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針對 FIR與 FFT演算法於超大型積體電路

實作上之解析式面積最佳化技術 

研究生：林步青          指導教授：周景揚博士 黃俊達博士 

國立交通大學 

電子工程學系及電子研究所 博士班 

摘要 

在過去幾十年中，隨著通信系統的複雜度急劇增加，數位訊號處理演算法

被廣泛地採用，例如有限脈衝響應(FIR)濾波器和快速傅利葉轉換(FFT)。其中，

多常數乘法(MCM) 是在處理輸入資料與常數的乘法時，使用一組加法器取代

常規乘法器，其概念更是廣泛地被應用在有限脈衝響應濾波器的設計中。在過

去，雖然已有很多降低加法器用量之演算法被提出以達到面績縮小的目的，但

是，它們並未考慮每個加法器的實際位元數，而這將會導致估計的硬體成本不

夠精確。因此這篇論文中，我們提出了一個保證位元數的多個常數乘法最佳化

演算法，著重於最大限度地減少加法器的總位元數，而不是僅考慮減少加法器

總數。首先，構建基於給定係數的子表達式圖表，繼而導出一組針對最小化加

法器位元數之條件，最後使用整數線性規畫得到最佳化的結果。實驗結果顯示，

該演算法的確可以有效地減少所需的加法器位元數並且優於所有的現行技
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術。 

此外，快速傅利葉轉換處理器在眾多以數位訊號處理為基礎的系統中是一

個核心的元件；例如，現代無線通信中的正交分頻多工(OFDM)。許多關鍵的

設計參數，如架構，位元長度，和數字格式，都必須非常仔細地考慮。在過去

的幾十年，針對不同的設計目標，已經有很多最佳化的管線式快速傅利葉轉換

架構被提出。雖然固定的管線式快速傅利葉轉換架構能在合理的硬體成本下提

供不錯的處理能力，但是，在針對需要大量處理能力的應用上，它可能仍然無

法滿足效能的需求。因此在這篇論文中，我們提出了一種可擴展的多路徑延遲

累積器式之快速傅利葉轉換架構及其相應的硬體設計產生器，在給定的處理能

力條件下，它能夠迅速地產生對應的快速傅利葉轉換核心。實驗結果顯示，此

方法所產生之快速傅利葉轉換器比現有的可折疊式多路徑延遲累積器式快速

傅利葉轉換架構，面積更小且功率效率更高。 

除此之外，我們亦提出了一個快速傅利葉轉換器最佳化的設計流程。在固

定位元長度的條件下，正確的調整每一個蝴蝶級的定點表示之數值，以最大化

輸出級的信號量化雜訊比(SQNR)。所提出的流程採用機率分佈模型來模擬每

個階段的輸出信號的機率行為。由於量化和飽和運算所導致的雜訊可以靜態分

析，以了解在進行縮放決策時的影響。因此，不需耗費時間的模擬分析，我們

所提出的方法即可有效地決定每一個蝴蝶級的最適當的數字格式，從而最佳化

整個輸出級的信號量化雜訊比。此外，建議的流程能夠處理各種快速傅利葉轉

換點數、快速傅利葉轉換演算法、字元長度、以及輸入信號的機率分佈。實驗

結果顯示，我們的方法可以在 8192 點且以 2 為基數的快速傅利葉轉器處理器

中節省 3位元的字元長度，而且不會對輸出級的信號量化雜訊比造成影響。使

用我提出的靜態尺規最佳化的技術所創建的快速傅利葉轉器處理器的信號量

化雜訊比可以近似於一個配有額外的動態尺規化方法，但不需要其額外龐大的

硬體成本。 
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Abstract 

As the complexity of communication systems has grown dramatically in the past 

decades, digital signal processing algorithms are extensively used, such as 

finite-impulse-response filter (FIR) and fast Fourier transform (FFT). Meanwhile, the 

notion of multiple constant multiplication (MCM) is extensively adopted in FIR 

designs. A set of adders are used to replace regular multipliers for the multiplications 

between input data and constant filter coefficients. Though many algorithms have 

been proposed to reduce the total number of adders in an MCM block for area 

minimization, they do not consider the actual bitwidth of each adder, which may not 

estimate the hardware cost well enough. Therefore, we propose a bitwidth-aware 

MCM optimization algorithm that focuses on minimizing the total number of adder 

bits rather than the adder count. It first builds a subexpression graph based on the 

given coefficients, derives a set of constraints for adder bitwidth minimization, and 
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then optimally solves the problem through integer linear programming (ILP). 

Experimental results show that the proposed algorithm can effectively reduce the 

required adder bit count and outperforms the existing state-of-the-art techniques. 

The FFT processor serves as one of core components in numerous DSP-based 

systems, such as OFDM in modern wireless communication. The key design 

parameters, such as architecture, wordlength, and number format, must be all 

considered very carefully. Many pipelined FFT architectures optimized for different 

objectives have been proposed in past few decades. Though a fixed pipelined FFT 

architecture can generally provide good throughput at reasonable hardware cost, it 

may still fail to meet the performance demand for throughput-hungry design cases. In 

this dissertation, we propose an expandable MDC-based FFT architecture as well as 

the corresponding hardware design generator, which is capable of automatically 

producing an FFT core under a given throughput constraint. The experimental results 

show that the proposed methodology can generate smaller and power-efficient 

implementations than the existing foldable MDC-based FFT architecture. 

Besides, in this dissertation, we also propose an optimization flow that properly 

scales fixed-point numeric values at each butterfly stage to maximize the output 

SQNR under a fixed wordlength constraint. The proposed flow utilizes probability 

distribution to model the probabilistic behavior of the output signal at each stage. The 

computation errors due to quantization and saturation operations are statically 

analyzed before making scaling decisions. Therefore, without a need of 

time-consuming simulation, our method can efficiently determine the most 

appropriate number format for each stage and thus optimize the overall output SQNR. 

Besides, the proposed flow is capable of handling various FFT sizes, FFT algorithms, 

wordlengths, and input signal distributions. Experimental results indicate that the 

wordlength can be reduced about three bits for an 8K-point radix-2 memory-based 
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FFT processor without compromise in the output SQNR. Furthermore, the FFT 

processor created using our static scaling optimization technique can produce a 

comparable output quality as the one equipped with an extra dynamic number scaling 

unit, which requires significantly more hardware logic.
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Chapter 1 

Introduction 

Digital signal processing (DSP) algorithms have become the foundation of 

today’s audio/video and communication systems. The well-known DSP algorithms, 

including finite-impulse-response (FIR) filters and fast Fourier transform (FFT), have 

attracted the attentions of a number of researchers over several decades. For example, 

orthogonal frequency-division multiplexing (OFDM) is known for the advantages of 

tolerance to inter-frequency interference and robustness against frequency-selective 

fading. It is widely used in modern broadband wireless communication systems, such 

as digital audio/video broadcast (DAB/DVB) [1], local area network (WLAN, IEEE 

802.11a/g/n) [2], and networks for multiple users (IEEE 802.16, WiMAX, and LTE) 

[3-5]. In OFDM systems, one of the most computationally intensive operations is 
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Figure 1. An example pilot-based STBC/OFDM communication system. 
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modulation/demodulation, which requires the filters to maximize the signal-to-noise 

ratio (SNR) and a dedicated FFT processor for discrete Fourier transform (DFT) 

computation [5-7]. Figure 1 illustrates an example of a pilot-based STBC/OFDM 

transmitter and receiver communication architecture [8]. Since the filter and FFT are 

required for processing each stream data, they are obviously the major computation 

blocks in a high-data-rate baseband system. Also note that, the area of the FFT core is 

reported about 25% of that of an IEEE 802.11a baseband processor [9, 10]. Thus, the 

DSP algorithms, such as the filter and FFT cores, must be carefully designed to 

minimize the hardware cost. 

1.1 MCM-Based FIR Designs 

For most of DSP algorithms, multiplication is one of the most frequently-used 

essential operations. For example, each input of an N-tap FIR filter should be 

multiplied by N constant coefficients. The multiplication between an input data value 

and a set of constants is also referred to as the multiple constant multiplication 

(MCM). Since the multiplier is not a small functional unit in hardware 

implementation, its usage should be reduced whenever possible. Meanwhile, a 

constant multiplication can actually be accomplished through a set of adders along 

with proper bit shifting rather than a real multiplier. For instance, a constant 

multiplication that always multiplies the input value x by 5 (i.e., y = 5  x) can be 

computed as y = (x << 2) + x. That is, a regular multiplier can be safely replaced with 

just an adder. Note that shifting a value by a fixed number of bits can be simply 

achieved via signal wiring in hardware implementation, which is virtually at no cost. 

As compared with the trivial implementation using a regular multiplier, it is obvious 

that the one with adders can usually reduce the hardware cost. Moreover, the area 

saving is likely to be more significant if the multiplication results with multiple 
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constants are required simultaneously. For example, two constant multiplications, y1 = 

5 × x and y2 = 13 × x, can be accomplished by only two adders: y1 = (x << 2) + x and 

y2 = (x << 3) + y1. Consequently, the notion of multiplier-less MCM has been widely 

adopted for implementing area-efficient digital filters. 

For an adder, the bitwidth is directly proportional to its area, delay, as well as 

power. For example, Figure 2 illustrates the area, latency, and power consumption of a 

ripple carry adder under the TSMC 0.18μm technology. The area, power consumption, 

and latency of an 8-bit adder are 116 gates, 0.55 mW, and 5.9 ns, respectively, which 

are approximately half of those of a 16-bit adder (225 gates, 1.05 mW, and 10.2 ns). 

Therefore, it is crucial to take the adder bitwidth into account very seriously while 

implementing a multiplier-less MCM block since it is solely made of adders. 

The problem of multiplier-less constant multiplication is actually equal to the 

classical addition chain problem, in which a constant multiplication is replaced by a 

series of additions [11]. However, it is much more complicated to effectively share the 

outputs of intermediate additions among multiple constant multiplications. Existing 

 

Figure 2. Area, latency, and power scale with the adder bitwidth. 
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multiplier-less MCM algorithms for adder minimization can be divided into two 

major categories: 1) the graph-based algorithms [12-19], and 2) the digit-based 

algorithms [20-31]. Given a set of constants, a graph-based algorithm gradually builds 

the corresponding graph representation in a bottom-up fashion and uses some 

heuristic method to explore the chances for subexpression sharing among those 

constants. In general, they can provide a solution with fairly good quality in a short 

runtime; however, optimality is not guaranteed. In contrast, a digit-based algorithm 

generates a set of number decompositions for subexpression sharing based on a 

specific numeric representation. The ILP solver is sometimes utilized to produce an 

adder-minimal solution [23, 27-30] at the cost of longer runtime [32, 33]. 

Note that most of the previous studies regard the adder count minimization as the 

optimization goal and neglects the fact that every adder has its own area and delay 

cost due to different bitwidth. Hence, in this dissertation, we propose a new algorithm 

that minimizes the overall adder bitwidth instead of the total adder count. Meanwhile, 

the methods presented in the previous works [28, 29] use a pre-computed lookup table 

to store all feasible number decompositions of all constants within a fixed precision 

(e.g., 13 bits) no matter they are required or not. In contrast, our algorithm 

dynamically creates a subexpression graph that merely contains necessary information. 

The experimental results demonstrate that our algorithm can achieve a reduction on 

the total adder bit count by up to 10% for some test cases as compared with the 

existing state-of-the-art techniques. The details of the proposed ILP-based 

bitwidth-aware subexpression sharing algorithm are elaborated in Chapter 2. 

1.2 FFT Architectures and Designs 

An FFT core has several important design parameters, such as base 

architecture, size, and wordlength. Since the FFT algorithm was first proposed in 
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[34], various architectures have been developed and optimized for different goals. 

The architectures of FFT processors can be roughly divided into two major 

categories: memory-based and pipeline-based. Memory-based architectures usually 

consist of a butterfly unit and certain number of memory blocks for providing 

low-cost designs. However, it is very difficult for them to achieve real-time 

processing at low clock frequency. Alternatively, a pipelined architecture consists 

of multiple stages to provide higher throughput at the cost of more hardware. In 

general, memory-based architectures are suitable for FFT processors where the 

hardware cost is an issue and the FFT size is not smaller than 512 [3]. 

Pipeline-based architectures are typically feasible for applications with smaller FFT 

sizes. Meanwhile, the proper FFT size varies for different applications. For 

example, the size can be 128, 256, 512, 1024, or 2048 for WiMAX applications; 

and 256, 512, 1024, or 2048 for DAB systems. Hence, for a specific application, 

the requested FFT core should be well configured to meet its own unique 

requirements. 

Many pipelined FFT architectures [35-44] have been proposed in past few 

decades. For a specific architecture, one way to accelerate its computation is to 

increase the clock rate. For example, the conventional Radix-2 Multi-path Delay 

Commutator (R2MDC) takes 1023 clock cycles for a 1024-point FFT computation. 

Assume that a butterfly operation takes 20 ns in a given technology; and as a result 

the execution time of a complete 1024-point FFT computation requires 20.5 us. If 

the system requires even faster response time (< 20.5 us), a higher operation 

frequency is demanded. The other way to provide higher throughput is to expand 

the datapath of the original architecture. However, expanding a pipelined FFT 

architecture is not always trivial because of internal dissimilar data permutation 

patterns and complicated controlling logic. The difficulty generally increases as the 
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degree of parallelism rises. Thus, a generator that can automatically provide those 

expanded architecture variants is demanded for saving design costs drastically. To 

deal with this issue, in this dissertation we propose an Expandable Multi-path 

Delay Commutator (EMDC) based FFT architecture and the corresponding 

generator targeting high-performance applications. Due to the page limitation, we 

only demonstrate the details of the proposed Radix-2
2
EMDC architecture in 

Chapter 3. However, the proposed approach can be easily applied to other 

MDC-based architectures, such as Radix-2
3
MDC and Radix-2

4
MDC. 

Furthermore, the scaling optimization on FFT designs with a fixed wordlength 

at each stage needs to be considered; that is, the output wordlength of every stage is 

the same as its input wordlength. Memory-based designs naturally fulfill this 

requirement, while a considerable part of pipeline-based designs also choose to 

meet the same requirement since the fixed wordlength is still preferred due to 

hardware cost and critical-path delay considerations. 

While crafting a practical FFT hardware design, the output precision in terms 

of signal-to-quantization-noise (SQNR) ratio is regarded as a key design 

requirement. In practice, FFT algorithms are commonly implemented using 

fixed-point arithmetic instead of floating-point arithmetic for hardware cost 

reduction. That is, only a limited number of bits are available to represent a signal 

or coefficient value. As a result, rounding and truncation operations inevitably 

introduce noises, which are referred to as quantization noises. Besides, addition and 

subtraction operations may also cause overflow errors (noises) during computations. 

Although extending the wordlength can relieve the accuracy loss, the hardware cost 

and the critical-path delay are increased accordingly. 

Therefore, several number scaling methods, either static or dynamic, have 

been proposed to improve the output SQNR [1, 45-64]. Oppenheim et al. [49] 
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proposed a simple static scaling method that always increases the integer part by 

one bit for each radix-2 stage to prevent overflows. However, this method suffers 

significant quantization errors if the wordlength is fixed. In addition, methods 

based on dynamic scaling have also been proposed for the SQNR improvement. 

Block Floating Point (BFP)-based methods employ intermediate buffers to store 

and analyze a block of output values, and then dynamically determine an 

appropriate number format for that block to achieve a better SQNR [1, 45, 46, 51, 

52]. However, all of these dynamic methods suffer a notable increase in area, power, 

and latency as well as need a more complicated control unit to achieve a similar 

quality of result (QoR). Consequently, most FFT designers rely on static instead of 

dynamic scaling optimization techniques to determine a proper number format for 

each stage [50]. 

Previous static scaling techniques can be roughly classified into three major 

categories: simulation-based approaches [58, 59], analytical approaches [47, 49, 50, 

60-68], and a hybrid of previous two [48, 69, 70]. The simulation-based approaches 

try to find a good number format through lengthy iterations. In contrast, the 

analytical methods can determine a good number format very efficiently through a 

static numeric analysis without invoking time-consuming simulation. However, the 

analysis results are generally too pessimistic and lead to a larger wordlength than 

required. Therefore, the hybrid approaches are proposed to determine the number 

format and shorten the simulation time simultaneously. Meanwhile, the works 

mentioned above [47-50, 58-70] all assume they can arbitrarily determine the 

wordlength at each stage. However, in memory-based FFT designs, the wordlength 

(the width of the memory block) is always fixed. To the best of our knowledge, the 

problem of static scaling under a fixed wordlength constraint has not been well 

addressed yet. 
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In this dissertation, we propose a scaling optimization technique based on the 

static probability analysis that can rapidly determine the best number format at each 

butterfly stage under a fixed wordlength constraint. Given a probability distribution 

of input signals, a selected FFT algorithm, and a wordlength constraint, the 

proposed technique can maximize the overall output SQNR through the static 

number format analysis and optimization stage by stage. Compared to previous 

works, our method offers the following three contributions: 1) providing a 

probability model that can abstract the behavior of fixed-point arithmetic logic; 2) 

preventing the use of time-consuming and pattern-dependent simulation throughout 

the entire optimization process; 3) minimizing the required wordlength in a 

hardware implementation under a given SQNR target without demanding extra 

hardware components and complicating control logic compared to other existing 

static approaches [49, 50]. 

1.3 Dissertation Organization 

The rest of this dissertation is organized as follows. In Chapter 2, an 

ILP-based bitwidth-aware subexpression sharing for area minimization in filter 

design is presented. In Chapter 3, we demonstrate an expandable MDC-based FFT 

architecture and its generator targeting for the high-performance applications. Then, 

a probability-based static scaling optimization flow for fixed wordlength FFT 

processors is developed in Chapter 4. Finally, the concluding remarks and the 

future works are given in Chapter 5.
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Chapter 2 

Bitwidth-Aware Subexpression 

Sharing in FIR Filter 

2.1 FIR Filter Implementation 

In this section, we first introduce the fundamentals of an FIR filter design. Then, three 

different number representations as well as the related algorithms are briefly reviewed 

here. 

2.1.1 Fundamentals of FIR filter design 

A general form of a linear time-invariant N-tap FIR filter can be expressed as a 

convolution involving the last N input data and N constant filter coefficients. The 

output y(n) can be calculated as: 







1

0
)()(

N

k k knxcny  (1) 

where 

1. x(n) is the input sequence, 

2. y(n) is the corresponding output sequence, 

3. ck are constant filter coefficients, and 

4. N is the filter length. 

Figure 3 illustrates a general fully-parallel transposed architecture of FIR filter, which 

requires N–1 additions and N multiplications to produce a single output value. It is 

also observed that one of the two inputs of every multiplication is always from the 
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present input sample. Therefore, an MCM block can be used to produce a set of 

products between an input value and a given set of constant coefficients. Since all 

coefficients are fixed-point constants, those constant multiplications can be solely 

achieved through a series of additions, and thus the use of costly regular multipliers 

can be completely eliminated as previously mentioned 

2.1.2 Number representations 

Three different number formats can be used to represent fixed-point constants: 

pure binary form, the canonical signed digit (CSD) form, and the minimal signed digit 

(MSD) form. The pure binary form is the trivial unsigned binary representation, 

where every digit is either 0 or 1. In the CSD representation, three symbols, 0, 1, and 

1, are used, where 1 denotes –1. The CSD representation has the following two 

properties: 1) the count of nonzero digits (i.e., 1 and 1) is minimal; and 2) any two 

adjacent digits cannot both be nonzero. In addition, the CSD representation for a 

Table 1 Three different representations for the number 23 

 Representation 

pure binary 010111 

CSD 100110  

MSD 101100  or 100110  

 

 

Figure 3 A general architecture of FIR filter. 
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number is unique, and this is how “canonical” comes from. Similar to the CSD form, 

the MSD form also adopts the same three symbols and requires that the count of 

nonzero digits is minimal. Unlike the CSD from, the MSD form allows adjacent 

nonzero digits, which makes itself no longer a canonical representation. In other 

words, a number may have multiple valid MSD representations. Note that the CSD 

representation is also a valid MSD representation. Table 1 gives an example where the 

number 23 is presented in those three representations with the length of six digits. The 

number 23 has a unique representation in pure binary form and CSD form, but has 

two feasible representations in MSD form. Besides, it is a guarantee that for any 

number the count of nonzero digits in pure binary representation is no less than that in 

CSD and MSD representations. 

In hardware implementation, the count of nonzero digits of a value c basically 

determines the number of required additions to realize the multiplication by c. Figure 

4 demonstrates three different ways for implementing a constant multiplication by 23. 

Figure 4(a) shows a direct implementation based on the pure binary representation 

(i.e., 10111). Since there are four nonzero digits, three adders are required to complete 

the multiplication (i.e., 23x=16x+4x+2x+x). However, there are only three nonzero 

(a) (b) (c)

+

+
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x(n)*23
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<<2<<4

+

+

+

+

+

+
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<<5 <<3

-

+

-
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+
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<<4 <<3

+

+

-
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Figure 4 Three different implementations for the number 23. 
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digits if the CSD format is considered (i.e., 101001). As shown in Figure 4(b), merely 

two adders are enough to accomplish the same multiplication (i.e., 23x=32x–8x–x, a 

subtraction a – b is regarded as an addition a + (–b) in this dissertation). Since the 

number 23 has two valid MSD representations, Figure 4(c) illustrates the other one 

(i.e., 011001), which also needs two adders only (i.e., 23x=16x+8x–x). Consequently, 

CSD and MSD representations are usually adopted in constant multiplications 

because both of them guarantee the count of nonzero digits for any given constant is 

always minimal. 

2.1.3 Digit-based algorithms 

A number of algorithms have been proposed to decompose a set of constants 

based on a specified number representation [20-33]. However, most of these previous 

methods only focus on the minimization of the total adder count. Since the area and 

delay of an adder is highly dependent on the bitwidth as mentioned, it is unwise to 

neglect its impact during optimization. For example, two different ways can be used 

to implement the constant multiplication of 11x: (1x+2x)+8x or (1x+8x)+2x. They 

both require two adders to complete the multiplication. However, the bitwidth of the 

result of (1x+8x), is apparently longer than that of (1x+2x). Since a wider result 

potentially requires wider adders for succeeding additions, it is actually a good idea to 

take the resultant bitwidth of addition outcome into account for better optimization 

outcomes. 

2.1.4 Motivation of our work 

Figure 5 (a) illustrates a sample multiplier-less MCM design, where the input x is 

8-bit wide. Instead of using five costly multipliers, the five output values (the input x 

times 19, 21, 31, 121, and 125) can be produced by only seven adders. Note that every 
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adder must be wide enough to ensure the absence of overflow. Typically, an adder 

with n–1 bits is used to generate an n-bit sum. For example, Adder_1 shown in Figure 

5(a) is used to produce an output of 5x = x + (x << 2), where the output is 11-bit wide 

and the trivial implementation of Adder_1 should be 10-bit wide, as depicted in 

Figure 6 (a). However, it is observed that the rightmost two adder bits in Figure 6(a) 

are actually redundant due to the 2-bit right shifting (i.e., x << 2). As a consequence, 

Adder_1 can be safely downsized to an 8-bit adder, as shown in Figure 6(b). This 

example clearly indicates that a more compact adder implementation can possibly be 

achieved if the relation between two input operands is carefully investigated. 

Let us reexamine the implementation shown in Figure 5(a). The number labeled 

within a circle specifies the minimal bitwidth of the corresponding adder. Hence, a 

total of 67 bits is required for those 7 adders. Meanwhile, Figure 5(b) illustrates 

another implementation for the same MCM, which requires 8 adders but only 64 

adder bits. That is, the implementation depicted in Figure 5(b) consumes more adders 

but less adder bits than that shown in Figure 5(a). As previously explained, we 

consider the solution given in Figure 5(b) is better. However, those previous 

approaches trying to minimize the adder count would prefer the solution shown in 

Figure 5(a). Consequently, it motivates us to develop a new area minimization 

algorithm for MCM designs that concentrates on total adder bitwidth minimization. 

The details are elaborated in the following two sections. 
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(a) an MCM design with 7 adders and 67 bits

(b) same MCM design with 8 adders and 64 bits
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Figure 5 A motivational example of multiplier-less MCM. 
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(a) a 10-bit adder

(b) an 8-bit adder
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Figure 6 Two alternative implementations of Adder_1, x + (x << 2). 
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2.2 Proposed Algorithm 

In this section, we present a bitwidth-aware ILP-based area minimization 

algorithm for MCM designs. It uses a graph-based approach that keeps track of 

common subexpressions among constants as well as calculates the exact required 

bitwidth of each adder simultaneously. The details are described in the following 

sections. 

2.2.1 Number decomposition and bitwidth calculation 

The fundamental of the MCM optimization problem is to maximize the common 

subexpression sharing among given constants. Hence, it is generally true that the 

optimization outcome could be better if more ways are considered for decomposing a 

constant, i.e., a larger solution space. However, the number of possible ways for 

decomposing a number is actually infinite. For example, the number 3 can be 

achieved as 1+2, 4–1, 5–2, 6–3, 7–4, and so on. Fortunately, not all of them are 

appropriate while constructing an area-efficient solution. As explained in Section 2.2, 

the number of adders (Az) needed to accomplish a constant multiplication by z is equal 

to the number of nonzero bits of z (Bz) minus one, i.e., Az = Bz – 1. Hence, there is no 

reason to decompose z as x + y if Bz < Bx + By during optimization. For instance, it is 

not wise to decompose the number 3 as 5–2. In our method, a set of target constants D 

= {di} is first converted into C = { ci | di = ci  2
l
, ci is an odd number}. That is, all 

constants ci are assumed odd numbers initially. Next, for every constant c with k 

(where k > 1) nonzero digits in its MSD representation, the proposed algorithm 

merely considers a finite set of number decompositions complying with the following 

format: 
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0,2  lfdedc l  (2) 

where d and f must be odd, as well as e must be even. 

For example, the set of decompositions for the number 153 ( 00111010  in MSD) is 

enumerated in Table 2. Actually, a number decomposition c = d + e is created by 

partitioning the nonzero digits in c’s MSD form into two nonempty disjoint groups. 

The group contains the least significant digit (LSD) actually defines the value of d 

(odd), while the other group specifies the value of f (even). As shown in the last 

column of Table 2, the nonzero digits are partitioned into gray and non-gray groups. 

Therefore, for a number c that has m valid MSD representations and every one 

includes k nonzero digits, the total number of possible decompositions of c can be 

formulated as: 
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 (3) 

For instance, the total number of decompositions for 153 is 1(2
4–1

–1) = 7 

according to (3). 

For a decomposition c = d + f  2
l
, both |d| and |f| are called the subexpressions of 

c. For example, the number 153 has eleven different subexpressions – {1, 3, 5, 7, 15, 

19, 25, 33, 121, 129, 161}. Hence, according to (2), the decompositions and the 

subexpressions of any odd number larger than 1 can be identified using the approach 

described above. 

An adder is required to carry out a decomposition of a constant multiplication cx 

= dx + fx  2
l
 = p + (q << l). Assume p is m-bit long and q is n-bit long, the adder 

bitwidth can thus be determined based on the following two scenarios: 
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1) m  n + l: the adder bitwidth is m – l, 

2) m < n + l: the adder bitwidth is n. 

The bitwidth of the addition result is resolved by the larger value between m and 

n + l, namely, max(m, n + l). However, since each of the least l bits generates no carry 

during addition in both scenarios, the required adder bitwidth can be safely reduced to 

max(m, n + l) – l, as illustrated in Figure 7. In general, an adder with smaller bitwidth 

occupies smaller area and has shorter delay, as aforementioned. 

While revisiting the previous decomposition example of 153, we further assume 

the input x is 8-bit wide, which is used to produce the output 153x. By Table 2, a 

possible decomposition is 153 = 121 + 32 = 121 + 1   2
5
, which indicates that the 

output 153x can be obtained from the summation of 121x and 32x. Obviously, 32x is 

only 5-bit left shift of x. Also note that the left shift requires no additional hardware in 

the real implementation. Meanwhile, 121x needs to be further decomposed based on 

(2) in the same manner and its bitwidth is 15 bits (i.e., 8 +  121log 2
). The adder type 

required to sum up 121x and 32x is the one illustrated in Table 7(a), where m = 15, n = 

Table 2 All feasible decompositions of the number 153 

index d + e d + f  2
l
 153 in MSD 

1 1 + 152 1 + 19  2
3
 10101001 

2 161 + (–8) 161 + (–1)  2
3
 10101001 

3 121 + 32 121 + 1  2
5
 10101001 

4 25 + 128 25 + 1  2
7
 10101001 

5 (–7) + 160 (–7) + 5  2
5
 10101001 

6 33 + 120 33 + 15  2
3
 10101001 

7 129 + 24 129 + 3  2
3
 10101001 
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8, and l = 5. Therefore, the required bitwidth of the adder is 15 – 5 = 10 bits. 

On the other hand, 153 can also be decomposed in the form of 153 = 25 + 128 = 

25 + 1   2
7
, which implies 153x comes from adding 25x from 128x. Similarly, 128x 

is merely 7-bit left shift of x and 25x is 13-bit wide (i.e., 8 +  25log2
). Alternatively, 

the adder type required to sum up 25x and 128x is the one shown in Figure 7(b), 

where m = 13, n = 8, and l = 7. Consequently, the required bitwidth of the adder is 8 

bits. 

2.2.2 Bitwidth-aware multiplier-less MCM design flow 

Figure 8 gives the overall flow of the proposed bitwidth-aware ILP-based area 

minimization algorithm for MCM designs. At first, all constants (odd numbers) are 

collected into the constant-for-decomposition set C; that is, every constant in C needs 

to be further decomposed. Besides, the resultant subexpression set S is created to keep 

track of all constants that may be utilized during the MCM block construction. Then, 

(a)  m ≥ n + l

(b) m < n + l
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Figure 7 Adder bitwidth calculation. 
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an arbitrary constant c is removed from C for decomposition. Based on the specified 

number representations, i.e., pure binary, CSD, or MSD, all decompositions of c are 

enumerated and the associated hardware cost in terms of total adder bit count is 

calculated using the method presented in Section 3.1. 

Next, c is added into S after all decompositions of c are identified. For every 

subexpression of c that has not been present in S yet, it is added into D for further 

decomposition. This process is not terminated until D is empty. As a result, the set S 

contains all possible constant numbers that may appear in the final MCM block. 

While performing constant number decomposition, the proposed approach 

concurrently builds a subexpression graph to keep track of all feasible decompositions 

for a given constant c. The graph also records the cost of every decomposition (i.e., 

adder bit count). Finally, based on this subexpression graph, a set of corresponding 

ILP constraints can be derived and then an ILP solver is utilized to produce an MCM 

design solution with the minimal total adder bits. The details of the ILP formulations 

are given in Section 4 later. Conventional look-up table based approaches require a 

1. C  { all constant numbers } 

2. S  { 1 } 

3. while ( C is not empty ) 

4.  Remove an arbitrary constant c from C 

5.  Add c into S 

6.  foreach ( decomposition d of c ) 

7.   Identify two subexpressions s & t of d 

8.   Calculate the required adder bit count 

9.   Record d in the subexpression graph G 

10.   Add s & t into C if they are not in S yet 

11. Derive ILP constraints from G 

12. Find a solution with minimal adder bit count by ILP 

Figure 8 The proposed algorithm flow. 
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pre-computed table to store all decompositions of every odd number within a fixed 

bitwidth (e.g., 13-bit). Therefore, the table can become very huge as the bitwidth 

increases. In contrast, the proposed algorithm merely enumerates decompositions for 

a limited number of subexpressions. 

2.3 Example of Subexpression 

Graph Construction 

In this subsection, the CSD representation is in use for simplicity. Note that 

the proposed algorithm is applicable to the MSD one. We also use an example to 

demonstrate how a subexpression graph is dynamically constructed. In the 

following example, the 8-bit input is multiplied by two constant numbers, 21 and 

153. First, these two constants are transformed in CSD form. 

CSD210

CSD210

0011101010011001153

and

101011010121





 

According to its CSD form, each constant can be further decomposed as a set of 

subexpressions based on the method described in Section 3.1 
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There are three and seven decompositions for 21 and 153, respectively, which is 

the same as (3) specifies. After decomposition, we also find that the number 21 has 

three subexpressions of {1, 5, 17} and the number 153 has eleven subexpressions of 

{1, 3, 5, 7, 15, 19, 25, 33, 121, 129, 161}. Every subexpression (except 1) needs to be 

further decomposed for finding out all its feasible decompositions and the associated 
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adder bit count, as the algorithm flow presented in Figure 8. 

There are two types of vertices within a subexpression graph G: 1) a number 

vertex is associated with a constant value, and 2) an adder vertex specifies a 

decomposition and associates the decomposed number with its two subexpressions. 

When a constant number c is removed from C, a corresponding number vertex is 

added into G if it is not present in G. For every feasible decomposition of c, a 

corresponding adder vertex is added into G. Similarly, a number vertex associated 

with each of two subexpressions, s and t, is also inserted into G if it is not present in G. 

The adder vertex not only relates c to both s and t but also keeps track of the required 

adder bit count for this decomposition. Also note that every unique number c has 

exactly one corresponding vertex in G. 

Figure 9 illustrates the partial subexpression graph for 21 and 153. The rightmost 

adder vertex indicates itself a decomposition of 21 (i.e., a fanin of the number vertex 

associated with 21). It also shows that 1 and 17 are two subexpressions (i.e., its two 

fanin number vertices) of this decomposition. In addition, it also specifies that the 

required adder bitwidth is 11 for this decomposition. There are 3 and 7 various 
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Figure 9 Partial subexpression graph for the numbers 21 and 153. 
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decompositions for 21 and 153 respectively as shown in Figure 9. A subexpression 

larger than one should be further decomposed. Except for 17, Figure 9 does not show 

the succeeding decompositions due to page limitation. Note that Figure 9 also shows 

that 5 is a common subexpression of both 21 and 153, which implies the hardware 

cost may be reduced if 5 is shared by both of them in the final implementation. All 

chances of common subexpression sharing can be exhaustively identified in the 

proposed subexpression graph. 

2.4 ILP Formulation 

The problem of bitwidth-aware area minimization for MCM design is thus 

solved through integer linear programming (ILP). Three types of constraints are 

derived: 1) an existence constraint guarantees at least one of decompositions is 

selected for a specified number, 2) a dependency constraint ensures the two 

corresponding subexpressions would also be implemented if a specified 

decomposition is selected, and 3) an output constraint guarantees all the output 

constants of the given MCM are implemented. The ILP-related notations used in this 

section are given below. 

 sn: a 0-1 variable indicating if the subexpression of the value n is implemented. 

 dn: the count of feasible decompositions of the number n. 

 an,i: a 0-1 variable indicating whether the i-th decomposition of the number n is 

selected for implementation. 

 bn,i: the required adder bit count for implementing the i-th decomposition of the 

number n. 

2.4.1 Existence constraints 

To realize a constant multiplication by n  1, at least one of its decomposition 
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must be selected for implementation, which can be formulated as the following 

constraint: 

}{ ,
1

in
di

n amaxs
n

  (4) 

For example, there are three different decompositions for the number 21, as 

shown in Figure 9. According to (4), at least one of those three decompositions must 

be selected. That is, 

},,{}{ 3,212,211,21,21
31

21 aaamaxamaxs i
i




 

2.4.2 Dependency constraints 

As explained in Section 2.3, a decomposition actually implies an adder and its 

two subexpressions serve as the inputs to the adder. Hence, there is no way to get the 

addition outcome if those two inputs are not available. That is, if the i-th 

decomposition of the number n is selected for realization, both of its two 

corresponding subexpressions, x and y, must also be carried out. The constraint can 

then be formulated as: 

},{, yxin ssmina   (5) 

For instance, the number 153 can be regarded as 321533   by the sixth 

decomposition of 153 shown in Figure 9. Hence, the corresponding dependency 

constraint can be given as: 

},{ 15336,153 ssmina   
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2.4.3 Output constraint 

Assume that the set C includes all constant numbers of the target MCM block; 

the following output constraint is applied to ensure that every element n  C is 

properly implemented: 

Cnsn   ,1  (6) 

2.4.4 Optimization goal 

As aforementioned, the hardware cost of the target MCM block can be lowered if 

the total adder bit count in use can be minimized. Since every implemented adder 

must be associated with a variable an,i set to 1 and the bitwidth of that adder is bn,i, the 

goal of total adder bitwidth minimization can thus be accomplished through setting 

the objective of the ILP formulation as: 

minimize  
 


Cn di

inin

n

ba
1

,, 
 (7) 

subject to (4), (5), and (6). 

2.5 Experimental Results 

To evaluate the proposed algorithm, we compare it against a widely used 

graph-based technique revealed in [14] as well as a state-of-the-art digit-based 

technique presented in [29]. All experiments have been conducted on a Linux 

platform with two Intel Xeon 2.4 GHz processors and 12 GB main memory. For the 

preparation of test cases, the Remez algorithm [51, 52] is utilized to randomly 

generate FIR filters of various types, including low-pass, high-pass, band-pass, and 

band-stop. Besides, the MSD representation is adopted for the number decomposition, 
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and the Gurobi Optimizer [53] is used as ILP solver. 

In Table 3, 12 8-tap filters are evaluated with 12-bit coefficients and input data. 

For each method, #adders reports the total number of adders required in the MCM 

block, while #bits gives the total number of adder bits. Since RAG-n [14] allows the 

use of right shifters and accepts a mapping result that induces extra adders for a 

coefficient to maximize global subexpression sharing, it is capable of finding a design 

solution that is not presented in the solution space for digit-based algorithms. Hence, 

RAG-n is likely to better minimize the number of adders for an MCM design, as the 

results show. However, our method can better minimize the number of adder bits for 

every test case. Even in the case of bs8-3, the result of the proposed method needs 

two more adders but still requires one fewer adder bit than that of RAG-n. 

To evaluate the area cost of a real implementation more precisely, we also 

generate the corresponding Verilog RTL code for a set of 128-tap filter designers and 

Table 3 8-tap filter cost comparisons among the three methods 

Filters 
RAG-n [14] Ho et al. [28] Ours 

#adders #bits #adders #bits #adders #bits 

lp8-1 6 97 6 91 6 91 

lp8-2 8 155 8 129 8 126 

lp8-3 7 136 8 127 8 121 

hp8-1 6 104 6 104 6 100 

hp8-2 8 139 8 134 8 134 

hp8-3 7 118 8 120 8 112 

bp8-1 10 206 11 190 11 181 

bp8-2 9 169 9 161 9 152 

bp8-3 10 189 10 180 10 161 

bs8-1 9 157 9 162 9 156 

bs8-2 7 118 7 109 7 105 

bs8-3 8 143 9 152 10 142 
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then synthesize the RTL code into the gate-level design based on TSMC 0.18m 

technology. In Table 4 and Table 5, two configurations with different coefficient 

widths, 12-bit and 16-bit, are examined for each filter. In addition, the input is also 

assumed as wide as the coefficient. Similarly, #adders reports the total number of 

adders in the MCM block, #bits gives the total number of adder bits, and #gates 

reveals NAND2-equavilent gate count in the synthesized circuit. Table 4 clearly 

shows that for every test case the proposed algorithm needs more or same number of 

adders than the method in [28]. 

However, our method requires fewer adder bit count in every test case. For 12 

12-bit test cases in Table 4, the average reductions on the adder bit count and the gate 

count are 7.38% and 7.91%, respectively; for 12 16-bit test cases in Table 5, the 

corresponding reductions are 7.65% and 7.27%, respectively. Note that the 

Table 4 Synthesis results and comparisons for 12-bit 128-tap FIR filters 

 

Ho et al. [28] Ours Comparisons 

#adders #bits #gates #adders #bits #gates 
#adders 

increased 

bit 

saving 

(%) 

gate 

saving 

(%) 

lp128-1 68 1,245 23,254 69 1,122 21,487 1 9.9 7.6 

lp128-2 57 1,063 20,006 58 987 18,869 1 7.1 5.7 

lp128-3 68 1,286 24,443 70 1,175 21,597 2 8.6 11.6 

hp128-1 60 1,103 21,305 60 1,025 19,290 0 7.1 9.5 

hp128-2 67 1,243 22,004 67 1,165 20,792 0 6.3 5.5 

hp128-3 68 1,225 22,264 69 1,122 20,762 1 8.4 6.7 

bp128-1 61 1,109 19,952 62 1,004 18,373 1 9.5 7.9 

bp128-2 63 1,122 21,469 65 1,048 19,259 2 6.6 10.3 

bp128-3 58 1,073 20,090 58 986 18,345 0 8.1 8.7 

bs128-1 56 1,026 18,639 57 959 17,856 1 6.5 4.2 

bs128-2 61 1,102 20,527 62 1,056 19,215 1 4.2 6.4 

bs128-3 56 1,035 19,701 57 977 17,741 1 5.6 9.9 
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improvements basically remain unchanged as the width of constant number increases 

from 12-bit to 16-bit, which is a good trend for the future applications. The 

experimental results also verify that the total adder bit count can better estimate the 

area cost in a real hardware implementation than the total adder count only, as we 

claimed previously. 

Besides, the proposed method can also adopt the maximum logic depth 

constraint described in [28] to guarantee the worst-case delay through adding extra 

depth-related constraints into the ILP formulations. Two different logic depth 

constraints are examined for comparisons using a set of 12-bit 32-tap FIR filters and 

the results are shown in Table 5. The average bit count reduction is similar to the 

previous experiment, which is 5.77% and 7.18% as the maximum logic depth is set to 

4 and 5, respectively. 

Table 5 Synthesis results and comparisons for 16-bit 128-tap FIR filters 

 

Ho et al. [28] Ours Comparisons 

#adders #bits #gates #adders #bits #gates 
#adders 

increased 

bit 

saving 

(%) 

gate 

saving 

(%) 

lp128-1 99 2,401 46,789 103 2,195 43,858 4 8.6 6.3 

lp128-2 96 2,267 45,783 97 2,129 45,404 1 6.1 0.8 

lp128-3 96 2,303 44,290 98 2,205 44,154 2 4.3 0.3 

hp128-1 95 2,331 49,248 100 2,133 43,400 5 8.5 11.9 

hp128-2 96 2,350 50,826 97 2,151 45,139 1 8.5 11.2 

hp128-3 98 2,361 49,281 101 2,170 44,662 3 8.1 9.4 

bp128-1 91 2,157 40,536 92 1,996 38,147 1 7.5 5.9 

bp128-2 95 2,324 48,145 99 2,094 42,598 4 9.9 11.5 

bp128-3 92 2,235 46,108 96 2,067 42,869 4 7.5 7.0 

bs128-1 87 2,157 45,151 88 1,975 42,579 1 8.4 5.7 

bs128-2 93 2,274 46,591 98 2,104 43,656 5 7.5 6.3 

bs128-3 93 2,215 46,102 94 2,061 41,755 1 7.0 9.4 
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In addition, all the ILP problems (including 12-bit and 16-bit 128-tap filters) 

presented in the experiments can be successfully resolved in less than an hour, which 

should be considered acceptable. As a consequence, it is conclusive that our proposed 

algorithm can produce better area-minimized MCM design solutions than the best 

prior art [29] within an acceptable runtime. 

2.5 Summary 

In this dissertation, we present an ILP-based bitwidth-aware area minimization 

algorithm for MCM designs. We first point out that the total adder bit count rather 

than the total adder count can better estimate the hardware cost in a real 

implementation. Then, for a given MCM design, those target constants are first 

represented in a specified number format (MSD in use in this dissertation). Next, a 

Table 6 Logic depth comparisons for 12-bit 32-tap FIR filters 

Filters 

Depth = 3 Depth = 4 

Ho et al. [28] Ours Ho et al. [28] Ours 

#adders #bits #adders #bits #adders #bits #adders #bits 

lp32-1 16 282 16 271 16 296 16 271 

lp32-2 21 363 21 323 21 354 21 323 

lp32-3 15 259 15 241 15 250 15 241 

hp32-1 22 405 22 373 22 400 22 373 

hp32-2 17 294 17 284 17 300 17 284 

hp32-3 19 339 19 318 19 334 19 318 

bp32-1 25 421 26 382 24 388 24 378 

bp32-2 22 399 23 393 21 384 22 373 

bp32-3 23 395 23 366 23 417 23 366 

bs32-1 23 405 23 346 23 393 23 346 

bs32-2 24 419 24 368 23 381 24 368 

bs32-3 21 360 21 328 21 356 21 328 
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subexpression graph is created to record all feasible decompositions for every target 

constant. The graph also keeps track of the required adder bitwidth as well as two 

subexpressions for every decomposition. At last, the area minimization problem is 

formulated as a set of ILP constraints derived from the subexpression graph and 

optimally resolved within an acceptable runtime. The experimental results 

demonstrate that our proposed algorithm can achieve an average reduction of more 

than 7% on both of the adder bit count and the real gate count. Therefore, we are 

confident that the proposed approach can outperform the existing state-of-the-art 

techniques and should be regarded as a better alternative for area minimization in 

MCM designs 
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Chapter 3 

Expandable MDC-Based FFT 

3.1 Overview of the Pipelined FFT Architecture 

Pipelined architectures can be divided into two major categories according to the 

datapath structure. One is Single-path Delay Feedback (SDF) based architecture and 

the other is Multi-path Delay Commutator (MDC) based architecture. SDF-based 

architectures use properly-sized local delay feedback loops to correctly schedule the 

input data for butterfly units. It typically has the advantages of higher hardware 

utilization rate and less hardware cost. On the contrary, MDC-based architectures first 

separate the input sequence into two parallel data streams by properly-controlled 

switches/FIFOs and then direct them into the correct butterfly units. As a result, 

MDC-based architectures generally demand a bit more hardware resources and larger 

memory bandwidth but provide higher throughput in return. Nevertheless, though a 

fixed MDC-based architecture can generally provide good throughput at reasonable 

hardware cost, it may still fail to meet the target performance requirement for some 

throughput-hungry design cases. 

In [54] and [55], a foldable structure is proposed to provide various design 

tradeoffs between area and throughput based on the base (Pease) architecture. Since 

the Pease architecture possesses high regularity, it is extremely easy to fold butterfly 

units in its implementation either horizontally or vertically. Figure 10 illustrates the 

fully-expanded 16-point foldable Pease FFT implementation. It is apparent that 4 

butterfly columns are identical and thus can be easily 2- or 4-folded horizontally. 
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Similarly, identical 8 butterfly rows can be 2/4/8-folded vertically as well. With 

this folding technique, an area-optimized architecture can be tailored to meet the 

given throughput constraint. However, this customized architecture still requires more 

area than conventional pipelined architectures when delivering same throughput 

(shown later). Furthermore, a matrix factorization of FFT computation is also 

developed in [44] and [55]. Each element in the factored matrix can be expressed as a 

specific hardware component so that area/performance evaluation can be easily done 

at the architecture exploration stage. However, [44] and [55] do not consider 

MDC-based pipelined architectures. 

 

Figure 10 A foldable Pease architecture for 16-point FFT 

Butterfly (BF)

Column 1 Column 2 Column 3 Column 4
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Figure 11 The generic template of R2
2
EMDC architecture 
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3.2 Proposed Architecture 

In this dissertation, we propose an area-efficient high-throughput Expandable 

MDC (EMDC) based FFT architecture. It can be easily applied to conventional 

MDC-based FFT architectures (such as R2
2
MDC, R2

3
MDC, and R2

4
MDC). Here, we 

only demonstrate the Radix-2
2
 Expandable MDC (R2

2
EMDC) architecture. 

3.2.1 The proposed R2
2
EMDC architecture 

The generic template of the proposed R2
2
EMDC architecture is presented in 

Figure 11 Three key parameters are described as follows: 

N: the FFT size, where N = 2
m
, and m is a positive integer. 

t: the degree of parallelism obtained from expansion, where t = 1, 2, 2
2
, …, 2

m-1
.
 

In: the nn interconnection permutation matrix (IPM), where n = 2
2
, 2

3
, …, 2

m
.
 

The proposed architecture is composed of two stages – in addition to butterfly 

units, the front stage, named data reordering stage, employs FIFOs with specific size 

and properly-controlled switches to align the data in correct order; while the back 

stage, named data shuffling stage, deploys a set of precisely-organized IPMs to shuffle 

the data among different rows to their correct positions (i.e., bit reversing). Note that 



46 

 

Figure 12 Two types of butterfly structures 
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two types of butterfly structures, BFI and BFII [41], are in use, as shown in Figure 12. 

BFI is basically composed of two complex adders/substractors for two complex inputs, 

a and b, while BFII contains additional multiplexing logic to implement an optional 

multiplication of –j; that is, the trivial twiddle factor multiplication of –j can be 

accomplished by a simple real-imaginary swap plus well-multiplexed 

addition/subtraction computations instead of actually using a costly complex 

multiplier. 

Meanwhile, the formal definition of IPM In is described in (1), where p and q 

indicates the input and output port position respectively; and Figure 13 gives the 

examples of I4 and I8. 













2
),1

2
()1

2
()2 mod (

2
),1

2
()2 mod (

:
n

p
nn

ppq

n
p

n
ppq

I n  (8) 

As a result, an IPM is simply a signal wiring network and thus hardly consumes 

logic resources from a hardware implementation perspective. 

3.2.2 Hardware cost and throughput evaluation 

For the conventional R2
2
MDC architecture, the number of complex multipliers 

and adders is   2log2 4 N  and N2log2 , respectively. Besides, two output values 
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Figure 13 Interconnection configuration of I4 and I8 
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are produced at every cycle, so the throughput is 2/N. Furthermore, since R2
2
EMDC 

allows expanding its datapath to trade for better performance, the number of 

multipliers, adders, and so as the overall throughput is all proportional to the degree of 

parallelism t. For example, Figure 14 illustrates four instances of the 16-point 

R2
2
EMDC architecture with different t settings. Figure 14(a) shows the case with t = 

1 (no expansion applied), which is identical to the original R2
2
MDC architecture. 

Meanwhile, Figure 14(b)/(c) gives the case with t = 2/4, where the number of 

multipliers and adders is doubled/quadrupled, and so is the throughput. Notice that the 

number of FIFO entries actually decreases as t rises. Figure 14(d) depicts the case 

with t = 8, namely, the fully-expanded implementation that provides the maximum 

throughput of 16-point R2
2
EMDC architecture, which also demands the largest 

hardware resources. 

Similarly, for the foldable Pease architecture illustrated in Figure 10, it is 

observed that the number of multipliers and adders is both reduced to a half and so is 

the throughput as the datapath is vertically folded once. However, the number of FIFO 

entries remains unchanged regardless of the parallelism of datapath. 
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Figure 14 Different instances of 16-point R2
2
EMDC architecture 
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Table 7 gives several theoretical comparisons between the existing foldable 

Pease architecture and the proposed R2
2
EMDC one. Since multipliers take a major 

part of hardware cost in an FFT design, it is evident that our newly proposed one 

requests less hardware resources than the existing one under the same throughput 

constraint. 

3.3 Experimental Results 

Based on the proposed R2
2
EMDC architecture, we have implemented a 

parameterizable FFT generator in Perl script. By indicating the size (N) of FFT core 
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Table 7 Comparisons between foldable Pease and R2
2
EMDC 

Architecture #multipliers #adders #FIFOs 

Foldable Pease [54, 55] Nt 2log  2tlog2N
 N 

R2
2
EMDC   )2log2( 4 Nt  2tlog2N

 N–2t 

 

and the degree of datapath parallelism (t), our generator can output the specified 

hardware design in synthesizable Verilog HDL just in few seconds. Furthermore, we 

also use MATLAB in our testbench environment for extensive pattern 

generation/simulation and SQNR analysis (larger than 80db) to verify the correctness 

of the generator. 

In additional to comparing the foldable Pease architecture and R2
2
EMDC in an 

analytic way (Table 7), it is also interesting to compare the generated hardware cores 

in terms of logic-gate-count (NAND2-equivalent), throughput, and power 

consumption. As a result, we have also implemented the generator proposed in [43], 

which always completely folds the core in horizontal direction first and then v-folds 

the core in vertical direction, where v is parameterizable. The generated hardware 

cores are then synthesized under UMC 0.18um technology using Synopsys Design 

Compiler with 100MHz timing constraint. 

Figure 15(a) and (b) reports the area-throughput design tradeoff solutions offered 

by R2
2
EMDC and the foldable Pease architecture [44] for 256-point and 1024-point 

FFT, respectively. The throughput ratio indicates the throughput of a given 

architecture to that of the fully parallel Pease architecture. As expected, the newly 

proposed one is always more area-efficient than the existing one when delivering the 

same throughput. To name an example, the area reduction is about 37% as N = 256 

and t = 16. Moreover, under a fixed FFT size N, the area gap between two 

architectures is getting large as the target throughput increases. That is, according to 
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(a) N = 256 

 
 (b) N = 1024 

Figure 15 Area vs. throughput in 256/1024-point FFT 
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the theoretical analyses and experimental results, it is conclusive that the proposed 

R2
2
EMDC architecture is indeed capable of providing a smaller hardware 

implementation than the existing foldable Pease architecture under the same 

throughput constraint. 

Table 8 compares the power consumption between four different instance pairs 
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Table 8 Power consumption in 256-point FFT (mW) 

Ratio Foldable Pease R2
2
EMDC Power Reduction (%) 

0.0078 14.03 12.48 11.0 

0.0156 27.59 22.09 20.0 

0.0313 55.90 42.07 24.7 

0.0625 97.67 79.41 18.7 

 

derived from the two architectures with the same target throughput ratio (using UMC 

0.18um process and measured by Synopsys PrimePower). R2
2
EMDC achieves 

roughly 20% of power reduction as compared to the foldable Pease architecture. Here, 

the smaller hardware implementation should be the major reason for the results. 

3.4 Summary 

In this dissertation, we propose an expandable multi-path delay commutator 

(EMDC) based FFT architecture. We show that the proposed architecture can be 

easily and flexibly expanded to satisfy throughput-hungry applications. In addition, a 

parameterizable hardware generator is also developed to automatically produce the 

specified HDL code so that the design cost and time can be drastically minimized. 

Finally, the theoretical analyses and/or experimental results demonstrate that the 

proposed architecture does consume less area and power than the existing foldable 

Pease architecture under the same throughput constraint. 
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Chapter 4 

Probability-Based Static Scaling 

Optimization for Fixed 

Wordlength FFT Processors 

4.1 Introduction of Scaling Optimization 

Recently, high-data-rate wireless communication systems have been becoming a 

primary focus of both research and development. For example, OFDM technology is 

one of the favorable choices for future broadband systems and is highly suitable for 

video transmission and mobile Internet applications. The FFT processor is one of the 

key components in OFDM-based wireless systems [4-6, 45]. Actually, not just in 

OFDM, the FFT processor also serves as an essential element in many other modern 

DSP systems. Consequently, improving FFT processor designs has become the focus 

of a large number of studies since the past decade. 

The architectures of FFT processors can be roughly divided into two major 

categories: memory-based and pipeline-based. A memory-based architecture usually 

consists of only one butterfly unit. In general, it provides area-efficient solutions for 

low-throughput applications. Alternatively, a pipelined architecture consists of 

multiple concurrent processing butterfly units so that it can provide higher throughput 

at the cost of more hardware resources. In general, memory-based architectures are 

suitable for FFT processors where the hardware cost is an issue and the FFT size is 
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not smaller than 512 [3]. Pipeline-based architectures are typically feasible for 

applications with smaller FFT sizes. In this dissertation, we focus on the scaling 

optimization on FFT designs with a fixed wordlength at each stage; that is, the output 

wordlength of every stage is the same as its input wordlength. Memory-based designs 

naturally fulfill this requirement, while a considerable part of pipeline-based designs 

also choose to meet the same requirement since the fixed wordlength is still preferred 

due to hardware cost and critical-path delay considerations [46]. 

While crafting a practical FFT hardware design, the output precision in terms of 

Signal-to-Quantization-Noise Ratio (SQNR) is regarded as a key design requirement. 

In practice, FFT algorithms are commonly implemented using fixed-point arithmetic 

instead of floating-point arithmetic for hardware cost reduction. That is, only a limited 

number of bits are available to represent a signal or coefficient value. As a result, 

rounding and truncation operations inevitably introduce noises, which are referred to 

as quantization noises. Besides, addition and subtraction operations may also cause 

overflow errors (noises) during computations. Although extending the wordlength can 

relieve the accuracy loss, the hardware cost and the critical-path delay are increased 

accordingly. 

Therefore, several number scaling methods, either static or dynamic, have been 

proposed to improve the output SQNR [1, 45-69]. Oppenheim et al. [49] proposed a 

simple static scaling method that always increases the integer part by one bit for each 

radix-2 stage to prevent overflows. However, this method suffers significant 

quantization errors if the wordlength is fixed. In addition, methods based on dynamic 

scaling have also been proposed for the SQNR improvement. Block Floating Point 

(BFP)-based methods employ intermediate buffers to store and analyze a block of 

output values, and then dynamically determine an appropriate number format for that 

block to achieve a better SQNR [1, 45, 46, 56, 57]. However, all of these dynamic 
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methods suffer a notable increase in area, power, and latency as well as need a more 

complicated control unit. Consequently, most FFT designers rely on static instead of 

dynamic scaling optimization techniques to determine a proper number format for 

each stage [50]. 

Previous static scaling techniques can be roughly classified into three major 

categories: simulation-based approaches [58, 59], analytical approaches [47-50, 

60,-68], and a hybrid of previous two [48, 69, 70]. The simulation-based approaches 

try to find a good number format through lengthy iterations. In contrast, the analytical 

methods can determine a good number format very efficiently through a static 

numeric analysis without invoking time-consuming simulation. However, the analysis 

results are generally too pessimistic and lead to a larger wordlength than required. 

Therefore, the hybrid approaches are proposed to determine the number format and 

shorten the simulation time simultaneously. Meanwhile, the works mentioned above 

[47-50, 58-70] all assume they can arbitrarily determine the wordlength at each stage. 

However, in memory-based FFT designs, the wordlength (the width of the memory 

block) is always fixed. To the best of our knowledge, the problem of static scaling 

under a fixed wordlength constraint has not been well addressed yet. 

In this dissertation, we propose a scaling optimization technique based on the 

static probability analysis that can rapidly determine the best number format at each 

butterfly stage under a fixed wordlength constraint. Given a probability distribution of 

input signals, a selected FFT algorithm, and a wordlength constraint, the proposed 

technique can maximize the overall output SQNR through the static number format 

analysis and optimization stage by stage. Compared to previous works, our method 

offers the following three contributions: 1) providing a probability model that can 

abstract the behavior of fixed-point arithmetic logic; 2) preventing the use of 

time-consuming and pattern-dependent simulation throughout the entire optimization 
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process; 3) minimizing the required wordlength in a hardware implementation under a 

given SQNR target without demanding extra hardware components and complicating 

control logic compared to other existing static approaches [49, 50]. 

4.2 Number Scaling 

4.2.1 Related works 

It requires n+1 bits to accurately preserve a result of an n-bit fixed-point 

addition/subtraction operation. Hence, one solution for avoiding an overflow 

generated from a butterfly operation is to make the output wordlength one bit larger 

than the input one [48]. However, increasing the wordlength induces a number of 

drawbacks in FFT hardware implementation. First, a larger data storage unit (memory 

block or register file) is required, which increases both chip area and power 

consumption. Second, a longer wordlength results in a worse critical-path delay in 

arithmetic logic, which is not eligible for high-throughput FFT designs. Most of all, 

the wordlength is fixed in a memory-based FFT architecture, meaning that it is not 

possible to vary the wordlength from stage to stage. Consequently, many number 

scaling approaches have been proposed to prevent a wordlength increase at the cost of 

a minor accuracy loss, which can be roughly divided into two categories: the static 

scaling approaches and the dynamic ones. 

Oppenheim et al. [49] proposed a static scaling procedure which is widely adopt 

in today’s FFT hardware implementation. Since the maximum magnitude of the result 

increases no more than a factor of 2 for a butterfly stage, incorporating an attenuation 

of 1/2 at both inputs (that is, increase the integer part by one bit and decrease the 

fractional part by one bit in a fixed-length word) to a radix-2 butterfly unit can 

completely eliminate output overflows. However, this approach degrades the output 
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SQNR due to larger truncation errors caused by the increasingly shorter fractional part 

stage by stage. Besides, the above scaling method can be further improved a bit with 

only a slight modification. Instead of performing number scaling at the input, 

incorporating an attenuation of 1/2 at the output of each stage, as shown in Figure 16, 

can achieve a better overall SQNR. 

In [50], Ramakrishnan et al. concentrated on FFT designs for OFDM receivers. 

The authors exploit the fact that input samples of OFDM follow a normal distribution 

to predict the possible output value range at each stage and then determine the scaling 

strategy accordingly. They suggest increasing the integer part by one bit for every two 

stages instead of every stage for FFT designs used in OFDM. However, the input can 

vary from application to application, and is mostly assumed uniformly distributed in a 

typical FFT analysis [48]. Furthermore, our experimental results show that the 

approach presented in [50] works well only if the standard deviation of normal 

distribution is within a specific range. 

Therefore, instead of adopting the methods proposed in [49] and [50] directly, 

most designers try to find the optimized number format of output for each stage 

through simulation if a better SQNR is expected. Typically, there are two options for 

determining the number format of a radix-2 butterfly stage: keeping it unchanged as at 

the previous stage, or moving one bit from the fractional part to the integer part. 

However, when the number of stages (k) is big due to a large FFT size, it is virtually 

 

Figure 16 A radix-2 butterfly unit with scaling by 1/2 at the output. 
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impossible to evaluate all feasible configurations (2
k
) and then pick the best one 

through simulation. Consequently, designers usually empirically select a limited set of 

"better" candidate configurations, and choose the best one among them still through 

extensive time-consuming simulation. 

On the other hand, a dynamic scaling approach improves the output SQNR by 

means of the notion of shared-exponent. The BFP algorithm [1], which is one of 

dynamic scaling methods, employs an intermediate buffer to store a block of output 

data, detects the maximum value, and then determines the exponent for that block of 

data. Though this method does achieve a better result than common static scaling 

approaches, the extra data buffer implies a notable increase in area. As well, buffer 

access and exponent detection operations require longer processing latency and 

consume more power. Therefore, static scaling approaches are still much more 

commonly preferred for typical FFT hardware implementations. 

In this dissertation, we propose a fast probability-based static scaling 

optimization technique that is capable of providing a better output SQNR than 

existing static ones as well as needs no simulation at all. It is also as area-efficient as 

other static methods since all of them do not require a dynamic scaling unit; however, 

our technique can still roughly achieve the same level of output quality when 

compared with dynamic scaling approaches. For every butterfly stage, the proposed 

method can precisely estimate the accuracy loss of each candidate number format due 

to possible saturation and truncation errors via the static probability-based analysis 

and then picks the best one of them. Furthermore, our method can work with various 

FFT sizes, FFT algorithms, wordlengths, and input signal distributions. 

4.2.2 Motivation and problem definition 

As mentioned, the approach proposed in [49] suggests increasing the bitwidth of 
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the integer part by one at every radix-2 butterfly stage to avoid overflows. In this 

dissertation, the format for a fixed-point number is represented in the form of mbnf, 

denoting the wordlength is m-bit, the integer part is n-bit and thus the fractional part 

takes the rest m-n bits. Note that an m-bit number can only represent 2
m
 different 

values no matter what the value of n is. Though the maximum magnitude of 

representable values can be doubled as increasing n by one, the bitwidth of the 

fractional part must be decreased by one at the same time since the wordlength m is 

fixed, which inevitably results in a precision loss. Take the radix-2 64-point FFT, 

which has log264 (i.e., 6) butterfly stages, as an example, if the input data is in 12b1f 

format, the final output format becomes 12b7f, in which only 5 bits are available for 

the fractional part. 

However, after a 12-hour simulation with about 20 million random sets of input 

data, the probability for an output value that actually needs the seventh bit of the 

integer part is almost zero (i.e., the increasing one bit in the integer part is almost 

unnecessary). The fact implies that it may not be a wise method to always move a bit 

from the fractional part to the integer part at every butterfly stage since keeping more 

bits for fractional part can help reduce the truncation errors and thus improve the final 

output SQNR. 

Nevertheless, if a stage keeps its output number format the same as its previous 

stage, then overflows might occur. In such cases, saturation logic is typically 

employed for overflow error reduction. A saturation operation is to clamp an 

overflowed positive/negative value to the maximum/minimum value a number format 

can hold. For example, if the number format in use is 4b4f, then 0100 (4) + 0101 (5) = 

1001 (-7), which is an overflow with an error of 9 – (-7) = 16. However, if saturation 

is applied, the result becomes 0111 (7) and the error can be reduced to 9 – 7 = 2, 

which is much smaller than 16. 
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Let's examine a few configurations of the output number format for the 

256-point FFT design with the input number format of 12b1f. If the configuration 

suggested in [49] is used, the resultant SQNR is 35.39 dB by simulation. If the integer 

part is not increased at the output of the 8
th

 stage and saturation is performed, the 

SQNR would climb to 37.03 dB. If applying it again to the 7
th

 stage, the SQNR would 

rise to 38.47dB. However, if further applying it to the 2
nd

 stage, the SQNR would 

dramatically drop to 17.82 dB. The above indicates that the output number format of 

each stage must be determined carefully for achieving an even better SQNR. 

Conventionally, static scaling optimization methods usually rely on simulation to 

evaluate the performance of a configuration, like [50]. Nevertheless, it takes hours for 

simulation with only ten thousand sets of inputs just to evaluate one single 

configuration of the 8192-point FFT. Meanwhile, for the radix-2 N-point FFT, there 

are log2N stages and the integer part can be increased by one bit or not at each stage, 

which makes the total number of possible configurations equal to N. That is, it takes 

years if one attempts to evaluate all configurations of the 8192-point FFT. This is the 

prime reason that motivates us to develop a revolutionary simulation-free scaling 

optimization technique, which turns out to be able to discover a near-optimal solution 

within only few minutes. 

At the end of this section, the problem of static scaling optimization on 

fixed-point FFT addressing in this dissertation is described as follows – given FFT 

size, radix r (where r is a power of 2), fixed wordlength, and input probability 

distribution, determine the number format for the output of every stage statically (i.e., 

without use of simulation) such that the overall SQNR is maximized. 
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4.3 Probability Model 

4.3.1 Probability-based SQNR analysis 

The input to an FFT is modeled as a discrete random variable, which can take 

only a countable number of distinct values. A discrete random variable X has an 

associated probability mass function (PMF) [76, 77], denoted as pX, which gives the 

occurrence probability of each possible value that X can take. In particular, if x is a 

possible value of X, the probability mass of x, denoted as pX(x), gives the probability 

that X is exactly equal to x, or 

})({)( xXPxpX   (9) 

Also note that 

1)( x X xp  (10) 

where in the summation, x ranges over all the possible values of X. 

Derived distribution is the PMF of a function of random variables with known 

distribution [63, 64]. The notion of derived distribution helps establish the following 

properties. 

Property 1: Suppose A and B are two independent discrete random variables; for 

each of them, the PMFs of its real and imaginary part are reflection-symmetric (w.r.t. 

0) and identical (i.e., pR(A) = pI(A) and pR(B) = pI(B)). Then, the PMF of Z = A op B (op 

can be either addition or subtraction) can be derived by the convolution of the PMFs 

of A and B. As well, the PMFs of Z’s real and imaginary part are also identical (i.e., 

pR(Z) = pI(Z)) and reflection-symmetric. 
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Property 2: Assume A is a complex random variable and the PMFs of its real and 

imaginary part are identical and reflection-symmetric; w is a complex constant value. 

If Z = A．w, then the PMFs of Z’s real and imaginary part are also identical and 

reflection-symmetric. 

Proof: Assume the PMF of A’s real (imaginary) part is P and w = a + bi, then the 

PMFs of Z’s real and imaginary part are pR(Z) = (aP – bP) and pI(Z) = (aP + bP), 

respectively. Since P is reflection-symmetric, pR(Z) = pI(Z) = (a + b)P. Hence, the PMFs 

of Z’s real and imaginary part are identical and reflection-symmetric. 

Property 3: Given two complex numbers X = R(X) + jI(X) and Y = R(Y) + jI(Y), 

where pR(X) = pI(X), pR(Y) = pI(Y) and all four PMFs are reflection-symmetric. Then, for 

the radix-2 butterfly operation Z = BF(X, Y), the PMFs of Z’s real and imaginary part 

are also identical and reflection-symmetric according to Property 1 and Property 2. 

That is 

)()( ZIZR pp   (11) 

Property 4: Since Y = FFT(X) is composed of a series of radix-2 butterfly 

operations, the PMFs of Y’s real and imaginary part are also identical and 

reflection-symmetric according to Property 3, or 

)()( YIYR pp   (12) 

Property 5: For a signal Y, if the PMFs of Y’s real and imaginary part are 

identical, then the power of Y is two times larger than the power of its real (imaginary) 

part based on (12), or 
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Property 6: In a fixed-point FFT, because both the real and imaginary part use 

the same number format at every stage, the noises induced from saturation and 

quantization are also identical and symmetric in both parts, i.e., for the noise E, pR(E) 

and pI(E) are identical. Similarly, the power of E is two times larger than the power of 

its real (or imaginary) part, or 

 
)( )(

2 ))(()(2
eR YRE yRpeRPower  (14) 

Property 7: According to Property 5 and Property 6, the SQNR of Y = FFT(X) is 

identical to that of its real (or imaginary) part if pR(X) and pI(X) are identical and 

reflection-symmetric, or 

)(YRY SQNRSQNR   (15) 

In other words, Property 7 implies that we only have to consider the real (or 

imaginary) part while estimating the SQNR of an FFT implementation. Note that 

assuming pR(X) and pI(X) identical as well as reflection-symmetric for the input X of 

FFT is not uncommon; especially for today’s digital communication systems (e.g., [78, 

79]). The interleaved input signal of FFT can thus be considered as an identical and 

reflection-symmetric independent random variable. Therefore, the input signal to the 
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FFT are commonly modeled with either the uniform distribution or the normal 

distribution (with μ=0) [48, 68]. 

Unless specified otherwise, either the real or imaginary part of the input signal is 

assumed a discrete random variable that is independent from each other and is 

uniformly distributed within [-1, 1) in the rest of this work. Figure 17 gives an 

example of the PMF for a 6-bit random variable with a uniform distribution. 

4.3.2 Butterfly analysis 

A radix-2 butterfly consists of two arithmetic operations: an addition (or 

subtraction) and a twiddle factor multiplication. For the addition operation Z = A + B, 

where A and B are two independent random variables with the PMFs pA and pB 

respectively, the PMF of Z can be given as 
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 (16) 

The resulting PMF pZ is called the convolution of the PMFs of A and B. Similarly, 

 

Figure 17 PMF of a 6-bit random variable with a uniform distribution. 
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the PMF of the subtraction operation can be derived in the same way. 

Based on Property 3 and Property 4, the PMF of the FFT output can be obtained 

by iteratively applying (16) for a proper number of times. For instance, Figure 18 

shows the PMF of the output at each stage for the ideal 4-point FFT where the x-axis 

shows the data value and the y-axis indicates the occurrence probability. 

4.3.3 Saturation analysis 

A saturation operation clamps the output between a maximum (max) and a 

minimum (min) representable value, which are determined by the given number 

format. For example, if the number format is 6b4f, (max, min) equals to (7.75, -8). For 

the saturation operation Y = S (X), the PMF of Y can be calculated as 
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As previously mentioned, overflows may occur if the bitwidth of the integer part 

 

Figure 18 The derived distributions for the 4-point FFT. 
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is not increased at a butterfly stage. The saturation logic eliminates those overflows 

and thus reduces computation errors (noises). When saturation is in use, (17) can help 

accurately model the probability distribution of the output. 

4.3.4 Truncation analysis 

A truncation operation approximates a fixed-point input value x with the output 

value trunc(x) by discarding a specific number of x's LSBs. For example, given a 

value of 011101 in 6b3f format (3.625), the truncated value in 4b3f format is 0111 

(3.5) by discarding the trailing two bits. The truncation operation Y = T(X) generates 

the output value in mbnf number format with a minimum scale  of 1/2
m-n

, and thus 

the PMF of Y can be expressed as 





yxy

XY xPyP )()(  (18) 

As previously mentioned, truncations are mandatory if the bitwidth of the 

fractional part is decreased at a butterfly stage due to the fixed wordlength constraint. 

Then (18) is used to precisely model the probability distribution of the output after 

truncation. 

4.3.5 SQNR estimation 

To demonstrate the effectiveness of the proposed static probability-based 

analytical method, the output SQNR is estimated by both analysis and simulation. To 

estimate the output SQNR analytically, we need to know the PMFs of the ideal 

noise-free output X and the actual output Y = g(X), where g can be truncation, 

saturation, or a combination of two. Assume the wordlength is unlimited so that 

neither overflow nor truncation may occur, the PMF of X (i.e., pX) can then be 

obtained through derived distribution analysis. However, because the wordlength 
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cannot be unlimited in a realistic implementation, the PMF of the actual output Y is 

very likely to be different from pX due to saturation and truncation. Hence, the output 

SQNR can be estimated as 

)(log10 10

noise

signal

Power

Power
SQNR   (19) 

where the power of the ideal output signal X can be given as 

 
x Xsignal xpxPower ))(( 2

 (20) 

and the power of the noise can be calculate as 

))())((( 2 xpxgxPower Xxnoise   (21) 

Take the 64-point FFT with the uniformly-distributed input in 12b1f format as an 

example and assume the entire computation process is error-free except that the final 

output value is saturated and truncated to fit in a specific number format. Table 9 

reports the SQNR and overflow probability for four different number formats. It is 

evident that the format 12b6f achieves the best SQNR among four candidates. The 

reason why 12b6f outperforms 12b5f and 12b4f is its extremely low overflow 

probability compared to the other two counterparts since overflows usually induce 

large errors even if saturation is employed. However, though there is no overflow in 

12b7f at all, it still results in a lower SQNR than 12b6f. It is because the longer 

fractional part (i.e., smaller minimum scale) of 12b6f has a lower truncation error that 

can make up the minor accuracy loss due to saturation. Besides, the above analysis 

again suggests that increasing the integer part by one bit for every radix-2 butterfly 

stage is not always the best idea. 
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In addition to static analysis, simulation is also used to calculate the SQNR and 

overflow probability, and the comparisons are given in Table 10. For each output 

format, it takes about 12 hours for simulation with 21.6 million randomly generated 

input sets. Table 10 indicates that the difference in SQNR is very small (less than 0.15 

dB) and the overflow probabilities estimated using the two methods are also 

extremely close. Therefore, it is clear that the probability-based analysis in minutes 

can achieve the same outcome against simulation in hours. 

 

Table 9 Analysis for different output formats in 64-point FFT 

Output format 
Value 

range 

Min. 

scale 

SQNR 

(dB) 

Overflow 

probability (%) 

12b7f [-64, 64) 0.0313 48.17 0 

12b6f [-32, 32) 0.0156 54.19 5.53E-11 

12b5f [-16, 16) 0.0078 42.49 4.86E-2 

12b4f [-8, 8) 0.0039 16.14 8.33 

Table 10 Comparisons between analytical method and simulation method 

Output format 

Analytical method Simulation method 

SQNR (dB) 
Overflow 

probability (%) 
SQNR (dB) 

Overflow 

probability (%) 

12b7f 48.17 0 48.17 0 

12b6f 54.19 5.53E-11 54.20 0 

12b5f 42.49 4.86E-2 42.34 4.98E-2 

12b4f 16.14 8.33 16.13 8.34 
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4.4 Scaling Optimization 

In this section, we focus on how to make scaling decisions from stage to stage, 

and then propose our scaling optimization flow. 

Since the wordlength is fixed, the number of representable values at each stage is 

always the same. Therefore, a scaling decision that determines the output number 

format has to be made at each stage. Based on the probability model and the derived 

distributions of butterfly, saturation, and truncation operations presented in 

Section 4.3, we further propose an algorithm that can efficiently evaluate different 

scaling options (i.e., number formats) at a stage and then determine the one with the 

highest output SQNR. 

4.4.1 Scaling decision 

Again, we first take the radix-2 FFT as an example. If the input format is mbnf 

for some stage, it would be better to set the output format of that stage as 

(m+1)b(n+1)f to minimize errors. However, in a fixed-wordlength butterfly 

implementation, the output can merely be represented using m bits, which leaves only 

two options: 1) moving one bit from the fractional part to the integer part (i.e., 

mb(n+1)f); or 2) keeping the output format the same as the input one (i.e., mbnf). 

Apparently, the former results in no overflow but suffers more serious truncation 

errors, whereas the latter induces relatively smaller truncation errors but may 

experience saturation errors due to overflow. It is really hard to tell which one is better 

unless their corresponding SQNR values are known. 
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Instead of applying time-consuming simulation, the efficient probability-based 

techniques presented in Section 4.3 are used for SQNR estimation stage by stage. 

Assume the input format is mbnf in the current stage and the PMF of the ideal 

noise-free output in (m+1)b(n+1)f format is pI. Next, if mb(n+1)f format is selected, 

the PMF of the truncated output pT can be obtained through (18) and pI. Similarly, if 

mbnf format is selected, the PMF of the saturated output pS can be obtained through 

(17) and pI. Besides, the SQNRs for both options can also be calculated through 

(19)~(20). At last, the better number format can then be determined for the output of 

 

Figure 19 Differences in PMFs for two scaling options. 
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this stage and the corresponding PMF is used as the PMF of the input for the next 

stage. Figure 19 presents an example case illustrating the differences between PMFs 

of the two scaling options, in which the input is in 5b3f format. 

The above procedure can certainly handle a butterfly with higher radix. For 

example, for a radix-4 butterfly stage, the output needs two more bits in the integer 

part to avoid overflows at all. Hence, there are three scaling options available for a 

radix-4 stage, i.e., moving 0~2 bits from the fractional part to the integer part. In fact, 

there are (log2r)+1 scaling options for a radix-r stage. Nevertheless, no matter what 

the value of r is, our probability-based approach can always find the best choice (with 

the highest SQNR) among various candidates. Figure 20 gives the flow of the 

proposed scaling decision method for a radix-r stage. 

 

Figure 20 The proposed scaling decision flow for radix-r butterfly. 
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4.4.2 Scaling optimization flow 

Figure 21 illustrates the overall flow of our scaling optimization algorithm. 

Given FFT size (N) and radix (r) of the FFT as well as number format (Q) and PMF 

(P) of the primary input, the proposed algorithm can find the best output number 

format for one stage at a time. At Stage s, the noise-free output PMF P' after a radix-r 

butterfly operation with the input PMF P can be derived using the methods presented 

in Section 4.3.2. Next, given P' and the fixed wordlength constraint, the techniques 

for scaling decision described in Section 4.4.1 can thus find out the best number 

format Qs for Stage s as well as the corresponding output PMF Ps. If Stage s is not the 

last stage, then Ps and Qs become the PMF and the number format of the input to the 

next stage. This process is not terminated until the output number format of every 

stage is determined. 

 

Figure 21 The proposed scaling optimization flow. 

Input PMF= P

Input format= Q

t = log2r

s = 0

(P′, Q′) ← radix-r butterfly(P,Q)

(Ps, Qs) ← scaling decision(P′, Q′)

s == t ? 

Done

P = Ps

Q = Qs

s += 1 

Yes

No



72 

The time complexity of the proposed algorithm is O(Nf  Ns  2
w
) for the N-point 

radix-r FFT with a fixed wordlength w, where the number of candidate formats Nf 

equals to (log2r)+1 and the number of butterfly stages Ns equals to logrN. 

4.5 Experimental Results 

The proposed scaling optimization algorithm has been implemented using 

MATLAB. Given FFT size, radix, fixed wordlength, number format of the input, PMF 

of the input, our tool can suggest the number format of the output for every butterfly 

stage in just a few minutes (even seconds). 

To evaluate the effectiveness and efficiency of our scaling optimization 

algorithm, we have conducted a series of experiments and compare our results with 

those of other existing techniques. All experiments were conducted on a Linux 

workstation with an Intel dual Pentium Xeon 2.5GHz CPU and 32GB RAM 

4.5.1 SQNR for varied configurations and sizes 

Figure 22 shows the SQNR results for all 256 possible scaling configurations of 

the 256-point radix-2 FFT with a 12-bit wordlength, and the input is uniformly 

distributed within [-1, 1) in 12b1f format. It totally takes about 68 hours to complete 

the whole MATLAB simulation, in which the SQNR of each configuration is 

estimated by one thousand sets of randomly generated input data. 

In Figure 22, a scaling configuration is encoded with an 8-bit ID indicating the 

corresponding scaling decisions at 8 consecutive butterfly stages. A '1' at the k
th

 most 

significant bit of an ID indicates the integer part of the output is increased by one bit 

at the k
th

 stage, while a '0' implies no format change. For example, in the configuration 

with ID = 245 (11110101), the bit counts of the integer part are 2, 3, 4, 5, 5, 6, 6, and 

7 respectively from the first stage to the last. Figure 22 also reports that the 
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configuration with ID = 245, which is exactly the one selected by our algorithm, 

achieves the best SQNR of 42.75dB. That is, for the 256-point radix-2 FFT, our 

method merely needs seconds to identify the best solution while simulation requires 

days instead. This performance gap is getting bigger as the FFT size increases. 

Furthermore, the configuration with ID = 255, which increases the integer part 

by one bit at every stage (i.e., the scheme suggested by Oppenheim et al. [49]) only 

achieves an SQNR of 35.39dB. It is also evident that a configuration with a larger ID 

tends to get a higher SQNR. The primary reason is that increasing the integer part at 

earlier stages effectively suppresses large errors induced from saturation. Nevertheless, 

though the Oppenheim’s strategy generally results in a fairly good solution, it still 

leaves a big room for further improvement as Figure 22 suggests. 

Figure 23 illustrates the SQNR comparisons among three different scaling 

approaches in terms of various FFT sizes and radices. Again, the input is uniformly 

distributed within [-1, 1) in 12b1f format. Figure 23 indicates that the output SQNR is 

 

Figure 22 SQNRs of all scaling configurations for 256-point radix-2 FFT. 
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always dropped as the FFT size increases due to the fixed wordlength constraint for 

all three methods. The Oppenheim’s method and ours are both static. Figure 23 shows 

that our approach always outperforms Oppenheim’s no matter what the radix is, and 

the advantage is getting bigger as the FFT size grows. The reason is that Oppenheim’s 

decreases the fractional part by one bit at each stage and thus suffers larger 

quantization errors than ours. Meanwhile, the BFP algorithm [1], a dynamic scaling 

technique, achieves slightly better results than ours. However, as mentioned before, a 

BFP-based implementation demands an extra hardware unit, which definitely makes a 

negative impact on area, latency and power consumption. 
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(a) Radix-2 FFT 

 

(b) Radix-4 FFT 

 

 (c) Radix-8 FFT 

Figure 23 SQNR vs. FFT size (12 bits). 
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4.5.2 SQNR comparisons for varied wordlengths 

and distributions 

Table 11 presents the scaling optimization outcomes of our algorithm for the 

8192-point radix-2 FFT with a varied wordlength w, and the input is still uniformly 

distributed in [-1, 1) in wb1f format. Our algorithm merely requires 0.04 to 127.2 

seconds to complete scaling optimization for the wordlength varying from 8 to 16 bits. 

Table 11 clearly shows that our algorithm significantly outperforms Oppenheim’s [49] 

for all wordlength settings. 

Table 11 Scaling optimization outcomes for 8192-point radix-2 FFT 

Wordlength 
(bit) 

Integer bits of each stage 
Runtime 
(second) 

SQNR 
(proposed) 

SQNR 
[49] 

1 2 3 4 5 6 7 8 9 10 11 12 13 

8 2 3 4 4 5 5 6 6 7 7 8 8 9 0.04 18.08 dB -3.75 dB 

9 2 3 4 4 5 5 6 6 7 7 8 8 9 0.06 23.70 dB 2.14 dB 

10 2 3 4 5 5 6 6 7 7 8 8 9 9 0.07 27.47 dB 8.11 dB 

11 2 3 4 5 5 6 6 7 7 8 8 9 9 0.11 33.47 dB 14.10 dB 

12 2 3 4 5 5 6 6 7 7 8 8 9 9 1.60 39.50 dB 20.13 dB 

13 2 3 4 5 5 6 6 7 7 8 8 9 9 3.52 45.51 dB 26.15 dB 

14 2 3 4 5 5 6 6 7 7 8 8 9 9 18.36 51.50 dB 32.16 dB 

15 2 3 4 5 5 6 7 7 8 8 9 9 10 44.44 55.28 dB 38.18 dB 

16 2 3 4 5 6 6 7 7 8 8 9 9 10 127.20 60.83 dB 44.18 dB 
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(a) Radix-2 FFT 

 

(b) Radix-4 FFT 

 

 (c) Radix-8 FFT 

Figure 24 SQNR vs. wordlength (8192-point). 
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Figure 24 illustrates the SQNR comparisons among different scaling approaches 

in terms of wordlengths and radices. From Figure 24, it is observed that our approach 

can save about 3~4 bits of wordlength but still achieves a same SQNR target as 

compared with the Oppenheim’s. To demonstrate what difference a wordlength of 3 

bits can make, we implemented both the 11-bit and 14-bit 100MHz 8192-point 

radix-2 FFT hardware modules using TSMC 180nm technology and Synopsys 

DesignWare. Table 12 gives the comparisons between them as well as shows that the 

improvements are very significant in terms of area, power, and memory bits. In 

addition, Figure 24 indicates that our technique achieves a similar quality of result 

(QoR) for all combinations of various wordlengths and radices as compared to the 

BFP-based dynamic scaling approach [1]. 

Figure 25(b) also shows that Ramakrishnan’s approach [50] seriously 

underperforms than the others. It is because the Ramakrishnan’s method expects a 

normally distributed input. Hence, we conducted another set of experiments on the 

8192-point radix-4 FFT with the normally distributed input within [-1, 1). As shown 

in Figure 25, the SQNR results presents the standard deviation () is set to 0.2 and 0.4. 

The Ramakrishnan’s method [50] performs nearly as well as ours if  = 0.2, whereas 

it again seriously underperforms if  = 0.4. 

Table 12 Hardware comparisons under the same SQNR constraint 

8192-point radix-2 FFT 

(100MHz) 

Proposed 

(11-bit) 

Oppenheim [49] 

(14-bit) 
Reduction 

Area (m
2
) 85,771.2 129,852.7 33.65 % 

Power (mW) 1.9229 2.6302 26.89 % 

Storage (bit) 180k 229k 21.41 % 
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Figure 26 illustrates the SQNR outcomes for various standard deviations from 

0.05 to 0.5. It is evident that the BFP-based method and ours are relatively insensitive 

to the changes of standard deviation. On the contrary, the value of standard deviation 

makes a tremendous impact on the performance of both the Oppenheim’s and the 

Ramakrishnan’s. As expected, the smaller the standard deviation is, the worse the 

performance of the Oppenheim’s is. Since a smaller deviation suggests a lower 

occurrence probability of overflow, it should not be a good idea to increase one (two) 

bits of the integer part for every radix-2 (4) butterfly stage. 

 

(a)  = 0.2 

 
 (b)  = 0.4 

Figure 25 10. SQNR vs. wordlength (radix-4, normally distributed input). 

-20

-10

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16

S
Q

N
R

 (
d

B
)

wordlength (bit)

Oppenheim [49]

BFP [1]

Proposed

Ramakrishnan [50]

-10

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16

S
Q

N
R

 (
d

B
)

wordlength (bit)

Oppenheim [49]

BFP [1]

proposed

Ramakrishnan [50]



80 

4.5.3 SQNR for a real case study 

In this experiment, we use a piece of 16-bit 11 KHz audio in WAV format from 

Wikipedia [80]. The PMF of the audio data is given in Figure 27, which is very close 

to a normal distribution with a mean of zero and a standard deviation of 0.168. Table 

13 presents the number of integer bits of each stage and the scaling optimization 

outcomes for 256-point radix-2 FFT. Oppenheim’s method [49], which increases the 

integer part by one bit for every single stage, gives a moderate result 

(SQNR=46.07dB). Ramakrishnan’s method [50], which increases the integer part by 

 

Figure 26 SQNR vs. standard deviation (radix-4, input in 12b1f). 
 

 

Figure 27 The PMF of the piece of music. 
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one bit for every two stages, suffers a serious overflow problem under this particular 

input and the resultant output SQNR is thus extremely low (10.18dB). 

Since the additional scale factor tables in BFP determine an appropriate number 

format by detecting the largest value for each block, the 16-bit wordlength is long 

enough to preserve the high accuracy and significantly diminish the chance of 

overflow. Thus, the BFP method [1] achieves the best SQNR result. Meanwhile, if a 

uniformly distributed input is assumed in our proposed method (not the correct 

distribution), the output SQNR can achieve 51.75dB, which is still much higher than 

that of the Oppenheim’s method [49]. Moreover, if the correct PMF of that piece of 

music (normal distribution with a mean of zero and a standard deviation of 0.168) is 

used in the analysis, the resultant output SQNR is even better (54.04dB). The 

experimental results here demonstrate that our proposed method can offer excellent 

quality of result if the PMF of the input is known in advance. Even if the PMF of the 

input is unknown, the quality of result is still fairly good in this experiment when 

compared with those two previous static scaling works. 

Table 13 The Scaling optimization outcomes for 256-point radix-2 FFT 

Method 

Integer bits of each stage 

SQNR 

1 2 3 4 5 6 7 8 

Oppenheim [49] 2 3 4 5 6 7 8 9 46.07dB 

Ramakrishnan [50] 2 2 3 3 4 4 5 5 10.18dB 

BFP [1] N/A 85.67dB 

Proposed 
(Uniform distribution) 

2 3 4 5 6 6 7 7 51.75dB 

Proposed 
(Normal distribution) 

2 3 4 5 5 6 6 7 54.04dB 
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4.6 Summary 

In this dissertation, we present an efficient static scaling technique for output 

SQNR optimization targeting FFT processor designs with the fixed wordlength 

constraint. Unlike most of conventional methods, it relies on fast probability-based 

analysis instead of time-consuming simulation to precisely model the noises induced 

from quantization and saturation. It works with various FFT sizes, radices, 

wordlengths, and most commonly presumed input distributions. The experimental 

results clearly show that the proposed technique is superior to existing static scaling 

approaches in all circumstances [49, 50]. Specifically, our technique can generate an 

8192-point radix-2 FFT implementation with three bits shorter in wordlength than 

Oppenheim’s method [49] while still achieving the same output SQNR, which implies 

a significant improvement in area, latency, and power consumption. Besides, it 

generally performs as nearly well as the BFP-based dynamic scaling technique [1], 

which requires an extra hardware unit. Therefore, we believe our fast static 

probability-based scaling optimization technique is very practical and helpful for 

creating area-efficient fixed-wordlength (e.g., memory-based) FFT processor designs 

 



83 

Chapter 5 

Conclusion and Future Works 

5.1 Conclusion 

Since the DSP algorithms take an important role in the communication systems, 

the hardware implementations must carefully consider many parameters, such as the 

bitwidth, the base architecture, and the number scaling. In order to deal with the 

design issues at crafting the DSP algorithms, we propose three techniques in this 

dissertation: 1) a bitwidth-aware synthesis algorithm for MCM designs, 2) an 

EMDC-based FFT architecture, and 3) a static scaling technique for pipelined FFT 

processor designs. 

First, we present an ILP-based bitwidth-aware area minimization algorithm for 

MCM designs, which points out that the total adder bit count rather than the total 

adder count can better estimate the hardware cost in a real implementation. Then, for 

a given MCM design, those target constants are first represented in a specified 

number format. Next, a subexpression graph is created to record all feasible 

decompositions for every target constant. The graph also keeps track of the required 

adder bitwidth as well as two subexpressions for every decomposition. At last, the 

area minimization problem is formulated as a set of ILP constraints derived from the 

subexpression graph and optimally resolved within an acceptable runtime. 

Then, we propose an expandable multi-path delay commutator (EMDC) based 

FFT architecture. We show that the proposed architecture can be easily and flexibly 

expanded to satisfy throughput-hungry applications. In addition, a parameterizable 
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hardware generator is also developed to automatically produce the specified HDL 

code so that the design cost and time can be drastically minimized. Finally, the 

theoretical analyses and/or experimental results demonstrate that the proposed 

architecture does consume less area and power than the existing foldable Pease 

architecture under the same throughput constraint. 

Finally, we present an efficient static scaling technique for output SQNR 

optimization targeting FFT processor designs with the fixed wordlength constraint. 

Without using the time-consuming simulation to precisely model the induced 

quantization and saturation noises, we proposed a probability-based static scaling 

analysis to model the probabilistic behavior of the output signal at each stage. It 

works with various FFT sizes, radices, wordlengths, and most commonly presumed 

input distributions. The experimental results clearly show that the proposed technique 

is superior to existing static scaling approaches in all circumstances [49, 50]. 

Specifically, our technique can generate an 8K-point radix-2 memory-based FFT 

processor without compromise in the output SQNR. Besides, it generally performs as 

nearly well as the BFP-based dynamic scaling technique [1], which requires an 

additional hardware unit. 

5.2 Future Works 

Although the problem of multiplier-less constant multiplication has been studied 

for many decades, it still attracts a large number of attentions. In general, the 

digit-based algorithms can provide a better solution than the graph-based algorithms, 

but the quality of result of the digit-based algorithms is highly depended on the 

decomposition method. For example two numbers, 3 and 29, can be decomposed as 

follows in MSD form: 
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MSD210

MSDMSD210

0111001110129

and

011or  110113





 

Thus, at least 3 adders are required in digit-based methods. However, a 

graph-based algorithm, RAG-n [14], allows the usage of right shifters and accepts a 

mapping result that induces extra adders for a coefficient to maximize the global 

subexpression sharing, it is capable of finding a design solution that is not presented 

in the digit-based algorithms. Figure 28 shows an alternative design that only two 

adders are needed. Obviously, the solution is outside of the current digit-based 

decomposition. Thus, the exploration of finding a valid and a limited number of 

decomposition is a research topic. 

Furthermore, in order to achieve the high-data-rate communication, many new 

algorithms are proposed. For example, polor codes [81, 82] derived from the concept 

of channel polarization have emerged as the important channel codes for the 

capacity-achieving property. The hardware architecture of a (8, 4) polar code is given 

in Figure 29. Similar to the FFT core design, the same techniques on the hardware 

folding and the scaling analysis can be applied to the polar decoder. However, the data 

 

Figure 28 An alternative implementation for the number 3 and 29. 
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propagation is always performed in logarithmic domain which is not a linter 

time-invariant (LTI) operation. The non-linear property needs further research to 

apply the proposed techniques. 

 

Figure 29 The factor graph of (8,4) polar code. 
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