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A numerical scheme is developed in the paper for calculating torsional, vertical, horizontal, coupling
and rocking impedances in frequency domain for axial-symmetric foundations embedded in layered
media. In the scheme, the whole soil domain is divided into interior and exterior domains. For the
exterior domain, the analytic solutions with unknown coefficients are obtained by solving three-
dimensional (3D) wave equations in cylindrical coordinates satisfying homogeneous boundary
conditions. For the interior domain, the analytical solutions are also obtained by solving the same 3D
wave equations satisfying the homogeneous boundary conditions and the prescribed boundary
conditions. The prescribed conditions are the interaction tractions at the interfaces between embedded
foundation and surrounding soil. The interaction tractions are assumed to be piecewise linear. The
piecewise linear tractions at the bottom surface of foundation will be decomposed into a series of Bessel
functions which can be easily fitted into the general solutions of wave equations in cylindrical
coordinates. After all the analytic solutions with unknown coefficients for both interior and exterior
domains are found, the variational principle is employed using the continuity conditions (both
displacements and stresses) at the interfaces between interior and exterior domains, interior domain

and foundation, and exterior domain and foundation to find impedance functions.
Some numerical results of torsional, vertical, horizontal, coupling and rocking impedances with
different embedded depths will be presented and comments on the numerical scheme will be given.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Soil-structure interaction effect plays important roles in the
seismic analysis of heavy and stiff structures. Many approaches
may be considered to deal with the soil-structure interaction
analysis problems. Along with the substructure method, hybrid
modelling of soil domain can be employed to investigate
soil-structure interaction effects. In hybrid modelling, the far-
field of a semi-infinite soil domain is represented by an
impedance matrix at the interface of the far-field and the near-
field. Finite element method is used for the near-field [1]. Also,
several modelling techniques have been developed for infinite
soil medium. These included viscous boundary [2,3], transmitting
boundary [4], boundary element method [5], and infinite
element methods [6]. Among the above mentioned modelling,
boundary element method requires boundary discretization
which can reduce some computational cost while compared to
that of finite element method. In boundary element method,
Green function is used as a fundamental solution to generate the
impedance functions at the assumed boundary of structure [7].
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However, using Green function in the formulation, one has to deal
with the singularity problem. To avoid this situation, the
analytical solutions for the layered medium with prescribed
harmonic displacement time history on the surface are derived by
Liou [8].

To obtain the impedance matrix for the surface foundation,
some analytic approaches are available [9-12]. In these analytical
approaches, the interaction tractions at the interface of founda-
tion and soil medium are assumed to be piecewise linear or
piecewise constant.

Regarding analytical or semi-analytical approaches for em-
bedded foundation, Aviles and Perez-Rocha [13] solved the
problem of torsional impedance for foundation embedded in
layered medium, Tassoulas and Kansel [14] used layer elements to
obtain torsional, vertical, horizontal, and rocking impedance
functions, and Wolf and Preisig [15] employed cone model to
calculate impedance functions.

In this paper a numerical scheme is developed to generate
complete impedance functions for foundation embedded in
layered medium. The impedance functions will be frequency-
dependent functions. To obtain the impedances, the analytical
solutions of three-dimensional (3D) wave equations in cylindrical
coordinates in layered medium with satisfying the necessary
boundary conditions are employed [8]. In the process of
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formulating the impedances, the soil medium is divided into
interior and exterior domains. The analytical solutions are formed
separately with unknown coefficients for both domains. And the
interaction stresses at the interface between foundation and
surrounding soil are assumed to be piecewise linear in z direction
or r direction of the cylindrical coordinates. Then, the continuity
conditions of stresses and displacements at the interface between
both domains and the interface between the foundation and
surrounding soil are applied to generate the impedance functions.
In the process of applying the continuity conditions and generat-
ing the impedance functions, variational principle and reciprocal
theorem are employed.

Some numerical aspects will be investigated in order to show
the effectiveness and efficiency of the presented scheme. And the
results for torsional, vertical, horizontal, coupling and rocking
impedances of a cylindrical foundation embedded with different
depths will also be presented to show the importance of
embedment effect.

2. Derivations for 3D wave progation problems

The total soil system with prescribed tractions t,;e'f and
ty2 €t having time-harmonic variations at the sidewall and the
bottom of the cylindrical cavity, respectively, is shown in Fig. 1.
The prescribed tractions can be expressed in terms of Fourier
components with respect to the azimuth as follows:
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Fig. 1. Total soil system with prescribed tractions.
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where 67.(2), t5,(2), 092, T,(1), 05,(), T3,(r) are the stress
amplitudes of the nth Fourier component (either a symmetric
component or an anti-symmetric component). To solve the wave
propagation problem with the prescribed tractions of Eqs. (1) and
(2) as shown in Fig. 1, Liou [8] has proposed a technique to
decompose each Fourier component of the prescribed boundary
condition at S, surface. This decomposed boundary condition can
be easily fitted into the general solutions of 3D wave equations in
cylindrical coordinates. By following the procedure of the
technique, the solutions in interior domain consist of particular
solutions which satisfy the boundary conditions of prescribed
traction in Eq. (2) and rigid base z = L in Fig. 1, and homogeneous
solutions which satisfy the homogeneous boundaries at free
surface (traction free) z = d and rigid base z = L. The solutions for
exterior domain contain only homogeneous solutions which
satisfy the homogeneous boundaries at free surface z=0 and
rigid base z = L. Since the solving process is the same for all the
Fourier components, the superscript n in Eqs. (1) and (2) will be
omitted in the following derivations of homogenous solutions and
particular solutions.

The solution (e.g. traction) for interior domain in Fig. 1 is the
combination of homogeneous and particular solutions as follows:

1 =) 40 (3)

The particular solution tg) must satisfy the boundary conditions
of Eq. (2) and rigid base condition z = L (zero displacement), and
the homogeneous solution tﬁ) satisfies the boundary conditions of
rigid base and the free surface (zero traction).

From the general solutions of 3D wave equations, the stress
and the displacement fields in a layer can be expressed in terms of
the displacements and tractions on the upper boundary of the
layer [8]. By employing the continuity conditions of displacements
and tractions consecutively at the horizontal interface between
two layers, one obtains

Y9 = J amay_ . Yg’ =JTo5" Yg’ (4)
where Y@ = (uf’ u? 1) 0@ ul )T is the displacement-
stress vector on the mth horizontal interface in Fig. 1, J is the
Bessel function matrix and the a;’s are the transfer matrices given
by Egs. (A.1)-(A.4) in the Appendix. Using Eqs. (A.2)-(A.4) for the
matrices aj's, TV can be written as
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By applying the homogeneous boundary conditions of rigid base
at z =L and free surface at z = d, one obtains

0 th tf 0 uy
0| =J|t) ¢ o |J'|u (6)
0 0 0 i Up |,
where
J(kr) 0 B Jn(kr)
J = 0 kJn(kr) 0 (7)
B Jn(kr) 0 J(kr)

Eq. (6) gives the transcendental equations
() () 4 () _
ity =ty =0 (8)
for the wave numbers representing Rayleigh modes, and
() — 0 9)

for the wave numbers representing Loves modes. For each wave
number k, a root of Eq. (8) or (9), the tractions at depth z on the
vertical interface (S; in Fig. 1) between the exterior and the
interior domains can be expressed in terms of the displacement-
stress vector on the free surface as follows:

t)@) = (1 F1 + J2F2)ej(z — hi_ E 'aq - ar T YY) (10)

where #"(z) = ( o ™2 Tyl in the jth layer, and the
matrices Ji, Jo, F1ejz—h;_E; ' and Fiej(z—h;_1)E; ' are given
by Egs. (A.5)-(A.8) in the Appendix. Substituting the root of Eq. (8)
into Eq. (4) and making use of the free surface conditions, one can
easily show that J~' ¥? in Egs. (4) and (10) can be written as

(11)

for the ith Rayleigh mode, in which & = —tf /t{, = ~t5; /3, and
ocg” is the unknown modal participation factor. Similarly, sub-
stituting the root of Eq. (9) into Eq. (4), one can obtain

JT'Yd =1 & 0 0 0 0)Tg

J'y§= 00 0 1 0)o (12)

for the jth Love mode, in which «® is the unknown modal
participation factor. Because Egs. (8) and (9) have an infinite
number of roots, the displacement and stress fields in the interior

e

domain can be approximated by a finite number of lower modes.
Substituting Eqs. (11) and (12) into Eqgs. (4) and (10), the
displacement and stress vectors at the vertical interface (vertical
surface S; in Fig. 1) due to homogeneous solutions can be
implicitly expressed by the combination of these modes with
unknown participation factors as follows:

u) (2) = N5 (a2, 1 =a (13)
and
1), (2) = G @a, T=ao (14)

where N%(z) and G{)(z) are the matrices of modal displacements
and stresses respectively, and " is the vector of unknown modal
participation factors. By use of Egs. (11), (12) and (4), one can
express the displacement and traction vectors at the surface S, of
interior domain due to the homogeneous solutions in terms of the
vector o' as follows:

) () =Ny (N, z=d (15)
and
1) (N=0, z=d (16)

To obtain the particular solutions for interior domain, the nth
Fourier component of the prescribed traction in Eq. (2) can be
expressed in a form compatible to finite element model of
foundation structure. The variation of tJ,(r) in Eq. (2) is assumed
to be piecewise linear in r direction. Also, by the same reason, the
variation of t},(z) in Eq. (1) is assumed to be piecewise linear in
z direction for generating impedance functions. For Eq. (1), the
depth of embedded foundation d is divided into m; subintervals
with equal width b=d/m,. Then t},(z) in Eq. (1) can be
approximated as
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Fig. 2. Solutions at interfaces.
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or
1h(2) = HI P, (18)
where
1+52 if - 1b<z<jband 1<j<m;
h@2=q1-52 ifjb<z<(+1band0<j<m; — 1 (19)
0, otherwise,

matrix H1 = diag[A", 4", "] in which h" is the vector contains
element h;(z) in Egs. (19), vector P] = (¢, p",s") in which vectors
q", p" and s" contains the elements g;, p; and s;, respectively in

Table 1

Egs. (17), and gj, pj and s; are the intensities of traction at node j for
01, (2), T1,(2) and 1(2) in Egs. (17), respectively.

Similarly, the foundation radius ap can be divided into m,
subintervals and the traction #},(r) of each Fourier component in
Eq. (2) can also be approximated by

(1) = HIP, (20)

where matrix HI = diag[i', ", '] with vector & being similar to
vector h defined in Egs. (19) except the piecewise linear variable z
is replaced by r, vector P} = (g",5",5") and g;, p; and §; are the
intensities of traction at node j for t},(r), o,(r) and Ttj,(r),
respectively. It should be noted that HY and HJ are 3 x 3(m;+1)

Non-dimensionalized torsional impedance Krr/Gag for dfag = 0, L/ap = 2 and wae/Re(Cs) = 0.01

i j 1 my =2 my =3 my; =4 my=>5
10 15 3 4.79+0.00059i - - -
10 15 4 4.83+0.00058i 4.91+0.00061i - -
10 15 5 4.91+0.00056i 5.01+0.00057i 5.07+0.00055i -
10 15 6 4.99+0.00056i 5.02+0.00053i 5.11+0.00051i 5.21+0.00048i
Liou and Lee [11] 5.254282+0.00044i
Table 2
Non-dimensionalized vertical impedance Kyy/Gag for dfag = 0, L/ap = 2 and wag/Re(Cs) = 0.01
i Jj 1 my =2 my=3 my;=4 my=>5
10 15 3 9.27+0.0115i - - -
10 15 4 9.32+0.0114i 9.38+0.0121i - -
10 15 5 9.33+0.0114i 9.41+0.0111i 9.43+0.0107i -
10 15 6 9.33+0.0114i 9.43+0.0108i 9.46+0.0105i 9.62+0.0089i
Liou and Lee [11] 9.852558+0.000158i
Table 3
Non-dimensionalized horizontal impedance Ky /Gaj for dfag = 0, Ljag = 2 and wag/Re(C;) = 0.01
i j 1 my =2 my =3 my=4 my; =5
10 15 3 5.746+0.0143i - - -
10 15 4 5.787+0.01458i 5.846+0.0158i - -
10 15 5 5.783+0.01454i 5.841+0.0157i 5.921+0.00173i -
10 15 6 5.788+0.01459i 5.855+0.0159i 5.891+0.00168i 5.966+0.0184i
Liou and Lee [11] 6.003748+0.000148 i
Table 4
Non-dimensionalized coupling impedance Kry/Gaj for d/ag = 0, Ljag = 2 and wag/Re(Cs) = 0.01
i j 1 my =2 my; =3 my =4 my;=>5
10 15 3 —0.2498+0.0081i - - -
10 15 4 —0.251+0.00855i —0.219+0.0111i - -
10 15 5 —0.249+0.00848i —0.227+0.0113i —0.194+0.014i -
10 15 6 —0.2508+0.00859i —0.225+0.0113i —0.204+0.0134i —0.183+0.0167i
Liou and Lee [11] —0.3105359-0.00003881i
Table 5
Non-dimensionalized rocking impedance Kgg/Ga3 for djap = 0, L/ag = 2 and wao/Re(C;) = 0.01
i j 1 my =2 my; =3 my =4 my;=>5
10 15 3 3.828+0.00761i - - -
10 15 4 3.907+0.00761i 3.97+0.01041i - -
10 15 5 3.873+0.00766i 3.986+0.01033i 4.07+0.0132i -
10 15 6 3.893+0.00758i 3.992+0.01036i 4.04+0.0129i 4.191+0.0125i

Liou and Lee [11]

4.214673+0.0003247i




G.-S. Liou, LL. Chung / Soil Dynamics and Earthquake Engineering 29 (2009) 677-692 681

and 3 x 3(my+1) matrices, respectively. Because the traction ¢}, (r)
must be fitted in the general solutions of 3D wave equations in
cylindrical coordinates for interior domain, the traction ¢}, (r) can
be decomposed as follows [8]:

where the k{"’s, kJ(.Z”s and ks are the roots of J,,(kK"ag) =0,
]n(k](.z)ao):o and J,_;(kPag) = 0, respectively, for i, j, =1, 2,
...,o0, and choosing ki’ = 0.5k{", k¥ = 0.5k and k¥ = 0.5k in
order to satisfy the boundary condition at r =ay and z = d. The
Bessel functions in Egs. (22), except the first term, are orthogonal

T%(r) 1 T — 7 0 1 470 to each other with respect to the weighting function w(r) =r in
th)= |0z | =10 (%) + |1 |(o)+ |0 (%) the interval (0, ao). The A/’s, Bi's and (/s can be determined from
() -1 0 1 the orthogonal property as follows:
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Fig. 3. Comparison of non-dimensionalized torsional impedence with Liou’s results for L/ag = 2.
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' a;'z)jn(k](-z)r) dr — KBy [3°J, (k(z)r)]n(kj(-z)r)r dr (26)
a kJ‘.z) I ]ﬁ(k}z)r)r dr
rz(ao) + ng(ao) (27)

2k‘03>j,1 1k ag)

o' <TYZH”Z>JH LKy dr — KD Co [S0 ]y (RO (P dr

C =
: I<(3) JoeJa 1(k‘3)r)rdr

(28)
2), the Ajs, Bis and (/s are defined as the modal
participation factors with respect to the wave numbers k“)'s k(z)'
and ks, respectively. Since vectors [1, 0, —177,[0, 1, OF,
[1, 0, 17T are the eigenvectors of J in Eq. (7) with respective

eigenvalues ki, ((k1), ki,(kr), and kj, {(kr), one can
substitute Eq. (20) into Eq. (21) and make use of Egs. (22)-(28)

In Egs. (2

G.-S. Liou, LL. Chung / Soil Dynamics and Earthquake Engineering 29 (2009) 677-692

to obtain
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Fig. 4. Comparison of non-dimensionalized vertical impedence with Liou’s results for L/ag = 2.
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where vector % is defined in Eq. (20), all the elements in
vector [1], except the last element is equal to 1, are O,
and JV, J® and J® are the matrix J in Eq. (7) with wave
numbers k§ ), k? and kf‘), respectively. Substituting each mode
in Eq. (29) into the general solutions of Eq. (4) and making
use of rigid base condition z = L, one can obtain the displacement

field at the surface S, of interior domain due to particular

d Earthquake Engineering 29 (2009) 677-692 683
solutions as follows:
(i) - 1) pi+1 o= 12 2 T
i 1 N N
ups, () = (> JPODT + Y IPOPD;
i=0 j=0
o0 _ 1 .
+Y ID0PDT | Py = N, (NP, (33)
1=0

where 9P, 0? and Q0% can be obtained using Egs. (4) and (5)

with wave numbers ki, K, and ki, respectively as follows:

(i) (i) (i) ()
t]] t12 0 t13 tl4 0
(i) (i) (i) (i)
O=-|t; t 0 3 oy O (34)
(i) (i)
0o o 0o o i

and elements tg) in Eq. (34) are defined in Eq. (5). From the
derivations above, tg?sz(r) is equal to 7}, in Egs. (20) or (29). For

each mode in Egs. (33) and (29), vectors J”ug?sz and J”tg,)s2 can

be combined into the vectors J',j] Yg) in Eq. (10). Therefore, if one
truncates high modes in Eqs. (33) and (29), the displacement and
traction fields due to the prescribed traction #},(r) in Eq. (20) at
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Fig. 5. Comparison of non-dimensionalized ho

rizontal impedence with Liou’s results for L/ag = 2.
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the vertical interface S; between interior domain and exterior
domains can have similar expressions to Eqgs. (13) and (14),
respectively.

Uy, (2) = Ng?s3 @P2, T=ao (35)
and
19,2 = Gy (@P;, T=4ao (36)

For the exterior domain in Fig. 1, only homogeneous solutions
are involved since the solutions have to satisfy the homogenous
boundaries at z=0 and L. Therefore, one just follows the
procedures of finding homogeneous solutions for interior domain
to obtain the solutions. To do this, one can express the
displacement and stress fields in terms of displacement-stress
vector at the top surface (z = 0) of the layered medium like the
procedure to obtain Eqs. (4) and (10) except the Bessel function
matrix J is replaced with Hankel function matrix H. Matrix H is
similar to matrix J in Eq. (A.1) except the element J,(kr) and J/ (kr)
are replaced by the second kind of Hankel functions H,(kr) and
H;(kr). Then the displacement and stress at the vertical surface
S$1+S3 in Fig. 1 can be written by the combination of a finite

number of modes with unknown participation factors similar to
Egs. (13) and (14).

Uy 5,2 =N2a®, r=a (37)
and
ts, 5,0 = GO@a®, r=ao (38)

where matrices N(z) and G'®)(z) contain all the considered modal
shapes of displacement and stress respectively, and «(® is the
vector of unknown modal participation factors.

3. Formulation of impedance matrix

In Fig. 2, the solutions at the boundaries of interior domain and
exterior domain have been shown by using Eqs. (37) and (38) for
exterior domain and Eqgs. (3), (13)-(16), (20 or 29), (33), (35) and
(36) for interior domain. Also, in the following derivations, the
variation with respect to 0 (cos(nf) or sin(nf)) will be omitted in
the expression, and the integrations with respect to 6 will be
automatically calculated. By applying the stress continuity

2.00

T T T T T
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27 Re(C,)

Liou[1l] —
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Fig. 6. Comparison of non-dimensionalized coupling impedence with Liou’s results for L/ag = 2.
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condition to vertical surface S;+Ss,
Js 45, @@t (z) — tD)ds = 0 gives

the variational principle

Kee“(e) - Keha(i) = KepPy — V1 Pq (39)

where

Kee = / N® (26O z)ds (40)

JS1+83

K= [ N9 @G5 @ ds (41)
3

Kep = /S N @G @ ds (42)

Vi = / N (2)H,(2)dS (43)
S3

Similarly, imposing the displacement continuity condition, the
variational principle of [o; 5¢9(2)@?(2) — u®)dS = 0 gives

685
where
Kne = [ G @N@)ds (45)
I3
T .
Kuh = /s Gy, DNy, (2)dS (46)
3
Knp = / G DN (2)ds (47)
hp = o Phss p.S3
/53
Egs. (39) and (44) can be combined as
Kee —Ken (e Kep =V
|:_Khe Kin } {a(i):| = | —Kpp P2+{ 0 :|P1 (48)

Therefore, the unknown modal participation factors of the
homogeneous solutions in the exterior and interior domains can
be expressed in terms of the stress intensity vectors P, and P, in
Eqgs. (18) and (20), respectively, as follows:

©] ¢ ¢
_ N S i VP g 8 (49)
—Khed(e) + Khhdm = _thPZ (44) o 62 54
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Fig. 7. Comparison of non-dimensionalized rocking impedence with Liou’s results for L/ag = 2.
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Consequently all the displacement and the stress components
at any arbitrary location in the soil domain can be obtained for the
arbitrarily prescribed piecewise linear tractions at the surface of
cylindrical cavity. Now, referring to Fig. 2 and making use of
Egs. (49), (18) and (20), the displacement and traction at surfaces
S; and S, can be written as

S (2 _ Nfe)(Z)@ ‘ NO@)& . Py 50
W= lus )| TN e NGNS | [ e| B0
and

t51 (Z) Hq (Z) 0 P]
0= |:t52(r):| = |: 0 Hz(r) P2 (5])

To form the impedance matrix, one can use Egs. (50) and (51).
The variational principle gives the virtual work of the system

as follows:
Hiz) 0
ow— [ ofuds—or" [ )
S1+52 51+52 0 H,(n)
NO@)¢, NO@)¢,
. . . dsp
N, (NEs (NS, (NEy + N (1)
QH le
=6P" P =05P"QP (52)
Q21 Q22
where
d
0= | HloN@dze, (53)
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Fig. 8. Non-dimensionalized tortional impedence with different depths for L/ag = 2.
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d
0= | MoV @z, (54)
0, = /0 DHg(r)Nﬁ?Sz(r)rdr§4 (55)
and
02— [ HIOIN (6 + N5 (56

For the foundation itself, the displacement field of the
foundation for the nth Fourier component (either a symmetric
or an anti-symmetric component as shown in Egs. (1) or (2)) can
be assumed as

iig=Nv (57)

where matrix N is comprised of the displacement shape functions
at the interface between foundation and surrounding soil, and
vector v is comprised of the generalized displacements at the
nodal rings of the finite element model of foundation. Similarly,

40.00

the virtual work of the system is obtained by applying the
variational principle

SW = othiap dS = 5PT/ H'NdSv=06P"Bv (58)

S1+S> S1+52

Equating Eq. (52) to Eq. (58) and factoring out 6P7, it is obtained.

QP =By (59)
or
V=Bv (60)

where the elements of vector V are the generalized displacements
at the nodal rings of the assumed piecewise linear traction model.
Eq. (60) gives the relationship between the nodal generalized
displacements of the assumed stress model of Egs. (18) and (20)
and the finite element model of Eq. (57). To obtain the
corresponding force-stress relationship for both models, the reci-
procal theorem can be used. This leads to the following equation:

F=B"P (61)
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Fig. 9. Non-dimensionalized vertical impedence with different depths for L/ag = 2.
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where the elements of vector F are the generalized forces at the
nodal rings of the finite element model. Substituting P = Q" 'Bv
from Eq. (59) into Eq. (61) yields

F=B"Q07'Bv=1v (62)

where the matrix I is the impedance matrix for the nth Fourier
component. It is noted that I matrix is symmetric matrix.

4. Numerical investigations

A rigid massless circular foundation embedded in a stratum of
single layer subjecting to time-harmonic torsional, vertical, rock-
ing and horizontal excitations is used as an example to
demonstrate the effectiveness and efficiency of the presented
scheme. In this example, 0.05 hysteretic damping ratio is chosen
for soil medium and the Poisson ratio of soil is assumed to be 0.33.
For the torsional time-harmonic and vertical time-harmonic
vibrations of foundation, the anti-symmetric and symmetric

Fourier components with n=0 in Egs. (57), (1) and (2) are
involved, respectively in the analysis. For the rocking and
horizontal time-harmonic vibrations of foundation, the Fourier
component involved in the analysis is the symmetric component
with n =1 in Egs. (57), (1) and (2).

Since the Love modes and Rayleigh modes are involved in the
homogeneous solutions, Egs. (8) and (9) are employed to find the
wave numbers for homogeneous solutions of interior domain. And
a similar way can be used to find the homogeneous solutions for
exterior domain.

To obtain the Love and Rayleigh wave numbers of Egs. (8) and
(9) numerically, Ref. [8] proposed a scheme to locate approxi-
mately all the roots in a specified region on complex plane. Then,
Mullers [16] method is employed to find the more accurate roots.

For validation of the proposed numerical scheme, the con-
vergence study is performed first. In the study, L/ag=2
with d/dp=0 (see Fig. 1) and non-dimensional frequency
wdap/(Re(Cs) = 0.01 are chosen. The results for the case are shown
in Tables 1-5. In these tables, i and j are the numbers of
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Fig. 10. Non-dimensionalized horizontal impedence with different depths for L/ag = 2.
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Fig. 11. Non-dimensionalized coupling impedence with different depths for L/ap = 2.

homogeneous modes for exterior and interior domains, respec-
tively (Eq. (8) or Eq. (9)) used in the analysis, [ is the number
of particular modes for interior domain (Eq. (22)), m, is the
number of subintervals for piecewise linear in z direction
(Eq. (17)), my is the number of subintervals for piecewise linear
in r direction (Eq. (20)), Re(Cs) is the real part of shear wave
velocity of soil medium, Ktr is the torsional impedance, Kyyv
is the vertical impedance, Kyy is the horizontal impedance,
Kgry = Kyr are the coupling impedance, Kgrg is the rocking
impedance, G is the shear modulus of soil medium and o is
frequency. Also, one should notice that for torsional impedance,
i and j are the numbers of Love modes for respective exterior
and interior domains, and m, and [ are the numbers of
subintervals and roots of J(ka)=0 (Egs. (22)), respectively
for traction ty,, for vertical impedance i and j are the numbers
of Rayleigh modes for respective domains, m, is the number of
subintervals for both tractions 7,, and ¢, and [ is the number of
roots of Jo(ka) = 0 and J;(ka) = O (the total number of roots is 2I),
and for horizontal, coupling and rocking impedances, i and j are
the numbers of Love or Rayleigh modes for respective domains
(the total numbers are 2i and 2j), mp is the numbers of

subintervals for tractions 7,, 0, and Ty, and [ is the number of
roots of Jo(ka) =0, J;(ka) = 0 and J,(ka) = O (the total number of
roots is 3[). In the tables, i = 10 and j = 15 are enough for exterior
and interior domains, respectively, when non-dimensionalized
frequency wap/(Re(Cs)) = 0.01. However, for higher frequency i
and j should be larger.

From Tables 1-5, one can see that as [ and m, become larger,
the results are converging and approaching the results of Liou’s
work [11]. Also one can observe from these tables that the number
of particular solutions must be larger than the number of sub-
interval my,. This means I>my+1. The reason to this restriction is
that the number of particular modes employed in the analysis
must be greater than the number of unknown nodal intensities of
piecewise linear traction. If [ <m,+1, then matrix Q in Eq. (52) will
be singular.

From the preliminary study, 20 Love or Rayleigh homogeneous
modes for both exterior and interior domains are enough for
obtaining results of torsional and vertical impedances with good
accuracy in the frequency range wag/(2mRe(Cs)) = 0—1. For the
horizontal, coupling and rocking impedances, 40 homogeneous
modes (20 Love modes and 20 Rayleigh modes) are enough for
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Fig. 12. Non-dimensionalized rocking impedence with different depths for L/ag = 2.

obtaining results with good accuracy in the frequency range
mentioned previously.

For the case of rigid foundation on one layer stratum, Figs. 3-7
show the numerical results of impedance functions with m, = 2,
3,4, 5. In these figures, i = j = 20 and | = 6 are selected after some
convergence study has been performed. From these figures, one
can observe that the results are approaching the results by Liou
and Lee [11], as m, becomes larger.

In order to investigate the effects of embedment on impedance
functions, the ratios of embedded depth to the radius of
foundation (d/ap) are selected to be 0, 4, 2, 3 and 1. In the
investigation, i = j = 20, my =5 and m; =5, in which m; is the
number of the subintervals for vertical surface S; in Fig. 2,
are employed according to the preliminary numerical study . Also,
the results for the case d/ag = 1 are compared to that by Tassoulas
and Kausel [14] and good consistency of both results is observed.
Figs. 8-12 show the results of torsional, vertical, horizontal,
coupling and rocking impedances for rigid circular foundation
embedded in one layer stratum. From these figures, one can
see that the impedances except coupling impedance are
generally getting larger especially in low-frequency range as the
embedded depth increases. This means embedment effect is very
important.

5. Concluding remarks

After generating torsional, vertical, horizontal, coupling and
rocking impedances numerically for foundation embedded in
different depth, the following observations can be obtained: (1)
The presented scheme can be easily employed to calculate
impedances for foundation embedded in a multiple layer stratum.
(2) From the above derivation, the scheme can be extended to
calculate the impedances for flexible foundation with arbitary
shape. (3) The computational cost for generating impedances by
the presented scheme is much inexpensive while compared to
that by other traditional methods, e.g. finite element method and
boundary element method. (4) The presented scheme can also be
extended to approximately calculate all impedance functions for
foundation in layered half-space medium, if the bottom layer of
stratum is thick enough.
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Appendix A

The Bessel function matrix J in Eq. (5)

Jn(kr) 0 0 0 ay(kr) 0
0 kJ (k) 0 0 0 0

_ 0 0 Jn(kr) 0 0 ny,(kr)
T=1 0 0 0 Kk,kr) O 0
ny.(kr) 0 0 0 Jn(kr) 0

0 0 ay.(kr) 0 0 Jn(kr)

in which J,,(kr) is the first kind of Bessel function with order n and J'(kr) =

as follows:

1 a 0
aj = Eje(hj)Ej = 0 a3

in which
r 2
ﬂ(CH CH)+ CH Jiz {(2k2 - k?,)s’i' - 2v’SH’}
kg kg
%{ZVSH—(ZkZ f,,)SH } CH_ﬂ(CH CH))
7 k,;
M= 2 2k — k
G(ﬂ s — 2K ﬁ)<s§1>> —2kG )
ki kg ki
2k — K2 2
2"6(212 — I8)(CH — CH)) c< @K~ ky'sH | ak ’SH’)
| ,; kﬁ v kﬁ
and
. SH
hmo | H G
Gv'SH CH'

(A1)

(dJ,,(kr))/dr The transfer matrices as in Eq. (5) can be expressed

(A2)
;]2(v’SH’ k25H> K cn—am
Gk,,, k
2(CH CH) 1 < VSH — 1<2SH )
Gk Gkﬁ
2
ﬂ(CH CH') + CH' —kﬁz <2vSH — 2K — k2 SH)
ks B
2
(2k* — k2 )7 — 2V'SH’ CH — ﬁ(CH — CH)
i 2
k g k
B 5 |
(A3)
(A4)

CH = cosh vd;, CH' = coshvdj, SH=sinhvd;, SH =sinhvd, Ky=/w?/C2, G is the shear modulus, Vv =/k*—(w?/C?),

v= /K —
expressed as follows:

(co2/C§), G is the shear wave velocity and C, is the compressional wave velocity. Matrices J; and J, in Eq. (10) can be

0 KkJ,(kr) 0
J1 = |k 0 by (kr) (A.5)
0 0 0
],,(kr) n, n
(4 2 (Bpthry — k)
Jy = 0 0 (A.6)
n, n kr n
(Bynckry — ) ( L (r—z - —>Jn(kr)>
The matrix Fie(z — hj_1)E]T1 and Fye(z — hj_l)Ej’] in Eq. (10) can be expressed as follows:
%(4/81/511 (2K? 2SH> 2"G(Zk - k,f)(CH CH)
B
. -1 _
Fre — -1k, 2"26( V2 + I3)CH + (2K — I3)CH)) %((218 — 32w + kz)ﬁ —akPy /SH’>
<p
0 0
2"2 (CH — CH') + CH' %((2/@ 2 SH 2vSH> 0 0
Kis kﬁ
k 5 SH (A7)

kﬂ
0 0

<2v’SH’ Qv2 + k,;)—) ’lz((2v2 +k§)CH — 2k*CH') 0 0
K’
5

GVSH CH'
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2Kk? 2kG

[
er(Z—hj,l)Ej = k/; <If

0 0

2 (238 s —z—k(CH —CH) 0
kp\ v k%

0 0 2GCH'
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