros and cons of these methods.

Key words: High Dimensional Model, Model Selection, AIC, BIC, EBIC
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1 Introduction

Since the information explosion, information science is flourishing and the data volume

owned by humans is increasing exponentially. For example, according to Technorati, an

internet search engine for searching blogs, the number of blogs doubles about every 6

months with a total of 35.3 million blogs as of April 2006.

Today, we are faced with the era of “big data”. So we are most concerned about

an issue of how to analyze data using statistical methods. One of the problem is an

appropriate model for a given data set. For example, in financial world, enterprises use a

variety of its value creation information for building a financial model, so as to complete

such as analysis, prediction and assessment of the financial performance of the enterprise.

There are two ordinary model selection methods, Akaike Information Criterion, AIC

(Akaike, 1974) and Bayesian Information Criterion, BIC (Schwarz, 1978). In many areas,

we can see examples of using AIC or BIC for model selection, such as in finance, use

for stock-recruitment model selection (Wang & Liu, 2006) and in bioinformatics, use for

mixed graphical model selection (Edwards, Abreu & Labouriau, 2010). Unfortunately,

the problems we are faced with changing from large sample data analysis gradually to

high dimensional model analysis today. In order to solve it, Chen & Chen (2008) proposed

a new model selection method, Extended Bayesian Information Criterion (EBIC), which

is particularly useful in genome-wide association studies.

In the following, we introduce three model selection methods mentioned above, AIC,

BIC and EBIC in Section 2. For AIC and BIC, we refer the book “Information Criterion

and Statistical Modeling” (Konishi & Kitagawa, 2008), which also includes GIC, TIC,

PIC, DIC, etc., but in our study, we only focus on AIC, BIC and the new method, EBIC.

In Section 3, we compare these three methods by simulation under general linear model

case and AR(1) model case. Furthermore, we also consider the high dimensional model

to illustrate the difference and the pros and cons of these three methods. Finally, we will

give a conclusion about which is the best method in these three methods in Section 4.
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2 Model Selection Methods

In this section, we describe two model selection methods, Akaike Information Crite-

rion (AIC, 1974) and Bayesian Information Criterion (BIC, 1978), and introduce a new

method, Extended Bayesian Information Criterion (EBIC, 2008), which is particularly

useful in high dimensional model analysis.

2.1 Akaike Information Criterion

In the middle of the 20th century, a new financial instrument — “stock” rise, and

the stock market is booming. The old statistical method, hypothesis testing, has been

insufficient to analyze such time-series data sets. In 1974, Hirotugu Akaike first proposed

the Akaike Information Criterion (AIC), which is designed for the purpose of statistical

identification. In statistics, a model must be identifiable so as to infer its possible prop-

erties accurately. That is, we can use AIC to select a better model.

When we build a model by data, we assume that the data x = {x1, · · · , xn} are gen-

erated from the true distribution f(x). In order to capture the structure of the given

phenomena, we assume a k-dimensional parametric model {g(x|θ);θ ∈ Θ ⊂ Rk} and we

estimate it by the maximum likelihood method. In other words, we construct a statistical

model g(x|θ̂) by replacing the unknown parameter θ, which contained in the probability

distribution, with the maximum likelihood estimator θ̂.

Kullback-Leibler information I(f, ĝ) is the information lost when statistical model

ĝ = g(x|θ̂) is used to approximating true distribution f = f(x); it is defined as the

integral

I(f, ĝ) =

∫
f(x) log

(
f(x)

g(x|θ̂)

)
dx. (2.1.1)

Obviously, the best model loses the least information relative to other models in the set;

this is equivalent to minimizing I(f, ĝ) over ĝ. Furthermore, K-L information also can be

conceptualized as a “distance” between true distribution and a statistical model.

2



Equation (2.1.1) can be expressed as

I(f, ĝ) =

∫
f(x) log f(x)dx−

∫
f(x) log g(x|θ̂)dx

=

∫
log f(x)dF (x)−

∫
log g(x|θ̂)dF (x)

or

I(f, ĝ) = EF [log f(X)]− EF [log g(X|θ̂)],

where the expectations are taken with respect to true distribution F (x) and the quantity

EF [log f(X)] is a constant (say C) across models. Hence,

I(f, ĝ) = C − EF [log g(X|θ̂)],

where

C =

∫
log f(x)dF (x)

does not depend on the data or the statistical model. Thus, only relative expected K-L

information, EF [log g(X|θ̂)], needs to be estimated for each model in the set.

One such estimator is

EF̂ [log g(X|θ̂)] =
∫

log g(x|θ̂)dF̂ (x)

≈ 1

n

n∑
i=1

log g(xi|θ̂)

=
1

n
log g(x|θ̂),

in which the unknown probability distribution F contained in the expected log-likelihood

is replacing with an empirical distribution function F̂ . So the log-likelihood log g(x|θ̂) is

an estimator of the expected log-likelihood nEF [log g(X|θ̂)].

The bias of the log-likelihood as an estimator of the expected log-likelihood EF [log g(X|θ̂)]

is defined by

bias(F ) = EF (x)[log g(X|θ̂(x))− nEF (x)[log g(X|θ̂(x))]],

where the expectation EF (x) and EF (x) are taken with respect to the joint distribution,∏n
i=1 F (xi) = F (x), of the sample x and true distribution F (x) respectively, x and x are

independent.

According to Konishi & Kitagawa (2008), suppose that the maximum likelihood esti-

mator θ̂ converges in probability to θ0 when n → ∞, then the bias can be decomposed

3



as follow:
EF (x)[log g(X|θ̂(x))− nEF (x)[log g(X|θ̂(x))]]

= EF (x)[log g(X|θ̂(x))− log g(X|θ0)]

+ EF (x)[log g(X|θ0)− nEF (x)[log g(X|θ0)]]

+ EF (x)[nEF (x)[log g(X|θ0)]− nEF (x)[log g(X|θ̂(x))]].

By writing ℓ(θ) = log g(x|θ) and applying a Taylor series expansion around the maximum

likelihood estimator θ̂, we obtain

ℓ(θ) = ℓ(θ̂) + (θ − θ̂)T
∂ℓ(θ)

∂θ

∣∣∣∣
θ̂

+
1

2
(θ − θ̂)T

∂2ℓ(θ)

∂θ∂θT

∣∣∣∣
θ̂

(θ − θ̂) + · · · . (2.1.2)

Here, the quantity θ̂ satisfies the equation ∂ℓ(θ)
∂θ

∣∣∣
θ̂
= 0 and the quantity

− 1

n

∂2ℓ(θ)

∂θ∂θT

∣∣∣∣
θ̂

= − 1

n

∂2 log g(x|θ)
∂θ∂θT

∣∣∣∣
θ̂

converges in probability to

J(θ0) = −EF (x)

[
∂2 log g(X|θ)

∂θ∂θT

∣∣∣∣
θ0

]
= −

∫
f(x)

∂2 log g(x|θ)
∂θ∂θT

∣∣∣∣
θ0

dx (2.1.3)

when n tends to ∞. Then we can obtain the approximation

ℓ(θ0)− ℓ(θ̂) ≈ −n

2
(θ0 − θ̂)TJ(θ0)(θ0 − θ̂)

for (2.1.2). Based on this result, we obtain approximately

EF (x)[log g(X|θ̂(x))− log g(X|θ0)] =
n

2
EF (x)[(θ0 − θ̂)TJ(θ0)(θ0 − θ̂)]

=
n

2
EF (x)[tr{J(θ0)(θ0 − θ̂)(θ0 − θ̂)T}]

=
n

2
tr{J(θ0)EF (x)[(θ̂ − θ0)(θ̂ − θ0)

T ]}.

By substituting the asymptotic variance covariance matrix

EF (x)[(θ̂ − θ0)(θ̂ − θ0)
T ] =

1

n
J(θ0)

−1I(θ0)J(θ0)
−1 (2.1.4)

of the maximum likelihood estimator θ̂, where

I(θ0) = EF (x)

[
∂ log g(X|θ)

∂θ

∂ log g(X|θ)
∂θT

∣∣∣∣
θ0

]

=

∫
f(x)

∂ log g(x|θ)
∂θ

∂ log g(x|θ)
∂θT

∣∣∣∣
θ0

dx,

(2.1.5)
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we have

EF (x)[log g(X|θ̂(x))− log g(X|θ0)] =
1

2
tr{I(θ0)J(θ0)

−1}. (2.1.6)

Now we evaluate the easiest part

EF (x)[log g(X|θ0)− nEF (x)[log g(X|θ0)]],

which does not contain an estimator. It can easily be seen that

EF (x)[log g(X|θ0)− nEF (x)[log g(X|θ0)]]

= EF (x)

[
n∑

i=1

log g(Xi|θ0)

]
− nEF (x)[log g(X|θ0)]

= 0.

(2.1.7)

The final part

EF (x)[nEF (x)[log g(X|θ0)]− nEF (x)[log g(X|θ̂(x))]]

can be calculated approximately as follows:

EF (x)[nEF (x)[log g(X|θ0)]− nEF (x)[log g(X|θ̂(x))]]

≈ nEF (x)[
1

2
(θ0 − θ̂)TJ(θ0)(θ0 − θ̂)]

=
n

2
EF (x)[tr{J(θ0)(θ0 − θ̂)(θ0 − θ̂)T}]

=
n

2
tr{J(θ0)EF (x)[(θ̂ − θ0)(θ̂ − θ0)

T ]}.

By the asymptotic variance covariance matrix (2.1.4) of the maximum likelihood estimator

θ̂, we have

EF (x)[nEF (x)[log g(X|θ0)]− nEF (x)[log g(X|θ̂(x))]] = 1

2
tr{I(θ0)J(θ0)

−1}. (2.1.8)

Therefore, combining (2.1.6), (2.1.7) and (2.1.8), the bias resulting from the estimation

of the expected log-likelihood of the model is asymptotically obtained as

bias(F ) =
1

2
tr{I(θ0)J(θ0)

−1}+ 0 +
1

2
tr{I(θ0)J(θ0)

−1} = tr{I(θ0)J(θ0)
−1},

where I(θ0) and J(θ0) are respectively given in (2.1.5) and (2.1.3).

Now assume that the true distribution f(x) can be expressed as f(x) = g(x|θ0) for

properly specified θ0 ∈ Θ ⊂ Rk. Under this assumption, the equality I(θ0) = J(θ0) holds

for the k× k matrix I(θ0) given in (2.1.5) and J(θ0) given in (2.1.3). Therefore, the bias

of the log-likelihood is asymptotically given by

bias(F ) = tr{I(θ0)J(θ0)
−1} = tr{Ik} = k,

5



where Ik is the identity matrix of dimension k. Hence, the AIC

AIC = −2
n∑

i=1

log g(xi|θ̂) + 2k

can be obtained by correcting the asymptotic bias k of the log-likelihood.

Then we give an example to calculate the value of its AIC. Suppose there is a linear

model

Y = 1 · X1 + 1 · X2 + ϵ,

where Y = (Y1, Y2, · · · , Yn)
T , X1 = (X11, X21, · · · , Xn1)

T , X2 = (X12, X22, · · · , Xn2)
T and

ϵ = (ϵ1, ϵ2, · · · , ϵn)T , ϵi
i.i.d.∼ N(0, 1), i = 1, 2, · · · , n. We use rnorm() in R to generate

the data of covariates X1 and X2, each covariate contains 50 records. We also generate

the data of ϵ by rnorm(). And we use lm() and AIC() to compute the AIC value of the

simulated data of the linear model. Consider the following two models:

qquad M1 : Y = β1X1 + ϵ

qquad M2 : Y = β1X1 + β2X2 + ϵ,

and let M2 be the true model, the coefficients β1 = β2 = 1. By the function AIC() in

R, we get the AIC values for M1 and M2 equal to 189.0057 and 161.9824 respectively.

Therefore, in this simulation, we will prefer the true model M2 rather than the model M1.

2.2 Bayesian Information Criterion

The maximum likelihood principle in some cases, such as the choice of degree for a

polynomial regression and the choice of order for a multi-step Markov chain, invariably

leads to choosing the highest possible dimension, but not the “right” dimension. Although

there is a general model selection method, AIC, which is an extension of the maximum

likelihood principle, Schwarz (1978) proposed an alternative method, Baysian Information

Criterion (BIC), especially for this problem. It is derived as follows.

According to Konishi & Kitagawa (2008), let M1,M2, · · · ,Mr be r candidate models,

and assume that each model Mi is characterized by a parametric distribution gi(x|θi) (θi ∈

Θi ⊂ Rki) and the prior distribution πi(θi) of the ki-dimensional parameter vector θi.

When n observations x = {x1, · · · , xn} are given, then, for the ith model Mi, the marginal

distribution or probability of x is given by

m(x|Mi) =

∫
gi(x|θi)πi(θi)dθi, (2.2.1)

6



This quantity can be considered as the likelihood of the ith model and is referred to as

the marginal likelihood of the data.

According to Bayes’ theorem, if we suppose that the prior probability of the ith model

is p(Mi), the posterior probability of the ith model is given by

p(Mi|x) =
m(x|Mi)p(Mi)∑r
j=1m(x|Mj)p(Mj)

, i = 1, 2, · · · , r. (2.2.2)

This posterior probability indicates the probability of the data being generated from the

ith model when data x are observed. Therefore, if one model is to be selected from r

models, it would be natural to adopt the model that has the largest posterior probability.

This principle means that the model that maximizes the numerator m(x|Mi)p(Mi) must

be selected, since all models share the same denominator in (2.2.2).

If we further assume that the prior probabilities p(Mi) are equal in all models, it

follows that the model that maximizes the marginal likelihood m(x|Mi) of the data must

be selected. Therefore, if an approximation to the marginal likelihood expressed in terms

of an integral in (2.2.1) can readily be obtained, the need to compute the integral on a

problem-by-problem basis will vanish, thus making the BIC suitable for use as a general

model selection criterion.

Equation (2.2.1) may be written as

m(x|M) =

∫
exp{log g(x|θ)}π(θ)dθ. (2.2.3)

The Laplace approximation (Laplace, 1774) takes advantage of the fact that when the

number n of observations is sufficiently large, the integrand is concentrated in a neigh-

borhood of the mode of log g(x|θ) or, in this case, in a neighborhood of the maximum

likelihood estimator θ̂, and that the value of the integral depends on the behavior of the

function in this neighborhood.

Since ∂ log g(x|θ)
∂θ

∣∣∣
θ=θ̂

= 0 holds for the maximum likelihood estimator θ̂ of the parameter

θ, the Taylor expansion of the log-likelihood function log g(x|θ) around θ̂ yields

log g(x|θ) = log g(x|θ̂)− n

2
(θ − θ̂)TJ(θ̂)(θ − θ̂) + · · · , (2.2.4)

where

J(θ̂) = − 1

n

∂2 log g(x|θ)
∂θ∂θT

∣∣∣∣
θ=θ̂

.
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Similarly, we can expand the prior distribution π(θ) in a Taylor series around the maxi-

mum likelihood estimator θ̂ as

π(θ) = π(θ̂) + (θ − θ̂)T
∂π(θ)

∂θ

∣∣∣∣
θ=θ̂

+ · · · . (2.2.5)

Substituting (2.2.4) and (2.2.5) into (2.2.3) and simplifying the results lead to the ap-

proximation of the marginal likelihood as follows:

m(x|M) =

∫
exp

{
log g(x|θ̂)− n

2
(θ − θ̂)TJ(θ̂)(θ − θ̂) + · · ·

}
·
{
π(θ̂) + (θ − θ̂)T

∂π(θ)

∂(θ)

∣∣∣∣
θ=θ̂

+ · · ·
}
dθ

≈ exp{log g(x|θ̂)}π(θ̂)(2π) k
2n− k

2

∣∣∣J(θ̂)∣∣∣− 1
2
.

Taking the logarithm of this expression and multiply it by −2, we obtain

−2 logm(x|M) ≈ −2 log g(x|θ̂) + k logn+ log
∣∣∣J(θ̂)∣∣∣− k log(2π)− 2 log π(θ̂). (2.2.6)

Then the following model evaluation criterion BIC can be obtained by ignoring terms

with order less than O(1) with respect to the sample size n.

Let g(x|θ̂) be a statistical model estimated by the maximum likelihood method. Then

the Bayesian information criterion BIC is given by

BIC = −2 log g(x|θ̂) + k logn.

For example, under the same assumptions of the example in Subsection 2.1, but we use

BIC() instead of AIC() to compute the BIC value of the simulated data in here. Then,

we get the BIC values for M1 and M2 (true model) equal to 190.1232 and 159.6058 re-

spectively. Therefore, in this simulation, we will prefer the true model M2 rather than

the model M1.

From the above argument, it can be seen that, BIC is an evaluation criterion for mod-

els estimated by using the maximum likelihood method and that the criterion is obtained

under the condition that the sample size n is made sufficiently large. We also see that

it was obtained by approximating the marginal likelihood associated with the posterior

probability of the model by Laplace’s method for integrals and that it is not an informa-

tion criterion, leading to an unbiased estimation of the K-L information.
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2.3 Extended Bayesian Information Criterion

In a typical genome-wide association study with single-nucleotide polymorphisms, the

number of covariates is of the order of tens or hundreds or thousands while the sample

size is only in the hundreds. To solve the problem with a moderate sample size but with a

huge number of covariates, a new model selection method, Extended Bayesian Information

Criterion (EBIC), proposed by Chen & Chen (2008).

Suppose that the number of covariates under consideration is P = 1000. The class of

models containing a single covariate, S1, has size 1000, while the class of models containing

two covariates, S2, has size 1000 × 999/2. The constant prior behind BIC amounts to

assigning probabilities to the Sk proportional to their sizes. Thus, the probability assigned

to S2 is 999/2 times that assigned to S1. The size of Sk increases as k increases to

k = P/2 = 500, so that the probability assigned to Sk by the prior increases almost

exponentially. Models with a larger number of covariates, 50 or 100 say, receive much

higher probabilities than models with fewer covariates. This is obviously unreasonable,

being strongly against the principle of parsimony.

This re-examination of BIC prompts us to consider other reasonable priors over the

model space in the Bayesian approach. Assume that the model space S is partitioned into

∪P
k=1Sk, such that models within each Sk have equal dimension. Let τ(Sk) be the size of Sk.

For example, if Sk is the collection of all models with k covariates, then τ(Sk) =

 P

k

.

We assign the prior distribution over S as follows. For each model M in the same subspace

Sk, assign an equal probability, i.e. pr(M |Sk) = 1/τ(Sk) for any M ∈ Sk. This implies

that all the models in Sk are equally plausible. Then, instead of assigning probabilities

pr(Sk) proportional to τ(Sk), as in the ordinary BIC, we assign pr(Sk) proportional to

τ ξ(Sk) for some ξ between 0 and 1. This results in the prior probability p(M) for M ∈ Sk

being proportional to τ−γ(Sk), where γ = 1 − ξ. This type of prior distribution on the

model space gives rise to an extended BIC family

BICγ(M) = −2 logL{θ̂(M)}+ k logn+ 2γ log τ(Sk), 0 ≤ γ ≤ 1,

where θ̂(M) is the maximum likelihood estimator of θ(M) given model M and k is the

number of components in M . The first two terms in BICγ(M) are the Laplace approx-

imation to −2 logm(x|M) and the last term is −2 log p(M) up to a common constant.

The criterion BICγ is referred to as an extended Bayes information criterion.
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Let’s give an example to calculate its EBIC value. Suppose there is a model which

contained 50 covariates, but we only have 30 records of this model. Consider the following

two models:

qquad M1 : Y = β1X1 + ϵ

qquad M2 : Y = β1X1 + β2X2 + ϵ,

and let M2 be the true model, the coefficients β1 = β2 = 1. Using the formula of EBIC to

calculate the EBIC values, and we get its for M1 and M2 equal to 123.8225 and 109.6918

respectively. Since the EBIC value of M2 is less than M1’s, we may think that M2 is the

true model rather than M1.

In the targeted application, P can be very large but the cardinality of the candidate

models is small. If some of the covariates are heavily collinear, the effective number of

different models might be smaller than that indicated by τ(Sk), and one might fear that

our method is affected. Consider an extreme case in which half of the covariates are du-

plicates. Thus, in considering τ(Sk), P should be replaced by P/2. However, it is easy to

see that, when P is replaced by P/2, the change in γ log τ(Sk) is of a smaller order than

the order logn+ logP of the leading terms. Thus, some adjustment might be helpful but

the effect will not be important when n or P is large.
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3 Comparison of AIC, BIC and EBIC

3.1 Large Sample Size (n > p)

3.1.1 Linear Model

Suppose there are three covariates X1, X2 and X3 in a data, but the true model is

Y = 1 · X1 + 1 · X2 + ϵ,

where Y = (Y1, Y2, · · · , Yn)
T , Xi = (X1i, X2i, · · · , Xni)

T , i = 1, 2, 3 and each component

of ϵ = (ϵ1, ϵ2, · · · , ϵn)T is normally distributed independent with mean 0 and variance

1. We generate the data of covariates X1, X2 and X3 separately from standard normal

distribution, that is, X1, X2 and X3 are independent standard normally distributed.

Consider all possible models:

qquad M1 : Y = β1X1 + ϵ

qquad M2 : Y = β2X2 + ϵ

qquad M3 : Y = β3X3 + ϵ

qquad M4 : Y = β1X1 + β2X2 + ϵ (true)

qquad M5 : Y = β1X1 + β3X3 + ϵ

qquad M6 : Y = β2X2 + β3X3 + ϵ

qquad M7 : Y = β1X1 + β2X2 + β3X3 + ϵ,

and we compute the value of AIC, BIC and EBIC, finding which information criterion

has the best performance. Since the difference between calculation results of function in

R and the original formula are insignificant (see Table 3.1), we will use function in R

to compute the value of AIC, BIC and EBIC in the following. (Suppose that the prior

distributions of the coefficients β1, β2 and β3 are independent exponential distribution

with λ = 1 in BIC.)

First, we compare three information criterions under different sample size n. In each

case, we simulate 1000 times and fix the parameter γ of EBIC to 1.0. In Table 3.2, when

n is large enough (n ≥ 30), the performances of three information criterions are good,

and in this time, the result of BIC better than AIC is more significant than when n is

not large enough. In addition, three information criterions indeed exist the large models

tendency mentioned in Schwarz (1978) and Chen & Chen (2008). And no matter n is

how much, the results of EBIC are worse than BIC, even worse than AIC in the case of
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Table 3.1: AIC, BIC and EBIC values of one simulated data set (n = 100) of the true

model M4 calculated under the original formula, approximative formula and function in

R. The original values of AIC, BIC and EBIC are calculated by the joint distribution of

the sample x, (2.2.6) and (2.2.6) plus the the correction term, respectively. The approxi-

mations are calculated by the formula for the three criterions.

Criterion Original Value Approximation function in R

AIC 283.7878 281.1892 283.6349

BIC 286.8539 286.3996 294.0556

EBIC 289.0512 288.5968 296.2528

Table 3.2: Probability of model selection respectively using AIC, BIC and EBIC within M1

to M7 under different sample size n. Each case simulated 1000 times and the parameter

γ of EBIC fixed to 1.0.

n Criterion M1 M2 M3 M4 M5 M6 M7

10

AIC 0.071 0.06 0.014 0.562 0.024 0.03 0.239

BIC 0.084 0.07 0.017 0.565 0.026 0.031 0.207

EBIC 0.065 0.054 0.014 0.164 0.005 0.005 0.693

20

AIC 0.006 0.009 0 0.775 0.001 0.005 0.204

BIC 0.02 0.014 0 0.843 0.003 0.007 0.113

EBIC 0.019 0.012 0 0.542 0 0.002 0.425

30

AIC 0.001 0 0 0.808 0 0 0.191

BIC 0.001 0.002 0 0.909 0 0.001 0.087

EBIC 0.001 0.001 0 0.674 0 0 0.324

50

AIC 0 0 0 0.824 0 0 0.176

BIC 0 0 0 0.932 0 0 0.068

EBIC 0 0 0 0.796 0 0 0.204

100

AIC 0 0 0 0.811 0 0 0.189

BIC 0 0 0 0.951 0 0 0.049

EBIC 0 0 0 0.85 0 0 0.15
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n = 10. Therefore, we compare information criterions under different γ, the parameter

involved in the correction term of EBIC, in the following.

Because γ only involve in the correction term of EBIC, it has nothing to do with AIC

and BIC. So we only focus on comparing the impact of different γ on EBIC. In Table 3.3,

the performance of EBIC is good but not better than BIC, and the larger γ, the worse

performan-

ce of EBIC. Since EBIC is applied suitably in the situation p greater than n, this result

is expectable and acceptable.

Table 3.3: Probability of model selection respectively using AIC, BIC and EBIC within

M1 to M7 under different parameter γ. Each case simulated 1000 times and the sample

size n is 100.

γ Criterion M1 M2 M3 M4 M5 M6 M7

0.1

AIC 0.000 0.000 0.000 0.841 0.000 0.000 0.159

BIC 0 0 0 0.973 0 0 0.027

EBIC 0 0 0 0.968 0 0 0.032

0.5

AIC 0 0 0 0.84 0 0 0.16

BIC 0 0 0 0.96 0 0 0.04

EBIC 0 0 0 0.929 0 0 0.071

1.0

AIC 0 0 0 0.82 0 0 0.18

BIC 0 0 0 0.963 0 0 0.037

EBIC 0 0 0 0.852 0 0 0.148

3.1.2 Autoregressive Model

Suppose that the true model is an AR(2) model with the paramters ϕ = (ϕ1, ϕ2) =

(0.6, 0.3), it can be written as

Xt = 0.6 ·Xt−1 + 0.3 ·Xt−2 + ϵt, t = 2, 3, 4, · · · ,
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where ϵt is followed standard normal distribution. Given X0 = 0 and X1 = 0, and then

we generate the data of the model by above formula.

Table 3.4: Probability of model selection respectively using AIC, BIC and EBIC under

different model sets. Each case simulated 1000 times and the sample size n is 100, the

parameter γ of EBIC fixed to 1.0.

Max Order Criterion M1 M2 M3 M4 M5 M6 M7

2

AIC 0 0.01 0.99

BIC 0 0.158 0.842

EBIC 0 0.067 0.933

3

AIC 0 0.004 0.092 0.904

BIC 0 0.128 0.618 0.254

EBIC 0 0.086 0.183 0.731

4

AIC 0 0.003 0.02 0.079 0.898

BIC 0 0.127 0.539 0.185 0.149

EBIC 0 0.101 0.174 0.005 0.72

5

AIC 0 0 0.005 0.014 0.094 0.887

BIC 0 0.11 0.49 0.169 0.112 0.119

EBIC 0 0.134 0.186 0.021 0 0.659

6

AIC 0 0 0.002 0.008 0.019 0.092 0.879

BIC 0 0.107 0.502 0.127 0.109 0.068 0.087

EBIC 0.000 0.138 0.206 0.015 0.001 0 0.64

Consider the following models:

qquad M1 : Xt = ϵt

qquad M2 : Xt = ϕ1Xt−1 + ϵt

qquad M3 : Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϵt (true)

qquad M4 : Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + ϵt

qquad M5 : Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + ϕ4Xt−4 + ϵt

qquad M6 : Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + ϕ4Xt−4 + ϕ5Xt−5 + ϵt
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qquad M7 : Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + ϕ4Xt−4 + ϕ5Xt−5 + ϕ6Xt−6 + ϵt,

and we use function in R to compute the value of AIC, BIC and EBIC, discovering which

information criterion has the best performance.

In Table 3.4, since the maximum order of model is 2, (i.e. the true model has the

maximum order in the model set,) the performance of AIC is the best, but if the max-

imum order of model is larger than 2, the performance of AIC is the worst, and it has

the maximum order tendency in the model sets. Therefore, we are unable to determine

whether the best performance of AIC, when the maximum order equals 2, is based on

the maximum order tendency or not. EBIC also has the same problem, maximum order

tendency, but not so serious, better than AIC a little bit. Overall, BIC has the best

performance, but not very good, when the order is greater than 3, only about half of the

correct model selection rate.

3.1.3 Log-Normal Distribution vs. Exponential Distribution

Suppose we have a data set x = {x1, x2, · · · , xn}, which is generated from the log-

normal distribution lnN(0, 1). We want to use criterions to help us find the true dis-

tribution. Since our problem is finding the true distribution, it is not involved in the

models of different dimension, we only consider the comparison of models by AIC and

BIC, regardless of EBIC.

Consider the following two models:

qquad M1 : Xi ∼ lnN(µ, σ2), i = 1, 2, · · · , n (true)

qquad M2 : Xi ∼ Exp(λ), i = 1, 2, · · · , n,

and we use the formulas of AIC and BIC to help us determine which model is true distri-

bution.

For M1, the probability density function of a log-normal distribution is

fX(x|µ, σ2) =
1

xσ
√
2π

exp{−(lnx− µ)2

2σ2
},

where µ = ln(E(X)) − σ2

2
and σ2 = ln

(
1 + V ar(X)

[E(X)]2

)
. Let E(X) = X̄ and V ar(X) = s2X ,

then we use the estimators of µ, µ̂ = ln(X̄) − σ̂2

2
, and σ2, σ̂2 = ln

(
1 +

s2X
X̄2

)
, to replace

the parameters µ and σ2 respectively. For M2, the probability density function of an
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exponential distribution is

fX(x|λ) = λ exp{−λx}, x ≥ 0,

where λ = 1
E(X)

. Let E(X) = X̄, then we have the estimator of λ, λ̂ = 1
X̄

, and use it to

replace the parameter λ similarly.

In Table 3.5, when n is not large enough, either AIC or BIC are only about half of

the correct model selection rate. With n greater, the correct model selection rates of AIC

and BIC will increase, and when n = 1000, the correct model selection rates of AIC and

BIC are almost 1.

Table 3.5: Probability of model selection respectively using AIC and BIC within M1 and

M2. Each case simulated 1000 times.

n Criterion Log-N Exp n Criterion Log-N Exp

10
AIC 0.458 0.542

100
AIC 0.842 0.158

BIC 0.412 0.588 BIC 0.805 0.195

20
AIC 0.549 0.451

200
AIC 0.947 0.053

BIC 0.448 0.552 BIC 0.923 0.077

30
AIC 0.631 0.369

500
AIC 0.992 0.008

BIC 0.528 0.472 BIC 0.989 0.011

50
AIC 0.697 0.303

1000
AIC 0.999 0.001

BIC 0.606 0.394 BIC 0.999 0.001

3.2 High Dimensional Model (p > n)

Suppose there are p covariates X1,X2, · · · ,Xp in a data, but the true model is

Y = 1 · X1 + 1 · X2 + ϵ,

where Y = (Y1, Y2, · · · , Yn)
T , Xi = (X1i, X2i, · · · , Xni)

T , i = 1, 2, · · · , p and each compo-

nent of ϵ = (ϵ1, ϵ2, · · · , ϵn)T is normally distributed independent with mean 0 and variance

1. The data of covariates X1,X2, · · · ,Xp are generated separately from standard normal
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distribution.

Consider the following model sets:

qquad S1 = {Mj : Y = βjXj + ϵ, j = 1, 2, · · · , p}

qquad S2 = {Mj,r : Y = βjXj + βrXr + ϵ, j, r = 1, 2, · · · , p, j ̸= r} (true)

qquad S3 = {Mj,r,s : Y = βjXj + βrXr + βsXs + ϵ, j, r, s = 1, 2, · · · , p, j ̸= r ̸= s ̸= j},

and we compute the value of AIC, BIC and EBIC of each model in the above model sets,

finding which model sets has the model of minimum value.

Table 3.6: Probability of model selection respectively using AIC, BIC and EBIC within

S1 to S3 and the status of model selection if given the model set S2 or S3. Each case

simulated 100 times and the sample size n is 30, the parameter γ of EBIC fixed to 1.0.

P Criterion S1 S2 S3 pr(MT |S2) pr(MT ⊂ MC |S3)

30

AIC 0 0 1 0 1

BIC 0 0.08 0.92 1 1

EBIC 0.04 0.71 0.25 1 1

35

AIC 0 0 1 0 1

BIC 0 0.04 0.96 1 1

EBIC 0.08 0.69 0.23 1 1

40

AIC 0 0 1 0 1

BIC 0 0 1 0 1

EBIC 0.08 0.72 0.2 1 1

45

AIC 0 0 1 0 1

BIC 0 0.04 0.96 1 1

EBIC 0.09 0.71 0.2 1 1

50

AIC 0 0 1 0 1

BIC 0 0.02 0.98 1 1

EBIC 0.12 0.64 0.24 0.969 1

In Table 3.6, the result of EBIC with respect to the AIC and BIC is pretty good;

BIC only has less than one tenth correct rate, AIC completely tends to large model set
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(the probability of S2 being chosen is 0). In addition, we further discuss the situation of

model selection if S2 or S3 being chosen. If S2 being chosen, then the rate of choosing

true model is greater than 96.9%; while in the case of S3 being chosen, the model which

be chosen must include the true covariates (X1 and X2), that is, the covariates of the

model is {X1, X2, X3}, {X1, X2, X4}, etc.

Table 3.7: Probability of model selection respectively using AIC, BIC and EBIC within

M1 to M5 under different model space p. Each case simulated 1000 times and the sample

size n is 100, the parameter γ of EBIC fixed to 1.0.

p Criterion M1 M2 M3 M4 M5

100

AIC 0.000 0.746 0.131 0.085 0.038

BIC 0 0.953 0.045 0.002 0

EBIC 0 0.998 0.002 0 0

200

AIC 0 0.764 0.12 0.077 0.039

BIC 0 0.962 0.035 0.003 0

EBIC 0 0.999 0.001 0 0

300

AIC 0 0.751 0.14 0.075 0.034

BIC 0 0.964 0.033 0.003 0

EBIC 0 1 0 0 0

400

AIC 0 0.749 0.136 0.078 0.037

BIC 0 0.958 0.039 0.003 0

EBIC 0 0.999 0.001 0 0

500

AIC 0 0.757 0.119 0.077 0.047

BIC 0 0.965 0.032 0.003 0

EBIC 0 1 0 0 0

Now we consider the similar situation with previous case n > p. Consider the fol-

lowing models:

qquad M1 : Y = β1X1 + ϵ

qquad M2 : Y = β1X1 + β2X2 + ϵ (true)
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qquad M3 : Y = β1X1 + β2X2 + β3X3 + ϵ

qquad M4 : Y = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ϵ

qquad M5 : Y = β1X1 + β2X2 + · · ·+ β10X10 + ϵ,

and we compute the value of AIC, BIC and EBIC, finding which information criterion

has the best performance.

In Table 3.7, even in the situation p greater than n (n = 100), AIC, BIC and EBIC

still have very good performance, EBIC even achieve almost error-free result. This means

that the additional correction term of EBIC, based on BIC, indeed can eliminate the large

models tendency.
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4 Conclusion

In the situation n greater than p, three information criterions mentioned in our study

still have the large models tendency, especially when the data is generated from autore-

gressive model. Inversely, in the situation p greater than n, it seems that we get a good

solution when the data is generated from standard normal distribution. We maybe com-

pare the data which is generated from other distributions, or furthermore, comparing and

analyzing the real data in the future.
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