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A numerical scheme is developed in the paper for calculating torsional, vertical, horizontal, coupling

and rocking impedances in frequency domain for axial-symmetric foundations embedded in layered

media. In the scheme, the whole soil domain is divided into interior and exterior domains. For the

exterior domain, the analytic solutions with unknown coefficients are obtained by solving three-

dimensional (3D) wave equations in cylindrical coordinates satisfying homogeneous boundary

conditions. For the interior domain, the analytical solutions are also obtained by solving the same 3D

wave equations satisfying the homogeneous boundary conditions and the prescribed boundary

conditions. The prescribed conditions are the interaction tractions at the interfaces between embedded

foundation and surrounding soil. The interaction tractions are assumed to be piecewise linear. The

piecewise linear tractions at the bottom surface of foundation will be decomposed into a series of Bessel

functions which can be easily fitted into the general solutions of wave equations in cylindrical

coordinates. After all the analytic solutions with unknown coefficients for both interior and exterior

domains are found, the variational principle is employed using the continuity conditions (both

displacements and stresses) at the interfaces between interior and exterior domains, interior domain

and foundation, and exterior domain and foundation to find impedance functions.

Some numerical results of torsional, vertical, horizontal, coupling and rocking impedances with

different embedded depths will be presented and comments on the numerical scheme will be given.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Soil–structure interaction effect plays important roles in the
seismic analysis of heavy and stiff structures. Many approaches
may be considered to deal with the soil–structure interaction
analysis problems. Along with the substructure method, hybrid
modelling of soil domain can be employed to investigate
soil–structure interaction effects. In hybrid modelling, the far-
field of a semi-infinite soil domain is represented by an
impedance matrix at the interface of the far-field and the near-
field. Finite element method is used for the near-field [1]. Also,
several modelling techniques have been developed for infinite
soil medium. These included viscous boundary [2,3], transmitting
boundary [4], boundary element method [5], and infinite
element methods [6]. Among the above mentioned modelling,
boundary element method requires boundary discretization
which can reduce some computational cost while compared to
that of finite element method. In boundary element method,
Green function is used as a fundamental solution to generate the
impedance functions at the assumed boundary of structure [7].
ll rights reserved.
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u).
However, using Green function in the formulation, one has to deal
with the singularity problem. To avoid this situation, the
analytical solutions for the layered medium with prescribed
harmonic displacement time history on the surface are derived by
Liou [8].

To obtain the impedance matrix for the surface foundation,
some analytic approaches are available [9–12]. In these analytical
approaches, the interaction tractions at the interface of founda-
tion and soil medium are assumed to be piecewise linear or
piecewise constant.

Regarding analytical or semi-analytical approaches for em-
bedded foundation, Aviles and Perez-Rocha [13] solved the
problem of torsional impedance for foundation embedded in
layered medium, Tassoulas and Kansel [14] used layer elements to
obtain torsional, vertical, horizontal, and rocking impedance
functions, and Wolf and Preisig [15] employed cone model to
calculate impedance functions.

In this paper a numerical scheme is developed to generate
complete impedance functions for foundation embedded in
layered medium. The impedance functions will be frequency-
dependent functions. To obtain the impedances, the analytical
solutions of three-dimensional (3D) wave equations in cylindrical
coordinates in layered medium with satisfying the necessary
boundary conditions are employed [8]. In the process of
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formulating the impedances, the soil medium is divided into
interior and exterior domains. The analytical solutions are formed
separately with unknown coefficients for both domains. And the
interaction stresses at the interface between foundation and
surrounding soil are assumed to be piecewise linear in z direction
or r direction of the cylindrical coordinates. Then, the continuity
conditions of stresses and displacements at the interface between
both domains and the interface between the foundation and
surrounding soil are applied to generate the impedance functions.
In the process of applying the continuity conditions and generat-
ing the impedance functions, variational principle and reciprocal
theorem are employed.

Some numerical aspects will be investigated in order to show
the effectiveness and efficiency of the presented scheme. And the
results for torsional, vertical, horizontal, coupling and rocking
impedances of a cylindrical foundation embedded with different
depths will also be presented to show the importance of
embedment effect.
2. Derivations for 3D wave progation problems

The total soil system with prescribed tractions tb1 eiot and
tb2 eiot having time-harmonic variations at the sidewall and the
bottom of the cylindrical cavity, respectively, is shown in Fig. 1.
The prescribed tractions can be expressed in terms of Fourier
components with respect to the azimuth as follows:

tb1ðy; zÞ ¼
X1
n¼0

FðyÞtn
b1ðzÞ

¼
X1
n¼0

sn
rrðzÞ

cosðnyÞ

sinðnyÞ

( )

tn
rzðzÞ

cosðnyÞ

sinðnyÞ

( )

tn
ryðzÞ

� sinðnyÞ

cosðnyÞ

( )

2
6666666666664

3
7777777777775

r ¼ a0 and 0pzpd (1)
Fig. 1. Total soil system with prescribed tractions.
and

tb2ðy; rÞ ¼
X1
n¼0

FðyÞtn
b2ðrÞ

¼
X1
n¼0

tn
rzðrÞ

cosðnyÞ

sinðnyÞ

( )

sn
zzðrÞ

cosðnyÞ

sinðnyÞ

( )

tn
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( )

2
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3
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z ¼ d and 0prpa0 (2)

where sn
rrðzÞ, tn

rzðzÞ, tn
ryðzÞ, tn

rzðrÞ, sn
zzðrÞ, tn

yzðrÞ are the stress
amplitudes of the nth Fourier component (either a symmetric
component or an anti-symmetric component). To solve the wave
propagation problem with the prescribed tractions of Eqs. (1) and
(2) as shown in Fig. 1, Liou [8] has proposed a technique to
decompose each Fourier component of the prescribed boundary
condition at S2 surface. This decomposed boundary condition can
be easily fitted into the general solutions of 3D wave equations in
cylindrical coordinates. By following the procedure of the
technique, the solutions in interior domain consist of particular
solutions which satisfy the boundary conditions of prescribed
traction in Eq. (2) and rigid base z ¼ L in Fig. 1, and homogeneous
solutions which satisfy the homogeneous boundaries at free
surface (traction free) z ¼ d and rigid base z ¼ L. The solutions for
exterior domain contain only homogeneous solutions which
satisfy the homogeneous boundaries at free surface z ¼ 0 and
rigid base z ¼ L. Since the solving process is the same for all the
Fourier components, the superscript n in Eqs. (1) and (2) will be
omitted in the following derivations of homogenous solutions and
particular solutions.

The solution (e.g. traction) for interior domain in Fig. 1 is the
combination of homogeneous and particular solutions as follows:

tðiÞ ¼ tðiÞh þ tðiÞp (3)

The particular solution tðiÞp must satisfy the boundary conditions
of Eq. (2) and rigid base condition z ¼ L (zero displacement), and
the homogeneous solution tðiÞh satisfies the boundary conditions of
rigid base and the free surface (zero traction).

From the general solutions of 3D wave equations, the stress
and the displacement fields in a layer can be expressed in terms of
the displacements and tractions on the upper boundary of the
layer [8]. By employing the continuity conditions of displacements
and tractions consecutively at the horizontal interface between
two layers, one obtains

Y ðiÞm ¼ J̄ amam�1 � � � a1J̄
�1

Y ðiÞ0 ¼ J̄ T ðiÞJ̄
�1

Y ðiÞ0 (4)

where Y ðiÞm ¼ ðu
ðiÞ
r uðiÞz tðiÞrz sðiÞzz uðiÞy tðiÞyz Þ

T
m is the displacement-

stress vector on the mth horizontal interface in Fig. 1, J̄ is the
Bessel function matrix and the aj’s are the transfer matrices given
by Eqs. (A.1)–(A.4) in the Appendix. Using Eqs. (A.2)–(A.4) for the
matrices aj’s, T(i) can be written as

T ðiÞ ¼

tðiÞ11 tðiÞ12 tðiÞ13 tðiÞ14 0 0

tðiÞ21 tðiÞ22 tðiÞ23 tðiÞ24 0 0

tðiÞ31 tðiÞ32 tðiÞ33 tðiÞ34 0 0

tðiÞ41 tðiÞ42 tðiÞ43 tðiÞ44

0 0 0 0 tðiÞ55 tðiÞ56

0 0 0 0 tðiÞ65 tðiÞ66

2
6666666666664

3
7777777777775

(5)
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By applying the homogeneous boundary conditions of rigid base
at z ¼ L and free surface at z ¼ d, one obtains

0

0

0

2
64
3
75 ¼ J

tðiÞ11 tðiÞ12 0

tðiÞ21 tðiÞ22 0

0 0 tðiÞ55

2
6664

3
7775J�1

ur

uz

uy

2
64

3
75

0

(6)

where

J ¼

J 0nðkrÞ 0 n
r JnðkrÞ

0 kJnðkrÞ 0
n
r JnðkrÞ 0 J 0nðkrÞ

2
64

3
75 (7)

Eq. (6) gives the transcendental equations

tðiÞ11tðiÞ22 � tðiÞ12tðiÞ21 ¼ 0 (8)

for the wave numbers representing Rayleigh modes, and

tðiÞ55 ¼ 0 (9)

for the wave numbers representing Loves modes. For each wave
number k, a root of Eq. (8) or (9), the tractions at depth z on the
vertical interface (S3 in Fig. 1) between the exterior and the
interior domains can be expressed in terms of the displacement-
stress vector on the free surface as follows:

tðiÞj ðzÞ ¼ ðJ1F1 þ J2F2Þejðz� hj�1ÞE
�1
j aj�1 � � � a1J̄

�1
Y ðiÞ0 (10)

where tðiÞj ðzÞ ¼ ðs
ðiÞ
rr tðiÞrz tðiÞyz Þ

T
jr¼a0

in the jth layer, and the
matrices J1, J2, F1ejðz� hj�1ÞE

�1
j and F2ejðz� hj�1ÞE

�1
j are given

by Eqs. (A.5)–(A.8) in the Appendix. Substituting the root of Eq. (8)
into Eq. (4) and making use of the free surface conditions, one can
easily show that J̄

�1
Y ðiÞ0 in Eqs. (4) and (10) can be written as

J̄
�1

Y ðiÞ0 ¼ ð
1 xi 0 0 0 0 ÞTaðiÞi (11)

for the ith Rayleigh mode, in which xi ¼ �tðiÞ11=tðiÞ12 ¼ �tðiÞ21=tðiÞ22 and
aðiÞi is the unknown modal participation factor. Similarly, sub-
stituting the root of Eq. (9) into Eq. (4), one can obtain

J̄
�1

Y ðiÞ0 ¼ ð0 0 0 0 1 0 ÞTaðiÞj (12)

for the jth Love mode, in which aðiÞj is the unknown modal
participation factor. Because Eqs. (8) and (9) have an infinite
number of roots, the displacement and stress fields in the interior
Fig. 2. Solutions
domain can be approximated by a finite number of lower modes.
Substituting Eqs. (11) and (12) into Eqs. (4) and (10), the
displacement and stress vectors at the vertical interface (vertical
surface S3 in Fig. 1) due to homogeneous solutions can be
implicitly expressed by the combination of these modes with
unknown participation factors as follows:

uðiÞh;s3
ðzÞ ¼ N ðiÞh;S3

ðzÞaðiÞ; r ¼ a0 (13)

and

tðiÞh;s3
ðzÞ ¼ G ðiÞh;S3

ðzÞaðiÞ; r ¼ a0 (14)

where N(i)(z) and G(i)(z) are the matrices of modal displacements
and stresses respectively, and a(i) is the vector of unknown modal
participation factors. By use of Eqs. (11), (12) and (4), one can
express the displacement and traction vectors at the surface S2 of
interior domain due to the homogeneous solutions in terms of the
vector a(i) as follows:

uðiÞh;s2
ðrÞ ¼ N ðiÞh;S2

ðrÞaðiÞ; z ¼ d (15)

and

tðiÞh;s2
ðrÞ ¼ 0; z ¼ d (16)

To obtain the particular solutions for interior domain, the nth
Fourier component of the prescribed traction in Eq. (2) can be
expressed in a form compatible to finite element model of
foundation structure. The variation of tn

b2ðrÞ in Eq. (2) is assumed
to be piecewise linear in r direction. Also, by the same reason, the
variation of tn

b1ðzÞ in Eq. (1) is assumed to be piecewise linear in
z direction for generating impedance functions. For Eq. (1), the
depth of embedded foundation d is divided into m1 subintervals
with equal width b ¼ d/m1. Then tn

b1ðzÞ in Eq. (1) can be
approximated as

sn
rrðzÞ ¼

Xm1�1

j¼1

hjðzÞqj þ h0ðzÞq0 þ hm1ðzÞqm1

tn
rzðzÞ ¼

Xm1�1

j¼1

hjðzÞpj þ h0ðzÞp0 þ hm1ðzÞpm1

tn
ryðzÞ ¼

Xm1�1

j¼1

hjðzÞsj þ h0ðzÞs0 þ hm1ðzÞsm1 (17)
at interfaces.
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or

tn
b1ðzÞ ¼ HT

1P1 (18)

where

hjðzÞ ¼

1þ z�jb
b if ðj� 1Þbpzpjb and 1pjpm1

1� z�jb
b if jbpzpðjþ 1Þb and 0pjpm1 � 1

0; otherwise;

8>><
>>: (19)

matrix HT
1 ¼ diag½hT; hT; hT

� in which hT is the vector contains
element hjðzÞ in Eqs. (19), vector PT

1 ¼ ðq
T; pT; sTÞ in which vectors

qT, pT and sT contains the elements qj, pj and sj, respectively in
Table 1

Non-dimensionalized torsional impedance KTT=Ga3
0 for d/a0 ¼ 0, L/a0 ¼ 2 and oa0/Re(C

i j l m2 ¼ 2

10 15 3 4.79+0.00059i

10 15 4 4.83+0.00058i

10 15 5 4.91+0.00056i

10 15 6 4.99+0.00056i

Liou and Lee [11]

Table 2
Non-dimensionalized vertical impedance KVV/Ga0 for d/a0 ¼ 0, L/a0 ¼ 2 and oa0/Re(Cs)

i j l m2 ¼ 2

10 15 3 9.27+0.0115i

10 15 4 9.32+0.0114i

10 15 5 9.33+0.0114i

10 15 6 9.33+0.0114i

Liou and Lee [11]

Table 3

Non-dimensionalized horizontal impedance KHH=Ga3
0 for d/a0 ¼ 0, L/a0 ¼ 2 and oa0/Re

i j l m2 ¼ 2

10 15 3 5.746+0.0143i

10 15 4 5.787+0.01458i

10 15 5 5.783+0.01454i

10 15 6 5.788+0.01459i

Liou and Lee [11]

Table 4

Non-dimensionalized coupling impedance KRH=Ga3
0 for d/a0 ¼ 0, L/a0 ¼ 2 and oa0/Re(C

i j l m2 ¼ 2

10 15 3 �0.2498+0.0081i

10 15 4 �0.251+0.00855i

10 15 5 �0.249+0.00848i

10 15 6 �0.2508+0.00859i

Liou and Lee [11]

Table 5

Non-dimensionalized rocking impedance KRR=Ga3
0 for d/a0 ¼ 0, L/a0 ¼ 2 and oa0/Re(Cs

i j l m2 ¼ 2

10 15 3 3.828+0.00761i

10 15 4 3.907+0.00761i

10 15 5 3.873+0.00766i

10 15 6 3.893+0.00758i

Liou and Lee [11]
Eqs. (17), and qj, pj and sj are the intensities of traction at node j for
sn

rrðzÞ, tn
rzðzÞ and tn

ryðzÞ in Eqs. (17), respectively.
Similarly, the foundation radius a0 can be divided into m2

subintervals and the traction tn
b2ðrÞ of each Fourier component in

Eq. (2) can also be approximated by

tn
b2ðrÞ ¼ HT

2P2 (20)

where matrix HT
2 ¼ diag½h̄

T
; h̄

T
; h̄

T
� with vector h̄ being similar to

vector h defined in Eqs. (19) except the piecewise linear variable z

is replaced by r, vector PT
2 ¼ ðq̄

T; p̄T; s̄TÞ and q̄j, p̄j and s̄j are the
intensities of traction at node j for tn

rzðrÞ, sn
zzðrÞ and tn

yzðrÞ,
respectively. It should be noted that HT

1 and HT
2 are 3�3(m1+1)
s) ¼ 0.01

m2 ¼ 3 m2 ¼ 4 m2 ¼ 5

– – –

4.91+0.00061i – –

5.01+0.00057i 5.07+0.00055i –

5.02+0.00053i 5.11+0.00051i 5.21+0.00048i

5.254282+0.00044i

¼ 0.01

m2 ¼ 3 m2 ¼ 4 m2 ¼ 5

– – –

9.38+0.0121i – –

9.41+0.0111i 9.43+0.0107i –

9.43+0.0108i 9.46+0.0105i 9.62+0.0089i

9.852558+0.000158i

(Cs) ¼ 0.01

m2 ¼ 3 m2 ¼ 4 m2 ¼ 5

– – –

5.846+0.0158i – –

5.841+0.0157i 5.921+0.00173i –

5.855+0.0159i 5.891+0.00168i 5.966+0.0184i

6.003748+0.000148 i

s) ¼ 0.01

m2 ¼ 3 m2 ¼ 4 m2 ¼ 5

– – –

�0.219+0.0111i – –

�0.227+0.0113i �0.194+0.014i –

�0.225+0.0113i �0.204+0.0134i �0.183+0.0167i

�0.3105359�0.00003881i

) ¼ 0.01

m2 ¼ 3 m2 ¼ 4 m2 ¼ 5

– – –

3.97+0.01041i – –

3.986+0.01033i 4.07+0.0132i –

3.992+0.01036i 4.04+0.0129i 4.191+0.0125i

4.214673+0.0003247i
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and 3�3(m2+1) matrices, respectively. Because the traction tn
b2ðrÞ

must be fitted in the general solutions of 3D wave equations in
cylindrical coordinates for interior domain, the traction tn

b2ðrÞ can
be decomposed as follows [8]:

tn
b2ðrÞ ¼

tn
rzðrÞ

sn
zzðrÞ

tn
yzðrÞ

2
64

3
75 ¼

1

0

�1

2
64

3
75 tn

rz � tn
yz

2

� �
þ

0

1

0

2
64

3
75ðsn

zzÞ þ

1

0

1

2
64

3
75 tn

rz þ tn
yz

2

� �

(21)

and

tn
rzðrÞ � tn

yzðrÞ

2
¼
X1
i¼1

kð1Þi Jnþ1ðk
ð1Þ
i rÞAi þ kð1Þ0 Jnþ1ðk

ð1Þ
0 rÞA0

sn
zzðrÞ ¼

X1
j¼1

kð2Þj Jnðk
ð2Þ
j rÞBj þ kð2Þ0 Jnðk

ð2Þ
0 rÞB0

tn
rzðrÞ þ tn

yzðrÞ

2
¼
X1
i¼1

kð3Þl Jn�1ðk
ð3Þ
l rÞCl þ kð3Þ0 Jn�1ðk

ð3Þ
0 rÞC0 (22)
Fig. 3. Comparison of non-dimensionalized torsion
where the kð1Þi ’s, kð2Þj ’s and kð3Þl ’s are the roots of Jnþ1ðk
ð1Þ
i a0Þ ¼ 0,

Jnðk
ð2Þ
j a0Þ ¼ 0 and Jn�1ðk

ð3Þ
l a0Þ ¼ 0, respectively, for i, j, l ¼ 1, 2,

y,N, and choosing kð1Þ0 ¼ 0:5kð1Þ1 , kð2Þ0 ¼ 0:5kð2Þ1 and kð3Þ0 ¼ 0:5kð3Þ1 in
order to satisfy the boundary condition at r ¼ a0 and z ¼ d. The
Bessel functions in Eqs. (22), except the first term, are orthogonal
to each other with respect to the weighting function w(r) ¼ r in
the interval (0, a0). The Ai’s, Bj’s and Cl’s can be determined from
the orthogonal property as follows:

A0 ¼
tn

rzða0Þ � tn
yzða0Þ

2kð1Þ0 Jnþ1ðk
ð1Þ
0 a0Þ

(23)

Ai ¼

R a0

0 r
tn

rz�tn
yz

2

� �
Jnþ1ðk

ð1Þ
i rÞdr � kð1Þ0 A0

R a0

0 Jnþ1ðk
ð1Þ
0 rÞJnþ1ðk

ð1Þ
i rÞr dr

kð1Þi

R a0

0 J2
nþ1ðk

ð1Þ
i rÞr dr

(24)

B0 ¼
sn

zzða0Þ

kð2Þ0 Jnðk
ð2Þ
0 a0Þ

(25)
al impedence with Liou’s results for L/a0 ¼ 2.
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Bj ¼

R a0

0 rðsn
zzÞJnðk

ð2Þ
j rÞdr � kð2Þ0 B0

R a0

0 Jnðk
ð2Þ
0 rÞJnðk

ð2Þ
j rÞr dr

kð2Þj

R a0

0 J2
nðk
ð2Þ
j rÞr dr

(26)

C0 ¼
tn

rzða0Þ þ tn
yzða0Þ

2kð3Þ0 Jn�1ðk
ð3Þ
0 a0Þ

(27)

Cl ¼

R a0

0 r
tn

rzþtn
yz

2

� �
Jn�1ðk

ð3Þ
l rÞdr � kð3Þ0 C0

R a0

0 Jn�1ðk
ð3Þ
0 rÞJn�1ðk

ð3Þ
l rÞr dr

kð3Þl

R a0

0 J2
n�1ðk

ð3Þ
l rÞr dr

(28)

In Eqs. (22), the Ai’s, Bj’s and Cl’s are defined as the modal

participation factors with respect to the wave numbers kð1Þi ’s, kð2Þj ’s

and kð3Þl ’s, respectively. Since vectors ½1; 0; �1 �T, ½0; 1; 0 �T,

½1; 0; 1 �T are the eigenvectors of J in Eq. (7) with respective

eigenvalues kiJnþ1ðkirÞ, kjJnðkjrÞ, and klJn�1ðklrÞ, one can
substitute Eq. (20) into Eq. (21) and make use of Eqs. (22)–(28)
Fig. 4. Comparison of non-dimensionalized vertic
to obtain

tn
b2ðrÞ ¼

tn
rzðrÞ

sn
zzðrÞ

tn
yzðrÞ

2
664

3
775 ¼

1

0

�1

2
664

3
775 tn

rz � tn
yz

2

� �
þ

0

1

0

2
664

3
775ðsn

zzÞ

þ

1

0

1

2
664

3
775 tn

rz þ tn
yz

2

� �
¼

X1
i¼0

J ð1Þn

Dnþ1
i 0 �Dnþ1

i

0 0 0

�Dnþ1
i 0 Dnþ1

i

2
6664

3
7775

0
BBB@

þ
X1
j¼0

J ð2Þn

0 0 0

0 Dn
j 0

0 0 0

2
664

3
775þX1

l¼0

J ð3Þn

Dn�1
l 0 Dn�1

l

0 0 0

Dn�1
l 0 Dn�1

l

2
6664

3
7775
1
CCCAP2

¼
X1
i¼0

J ð1Þn D̄
nþ1
i þ

X1
j¼0

J ð2Þn D̄
n
j þ

X1
l¼0

J ð3Þn D̄
n�1
l

0
@

1
AP2

¼ G ðiÞp;S2
ðrÞP2 (29)
al impedence with Liou’s results for L/a0 ¼ 2.



ARTICLE IN PRESS

G.-S. Liou, I.L. Chung / Soil Dynamics and Earthquake Engineering 29 (2009) 677–692 683
where

Dnþ1
i ¼

1

2

Z a0

0
h̄Jnþ1ðk

ð1Þ
i rÞr dr þ

1

2
½1�

Z a0

0

Jnþ1ðk
ð1Þ
0 rÞJnþ1ðk

ð1Þ
i rÞr dr

kð1Þ0 J2
nþ1ðk

ð1Þ
0 rÞ

(30)

Dn
j ¼

1

2

Z a0

0
h̄Jnðk

ð2Þ
j rÞr dr þ

1

2
½1�

Z a0

0

Jnðk
ð2Þ
0 rÞJnðk

ð2Þ
j rÞr dr

kð2Þ0 J2
nðk
ð2Þ
0 rÞ

(31)

Dn�1
l ¼

1

2

Z a0

0
h̄Jn�1ðk

ð3Þ
l rÞr dr þ

1

2
½1�

Z a0

0

Jn�1ðk
ð3Þ
0 rÞJn�1ðk

ð3Þ
l rÞr dr

kð3Þ0 J2
n�1ðk

ð3Þ
0 rÞ

(32)

where vector h̄ is defined in Eq. (20), all the elements in
vector [1], except the last element is equal to 1, are 0,
and J ð1Þn , J ð2Þn and J ð3Þn are the matrix J in Eq. (7) with wave
numbers kð1Þi , kð2Þj and kð3Þl , respectively. Substituting each mode
in Eq. (29) into the general solutions of Eq. (4) and making
use of rigid base condition z ¼ L, one can obtain the displacement
field at the surface S2 of interior domain due to particular
Fig. 5. Comparison of non-dimensionalized horizon
solutions as follows:

uðiÞp;S2
ðrÞ ¼

X1
i¼0

J ð1Þn Qð1Þn D̄
nþ1
i þ

X1
j¼0

J ð2Þn Qð2Þn D̄
n
j

0
@

þ
X1
l¼0

J ð3Þn Qð3Þn D̄
n�1
l

!
P2 ¼ N ðiÞp;S2

ðrÞP2 (33)

where Qð1Þn , Qð2Þn and Qð3Þn can be obtained using Eqs. (4) and (5)

with wave numbers kð1Þi , kð2Þj , and kð3Þl , respectively as follows:

Qn ¼ �

tðiÞ11 tðiÞ12 0

tðiÞ21 tðiÞ22 0

0 0 tðiÞ55

2
6664

3
7775
�1

tðiÞ13 tðiÞ14 0

tðiÞ23 tðiÞ24 0

0 0 tðiÞ56

2
6664

3
7775 (34)

and elements tðiÞij in Eq. (34) are defined in Eq. (5). From the

derivations above, tðiÞp;S2
ðrÞ is equal to tn

b2 in Eqs. (20) or (29). For

each mode in Eqs. (33) and (29), vectors J�1uðiÞp;S2
and J�1tðiÞp;S2

can

be combined into the vectors J̄
�1
n Y ðiÞ0 in Eq. (10). Therefore, if one

truncates high modes in Eqs. (33) and (29), the displacement and
traction fields due to the prescribed traction tn

b2ðrÞ in Eq. (20) at
tal impedence with Liou’s results for L/a0 ¼ 2.
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the vertical interface S3 between interior domain and exterior
domains can have similar expressions to Eqs. (13) and (14),
respectively.

uðiÞp;s3
ðzÞ ¼ N ðiÞp;S3

ðzÞP2; r ¼ a0 (35)

and

tðiÞp;s3
ðzÞ ¼ G ðiÞp;S3

ðzÞP2; r ¼ a0 (36)

For the exterior domain in Fig. 1, only homogeneous solutions
are involved since the solutions have to satisfy the homogenous
boundaries at z ¼ 0 and L. Therefore, one just follows the
procedures of finding homogeneous solutions for interior domain
to obtain the solutions. To do this, one can express the
displacement and stress fields in terms of displacement-stress
vector at the top surface (z ¼ 0) of the layered medium like the
procedure to obtain Eqs. (4) and (10) except the Bessel function
matrix J̄ is replaced with Hankel function matrix H̄ . Matrix H̄ is
similar to matrix J̄ in Eq. (A.1) except the element Jn(kr) and J0nðkrÞ

are replaced by the second kind of Hankel functions HnðkrÞ and
H0nðkrÞ. Then the displacement and stress at the vertical surface
S1+S3 in Fig. 1 can be written by the combination of a finite
Fig. 6. Comparison of non-dimensionalized coupli
number of modes with unknown participation factors similar to
Eqs. (13) and (14).

uðeÞh;S1þS3
ðzÞ ¼ N ðeÞðzÞaðeÞ; r ¼ a0 (37)

and

tðeÞh;S1þS3
ðzÞ ¼ G ðeÞðzÞaðeÞ; r ¼ a0 (38)

where matrices N(e)(z) and G(e)(z) contain all the considered modal
shapes of displacement and stress respectively, and a(e) is the
vector of unknown modal participation factors.
3. Formulation of impedance matrix

In Fig. 2, the solutions at the boundaries of interior domain and
exterior domain have been shown by using Eqs. (37) and (38) for
exterior domain and Eqs. (3), (13)–(16), (20 or 29), (33), (35) and
(36) for interior domain. Also, in the following derivations, the
variation with respect to y (cos(ny) or sin(ny)) will be omitted in
the expression, and the integrations with respect to y will be
automatically calculated. By applying the stress continuity
ng impedence with Liou’s results for L/a0 ¼ 2.
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condition to vertical surface S1+S3, the variational principleR
S1þS3

duðeÞðzÞðtðeÞðzÞ � tðiÞÞdS ¼ 0 gives

Keea
ðeÞ � Keha

ðiÞ ¼ KepP2 � Vb1P1 (39)

where

Kee ¼

Z
S1þS3

N ðeÞ
T

ðzÞG ðeÞh ðzÞdS (40)

Keh ¼

Z
S3

N ðeÞ
T

ðzÞG ðiÞh;S3
ðzÞdS (41)

Kep ¼

Z
S3

N ðeÞ
T

ðzÞG ðiÞp;S3
ðzÞdS (42)

Vb1 ¼

Z
S3

N ðeÞ
T

ðzÞH1ðzÞdS (43)

Similarly, imposing the displacement continuity condition, the
variational principle of

R
S3 dtðiÞðzÞðuðiÞðzÞ � uðeÞÞdS ¼ 0 gives

�KheaðeÞ þ KhhaðiÞ ¼ �KhpP2 (44)
Fig. 7. Comparison of non-dimensionalized rockin
where

Khe ¼

Z
S3

G ðiÞ
T

h;S3
ðzÞN ðeÞðzÞdS (45)

Khh ¼

Z
S3

G ðiÞ
T

h;S3
ðzÞN ðiÞh;S3

ðzÞdS (46)

Khp ¼

Z
S3

G ðiÞ
T

h;S3
ðzÞN ðiÞp;S3

ðzÞdS (47)

Eqs. (39) and (44) can be combined as

Kee �Keh

�Khe Khh

" #
aðeÞ
aðiÞ

� �
¼

Kep

�Khp

" #
P2 þ

�Vb1

0

� �
P1 (48)

Therefore, the unknown modal participation factors of the
homogeneous solutions in the exterior and interior domains can
be expressed in terms of the stress intensity vectors P1 and P2 in
Eqs. (18) and (20), respectively, as follows:

aðeÞ

aðiÞ

" #
¼

x1

x2

" #
P2 þ

x3

x4

" #
P1 (49)
g impedence with Liou’s results for L/a0 ¼ 2.
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Consequently all the displacement and the stress components
at any arbitrary location in the soil domain can be obtained for the
arbitrarily prescribed piecewise linear tractions at the surface of
cylindrical cavity. Now, referring to Fig. 2 and making use of
Eqs. (49), (18) and (20), the displacement and traction at surfaces
S1 and S2 can be written as

u0 ¼
uS1
ðzÞ

uS2
ðrÞ

" #
¼

N ðeÞðzÞx3 N ðeÞðzÞx1

N ðiÞh;S2
ðrÞx4 N ðiÞh;S2

ðrÞx2 þN ðiÞp;S2
ðrÞ

2
4

3
5 P1

P2

" #
(50)

and

t0 ¼
tS1
ðzÞ

tS2
ðrÞ

" #
¼

H1ðzÞ 0

0 H2ðrÞ

" #
P1

P2

" #
(51)

To form the impedance matrix, one can use Eqs. (50) and (51).
The variational principle gives the virtual work of the system
Fig. 8. Non-dimensionalized tortional imped
as follows:

dW ¼

Z
S1þS2

dtT
0u0 dS ¼ dPT

Z
S1þS2

HT
1ðzÞ 0

0 HT
2ðrÞ

2
4

3
5

�

N ðeÞðzÞx3 N ðeÞðzÞx1

N ðiÞh;S2
ðrÞx4 ðN ðiÞh;S2

ðrÞx2 þN ðiÞp;S2
ðrÞÞ

2
4

3
5dS P

¼ dPT
Q11 Q12

Q21 Q22

" #
P ¼ dPTQP (52)

where

Q11 ¼

Z d

0
HT

1ðzÞN
ðeÞðzÞdzx3 (53)
ence with different depths for L/a0 ¼ 2.
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Q12 ¼

Z d

0
HT

1ðzÞN
ðeÞðzÞdzx1 (54)

Q21 ¼

Z a0

0
HT

2ðrÞN
ðiÞ
h;S2
ðrÞr dr x4 (55)

and

Q22 ¼

Z a0

0
HT

2ðrÞ½N
ðiÞ
h;S2
ðrÞx2 þN ðiÞp;S2

ðrÞ�r dr (56)

For the foundation itself, the displacement field of the
foundation for the nth Fourier component (either a symmetric
or an anti-symmetric component as shown in Eqs. (1) or (2)) can
be assumed as

ū0 ¼ N v (57)

where matrix N is comprised of the displacement shape functions
at the interface between foundation and surrounding soil, and
vector v is comprised of the generalized displacements at the
nodal rings of the finite element model of foundation. Similarly,
Fig. 9. Non-dimensionalized vertical imped
the virtual work of the system is obtained by applying the
variational principle

dW ¼

Z
S1þS2

dtT
0ū0 dS ¼ dPT

Z
S1þS2

HTN dS v ¼ dPTB v (58)

Equating Eq. (52) to Eq. (58) and factoring out dPT, it is obtained.

Q P ¼ B v (59)

or

V ¼ B v (60)

where the elements of vector V are the generalized displacements
at the nodal rings of the assumed piecewise linear traction model.
Eq. (60) gives the relationship between the nodal generalized
displacements of the assumed stress model of Eqs. (18) and (20)
and the finite element model of Eq. (57). To obtain the
corresponding force–stress relationship for both models, the reci-
procal theorem can be used. This leads to the following equation:

F ¼ BTP (61)
ence with different depths for L/a0 ¼ 2.
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where the elements of vector F are the generalized forces at the
nodal rings of the finite element model. Substituting P ¼ Q�1Bv
from Eq. (59) into Eq. (61) yields

F ¼ BTQ�1B v ¼ I v (62)

where the matrix I is the impedance matrix for the nth Fourier
component. It is noted that I matrix is symmetric matrix.
4. Numerical investigations

A rigid massless circular foundation embedded in a stratum of
single layer subjecting to time-harmonic torsional, vertical, rock-
ing and horizontal excitations is used as an example to
demonstrate the effectiveness and efficiency of the presented
scheme. In this example, 0.05 hysteretic damping ratio is chosen
for soil medium and the Poisson ratio of soil is assumed to be 0.33.
For the torsional time-harmonic and vertical time-harmonic
vibrations of foundation, the anti-symmetric and symmetric
Fig. 10. Non-dimensionalized horizontal impe
Fourier components with n ¼ 0 in Eqs. (57), (1) and (2) are
involved, respectively in the analysis. For the rocking and
horizontal time-harmonic vibrations of foundation, the Fourier
component involved in the analysis is the symmetric component
with n ¼ 1 in Eqs. (57), (1) and (2).

Since the Love modes and Rayleigh modes are involved in the
homogeneous solutions, Eqs. (8) and (9) are employed to find the
wave numbers for homogeneous solutions of interior domain. And
a similar way can be used to find the homogeneous solutions for
exterior domain.

To obtain the Love and Rayleigh wave numbers of Eqs. (8) and
(9) numerically, Ref. [8] proposed a scheme to locate approxi-
mately all the roots in a specified region on complex plane. Then,
Mullers [16] method is employed to find the more accurate roots.

For validation of the proposed numerical scheme, the con-
vergence study is performed first. In the study, L/a0 ¼ 2
with d/d0 ¼ 0 (see Fig. 1) and non-dimensional frequency
oa0/(Re(Cs) ¼ 0.01 are chosen. The results for the case are shown
in Tables 1–5. In these tables, i and j are the numbers of
dence with different depths for L/a0 ¼ 2.
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homogeneous modes for exterior and interior domains, respec-
tively (Eq. (8) or Eq. (9)) used in the analysis, l is the number
of particular modes for interior domain (Eq. (22)), m1 is the
number of subintervals for piecewise linear in z direction
(Eq. (17)), m2 is the number of subintervals for piecewise linear
in r direction (Eq. (20)), Re(Cs) is the real part of shear wave
velocity of soil medium, KTT is the torsional impedance, KVV

is the vertical impedance, KHH is the horizontal impedance,
KRH ¼ KHR are the coupling impedance, KRR is the rocking
impedance, G is the shear modulus of soil medium and o is
frequency. Also, one should notice that for torsional impedance,
i and j are the numbers of Love modes for respective exterior
and interior domains, and m2 and l are the numbers of
subintervals and roots of J1(ka) ¼ 0 (Eqs. (22)), respectively
for traction tyz, for vertical impedance i and j are the numbers
of Rayleigh modes for respective domains, m2 is the number of
subintervals for both tractions trz and szz and l is the number of
roots of J0(ka) ¼ 0 and J1(ka) ¼ 0 (the total number of roots is 2l),
and for horizontal, coupling and rocking impedances, i and j are
the numbers of Love or Rayleigh modes for respective domains
(the total numbers are 2i and 2j), m2 is the numbers of
subintervals for tractions trz, szz and tyz and l is the number of
roots of J0(ka) ¼ 0, J1(ka) ¼ 0 and J2(ka) ¼ 0 (the total number of
roots is 3l). In the tables, i ¼ 10 and j ¼ 15 are enough for exterior
and interior domains, respectively, when non-dimensionalized
frequency oa0/(Re(Cs)) ¼ 0.01. However, for higher frequency i

and j should be larger.
From Tables 1–5, one can see that as l and m2 become larger,

the results are converging and approaching the results of Liou’s
work [11]. Also one can observe from these tables that the number
of particular solutions must be larger than the number of sub-
interval m2. This means lXm2+1. The reason to this restriction is
that the number of particular modes employed in the analysis
must be greater than the number of unknown nodal intensities of
piecewise linear traction. If lom2+1, then matrix Q in Eq. (52) will
be singular.

From the preliminary study, 20 Love or Rayleigh homogeneous
modes for both exterior and interior domains are enough for
obtaining results of torsional and vertical impedances with good
accuracy in the frequency range oa0=ð2pReðCsÞÞ ¼ 021. For the
horizontal, coupling and rocking impedances, 40 homogeneous
modes (20 Love modes and 20 Rayleigh modes) are enough for
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obtaining results with good accuracy in the frequency range
mentioned previously.

For the case of rigid foundation on one layer stratum, Figs. 3–7
show the numerical results of impedance functions with m2 ¼ 2,
3, 4, 5. In these figures, i ¼ j ¼ 20 and l ¼ 6 are selected after some
convergence study has been performed. From these figures, one
can observe that the results are approaching the results by Liou
and Lee [11], as m2 becomes larger.

In order to investigate the effects of embedment on impedance
functions, the ratios of embedded depth to the radius of
foundation (d/a0) are selected to be 0, 1

4, 2
4, 3

4 and 1. In the
investigation, i ¼ j ¼ 20, m2 ¼ 5 and m1 ¼ 5, in which m1 is the
number of the subintervals for vertical surface S1 in Fig. 2,
are employed according to the preliminary numerical study . Also,
the results for the case d/a0 ¼ 1 are compared to that by Tassoulas
and Kausel [14] and good consistency of both results is observed.
Figs. 8–12 show the results of torsional, vertical, horizontal,
coupling and rocking impedances for rigid circular foundation
embedded in one layer stratum. From these figures, one can
see that the impedances except coupling impedance are
generally getting larger especially in low-frequency range as the
embedded depth increases. This means embedment effect is very
important.
5. Concluding remarks

After generating torsional, vertical, horizontal, coupling and
rocking impedances numerically for foundation embedded in
different depth, the following observations can be obtained: (1)
The presented scheme can be easily employed to calculate
impedances for foundation embedded in a multiple layer stratum.
(2) From the above derivation, the scheme can be extended to
calculate the impedances for flexible foundation with arbitary
shape. (3) The computational cost for generating impedances by
the presented scheme is much inexpensive while compared to
that by other traditional methods, e.g. finite element method and
boundary element method. (4) The presented scheme can also be
extended to approximately calculate all impedance functions for
foundation in layered half-space medium, if the bottom layer of
stratum is thick enough.
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Appendix A

The Bessel function matrix J̄ in Eq. (5)

J̄ ¼

J0nðkrÞ 0 0 0 n
r JnðkrÞ 0

0 kJnðkrÞ 0 0 0 0

0 0 J0nðkrÞ 0 0 n
r JnðkrÞ

0 0 0 kJnðkrÞ 0 0
n
r JnðkrÞ 0 0 0 J0nðkrÞ 0

0 0 n
r JnðkrÞ 0 0 J0nðkrÞ

2
6666666664

3
7777777775

(A.1)

in which Jn(kr) is the first kind of Bessel function with order n and J0ðkrÞ ¼ ðdJnðkrÞÞ=dr The transfer matrices a0js in Eq. (5) can be expressed
as follows:

aj ¼ EjeðhjÞE
�1
j ¼

a1 0

0 a2

" #
(A.2)

in which

a1 ¼

2k2

k2
b

ðCH � CH0Þ þ CH �
k

k2
b

ð2k2
� k2

bÞ
SH

n � 2n0SH0
� �

�1

Gk2
b

n0SH0 � k2SH

n

� �
�

k

Gk2
b

ðCH � CH0Þ

k

k2
b

2nSH � ð2k2
� k2

bÞ
SH0

n0

� �
CH �

2k2

k2
b

ðCH � CH0Þ
k

Gk2
b

ðCH � CH0Þ �
1

Gk2
b

nSH � k2SH0

n0

� �

G
4k2

k2
b

nSH �
ð2k2
� k2

bÞ

k2
b

SH0

n0

� � !
�2kG

k2
b

ð2k2
� k2

bÞðCH � CH0Þ
2k2

k2
b

ðCH � CH0Þ þ CH0 �
k

k2
b

2nSH � ð2k2
� k2

bÞ
SH0

n0

� �

2kG

k2
b

ð2k2
� k2

bÞðCH � CH0Þ G �
ð2k2
� k2

bÞ
2

k2
b

SH

n þ
4k2

k2
b

n0SH0
 !

k

k2
b

ð2k2
� k2

bÞ
SH

v
� 2n0SH0

� �
CH �

2k2

k2
b

ðCH � CH0Þ

2
666666666666666664

3
777777777777777775

(A.3)

and

a2 ¼
CH0

SH0

Gn0
Gn0SH0 CH0

2
4

3
5 (A.4)

CH ¼ cosh ndj, CH0 ¼ cosh n0dj, SH ¼ sinh ndj, SH0 ¼ sinh n0dj, Kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2=C2

s

q
, G is the shear modulus, n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� ðo2=C2

s Þ

q
,

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� ðo2=C2

pÞ

q
, Cs is the shear wave velocity and Cp is the compressional wave velocity. Matrices J1 and J2 in Eq. (10) can be

expressed as follows:

J1 ¼

0 kJnðkrÞ 0

J0nkrÞ 0 n
r JnðkrÞ

0 0 0

2
64

3
75 (A.5)

J2 ¼

�
J0nðkrÞ

r
þ

n2

r2
JnðkrÞ

� �
n

r
J0nðkrÞ �

n

r2
JnðkrÞ

� �
0 0

n

r
J0nðkrÞ �

n

r2
JnðkrÞ

� �
�

J0nðkrÞ

r
þ

n2

r2
�

k2

2

 !
JnðkrÞ

 !

2
6666664

3
7777775

(A.6)

The matrix F1eðz� hj�1ÞE
�1
j and F2eðz� hj�1ÞE

�1
j in Eq. (10) can be expressed as follows:

F1eðz� hj�1ÞE
�1
j ¼

G

k2
b

4k2vSH � ð2k2
� k2

bÞ
2SH0

v0

� �
�

2kG

k2
b

ð2k2
� k2

bÞðCH � CH0Þ

2kG

k2
b

ð�ð2v2 þ k2
bÞCH þ ð2k2

� k2
bÞCH0Þ

G

k2
b

ð2k2
� k2

bÞð2v2 þ k2
bÞ

SH0

v0
� 4k2v0SH0

� �

0 0

2
66666664

2k2

k2
b

ðCH � CH0Þ þ CH0
k

k2
b

ð2k2
� k2

bÞ
SH0

v0
� 2vSH

� �
0 0

k

k2
b

2v0SH0 � ð2v2 þ k2
bÞ

SH

v

� �
1

k2
b

ðð2v2 þ k2
bÞCH � 2k2CH0Þ 0 0

0 0 Gv0SH0 CH0

3
777777775

(A.7)
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F2eðz� hj�1ÞE
�1
j ¼

2G
2k2

k2
b

ðCH � CH0Þ þ CH0Þ

 !
2kG

k2
b

2v0SH0 � ð2k2
� k2

bÞ
SH

v

� �

0 0

2
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2

k2
b

k2SH

v
� v0SH0

� �
�

2k
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b
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0 0 2GCH0 2
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3
77775 (A.8)
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