國立交通大學

材料科學與工程學系

碩士論文

以粉末燒結法製作氧化鋯與鈦混體之微觀結構分析 Microstructural Characterization of Zirconia and Titanium System Prepared by Powder Sintering

研究生:王偉宸

指導教授:林健正 博士

中華民國九十四年七月

以粉末燒結法製作氧化鋯與鈦混體之微觀結構分析

Microstructural Characterization of Zirconia and Titanium System Prepared by Powder Sintering

研	究	生	:	王偉宸	Student : Wei-Chen	Wang
---	---	---	---	-----	--------------------	------

指導教授:林健正教授 Advisor: Chien-Cheng Lin

國立交通大學

Submitted to Department of Material Science and Engineering

College of Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in Material Science and Engineering

July 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年七月

以粉末燒結法製作氧化鋯與鈦混體之微觀結構分析

研究生: 王偉宸 指導教授: 林健正

國立交通大學材料科學與工程研究所

摘要

本實驗利用TEM / EDS與XRD來鑑定ZrO2與Ti混體在Ar氣體的保 護氣氛下,經過1300°C、1400°C與1500°C一小時燒結反應後之微觀 結構。Sample條件以AT / BZ來表示,其中A為Ti在Sample中的原子百 分比(at.%); B為ZrO₂(PSZ)在Sample中的原子百分比(at.%)。由TEM 實驗結果顯示,在90T/10Z條件下經過1500°C熱處理,發現有α-Ti與 c-ZrO2;在 70T/30Z條件下經過 1400℃熱處理,除了發現β'-Ti (ALLER) (orthorhombic) 亦發現c-ZrO₂。而從 α -Ti matrix 中所析出的Ti₂ZrO (orthorhombic) 分別在 90T/10Z 經過 1400°C 及 1300°C 熱處理、 70T/30Z經過 1500°C及 1400°C熱處理與 50T/50Z經過 1400°C熱處理 下被觀察到。在 30T/70Z觀察到cubic TiO在α-Ti與t-ZrO_{2-x}的晶粒間形 成;10T/90Z則觀察到TiO與t-ZrO2x。另外,在Sample 10T/90Z經過 1500°C熱處理,藉由X-ray繞射分析可清楚看到有cubic ZrO生成,其 space group為Fm $\overline{3}$ m, a = 4.602 Å。

Microstructural Characterization of Zirconia and Titanium System Prepared by Powder Sintering Student : Wei-Chen Wang Advisor : Chien-Cheng Lin Department of Material Science and Engineering National Chiao Tung University

Abstract

Sintering 3 mol. % Y_2O_3 -ZrO₂ was reacted with titanium at temperatures ranging from 1300°C to 1500°C for 1 hour in argon atmosphere. The Microstructure of the reaction was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). With different atomic percent of titanium and zirconia in samples, it was expressed as AT / BZ (A mean the atomic percent of titanium; B mean the atomic percent of zirconia). TEM analysis confirmed the α -Ti and c-ZrO₂ in sample 90T/10Z at 1500°C; c-ZrO₂ and β '-Ti (orthorhombic) were present in sample 70T/30Z at 1400°C. Ti₂ZrO (orthorhombic) was precipitated from α -Ti in samples 90T/10Z, 70T/30Z and 50T/50Z at 1400°C and 1300°C, 1500°C and 1400°C, and 1400°C, respectively. TEM analysis show that cubic TiO particle was located between α -Ti and t-ZrO_{2-x} grains in sample 30T/70Z; cubic TiO and t-ZrO_{2-x} were also present in sample 10T/90Z. For sample 10T/90Z in 1500°C, cubic ZrO was identified by XRD and the lattice parameter of cubic ZrO was 4.602 Å, space was $Fm\overline{3}m$.

致謝

「光陰似箭,歲月如梭」眼看著兩年的碩士生涯即將劃上句點, 回顧這兩年來,除了專業知識的增長外,更學到了為人處世的態度; 這一路走來,有歡笑、有淚水,也因為有家人、同學與實驗室學長的 砥礪與幫助下,才可以順利地完成此論文。

首先,要先向我的指導教授 <u>林健正</u>老師致上最高的敬意與謝意,感謝老師對我悉心地教導與不斷地指正,此不僅讓<u>偉宸</u>學會用積極的態度去從事研究,並學習到一可貴的實驗精神:細心與嚴謹。

口試期間,非常感謝台灣科技大學 <u>周振嘉</u>教授與行政院科技顧問 <u>林坤豐</u>博士兩位口試委員對於本論文的不吝指導,並給與寶貴的 建議,使本論文得以更加完善。

在此,要衷心地感謝<u>林昆霖</u>學長與清大工科<u>曾子懷</u>同學在TEM分 析上的協助與指教,<u>邱家祥與柯宏達</u>學長在實驗上不吝提供寶貴意 見,同步輻射<u>葉峻銓與劉恆睿</u>學長,中興材料<u>楊馥如</u>、清大工科<u>蘇庭</u> <u>頤、蘇煥傑、陳孟賢</u>等同學對我在實驗上各方面的支援。由於有這麼 多人的付出才能使本實驗順利完成。 另外,也要謝謝櫻花家的<u>惠雯、慧臻、麗津、心怡</u>;精密陶瓷實驗室的<u>張耀文</u>學長、同學<u>文紹、桓德</u>、學弟<u>惟凱</u>與學妹<u>宜庭</u>陪我度過忙碌且充實的研究所生涯。

最後, 謹將本論文獻給我最親愛的父親<u>王子維</u>先生、母親<u>蔡詩誼</u> 女士與女友<u>怡親</u>, 由於你們的支持與鼓勵讓<u>偉宸</u>可以化苦楚為喜悅, 把不可能變可能。於此奉上最真摯的感恩。

中文摘要	i
英文摘要	······ii
致謝	······iii
目錄	·····iv
表目錄	······vi
圗目錄	·····vii
第一章	前言
第二章	原理與文獻回顧
2-1	鈦與鈦合金
2-2	氧化鋯之介紹
2-3	鈦與氧化錯之反應
第三章	實驗方法與步驟
3-1	試片之製備10
3-2	分析用試片之製備
3-3	分析儀器12
3-3-1	X-Ray 粉末繞射儀(XRD)
3-3-2	穿透式電子顯微鏡(TEM / EDS)

第四章 結果與討論

4-1	X-Ray 繞射分析15
4-1-1	1500°C15
4-1-2	1400°C17
4-1-3	1300°C18
4-1-4	1200°C18
4-2	TEM / EDS 分析
4-2-1	90T / 10Z19
4-2-2	70T / 30Z21
4-2-3	50T / 50Z27
4-2-4	30T / 70Z
4-2-5	10T / 90Z
第五章	結論
參考文獻	

表目錄

Table 1	Sample 成分表
Table 2	計算 cubic ZrO 各晶面之 lattice parameter a (Å)40
Table 3	Ti、Zr 與 O 的離子半徑與原子半徑41
Table 4	氧化鋯與鈦之擴散反應結果42

圖目錄

Fig. 2-1	純鈦之同素晶體結構圖43
Fig. 2-2	鈦由 β 相轉變至 α 相之晶體結構圖43
Fig. 2-3	合金元素對鈦結晶相之影響44
Fig. 2-4	氧化鋯之相變化流程圖44
Fig. 3-1	實驗流程圖45
Fig. 3-2	Ti 與 PSZ-3Y 粉末製備流程圖46
Fig. 4-1	熱處理前 Cp-Ti 之 X-ray 繞射圖47
Fig. 4-2	熱處理前 PSZ-3Y之 X-ray 繞射圖47
Fig. 4-3	Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z
	經過1500°C/1hr/Ar 熱處理後之 X-ray 繞射圖48
Fig. 4-4	Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z
	經過1400°C/1hr/Ar 熱處理後之X-ray 繞射圖49
Fig. 4-5	Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z
	經過1300°C/1hr/Ar 熱處理後之X-ray 繞射圖50
Fig. 4-6	Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z
	經過1200°C/1hr/Ar 熱處理後之X-ray 繞射圖51
Fig. 4-7	Sample 90T/10Z經過 1500°C/1hr/Ar熱處理後(a) α-Ti(Zr, O)
	與c-ZrO _{2-x} (Y, Ti)之明視野像(BFI);(b) α-Ti(Zr, O)之EDS

分析光譜; (c) α-Ti(Zr, O)之SADP, Z.A.=[0112]; (d) c-ZrO_{2-x}(Y, Ti)之EDS分析光譜; (e) c-ZrO_{2-x}(Y, Ti)之SADP, Z.A.=[112] ; (f) c-ZrO_{2-x}(Y, Ti) \gtrsim SADP, Z.A.=[012] Fig. 4-8 Sample 90T/10Z經過 1400°C/1hr/Ar熱處理後(a) α-Ti(Zr, O) 與Ti₂ZrO共存之明視野像(BFI); (b) α-Ti(Zr, O)之EDS分析 光譜(亮條紋); (c) α-Ti與Ti₂ZrO之SADP, Z.A.=[0001] a-Ti//[001]TizTrO;(d)Ti2ZrO之EDS分析光譜(暗條紋) ...53 Fig. 4-9 Sample 90T/10Z經過 1300°C/1hr/Ar熱處理後(a) α-Ti與 Ti₂ZrO之明視野像(BFI);(b) α-Ti之EDS分析光譜(亮條 紋); (c) α -Ti與Ti₂ZrO之SADP, Z.A.=[1213] α -Ti // [112] Fig. 4-10 Sample 70T/30Z 經過 1500°C/1hr/Ar 熱處理後(a) t-ZrO_{2-x}(Ti)與α-Ti(Zr, O)之明視野像(BFI); (b) t-ZrO_{2-x}(Ti) 之SADP, Z.A.=[011]; (c) t-ZrO_{2-x}(Ti)之EDS分析光譜; (d) α -Ti(Zr, O)之SADP, Z.A.=[0112]; (e) α -Ti(Zr, O)之EDS分 Fig. 4-11 Sample 70T/30Z 經 過 1300°C/1hr/Ar 熱 處 理 後 (a)

[122]_{Ti²ZrO};(d) Ti₂ZrO之EDS分析光譜(暗條紋) ……58

- Fig. 4-16 Sample 70T/30Z經過 1400°C/1hr/Ar熱處理後(a) β'-Ti(Zr, O)與c-ZrO_{2-x}(Ti)之明視野像(BFI); (b) c-ZrO_{2-x}(Ti)之micro diffraction pattern, Z.A.=[012]; (c) c-ZrO_{2-x}(Ti)之EDS分析
 光譜; (d) β'-Ti(Zr, O)之EDS分析光譜; (e) β'-Ti(Zr, O)之

- Fig. 4-20 Sample 30T/70Z 經 過 1500°C/1hr/Ar 熱處理後(a)
 t-ZrO_{2-x}(Ti)、TiO(Zr)與α-Ti(Zr, O)之明視野像(BFI);(b)
 t-ZrO_{2-x}(Ti)之EDS分析光譜;(c) t-ZrO_{2-x}(Ti)之SADP,
 Z.A.=[001];(d) t-ZrO_{2-x}(Ti)之SADP, Z.A.=[011];(e) α-Ti(Zr,
 O)之SADP, Z.A.=[0112];(f) α-Ti(Zr, O)之EDS分析光譜;

- Fig. 4-24 Sample 10T/90Z經過 1500°C/1hr/Ar熱處理後(a) TiO(Zr)與
 t-ZrO_{2-x}(Ti)之明視野影像(BFI); (b) TiO(Zr)之EDS分析光

譜; (c) TiO(Zr)之SADP, Z.A.=[001]; (d) TiO(Zr)之SADP, Z.A.=[011]; (e) t-ZrO_{2-x}(Ti) \gtrsim SADP, Z.A.=[011]; (f) $t-ZrO_{2-x}(Ti) \gtrsim SADP, Z.A.=[100] \dots 71$ Fig. 4-25 Sample 10T/90Z經過 1400°C/1hr/Ar熱處理後(a) TiO(Zr)與 t-ZrO_{2-x}(Ti)之明視野像(BFI);(b) TiO(Zr)之EDS分析光 譜; (c) TiO(Zr)之SADP, Z.A.=[001]; (d) TiO(Zr)之SADP, Z.A.=[011]; (e) t-ZrO_{2-x}(Ti) \gtrsim SADP, Z.A.=[001]; (f) Sample 10T/90Z經過 1300°C/1hr/Ar熱處理後(a) TiO(Zr)與 Fig. 4-26 t-ZrO_{2-x}(Ti)之明視野像(BFI);(b) TiO(Zr)之SADP, Z.A.=[122]; (c) TiO(Zr)之EDS分析光譜; (d) t-ZrO_{2-x}(Ti) 411111 之diffraction ring; (e) t-ZrO_{2-x}(Ti)之EDS分析光譜 ……73 (a)與(b)分別為 Sample 10T/90Z 在高溫與冷卻狀態時,經 Fig. 4-27

第一章 前言

鈦金屬佔地殼中藏量最豐富金屬元素之第四位,僅次於鋁、鐵與 鎂,在地殼表面含量約0.6%^[1]。鈦對氧、氮及氫具有極佳的親和力, 致使其提鍊及鑄造須在真空下或鈍氣環境中進行。而要從礦石中分離 雜質甚難且成本過高,故產量不多。鈦具有許多優異的性質,諸如耐 蝕性佳、質量輕,又可藉由添加元素及變形處理來提高其強度。由於 鈦有良好的防蝕能力與生物相容性,而且鈦的比重(4.5 gm/cm³)介 於鐵(7.8 gm/cm³)與鋁(2.7 gm/cm³)之間,比強度高於鋼,因 此應用的範圍極為廣泛,為最佳的結構材料之一。

鈦與鈦合金的用途如下^[2~3]:

- 航太工業: 飛機引擎周圍的機體材料、飛彈、噴射引擎的壓縮機 零件材料。
- 化學工業:熱交換器、蒸餾塔、蘇打工業、化學纖維工業之耐酸 裝置用耐蝕材。
- 3. 國防工業:火箭、新式飛彈、艦艇以及飛機零件。
- 4. 生醫材料:人工骨骼、關節。
- 5. 汽車工業: 齒輪、軸承。
- 6. 運動用品:高爾夫球頭、各式球拍。
- 7. 民生用品:鏡框、錶殼

在多種鈦合金鑄造技術中,精密鑄造逐漸發展成為鈦合金生產技 術之主流,提供最高表面品質與產品性能之鈦鑄件。對鈦合金的精密 鑄造而言,由於熔融鈦合金的活性很高,易與陶模材料發生化學反 應,造成鑄件表面粗糙,而所產生的反應層,有殘留之針孔、氣孔等 缺陷。同時,鈦金屬於高溫時與氧的親和力很大,氧含量之增加大幅 地增加反應物的發生,在鑄件與模具接觸之表面會形成一硬化層,此 硬化層為鈦件表面富含氧的影響區,其延性、硬度和微觀組織皆異於 內部組織。 長期以來,研究人員不斷尋找穩定的陶模材料,但也因為鈦的活 性大,鈦合金在熔煉時,液態形態的鈦幾乎會和氧化物坩堝產生反 應,而在鈦表面形成α-case,然後再利用噴砂法將α-case給去除;至今 研究鈦和氧化物坩堝之間的反應,除了在鈦側產生α-case以外,是否 有新的析出物在陶瓷坩堝側,反應機構為何,都是值得探討的課題。

本實驗為研究鈦(Cp-Ti)與氧化鋯(PSZ-3Y/3 mol.%Y₂O₃-ZrO₂) 之間的反應。利用X-Ray粉末繞射儀(XRD)、穿透式電子顯微鏡及 能量分散光譜儀(TEM/EDS)觀察其燒結後介面所產生之反應。

第二章 原理與文獻回顧

2-1 鈦與鈦合金

金屬元素鈦 (Titanium, Ti)為週期表上第四週期IV-a族原子序22 的過渡金屬,原子量47.9,密度4.54g/cm³,熔點1668°C,熱傳導係 數0.16 cal·cm/sec·°C。鈦有兩種同素異構狀態,即結晶構造分別為 α 相及β相兩種,純鈦金屬在高於883°C時為體心立方晶結構 (body-center cubic, bcc)之β相,當溫度在低於883°C時其結構轉為六 方最密堆積結構 (hexagonal close packed, hcp)之 α 相,兩相的轉變溫 度 (transition temperature)為883°C,如Fig. 2-1所示^[4];而在晶體結 構上的轉變,如Fig. 2-2所示。

比較純鈦與其他材料的主要物理性質,可知純鈦的特色是熔點高,比重介於鐵與鋁之間,熱膨脹係數、楊氏模數比鋼小,耐蝕性佳,因此工業界積極開發以鈦為基材的輕量構造材料。

由於不同合金元素的添加,鈦合金大致可分為以下四種,其物理 與機械性質各有不同:

(一)商業純淨(Cp)級:此種純鈦主要優點為抗蝕性強,但強度較差。
 (二)α或近α相合金:此種合金抗高溫潛變性強且焊接性佳,但鍛造性

差。

- (三)β相合金:此種合金主要是加入了多量之β相穩定元素所造成,而 其鍛造性良好,但密度較高且韌性及抗潛變性較差。
- (四)α、β混和相合金:此類合金含有α相及β相穩定元素。此種合金可經由固溶時效處理來增加強度。由於強度好因而被應用的程度也最為廣泛。

至於添加不同的合金對於相轉換溫度有著不同的影響,一般可將 所添加的合金元素分為α-stabilizers、β-stabilizers和eutectoid-system元 素三種,如Fig. 2-3所示^[5]:

- (一) α-stabilizers:是指提高α到β的轉換溫度,如此將有利於α-Ti合金
 的形成,此類元素包含Al、Ga、Ge、C、N、O等。
- (二) β-stabilizers:是指降低α到β的轉換溫度,如此將有利於β-Ti合金的形成,包括Mo、Va、Ta、Co等元素。
- (三) Eutectoid-system elements:指會和鈦形成共晶系統,大大地降低 純鈦的相轉換溫度(883°C),此類元素包括Mg、Fe、N、Cu。

從上述得知,鈦合金可以分為α或β的單相合金與由α、β兩相所構成的合金。一般而言,兩相合金的強度比純鈦大,高溫性質良好,疲

勞強度、潛變特性優良,耐蝕性也不太會降低。但是這種合金,從變 態點以下急冷時會變脆弱,所以熔接困難。反之α或β的單相合金對熔 接有利。單相合金中,屬於α相的含Al之鈦合金,其比重小,具有優 良的潛變特性和耐氧化性。但是α相合金的缺點是延展性不良,冷溫 加工比較困難。β單相合金,雖然延展性好,適合製造薄板、箔等, 且高溫強度大,但是耐氧化性較差。

2-2 氧化鋯之介紹^[6-7]

氧化鋯為同素異構物 (polymorph),在室溫時結構為單斜晶相 (monoclinic),當溫度升高至1170°C時,由單斜晶相轉變為正方晶 相(tetragonal),當升至2370°C時,再由正方晶相轉變為立方晶相 (cubic),於2680°C融解為液相,結構之轉變如Fig. 2-4所示。冷卻 過程中,正方晶相轉變成單斜晶相為麻田散型的轉換,會造成3%異 方性體積變化,造成不可避免的破裂^[8],因此較無使用價值;且也無 法利用退火方式消除轉換所產生得應變能^[9]。因此通常會加入CaO, MgO,Y₂O₃等氧化物之添加物^[10],使高溫的立方晶相及正方晶相能被 保存至室溫,而得到PSZ結構,此將使材質的韌性大為提高。 西元1975年,材料科學家努力探索,發現部分穩定氧化錯(Partially Stabilized Zirconia, PSZ),為一優異的結構陶瓷材料,具有較非氧化物陶瓷優異的破壞韌性,故冠之以陶瓷鋼鐵(Ceramic Steel)之稱^{[11]。}後來證實此種韌化效應是因為有t→m的麻田散型相轉換存在之緣故。

2-3 鈦與氧化鋯之反應

在氧化鋯中添加氧化物,已知能形成PSZ之結構,而得到優異的 韌化機制;那若在PSZ結構中,添加金屬之效果又為如何呢?

在西元1956年, Weber等人^[12-18]進行了這方面相關之研究。其中 Ti與Zr,兩者在高溫時均以體心立方晶(body-centered cubic, bcc)的 β 相存在;而以最密六方晶(hexagonal close-packed, hcp)的 α 相存在於 低溫,(Ti at 890°C: $\alpha \rightarrow \beta$; Zr at 850°C: $\alpha \rightarrow \beta$); Ti, Zr之熔點分別 為1670°C, 1860°C; α -Ti 之晶格常數為 a = 2.950 Å, c = 4.686 Å, c/a= 1.588, α -Zr 之晶格常數為 a = 3.232 Å, c = 5.147 Å, c/a = 1.592; Ti與Zr兩種材料對氧均極具親和力^[14],足見Ti與Zr極為相似。 Shunk^[19]認為Ti-Zr系統在固相與液相時均能完全互溶;但在Ti-ZrO₂系 統中, Ruh^[14]由實驗得知在常溫時,Ti在ZrO₂中的飽和溶解度約為 4 at.% Ti,而ZrO₂在Ti中之飽和溶解度約為 10 at.% ZrO₂。 當Ti含量未超過溶解度限度時,其燒結效果與抗熱震之能力並無 顯著提升;而當Ti含量超過溶解度限度時,燒結效果及抗熱震能力均 有顯著的增加。Ruh^[15]更進一步地指出,此現象乃是Ti形成了"Liquid Phase"並填充於孔穴(pore),而增加了燒結效果;Ruh認為當Ti含量 超過飽和溶解度且燒結溫度高於Ti之熔點時成立。而在Ti含量未超過 飽和溶解度,雖然溫度達到形成液相之溫度,或者是Ti含量超過飽和 溶解度,但溫度卻不足以形成液相時,均無法得到良好的燒結效果。

由於Ti之加入並未使t-ZrO₂ → m-ZrO₂的Martensite相變化被抑 止,但卻能夠經由反覆的相轉換溫度而無裂縫(crack)產生。Weber 等人^[12-13]之研究指出,15 at.% Ti之含量在經過真空燒結後,為一 crack-free之堅固物質,且孔隙率(porosity)低,尤其有極佳之抗熱 震能力。Weber等人認為此原因可能是:

(1)金屬Ti的添加,提高材料的熱傳導性,降低了溫度梯度(temperature

gradient)而減低了熱應力條件(thermal-stress condition)。 (2)超過飽和溶解度的Ti在冷卻過程中將析出在基材內,而其塑性變形 之能力吸收了t-ZrO2→m-ZrO2之體積變化。

(在 Ruh^[14]的研究中, Ti含量在5 at.%~15 at.%之熱傳導明顯優於

ZrO₂,其認為此乃是金屬相存在之故;而在Ti含量為30 at.%時,熱 傳導卻反而下降, Ruh認為是Bulk Density降低之故)

Arias^[17]在15 at.% Ti與ZrO₂之系統中,其認為Ti的加入將使ZrO₂晶 粒成長(grain growth)受到抑制,此較細小之晶粒將得到較高的強度, 所以抗熱震能力提高,而在不同Ti含量時將會有何差別,能否藉由微 觀結構(microstructure)之分析得到更進一步的確認。本實驗即利用 不同的Ti含量在Ti-ZrO₂(PSZ-3Y)系統中,分析其混體在燒結後介

面之微觀反應。

第三章 實驗方法與步驟

本實驗將氧化鋯(PSZ-3Y)與鈦金屬粉末以粉末冶金的方式製 備,分別在三種不同溫度的熱處理條件下進行燒結,並研究其微觀反 應,實驗流程如 Fig. 3-1 所示。以下介紹有試片之製備、分析用試片 之製備及分析儀器。

3-1 試片之製備

(1)配粉:

以商業用的氧化结粉末 (PSZ-3Y, powder-YSZ w / 3 mole % Y₂O₃ 99.9%, SCI Engineered Materials, Columbus, Ohio)及鈦金屬粉末 (commercial pure titanium, cp-Ti / 0.25 wt% O, 0.1 wt% C, 0.03 wt% N, 0.0125 wt% H, 0.3 wt% Fe, 99.3075 wt% Ti),溶劑:乙醇(95° Alcohol),加入1 wt%的黏結劑(Binder):PVA,然後將依比例量稱 得之粉末加入溶劑中,裝入研磨罐及研磨球(ZrO₂ / Y-TZP)後,放 入粉末混合機(Turbula, WAB)中進行球研磨(Ball mixing)約 24 hours。完畢後,將混合液倒入燒杯中,並置於加熱板(Hot plate)上, 蒸發及攪拌 4~5 hours,待至黏稠狀後再放入烤箱(Oven)中,以溫 度約 150°C將其烘乾。於粉體完全烘乾龜裂後取出,並以研鉢將其研 磨成粉末,再以篩網(80 mesh)過篩之。接著,把所得的粉末裝入 玻璃罐中後,還需上下左右連續搖晃約莫半個小時,以進行簡易之造 粒(Granulation),此動作可以使粉末之流動性增加。最後,本實驗 所使用之粉末即得。以上所述為Ti與PSZ-3Y粉末製備的方法,流程如 Fig. 3-2 所示。

(2)壓塊:

(一)量取過篩後之粉末 1.5 g,倒入直徑 10 mm 之圓柱模具內 並施以壓力,製作出厚度 3 mm 之試片。

(二)試片之成型乃以 Dry pressing 為之,模具之徑度及壓力為:

徑度
 0.59 in (1.5 cm)
 554.57~576.75 MPa
 10~10.4 tons
 壓塊時應注意粉末在模具內需平整,以避免壓塊後所造成之生胚密度
 分佈不均。

(3)燒結:

由於所添加的金屬鈦極易氧化與氮化,故生胚在燒結時需使用真空燒結爐並通入氫氣(Argon)作為保護氣體,以進行真空之氣氛燒結。其燒結條件及已製備之試片成分示於Table 1。

本實驗所進行之熱處理條件為:在1300°C、1400°C與1500°C持 溫1小時。升溫前,須先將管型爐(Tube Furnace, Lindberg/Blue M, Asheville NC, USA)抽真空且通入一大氣壓氫氣,重複三次後開始升 溫加熱。在加熱過程中,要隨時保持通以一大氣壓氫氣當作保護氣 氛,避免金屬鈦的氧化與氮化;以升溫速率10°C/min,降溫速率5°C /min,分別進行不同溫度相同時間之熱處理,待管型爐冷卻至室溫後 再取出試片。

3-2 分析用試片之製備
 以慢速切割機(Low Speed Saw, ISOMET BUEHLER)切取試片,
 分別製作 X-ray 與 TEM 所需之試片。

(1) X-ray 試片為5mm×5mm×2mm尺寸,以製備金相試片的標準 程序將試片表面加以研磨(Grinding)及拋光(Polishing)處理。
(2) TEM 試片尺寸為3mm×3mm×1mm,先使用 Minimat(Model 1000, BUEHLER)及鑽石砂紙磨至50 μm 以下,然後以渦穴研磨 機(Dimple grinder, Gatan Model 656)研磨一渦穴(10~20 μm), 最後利用 AB 膠將試片黏附於銅環上,再使用 PIPS(PRECISION ION POLISHING SYSTEM, Gatan Model 691)製作薄區。 3-3 分析儀器

本實驗以X-ray 粉末繞射儀及穿透式電子顯微鏡(TEM / EDS) 研究氧化鋯(PSZ-3Y)及鈦系統,藉由改變兩種材料所佔的比例, 再經過燒結熱處理後觀察其微觀結構。

3-3-1 X-ray 粉末繞射儀 (XRD)

利用X-ray粉末繞射儀(Model M18XHF, Mac Science, Japan)對試 片表面做繞射分析,以鑑定結晶相之相別。電壓及電流設定於 50 kV / 200 mA,以Cu靶(Cu: Ka = 1.5406 Å)產生之射線經Ni-filter濾波 後,在試片表面進行 10°~80°之掃瞄,掃描速度為 10°/min,每隔 20 = 0.01°自動記錄X-ray強度。將掃瞄所得之圖形與JCPDS卡相互比對 以判定相別。

3-3-2 穿透式電子顯微鏡 (TEM / EDS)

由於穿透式電子顯微鏡(TEM)有較高的解析度,並可進行定量 的成分分析(EDS),及以電子束繞射分析結晶相之晶體結構,故為 微觀結構鑑定中最有利的工具之一。 本實驗以穿透式電子顯微鏡(Model JEOL JEM-2000 FXII LaB₆ TEM, Tokyo, Japan)在200KV加速電壓下,分析氧化鋯(PSZ-3Y) 及鈦反應後之微觀結構,以明視野像(Bright Field Image, BFI)及暗 視野像(Central Dark Field Image, CDF)觀察微觀組織;以擇區繞射 (Selected Area Diffraction Pattern, SADP)作為判定相別之依據,並 再輔以能量分散光譜儀(Energy Dispersive Spectrometer, EDS; Model ISIS 300)鑑定各個相的組成元素。

另外可使用軟體CaRInc erystallography,輸入Space group、晶格 常數、原子之相對位置及其相關之晶體資料,可模擬分析晶體結構的 繞射圖形與實際繞射圖形相互比對鑑定。以上資料可藉由Pearson's handbook of crystallographic data for intermetallic phase^[20]查知。

第四章 結果與討論

4-1 X-ray 繞射分析

利用X-ray粉末繞射儀,在試片表面進行 10°~80°之掃瞄,掃描 速度為 10°/min,每隔 2θ=0.01°自動記錄X-ray強度。分別對Cp-Ti、 ZrO₂(PSZ-3Y)與兩者依不同原子比例混合並經過熱處理後之Sample 做X-ray繞射分析,以鑑定其結晶相。

Fig. 4-1與Fig. 4-2分別為在熱處理前Cp-Ti及PSZ-3Y之X-ray繞射
圖,顯示Cp-Ti為hexagonal結構之α-Ti, PSZ-3Y為 tetragonal與
monoclinic之結構。

4-1-1 1500°C

group為Fm3m, a = 5.09 Å。本實驗所觀察到的cubic ZrO與tetragonal ZrO_2 並未重疊在一起。經JCPDS卡比對後鑑定ZrO為cubic結構, space group為Fm $\overline{3}m$, a = 4.602 Å。Table 2 計算並列出本實驗所觀察到ZrO 的晶面。

在 50T/50Z的繞射分析結果中,發現有α-Ti、tetragonal與monoclinic ZrO_2 ,其中 α -Ti的peak位置與 30T/70Z比較之下,發現會有向左偏移 的現象發生,此應為ZrO2固溶至Ti的晶格中所造成。根據Bragg condition $(2d\sin\theta = n\lambda)$, 當 θ 減小時則d spacing 增大,所以當 ZrO_2 固 溶於α-Ti中,可明顯看到α-Ti的spacing 變大,導致晶格擴張(lattice expanded),此與Weber^[13]、Ruh^[14] et al.觀察相符;相對的,ZrO₂的peak 位置並無明顯偏移。此乃因為α-Ti是一種六方緊密堆積之金屬結構, 當ZrO2固溶至其中時。Zr是進入置換式位置,而O則進入格隙位置, Ruh^[14]發現ZrO₂固溶入Ti時,在常溫約有 10 mol.%,所以α-Ti的六方 緊密堆積晶格將受到明顯的擴張。而ZrO2為一氟石結構(Flourite structure), 是一種較為開放之結構(open structure)^[22], Ti⁺²(0.78Å) 略小於Zr⁺⁴ (0.82Å),所以當Ti⁺² (0.78Å)固溶於ZrO2中時是進入 Zr^{+4} 置換位置(在常溫時, Ruh發現約有 4 at.% Ti固溶入ZrO₂中), 所以Ti固溶入ZrO2中,對ZrO2之晶格影響不大。

在 70/30Z與 90T/10Z發現有tetragonal ZrO₂與α-Ti,其中monoclinic ZrO₂的peak僅在 70T/30Z才有發現,90T/10Z並沒有發現。

4-1-2 1400°C

Fig. 4-4 為Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z與90T/10Z 經過 1400°C /1hr/Ar熱處理後的X-ray繞射圖,如圖中所示,在 10T/90Z 與 30T/70Z發現tetragonal ZrO₂、monoclinic ZrO₂與cubic TiO之peak, 其中cubic TiO之peak與Lin *et al.*^[27]所發現的實驗結果相同,但並未發 現有α-Ti的peak存在;而在 30T/70Z與 50T/50Z的繞射分析中發現有 α-Ti、tetragonal ZrO₂與monoclinic ZrO₂;而 50T/50Z所觀察到的α-Ti 會較 30T/70Z有很明顯的偏移現象,此為固溶效應所造成。

在 70T/30Z與 90T/10Z的繞射分析結果中發現α-Ti與tetragonal ZrO₂;另外,在 70T/30Z有monoclinic ZrO₂的peak出現,90T/10Z並無 發現。

4-1-3 1300°C

Fig. 4-5 為Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z與 90T/10Z 經過 1300°C /1hr/Ar熱處理後的X-ray繞射圖,圖中所示在 10T/90Z的 繞射分析中,ZrO₂是以tetragonal ZrO₂與monoclinic ZrO₂的型式存在; Ti是以cubic TiO的型式出現。在 30T/70Z的繞射分析中,ZrO₂同樣是 以tetragonal ZrO₂與monoclinic ZrO₂的型式存在;不同的是Ti以cubic TiO與 α -Ti的型式出現。50T/50Z的繞射分析,其ZrO₂與Ti的生成相與 30T/70Z相較之下並無差別,不同的是因固溶效應造成 α -Ti的peak位置 有偏移現象。70T/30Z的繞射分析結果為ZrO₂是以tetragonal ZrO₂與 monoclinic ZrO₂的型式存在,Ti以 α -Ti的型式出現。90T/10Z的繞射 分析中,其Ti的生成相與 70T/30Z相同,ZrO₂則未發現有monoclinic ZrO₂,其他相與 70T/30Z相同。

4-1-4 1200°C

Fig. 4-6為Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z與90T/10Z經過1200°C /1hr/Ar 熱處理後的 X-ray 繞射圖,由圖中發現所觀察的相皆與Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z與90T/10Z經過1300°C /1hr/Ar 熱處理後的 X-ray 繞射圖相同。

比較Fig. 4-3~Fig. 4-6中的Sample 70T在1500°C、1400°C、1300°C 與1200°C可知,在不同燒結條件下α-Ti的peak強弱變化大,並偏好於 某些方向出現,如在1500°C、1400°C與1200°C條件下,(101)的峰 值較強;在1300°C的條件下,(002)的峰值較強。推測造成peak強 弱改變的原因應為燒結過程中,從優取向(preferred orientation)所 造成的結果。

4-2 TEM / EDS 分析
4-2-1 90T / 10Z (90 at.% Ti + 10 at.% PSZ-3Y)
(1) c-ZrO_{2-x}

Fig. 4-7(a)為Sample 90T/10Z經過 1500°C/1hr/Ar熱處理後 α -Ti(Zr, O)與c-ZrO_{2-x}(Y, Ti)的明視野像(BFI); Fig. 4-7(b)為 α -Ti(Zr, O)的EDS分析光譜,光譜中有Cu的peak,是由於sample在進行離 子減薄時,Cu環上的Cu濺鍍在sample上所造成,定量分析為 70.95 at.% Ti,11.34 at.% Zr,17.71 at.% O; Fig. 4-7(c)為 α -Ti(Zr, O)的 擇區繞射圖 (Selection Area Diffraction Pattern, SADP), zone axis 為[0112]; Fig. 4-7(d)為c-ZrO_{2-x}(Y, Ti)的EDS分析光譜,定量分析 為 19.43 at.% Zr,53.34 at.% O,22.66 at.% Y,4.58 at.% Ti; Fig. 4-7(e)與(f)為c-ZrO_{2-x}(Y, Ti)的擇區繞射圖, zone axis分別為[112]
 與[012],經分析後確定為立方相(cubic)之c-ZrO_{2-x}(Y, Ti)。

探討c-ZrO_{2-x}(Y,Ti)形成的原因,當Ti與ZrO₂在高溫下反應時, ZrO₂的Zr與O易擴散於Ti中,但Y在Ti的溶解度非常的低,不易擴 散進入Ti中,而造成大量的Y存在於ZrO₂中。因Y₂O₃為c-ZrO₂的 安定劑,可以抑制cubic ZrO₂轉變成tetragonal ZrO₂,因此造成 cubic ZrO₂存在。

(2) α -Ti / Ti₂ZrO

Fig. 4-8(a)為Sample 90T/10Z經過 1400°C/1hr/Ar熱處理後α-Ti(Zr, O)與Ti₂ZrO共存的明視野像(BFI),顯示Ti₂ZrO自α-Ti matrix中析出;Fig. 4-8(b)為α-Ti(Zr, O)的EDS分析光譜(亮條紋), 定量分析為 75.73 at.% Ti, 10.52 at.% Zr, 13.75 at.% O;Fig. 4-8(d)為Ti₂ZrO的EDS分析光譜(暗條紋),定量分析為 42.20 at.% Ti, 36.84 at.% Zr, 20.87 at.% O; Fig. 4-8(c)為α-Ti與Ti₂ZrO的擇區繞射圖,擇區繞射顯示zone axis為[000ī]_{α-Ti}//[001]_{Ti2ZrO}, (1000)_{α-Ti}//((0ī0)_{Ti2ZrO} °

Fig. 4-9(a)為Sample 90T/10Z經過 1300°C/1hr/Ar熱處理後
Ti₂ZrO自α-Ti matrix中析出的明視野像(BFI);擇區繞射分析α-Ti 與Ti₂ZrO兩相,發現有兩組pattern重疊在一起,而其方位關係如
Fig. 4-9(c)為α-Ti與Ti₂ZrO的擇區繞射圖,zone axis為[1213]_{α-Ti} //
[112] _{Ti2ZrO},(1010)_{α-Ti}//(110)_{Ti2ZrO}; Fig. 4-9(b)為α-Ti的EDS分析光
譜(亮條紋); Fig. 4-9(d)為 Ti₂ZrO的EDS分析光譜(暗條紋),
定量分析為 45.71 at.% Ti, 20.64 at.% Zr, 33.65 at.% O。

探討Ti₂ZrO從α-Ti中析出的理由為:當高溫時,Zr與O固溶於 α-Ti (Zr, O)中並達到飽和;冷卻時α-Ti的固溶量降低,所以造成 Ti₂ZrO的析出^[22,23]。根據Lin and Lin^[22]所述,Ti與ZrO₂在 1750°C 的介面反應下,溶融Ti可溶解ZrO₂並形成α-Ti (Zr, O),而在冷卻 的過程中,Ti₂ZrO會從α-Ti中析出;在結構上,也會由六方晶相 (Hexagonal)轉變為斜方晶相 (Orthorhombic)。

4-2-2 70T / 30Z (70 at.% Ti + 30 at.% PSZ-3Y)

(1) t-ZrO_{2-x}與α-Ti

Fig. 4-10(a)為Sample 70T/30Z經過 1500°C/1hr/Ar熱處理後
 t-ZrO_{2-x}(Ti)與α-Ti(Zr, O)共存的明視野像(BFI); Fig. 4-10(b)為
t-ZrO_{2-x}(Ti)的擇區繞射圖, zone axis為 [011]; Fig. 4-10(c)為 t-ZrO_{2-x}(Ti)的EDS分析光譜, 定量分析結果為 32.58 at.% Zr, 6.18 at.% Y, 4.68 at.% Ti, 56.56 at.% O; Fig. 4-10(d)為α-Ti(Zr, O)的 擇區繞射圖, zone axis為[0112]; Fig. 4-10(e)為α-Ti(Zr, O)的EDS 分析光譜, 定量分析結果為 69.24 at.% Ti, 6.85 at.% Zr, 23.91 at.% O。

Fig. 4-11(a)為Sample 70T/30Z經過 1300°C/1hr/Ar熱處理後
t-ZrO_{2-x}(Ti)與α-Ti(Zr, O)共存的明視野像(BFI); Fig. 4-11(b)為
t-ZrO_{2-x}(Ti)的擇區繞射圖, zone axis為[100]; Fig. 4-11(c)為
t-ZrO_{2-x}(Ti)的EDS分析光譜,定量分析結果為 33.99 at.% Zr,63.94
at.% O, 2.06 at.% Ti; Fig. 4-11(d)為α-Ti(Zr, O)的擇區繞射圖,
zone axis為[1123]; Fig. 4-11(e)為α-Ti(Zr, O)的EDS分析光譜,定量分析結果為 73.10 at.% Ti, 1.49 at.% Zr, 25.41 at.% O。

Sample 70T/30Z分別在 1500°C與 1300°C時觀察到氧化鋯,而 此氧化鋯皆為缺氧氧化鋯,為tetragonal結構 (t-ZrO_{2-x}),造成缺 氧的主因為Ti對O有非常高的親和力,導致ZrO_{2-x}有部分的O會固 溶至Ti內而形成ZrO_{2-x}。由EDS分析光譜與擇區繞射分析可確認 其為tetragonal的ZrO_{2-x}。由Fig. 4-10與Fig. 4-11 之擇區繞射圖, 發現繞射點旁有小點出現,而這些小點為超晶格點 (superlattice),造成超晶格點出現的原因為缺氧導致繞射不符合 結構因子法則,因此造成超晶格點產生。

(2) α -Ti / Ti₂ZrO

Fig. 4-12(a)為Sample 70T/30Z經過 1500°C/1hr/Ar熱處理後 α-Ti(Zr, O)與Ti₂ZrO的明視野像(BFI); Fig. 4-12(c)為α-Ti (Zr, O) 與Ti₂ZrO的擇區繞射圖,其zone axis的方位關係為[1213]_{α-Ti} // [011]_{Ti2ZrO},(1010)_{α-Ti}//(100)_{Ti2ZrO}; Fig. 4-12(b)為α-Ti(Zr, O) 的EDS分析光譜(亮條紋),定量分析為 69.24 at.% Ti, 13.85 at.% Zr, 16.91 at.% O; Fig. 4-12(d)為Ti₂ZrO的EDS分析光譜(暗條 紋),定量分析為 55.27 at.% Ti, 21.96 at.% Zr, 22.77 at.% O。

Fig. 4-13(a)為Sample 70T/30Z經過 1400°C/1hr/Ar熱處理後α-Ti(Zr, O)與Ti₂ZrO共存的明視野像(BFI); Fig. 4-13(c)為Ti₂ZrO的擇區繞射圖, zone axis為[1213]_{α-Ti} // [122]_{Ti²ZrO}, (1010)_{α-Ti} // (022)_{Ti²ZrO}; Fig. 4-13(b)為α-Ti(Zr, O)的EDS分析光譜(亮條紋), 定量分析為 72.13 at.% Ti, 13.84 at.% Zr, 14.03 at.% O; Fig. 4-13(d)為Ti₂ZrO的EDS分析光譜(暗條紋), 定量分析為 52.90 at.% Ti,

20.42 at.% Zr , 26.68 at.% O \circ

根據Fig. 4-14 Domagala et al.^[21]所提出之相圖,當ZrO₂固溶在 Ti中超過 20 at.%以上,會有α-Ti (Zr, O)的固溶體產生;冷卻時會 有(Ti Zr)₃O析出。根據Lin and Lin^[22]所述,Ti與ZrO₂在 1750°C的 介面反應下,溶融Ti可溶解ZrO₂並形成α-Ti (Zr, O),而在冷卻的 過程中,Ti₂ZrO會從α-Ti中析出;在結構上,也會由六方晶相 (Hexagonal)轉變為斜方晶相(Orthorhombic)。但是Ti₂ZrO會是 在液相中生成,抑或是從固相中析出,此結果並無法確定。然而, 本實驗在 1500°C與 1400°C低於Ti的熔點下發現有Ti₂ZrO從α-Ti中 析出;因此,可以證明Ti₂ZrO從固相中析出而產生。Ti₂ZrO從α-Ti 中析出的主要原因為Ti在高溫冷卻時,由β-Ti(Zr, O)轉變為α-Ti(Zr, O),在α-Ti (Zr, O)中的Zr與O固溶並達到飽和時,α-Ti的固溶量降 低,即以Ti₂ZrO析出^[23]。

Ti₂ZrO的析出形狀為長條層狀,主要的原因是由於介面接合 之方式不同所造成,如Fig. 4-15 所示,當Ti₂ZrO成長時,Ti₂ZrO 的A面與 α -Ti的接合方式為半整合性邊界(semi-coherence interface),導致mobility較低,故成長較慢;而Ti₂ZrO的B面與 α -Ti

24

的接合方式為非整合性邊界(incoherence interface),導致mobility 較高,故成長較快。也因此造成所析出之Ti₂ZrO形狀為長條層狀。

(3) β'-Ti與c-ZrO_{2-x}

Fig. 4-16(a)為Sample 70T/30Z經過 1400°C/1hr/Ar熱處理後
β'-Ti(Zr, O)與 c-ZrO_{2-x}(Ti)的明視野像(BFI); Fig. 4-16(b)為
c-ZrO_{2-x}(Ti)的micro-diffraction pattern, zone axis為[012]; Fig.
4-16(c)為c-ZrO_{2-x}(Ti)的EDS分析光譜,定量分析為 25.20 at.%
Zr,47.69 at.% O,6.12 at.% Y,21.00 at.% Ti; Fig. 4-16(d)為β'-Ti(Zr,
O)的EDS分析光譜,54.19 at.% Ti,21.66 at.% Zr,24.15 at.% O;
Fig. 4-16(e)與(f)為β'-Ti(Zr, O)的擇區繞射圖, zone axis為[021]
與[122]。

Sample 70T/30Z 在 1400°C 下 所 生 成 的 c-ZrO_{2-x} 與 Sample 90T/10Z在 1500°C下所生成的c-ZrO_{2-x}形成原因相同,唯一不同的 是Ti在高溫時為b.c.c的β-Ti,而經過高溫冷卻後,Sample 90T/10Z 在 1500°C下生成的c-ZrO_{2-x}是完全轉變成 α -Ti;Sample 70T/30Z 在 1400°C下生成的c-ZrO_{2-x}則由於較Sample 90T/10Z在 1500°C下 生成的c-ZrO_{2-x}則由於較Sample 90T/10Z在 1500°C下 生成的c-ZrO_{2-x}固溶了較多的Zr與O,造成晶格嚴重扭曲,導致無 法完全轉變成 α -Ti,因而形成斜方結構(orthorhombic)的β'-Ti。

由EDS分析發現Sample 90T/10Z在 1500°C下生成的α-Ti固溶了 11.34 at.% Zr與 17.71 at.% O; Sample 70T/30Z在 1400°C下生成 的β'-Ti固溶了 21.66 at.% Zr與 24.15 at.% O。

根據Fig. 4-14 Domagala *et al.*^[21]所提出之Ti-ZrO₂相圖,可知 β-Ti於高溫時出現,而在冷卻的過程中會轉變為α-Ti。由Bendersky *et al.*^{[24][25]} 指出在Ti-Al-Nb合金系統中,發現體心立方結構之β-Ti 會因大量固溶Al與Nb,造成晶格扭曲(lattice distortion)或原子 位置改變,而導致有斜方結構(orthorhombic)的β'-Ti產生。由實 驗結果很明顯的發現β-Ti因固溶了大量的Zr與O,導致未能完全轉 變為α-Ti,而是轉變成β'-Ti。

Welscht and Bunk *et al.*^[30]也提出Ti與O作用所造成之變形機 制(deformation mechanism),其滑動(slip)是由稜柱狀(prismatic) 滑移平面轉變為錐面狀(pyramidal)滑移平面,藉此提高其強度 與楊氏係數;另外,由於氧佔據間隙的位置(interstitial site),因 而提高其β-transus的轉換溫度,使得α相區變大。因此,在本實驗 中,由於α+β相區因已固溶大量的Zr與O,造成晶格嚴重扭曲, 而導致結構改變為orthorhombic之β'-Ti。因Zr元素為β相穩定元素 並且大量固溶至Ti中;所以,雖然O元素為α相穩定元素,但仍無 法使β-Ti完全轉變為α-Ti。

4-2-3 50T / 50Z (50 at.% Ti + 50 at.% PSZ-3Y)

(1) a-Ti 與 t-ZrO_{2-x}

Fig. 4-17(a)為Sample 50T/50Z經過 1500°C/1hr/Ar熱處理後 t-ZrO_{2-x}(Ti)與α-Ti(Zr, O)的明視野像(BFI); Fig. 4-17(b)為 t-ZrO_{2-x}(Ti)的EDS分析光譜,定量分析結果為 36.61 at.% Zr,55.26 at.%O,8.13 at.% Ti; Fig. 4-17(c)與(d)為t-ZrO_{2-x}(Ti)的擇區繞射 圖, zone axis為[013]與[113],SADP中的繞射點旁有超晶格點 (superlattice)出現,而此superlattice產生的原因為缺氧導致繞射 不符合結構因子法則所造成; Fig. 4-17(e)為α-Ti(Zr, O)的擇區繞 射圖, zone axis為[0112]; Fig. 4-17(f)為α-Ti(Zr, O)的EDS分析光 譜,定量分析結果為 73.49 at.% Ti, 18.61 at.%O, 7.90 at.% Zr。

(2) α-Ti / Ti₂ZrO與t-ZrO_{2-x}

Fig. 4-18(a)為Sample 50T/50Z經過 1400°C/1hr/Ar熱處理後
α-Ti(Zr, O)、Ti₂ZrO與t-ZrO_{2-x}共存的明視野像(BFI); Fig. 4-18(b)
為α-Ti(Zr, O)的EDS分析光譜,定量分析為 75.91 at.% Ti, 16.91
at.% O, 7.18 at.% Zr; Fig. 4-18(c)為α-Ti(Zr, O)與Ti₂ZrO的擇區繞

射圖,兩相的方位關係為[1213]_{α-Ti}//[133]_{Ti2ZrO},(1010)_{α-Ti}//(011) _{Ti2ZrO}; Fig. 4-18(d)為Ti₂ZrO的EDS分析光譜(暗條紋),定量分析 結果為 52.84 at.% Ti, 24.92 at.% O, 22.24 at.% Zr; Fig. 4-18(e) 為t-ZrO_{2-x}(Ti)的擇區繞射圖, zone axis為[111]; Fig. 4-18(f)為 t-ZrO_{2-x}(Ti)的EDS分析光譜,定量分析結果為 39.21 at.% Zr, 54.73 at.% O, 6.06 at.% Ti。

Fig. 4-19 為Fig. 4-18 之示意圖,圖中顯示Sample 50T/50Z在高 溫時ZrO₂會固溶至Ti中,由於Ti與O的親和性大,使得ZrO₂先形 成ZrO_{2-x},隨著Zr與O固溶於α-Ti(Zr, O)中並達到過飽和;冷卻時 α-Ti(Zr, O)固溶量降低,造成Ti₂ZrO的析出。Fig. 4-19(a)與(b)分 別為Sample 50T/50Z在高溫與冷卻時,經 1400°C/1hr/Ar擴散反應 後的生成機構圖。

4-2-4 30T / 70Z (30 at.% Ti + 70 at.% PSZ-3Y)

α-Ti、t-ZrO_{2-x}與TiO

Fig. 4-20 ~ Fig. 4-22 分別為Sample 30T/70Z經過 1500°C、
1400°C與 1300°C/1hr/Ar熱處理後之明視野像(BFI),所觀察到的
相皆由相同的生成機制所產生,而生成相分別為t-ZrO_{2-x}(Ti)、

TiO(Zr)與α-Ti(Zr, O),值得注意的是cubic TiO相的產生,其中 cubic TiO是以intergranular的形式存在於α-Ti與t-ZrO_{2-x}之間。

Fig. 4-23 說明Sample 30T/70Z在高溫與冷卻時, 經擴散反應後 的生成機構圖。探討cubic TiO相的形成原因如下:當Ti固溶進入 ZrO_{2-x}中時,Ti是以Ti²⁺存在。Table 3 分別列出Ti、Zr與O的離子 半徑與原子半徑。從ZrO2的氟石結構來說明,其每個Zr原子配位 八個等距的O原子,而每個O原子則位在四個Zr原子所形成的四面 體(tetrahedron)內;另外,正方晶與單斜晶則為其扭曲變形的 型態。所以在ZrO2結構內,Zr是以Zr⁴⁺存在,從離子半徑與原子 半徑大小來看,顯示Ti以 +2 價的Ti²⁺ 進入ZrO₂的置換位置較為 可能(Ti²⁺: 0.78 Å最接近Zr⁴⁺: 0.82 Å; Ti固溶入ZrO₂中與ZrO₂固 溶入Ti中的Zr一樣均為置換式(substitutional))。以Ti²⁺ 取代Zr ⁴⁺ 若從電中性平衡來說,應可能如Ca-SZ與Mg-SZ^[28, 29],以 divalent-stabilize ions置換Zr ⁴⁺ 同時造成帶兩個電荷的空缺 $V_0^{\bullet\bullet}$, 如下方程式所示:

TiO $\xrightarrow{ZrO_2}$ $Ti_{zr}^{"} + V_0^{\bullet} + O_0^{\times}$

再深入探討TiO為何不會在 90T/10Z, 70T/30Z與 50T/50Z中形

成,而只有在 30T/70Z與 10T/90Z才會形成。原因由TEM分析可 知,在 90T/10Z,70T/30Z與 50T/50Z中由於Ti的量多,因此固溶 了Zr及O形成α-Ti(Zr, O),而無法有TiO形成;但是在 30T/70Z時, 不僅有α-Ti(Zr, O)存在,且還有TiO在α-Ti與t-ZrO_{2-x}晶粒間形成, 顯然是由於Ti的量變少使得ZrO₂所提供的O數量足以讓Ti與O反 應,並形成TiO。另外,在 10T/90Z中,X-ray幾乎偵測不到α-Ti 的訊號,因此,如Fig. 4-25 ~ Fig. 4-27 所示,所觀察到的相皆為 TiO與t-ZrO_{2-x}。綜合以上所述,在TiO形成前,Ti會以固溶Zr與O 的形式存在α-Ti(Zr, O)。

Fig. 4-20(a)為Sample 30T/70Z經過 1500°C/1hr/Ar熱處理後
t-ZrO_{2-x}(Ti)、TiO(Zr)與α-Ti(Zr, O)的明視野像(BFI); Fig. 4-25(b)
為t-ZrO_{2-x}(Ti)的EDS分析光譜,定量分析結果為 39.4 at.% Zr,
53.24 at.% O, 6.76 at.% Ti; Fig. 4-20(c)與(d)分別為t-ZrO_{2-x}(Ti) 的
擇區繞射圖, zone axis為[001]與[011]; Fig. 4-20(e)為α-Ti(Zr, O)
的擇區繞射圖, zone axis為[0112]; Fig. 4-20(f)為α-Ti(Zr, O)的EDS
分析光譜,定量分析結果為 71.51 at.% Ti, 18.31 at.% O, 10.18 at.%
Zr; Fig. 4-20(g)、(h)與(i)分別為TiO(Zr) 的擇區繞射圖, zone axis
分別為[012]、[013]與[111]; Fig. 4-20(i)為TiO(Zr)的EDS分析光譜。

Fig. 4-21(a)為Sample 30T/70Z經過 1400°C/1hr/Ar熱處理後
t-ZrO_{2-x}(Ti)、α-Ti(Zr, O)與TiO(Zr)的明視野像(BFI); Fig. 4-21(b)
為t-ZrO_{2-x}(Ti)的EDS分析光譜,定量分析結果為 33.69 at.% Zr,
60.19 at.% O, 6.12 at.% Ti; Fig. 4-21(c)與(d)分別為t-ZrO_{2-x}(Ti) 的
擇區繞射圖,zone axis為[001]與[111]; Fig. 4-21(e)為α-Ti(Zr, O) 的
擇區繞射圖,zone axis為[0112]; Fig. 4-21(f)為α-Ti(Zr, O)的EDS
分析光譜,定量分析結果為 77.22 at.% Ti,14.36 at.% O,8.42 at.%
Zr; Fig. 4-21(g)與(h)分別為TiO(Zr) 的擇區繞射圖,zone axis分別
為[001]與[011]。

Fig. 4-22(a)為Sample 30T/70Z經過 1300°C/1hr/Ar熱處理後 t-ZrO_{2-x}(Ti)、TiO(Zr)與 α -Ti(Zr, O)的明視野像(BFI); Fig. 4-22(b) 為t-ZrO_{2-x}(Ti)的EDS分析光譜,定量分析結果為 35.49 at.% Zr, 63.09 at.% O, 1.42 at.% Y; Fig. 4-22(c)為t-ZrO_{2-x}(Ti)的diffraction ring,此處由於氧化鋯的顆粒多而且小,又受限於aperture無法圈 到小顆粒,故採diffraction ring,經鑑定後為tetragonal ZrO_{2-x}; Fig. 4-22(d)為TiO(Zr)的EDS分析光譜,定量分析結果為 53.52 at.% Ti,44.70 at.% O, 1.78 at.% Zr; Fig. 4-22(e)與(f)為TiO(Zr) 的擇 區繞射圖, zone axis分別為[013]與[012]。 4-2-5 10T / 90Z (10 at.% Ti + 90 at.% PSZ-3Y)

TiO與t-ZrO_{2-x}

Fig. 4-24 ~ Fig. 4-26 顯示ZrO₂中的O足夠使Ti可以完全氧化轉
變成TiO,並且造成周圍的氧化錯缺氧(ZrO_{2-x}),其中cubic TiO
的生成機制與 30T/70Z所敘述的相同。Fig. 4-27 為Fig. 4-24 ~ Fig.
4-26 之示意圖。

Fig. 4-24(a)為Sample 10T/90Z經過 1500°C/1hr/Ar熱處理後 TiO(Zr)、t-ZrO_{2-x}(Ti)與t-ZrO_{2-x}(Ti)的明視野影像(BFI); Fig. 4-24(b) 為TiO(Zr)的EDS分析光譜,定量分析結果為 45.65 at.% Ti, 50.15 at.% O, 4.20 at.% Zr; Fig. 4-24(c)與(d)分別為TiO(Zr) 的擇區繞 射圖, zone axis分別為[001]與[011]; Fig. 4-24(c)與(d)為t-ZrO_{2-x}(Ti) 的擇區繞射圖, zone axis分別為[011]與[100]。

Fig. 4-25(a)為Sample 10T/90Z經過 1400°C/1hr/Ar熱處理後
TiO(Zr)與t-ZrO_{2-x}(Ti)的明視野像(BFI); Fig. 4-25(b)為TiO(Zr)的
EDS分析光譜,定量分析結果為 61.32 at.% Ti,23.72 at.% O,
14.96 at.% Zr; Fig. 4-25(c)與(d)為TiO(Zr)的擇區繞射圖, zone
axis分別為[001]與[011]; Fig. 4-25(e)為t-ZrO_{2-x}(Ti)的擇區繞射

圖, zone axis為[001]; Fig. 4-25(f)為t-ZrO_{2-x}(Ti)的EDS分析光譜, 定量分析結果為 42.26 at.% Zr, 53.73 at.% O, 4.01 at.% Ti。

Fig. 4-26(a)為Sample 10T/90Z經過 1300°C/1hr/Ar熱處理後 TiO(Zr)與t-ZrO_{2-x}(Ti)的明視野像(BFI);Fig. 4-26(b)TiO(Zr)的擇 區繞射圖,zone axis為[122];Fig. 4-26(c)為TiO(Zr)的EDS分析光 譜,定量分析結果為 53.46 at.% Ti,45.25 at.% O,1.29 at.% Zr; Fig. 4-26(d)為t-ZrO_{2-x}(Ti)之diffraction ring;Fig. 4-26(e)為 t-ZrO_{2-x}(Ti)的EDS分析光譜定量分析結果為 47.30 at.% Zr,51.49 at.% O,1.21 at.% Ti

第五章 結 論

- Sample 90T/10Z經過 1500°C/1hr/Ar熱處理後發現ZrO₂中的Y在Ti 的溶解度非常的低,不易擴散進入Ti中,而造成大量的Y存在於 ZrO₂中。因Y₂O₃為c-ZrO₂的安定劑,可以抑制cubic ZrO₂轉變成 tetragonal ZrO₂,因此造成cubic ZrO₂存在。
- Sample 70T/30Z 在 1400°C/1hr/Ar 熱處理後生成 β'-Ti,由於 Ti 固溶大量的 Zr 與 O,造成高溫時為 b.c.c 的 β-Ti(Zr, O)晶格嚴重 扭曲,導致無法完全轉變成 α-Ti,因而形成斜方結構 (orthorhombic)的 β'-Ti。與 Sample 90T/10Z 在 1500°C/1hr/Ar 熱處理後所生成的 α-Ti 比較,由 EDS 分析發現 90T/10Z 的 α-Ti 固溶了 11.34 at.% Zr 與 17.71 at.% O;而 70T/30Z 的 β'-Ti 固溶了 21.66 at.% Zr 與 24.15 at.% O。
- 3. 由實驗當中發現並證明Ti₂ZrO會從固相α-Ti中析出,而Ti₂ZrO從 α-Ti中析出的理由為Ti金屬在高溫冷卻時,由β-Ti(Zr, O)轉變為 α-Ti(Zr, O),而在α-Ti(Zr, O)中當Zr與O固溶達到飽和時,即以 Ti₂ZrO析出。本實驗中分別在 90T/10Z經過 1400°C及 1300°C熱處 理、70T/30Z經過 1500°C及 1400°C熱處理與 50T/50Z經過 1400°C 熱處理下觀察到Ti₂ZrO。

- 在Sample 30T/70Z的條件下會有cubic TiO生成,而cubic TiO是以 intergranular的形式存在於α-Ti與t-ZrO_{2-x}晶粒之間。在Sample 10T/90Z的條件下,觀察到TiO與t-ZrO_{2-x},是由於ZrO₂中的O足夠 使Ti完全氧化轉變成TiO,並且還造成周圍的氧化鋯缺氧 (ZrO_{2-x})。
- 5. 在 Sample 10T/90Z 經過 1500°C 熱處理後由 X-ray 繞射分析可清
 楚觀察到 cubic ZrO 生成,其 space group 為 Fm3m, a = 4.602 Å。

参考文獻

- 洪國裕, "鈦及鈦合金之熔煉,"鑄造月刊,一一七期,民國八十 八年六月.
- 2. 賴耿陽, "金屬鈦-理論與應用," 復漢出版社,台北, 61-248, 251-253 (1990).
- A Chen, K. Sridharan, J. R. Conrad and R. P. Fetherston, "Surface and Coatings Technology," 50, 1-4 (1991).
- Eugene. P. Lautenschlager, Peter Monaghan, "Titanium and Titanium Alloys as Dental Materials," International Dental Journal, [43] 245-531 (1993).
- 5. Molchanova. E. K., **"Phase Diagrams of Titanium Alloys,"** [Transl. of Atlas Diagram Sostoyaniya Titanovyk Splavov], Israel Program for Scientific Translations (1965).
- 周振嘉, "氧化鋯陶瓷中的麻田散相變化與韌化,"陶業季刊, 十 三卷一期, 民國八十三年一月.
- 李源弘,張文固, "氧化鋯之製備與應用,"化工技術, 六期, 民國 八十二年九月.
- 8. O. Ruff, F. Ebert and E. Anorg, "Allgem," *Chem.*, 9, 60 (1929).
- A. H. Heuer, N. Claussen, W. M. Kriven, M. Ruhle, J. Am. Ceram. Soc., 64 [2] (1982).
- 10. A. H. Heuer and L. W. Hobbs, "Advance in Ceramics," 3, 1-24 (1981).
- 11. R. C. Garvie, R. H. Hannink and R. T. Pascoe, "Ceramics Steel,"

Nature (London), 258, 703-704 (1975).

- B. C. Weber, H. J. Garrett, F. A. Mauer, and M. A. Schuartz, "Observations on the Stabilization of Zirconia," *J. Am. Ceram. Soc.*, 39 [6] 197-206 (1956).
- 13. B. C. Weber, W. M. Thompson, H. O. Bielstein, and M. A. Schwartz,
 "Ceramic Crucible for Melting Titanium," J. Am. Ceram. Soc., 40
 [11] 363-373 (1957).
- 14. R. Ruh, "Reaction of Zirconia and Titanium at Elevated Temperature," J. Am. Ceram. Soc., 46 [7] 301-307 (1963).
- 15. R. Ruh, N. M. Tallan & H. A. Lipsitt, "Effect of Metal Additions on the Microstructure of Zirconia," J. Am. Ceram. Soc., 47 [12] 632-635 (1964).
- R. Ruh and H. J. Garrett, "Reactions of Zirconia and Chromium," J. Am. Ceram. Soc., 47 [12] 627-629 (1964).
- 17. A. Arias, "Thermal Shock Resistance of Zirconia with 15 Mole % Titanium," J. Am. Ceram. Soc., 49 [6] 334-338 (1966).
- R. Ruh and H. J. Garrett, "Nonstoichometry of ZrO₂ and Its Relation to Tetragonal-Cubic Inversion in ZrO₂," *J. Am. Ceram. Soc.*, 50 [5] 257-261 (1967).
- F. A. Shune, "Constitution of Binary Alloys," McGraw-Hill Book Co., New York, 577-579 (1969).
- 20. P. Villars and L. D. Calvert, "Pearson's Handbook of Crystallographic Data for Intermetallic Phase," ASM International, Materials Park, OH (1991).
- R. F. Domagala, S. R. Lyon, and R. R., "The Pseudobinary Ti-ZrO₂," J. Am. Ceram. Soc., 56 [11], 584-587 (1973).

- K. F. Lin and C. C. Lin, "Transmission Electron Microscope Investigation of The Interface between Titanium and Zirconia," J. Am. Ceram. Soc., 82 [11], 3179-3185 (1999).
- K. L. Lin and C. C. Lin, "Ti₂ZrO Phases Formed in the Titanium and Zirconia Interface after Reaction at 1550°C," J. Am. Ceram. Soc., 88 [5], 1268-1272 (2005).
- 24. L. A. Bendersky, Roytburd and W. J. Boettinger, "Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in Ti-Al-Nb System," J. Res. Natl. Inst. Stand. Technol., 98, 561 (1993).
- 25. L. A. Bendersky, Roytburd and W. J. Boettinger, "Phase Transformations in the (Ti, Al)₃Nb Section of the Ti-Al-Nb System- I. Microstructural Predictions based on A Subgroup Relation between Phases," Acta metal. Mater., 42, 2323-2335 (1993).
- K. F. Lin and C. C. Lin, "Interfacial Reactions Between Zirconia and Titanium," *Scripta Materialia*, **39** [10], 1333-1338 (1998).
- 27. C. L. Lin, D. Gan, and P. Shen, "Stabilization of Zirconia Sintered with Tiatanium," J. Am. Ceram. Soc., 71 [8], 624-629 (1988).
- E. C. Subbarao "Diffusion Non-Metallics An Overview," Diffusion and Defect Data, 41, 1-14 (1985).
- 29. A. H. Heuer, N. Claussen, M. Ruhle, "Advance in Ceramic," 12, (1984).
- G. Welsch and W. Bunk, "Deformation Modes of the Alpha-Phase of Ti-6Al-4V as a Function of Oxygen Concertration and Aging Temperature," *Met. Trans.*, 13A, 889-899 (1982).

Table 1 Sample 成分表

Sample	成 分	熱處理條件
10T / 90Z	10 at.% Ti + 90 at.% PSZ-3Y	1500°C / 1 hr / Ar 1400°C / 1 hr / Ar 1300°C / 1 hr / Ar
30T / 70Z	30 at.% Ti + 70 at.% PSZ-3Y	1500°C / 1 hr / Ar 1400°C / 1 hr / Ar 1300°C / 1 hr / Ar
50T / 50Z	50 at.% Ti + 50 at.% PSZ-3Y	1500°C / 1 hr / Ar 1400°C / 1 hr / Ar 1300°C / 1 hr / Ar
70T / 30Z	70 at.% Ti + 30 at.% PSZ-3Y	1500°C / 1 hr / Ar 1400°C / 1 hr / Ar 1300°C / 1 hr / Ar
90T / 10Z	90 at.% Ti + 10 at.% PSZ-3Y	1500°C / 1 hr / Ar 1400°C / 1 hr / Ar 1300°C / 1 hr / Ar

(hkl)	20	a(Å)
(111)	33.28	4.6577
(200)	38.58	4.6620
(220)	55.58	4.6716
(311)	66.35	4.6673
(222)	69.78	4.6635
Calculated :	E 1896	
By Bragg cond	ition $2d\sin\theta = n\lambda$, $\lambda = 1.5$	54010 Å
Cubic : $d_{hkl} =$	$= \frac{a}{\sqrt{h^2 + k^2 + l^2}}$	

Table 2 計算 cubic ZrO 各晶面之 lattice parameter a (Å)

r _{Ti} (nm)	$r_{\rm Zr}$ (nm)	<i>r</i> _o ((nm)
Ti Ti ²⁺ Ti ³⁺ Ti ⁴⁺	0.146 0.078 0.069 0.064	Zr ES 0.160 Zr 4+ 1896	0 0 ²⁻	0.060 0.136

Table 3 Ti、Zr 與 O 的離子半徑與原子半徑

氧化鋯與鈦之擴散反應結果					
Sample 條件	Т	TEM		XRD	
	生成物	結構	生成相	結構	
90T / 10Z	$ \begin{array}{ c c } c-ZrO_{2-x} \\ \alpha-Ti \\ Ti_2ZrO \end{array} $	cubic hexagonal orthorhombic	α-Ti t-ZrO _{2-x}	hexagonal tetragonal	
70T / 30Z	$\begin{array}{c} c-ZrO_{2-x} \\ t-ZrO_{2-x} \\ \alpha-Ti \\ \beta'-Ti / Ti_2ZrO \end{array}$	cubic tetragonal hexagonal orthorhombic	α -Ti t-ZrO _{2-x} m-ZrO _{2-x}	hexagonal tetragonal monoclinic	
50T / 50Z	α -Ti Ti ₂ ZrO t-ZrO _{2-x}	hexagonal orthorhombic tetragonal	$ \begin{array}{l} \alpha \text{-Ti} \\ \text{t-ZrO}_{2\text{-x}} \\ \text{m-ZrO}_{2\text{-x}} \end{array} $	hexagonal tetragonal monoclinic	
30T / 70Z	α-Ti TiO t-ZrO _{2-x}	hexagonal cubic tetragonal	$\begin{array}{c} \alpha\text{-Ti} \ / \ c\text{-ZrO} \\ t\text{-ZrO}_{2\text{-x}} \ / \ TiO \\ m\text{-ZrO}_{2\text{-x}} \end{array}$	hexagonal / cubic tetragonal / cubic monoclinic	
10T / 90Z	TiO t-ZrO _{2-x}	cubic tetragonal	$ \begin{array}{c} c\text{-}ZrO \ / \ TiO \\ t\text{-}ZrO_{2\text{-}x} \\ m\text{-}ZrO_{2\text{-}x} \end{array} $	cubic tetragonal monoclinic	

Fig. 2-1 純鈦之同素晶體結構圖

Fig. 2-2 鈦由 β 相轉變至 α 相之晶體結構圖

[From Structure and Properties of Engineering Material, 4th Ed., by R. M. Brick, A. W. Pense and R. B. <u>Gordon.</u> <u>Copyright.1977</u> By McGraw-Hill, New York. Used with the permission of McGraw-Hill Book Company]

Cooling Monoclinic	Cooling Tetragonal Cubi	Cooling c
Heating	Heating	Heating
1170°C	2370°C	2680°C

Fig. 2-4 氧化鋯之相變化流程圖

Fig. 3-1 實驗流程圖

Fig. 3-2 Ti 與 PSZ-3Y 粉末製備流程圖

Fig. 4-2 熱處理前 PSZ-3Y 之 X-ray 繞射圖

Fig. 4-3 Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z 經過 1500°C/1hr/Ar 熱處理後之 X-ray 繞射圖

Fig. 4-4 Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z 經過 1400°C /1hr/Ar 熱處理後之 X-ray 繞射圖

Fig. 4-5 Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z 經過 1300°C /1hr/Ar 熱處理後之 X-ray 繞射圖

Fig. 4-6 Sample 10T/90Z、30T/70Z、50T/50Z、70T/30Z 與 90T/10Z 經過 1200°C /1hr/Ar 熱處理後之 X-ray 繞射圖

Fig. 4-7 Sample 90T/10Z經過 1500°C/1hr/Ar熱處理後(a) α-Ti(Zr, O)與c-ZrO_{2-x}(Y, Ti)之明視野像(BFI); (b) α-Ti(Zr, O)之EDS分析光 譜; (c) α-Ti(Zr, O)之SADP, Z.A.=[0112]; (d) c-ZrO_{2-x}(Y, Ti)之EDS 分析光譜; (e) c-ZrO_{2-x}(Y, Ti)之SADP,Z.A.=[112]; (f) c-ZrO_{2-x}(Y, Ti) 之SADP, Z.A.=[012]。

Fig. 4-8 Sample 90T/10Z經過 1400°C/1hr/Ar熱處理後(a) α-Ti(Zr, O)與Ti₂ZrO共存之明視野像(BFI); (b) α-Ti(Zr, O)之EDS分析光譜 (亮條紋); (c) α-Ti與Ti₂ZrO之SADP, Z.A.=[0001]_{α-Ti}//[001]_{Ti=ZrO}; (d) Ti₂ZrO之EDS分析光譜(暗條紋)。

Fig. 4-9 Sample 90T/10Z經過 1300°C/1hr/Ar熱處理後(a) α-Ti 與Ti₂ZrO之明視野像(BFI); (b) α-Ti之EDS分析光譜(亮條紋); (c) α-Ti與Ti₂ZrO之SADP, Z.A.=[1213]_{α-Ti} // [112]_{Ti2ZrO}; (d) Ti₂ZrO之EDS分析光譜(暗條紋)。

Fig. 4-10 Sample 70T/30Z 經過 1500°C/1hr/Ar 熱處理後(a) t-ZrO_{2-x}(Ti)與 α -Ti(Zr, O)之明視野像(BFI); (b) t-ZrO_{2-x}(Ti)之 SADP, Z.A.=[011]; (c) t-ZrO_{2-x}(Ti)之EDS分析光譜; (d) α -Ti(Zr, O) 之SADP, Z.A.=[012]; (e) α -Ti(Zr, O)之EDS分析光譜。

Fig. 4-11 Sample 70T/30Z 經過 1300°C/1hr/Ar 熱處理後(a) t-ZrO_{2-x}(Ti)與α-Ti(Zr, O)之明視野像(BFI); (b) t-ZrO_{2-x}(Ti)之 SADP, Z.A.=[100]; (c) t-ZrO_{2-x}(Ti)之EDS分析光譜; (d) α-Ti(Zr, O)之SADP, Z.A.=[1123]; (e) α-Ti(Zr, O)之EDS分析光譜。

Fig. 4-12 Sample 70T/30Z 經過 1500°C/1hr/Ar 熱處理後(a) α-Ti(Zr, O)與Ti₂ZrO之明視野像(BFI); (b) α-Ti(Zr, O)之EDS分析 光譜(亮條紋); (c) α-Ti (Zr, O)與Ti₂ZrO之SADP, Z.A.=[1213]_{α-Ti} // [011]_{Ti2ZrO}; (d) Ti₂ZrO之EDS分析光譜(暗條紋)。

Fig. 4-13 Sample 70T/30Z 經過 1400°C/1hr/Ar 熱處理後(a) α-Ti(Zr, O)與Ti₂ZrO共存之明視野像(BFI);(b)α-Ti(Zr, O)之EDS 分析光譜(亮條紋);(c) Ti₂ZrO之SADP, Z.A.=[1213]_{α-Ti} // [122]_{Ti²ZrO};(d)Ti₂ZrO之EDS分析光譜(暗條紋)。

Fig. 4-14 Domagala et al.所提出之Ti-ZrO2系統的相圖

Matrix α-Ti (Zr, O)

Fig. 4-15 Ti₂ZrO在Matrix α-Ti (Zr, O)中不同接合介面之析出成長形狀 A面:低遷移率之半整合性邊界(Low-mobility semi-coherent interfaces) B面:高遷移率之非整合性邊界(High-mobility incoherent interfaces)

Fig. 4-16 Sample 70T/30Z經過 1400°C/1hr/Ar熱處理後(a) β '-Ti(Zr, O) 與 c-ZrO_{2-x}(Ti) 之 明 視 野 像 (BFI) ; (b) c-ZrO_{2-x}(Ti) 之 micro diffraction pattern, Z.A.=[012] ; (c) c-ZrO_{2-x}(Ti)之EDS分析光譜; (d) β '-Ti(Zr, O)之EDS分析光譜; (e) β '-Ti(Zr, O)之SADP, Z.A.=[021] ; (f) β '-Ti(Zr, O)之SADP, Z.A.=[122] °

Fig. 4-17 Sample 50T/50Z 經過 1500°C/1hr/Ar 熱處理後(a) t-ZrO_{2-x}(Ti)與 α -Ti(Zr, O)之明視野像(BFI); (b) t-ZrO_{2-x}(Ti)之EDS 分析光譜; (c) t-ZrO_{2-x}(Ti)之SADP, Z.A.=[013]; (d) t-ZrO_{2-x}(Ti) 之SADP, Z.A.=[113]; (e) α -Ti(Zr, O)之SADP, Z.A.=[0112]; (f) α -Ti(Zr, O)之EDS分析光譜。

Fig. 4-18 Sample 50T/50Z 經過 1400°C/1hr/Ar 熱處理後(a) α -Ti(Zr, O)、Ti₂ZrO與t-ZrO_{2-x}(Ti)共存之明視野像(BFI);(b) α -Ti(Zr, O) 之 EDS 分析光譜; (c) Ti₂ZrO 之 SADP, Z.A.=[1213]_{α -Ti} // [133]_{Ti=ZrO}; (d) Ti₂ZrO之EDS分析光譜(暗條紋); (e) t-ZrO_{2-x}(Ti)之 SADP, Z.A.=[111]; (f) t-ZrO_{2-x}(Ti)之EDS分析光譜。

Fig. 4-19 (a)與(b)分別為 Sample 50T/50Z 在高 溫與冷卻狀態時,經 1400°C/1hr/Ar 擴散反應後 的生成機構圖。

Fig. 4-20 Sample 30T/70Z 經 過 1500°C/1hr/Ar 熱 處 理 後 (a) t-ZrO_{2-x}(Ti)、TiO(Zr)與 α -Ti(Zr, O)之明視野像(BFI); (b) t-ZrO_{2-x}(Ti) 之EDS分析光譜; (c) t-ZrO_{2-x}(Ti)之SADP, Z.A.=[001]; (d) t-ZrO_{2-x}(Ti) 之SADP, Z.A.=[011]; (e) α -Ti(Zr, O)之SADP, Z.A.=[0112]; (f) α -Ti(Zr, O)之EDS分析光譜。

Fig. 4-20 Sample 30T/70Z 經過 1500°C/1hr/Ar 熱處理後(g) TiO(Zr) 之 SADP, Z.A.=[012]; (h) TiO(Zr)之 SADP, Z.A.=[013]; (i) TiO(Zr) 之 SADP, Z.A.=[111]; (j) TiO(Zr)之 EDS 分析光譜。

Fig. 4-21 Sample 30T/70Z 經過 $1400^{\circ}C/1hr/Ar 熱處理後(a)$ t-ZrO_{2-x}(Ti)、 α -Ti(Zr, O)與TiO(Zr)之明視野像(BFI);(b) t-ZrO_{2-x}(Ti) 之EDS 分析光譜;(c) t-ZrO_{2-x}(Ti)之SADP, Z.A.=[001];(d) t-ZrO_{2-x}(Ti)之SADP, Z.A.=[111]。

Fig. 4-21 Sample 30T/70Z 經過 1400°C/1hr/Ar 熱處理後(e) α-Ti(Zr, O)之 SADP, Z.A.=[0Ī12]; (f) α-Ti(Zr, O)之 EDS 分析光 譜; (g) TiO(Zr)之 SADP, Z.A.=[001]; (h) TiO(Zr)之 SADP, Z.A.=[011]。

Fig. 4-22 Sample 30T/70Z 經過 1300°C/1hr/Ar 熱處理後(a) t-ZrO_{2-x}(Ti)、TiO(Zr)與α-Ti(Zr, O)之明視野像(BFI);(b) t-ZrO_{2-x}(Ti) 之EDS分析光譜;(c) t-ZrO_{2-x}(Ti)之SADP;(d) TiO(Zr)之EDS分析 光譜;(e) TiO(Zr)之SADP, Z.A.=[013];(f) TiO(Zr)之SADP, Z.A.=[012]。

(a) 高溫狀態

Fig. 4-23 (a)與(b)分別為 Sample 30T/70Z 在高 溫與冷卻狀態時,經擴散反應後的生成機構圖。

Fig. 4-24 Sample 10T/90Z 經過 1500°C/1hr/Ar 熱處理後(a) TiO(Zr)與t-ZrO_{2-x}(Ti)之明視野影像(BFI); (b) TiO(Zr)之EDS分析 光譜; (c) TiO(Zr)之SADP, Z.A.=[001]; (d) TiO(Zr)之SADP, Z.A.=[011]; (e) t-ZrO_{2-x}(Ti)之SADP, Z.A.=[011]; (f) t-ZrO_{2-x}(Ti) 之SADP, Z.A.=[100]。

Fig. 4-25 Sample 10T/90Z經過 1400°C/1hr/Ar熱處理後(a) TiO(Zr) 與t-ZrO_{2-x}(Ti)之明視野像(BFI); (b) TiO(Zr)之EDS分析光譜; (c) TiO(Zr)之SADP, Z.A.=[001]; (d) TiO(Zr)之SADP, Z.A.=[011]; (e) t-ZrO_{2-x}(Ti)之SADP, Z.A.=[001]; (f) t-ZrO_{2-x}(Ti)之EDS分析光譜。

Fig. 4-26 Sample 10T/90Z 經過 $1300^{\circ}C/1hr/Ar 熱處理後(a)$ TiO(Zr)與t-ZrO_{2-x}(Ti)之明視野像(BFI); (b) TiO(Zr)之SADP, Z.A.=[122]; (c) TiO(Zr)之EDS分析光譜; (d) t-ZrO_{2-x}(Ti)之 diffraction ring; (e) t-ZrO_{2-x}(Ti)之EDS分析光譜。

Fig. 4-27 (a)與(b)分別為 Sample 10T/90Z 在高 溫與冷卻狀態時,經擴散反應後的生成機構圖。