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Abstract

A class of Volterra transforms, preserving the Wiener measure, with kernels of Goursat type is
considered. Such kernels satisfy a self-reproduction property. We provide some results on the inverses of the
associated Gramian matrices which lead to a new self-reproduction property. A connection to the classical
reproduction property is given. Results are then applied to the study of a class of singular linear stochastic
differential equations together with the corresponding decompositions of filtrations. The studied equations
are viewed as non-canonical decompositions of some generalized bridges.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

Gaussian enlargement of filtrations has been extensively studied between the late 70’s and the
early 90’s; see [10,20–22] and the references therein. Results stemming from the Gaussian nature
of the underlying generalized Gaussian bridges are of interest not only in probability, also in
financial mathematics, since they have appeared in an insider trading model developed in [6,25].
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Transforms of Volterra type allow one to construct interesting families of Gaussian processes.
Volterra transforms are classified, both from the theory and applications points of view, according
to whether their kernels are square-integrable or not. Those with square-integrable kernels play a
crucial role in the study of equivalent Gaussian measures, stochastic linear differential equations
and the linear Kalman–Bucy filter; see [18,24]. To our knowledge, less attention was given to
Volterra transforms with non-square-integrable kernels. Such transforms naturally appear, for
instance, in non-canonical representations of some Gaussian processes; see [23]. They also
appear if one forces such transforms to preserve the Wiener measure. Most known examples have
corresponding kernels of Goursat type. A few nontrivial ones originate from P. Lévy, see [26,27],
and serve as a standard reference for showing the importance of the canonical decomposition of
semi-martingales. Such constructions have been enriched by people from the Japanese school;
see [13–15,17,19].

Let us now fix the mathematical setting and summarize results of this paper. We take
B := (Bt , t ≥ 0) to be a standard Brownian motion, defined on a complete probability
space (Ω ,F ,P0). Denote by {F B

t , t ≥ 0} the filtration it generates. Let f = ( f1, . . . , fn)
∗
∈

L2
loc(R+) = {h;

∫ t
0 h2(s)ds <∞, for all t ∈ [0,∞)}, where ∗ stands for the transpose operator

and n is a natural number. Although some of our results extend readily to the cases when
n = ∞, to simplify the study, we only consider the cases where n is finite. We assume that,
for any fixed t > 0, the covariance matrix mt , of the Gaussian random variable

∫ t
0 f ∗(s)dBs ,

is invertible, i.e., the Gramian matrix mt =
∫ t

0 f (s) · f ∗(s)ds has an inverse αt . We emphasize
that, under the aforementioned condition, it is not difficult to see that αt → α∞, as t → ∞,
where α∞ is a finite matrix. Furthermore, for any i , (α∞)i j = 0 for all j if and only if
‖ fi‖ := (

∫
∞

0 f 2
i (s)ds)1/2 = ∞. With φ(t) = αt · f (t) for t > 0, we shall establish in

Theorem 2.2 that (αt , t > 0) is given in terms of φ by αt =
∫
∞

t φ(u) · φ∗(u)du + α∞, for
any t > 0. This relation has importance in its own right in this work and may have interesting
applications to other fields where Gramian matrices together with their inverses are of prime
importance; see for instance [8] and the references therein. In particular, we also refer the
reader to [3] for applications to the theory of special functions and to [4,5] for applications
to reproducing kernel Hilbert spaces and spline functions.

We define the Volterra transform Σ , associated with a Volterra kernel k, on the set of
continuous semi-martingales X such that

lim
ε→0

∫ t

ε

∫ v

0
k(u, v)dXudv <∞, 0 < t <∞ a.s., (1)

by

Σ (X)t = X t −

∫ t

0

∫ u

0
k(u, v)dXvdu, 0 < t <∞. (2)

Following [15], the kernel k(t, s) = φ∗(t) · f (s), for 0 < s ≤ t < +∞, is a self-reproducing
Volterra kernel. That is equivalent to saying that Σ , when applied to the Brownian motion B,
satisfies the following two conditions:

(i) Σ (B) is a standard Brownian motion;
(ii) for any fixed t ≥ 0, F Σ (B)

t is independent of
∫ t

0 f (u)dBu .

Existence of Σ (B) may be established by using a generalized Hardy inequality discovered
in [15]; see Remark 2.3 given below. We call k and Σ , respectively, a Goursat–Volterra kernel
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and transform, with reproducing basis f . The dimension of Span{ f } is called the order of the
Goursat–Volterra kernel k. This terminology is formally fixed in Definition 2.1.

Next, we bring our focus onto conditions (i) and (ii) and think of them in terms of enlargement
of filtrations and stochastic differential equations. Condition (ii) says that the orthogonal
decomposition

F B
t = F Σ (B)

t ⊗ σ

(∫ t

0
f (u)dBu

)
(3)

holds true, for any t ≥ 0. Here, by F ⊗ G we mean F ∨ G with independence between F and G.
We shall show that, for Goursat–Volterra transforms, Eq. (3) can in fact be rewritten as

F B
t = F Σ (B)

t ⊗ σ

(
Y −

∫
∞

t
φ(u)dΣ (B)u

)
(4)

valid for any t ≥ 0, where Y = (Y1, . . . , YN )
∗ is a Gaussian random vector which is independent

of F Σ (B)
∞ with covariance matrix E[Y · Y ∗] = α∞ = limt→∞ αt in the case α∞ 6≡ 0, and

Y ≡ 0 otherwise. We allow here Y to have some null or constant components. Going back to
condition (i), we observe that the determination of all continuous semi-martingales which satisfy
it amounts to solving the equation

X t = Wt +

∫ t

0

∫ s

0
φ∗(s) · f (u)dXuds, X0 = 0, t > 0, (5)

considered on a possibly enlarged probability space, where W is a standard Brownian motion.
Note that we only assume

lim
ε→0

∫ t

ε

∫ v

0
φ∗(v) · f (u)dXudv <∞, 0 < t <∞ a.s., (6)

and the latter is not absolutely convergent. Because of the singularity at time 0, we call (5) a
singular linear stochastic differential equation. If we take W = Σ (B) then, by construction,
the original Brownian motion B is one solution. A second one coincides with the associated
f -generalized bridge on the interval of its finite lifetime, introduced in [1]. It follows that the
Goursat–Volterra transform Σ , when defined as above, is not invertible in the sense that (5) has
many solutions. This is not a surprising fact. Indeed, k being a self-reproducing kernel implies
that it is not square-integrable, as seen in [11]. Next, Theorem 3.1 deals with the investigation
of all continuous semi-martingale solutions to (5). In particular, we show that a necessary and
sufficient condition for the existence of a strong solution that is Brownian and F B

∞-measurable
is α∞ ≡ 0. In that case F Σ (B)

∞ = F B
∞. When α∞ 6≡ 0, Theorem 3.1 leads to the conclusion that

there exists still a strong solution which is a Brownian motion, in an enlarged space, that involves
an independent centered Gaussian vector Y with covariance matrix α∞. Another natural aim is a
characterization of all continuous semi-martingales that satisfy both conditions (i) and (ii). This is
partially obtained in Theorem 4.1 for the case α∞ ≡ 0 and the analysis exhibits some connections
to certain space–time harmonic functions. The latter are functions h ∈ C1,2 (R+ × Rn,R+) such
that h(·,

∫ .
0 f ∗(s)dBs) is a continuous (P0,F)-martingale with expectation 1, where P0 stands

for the Wiener measure.
The main results of this paper extend a part of the first chapter of [30] and some results

found in [22]. Our work offers explicit examples of conditionings and conditioned stochastic
differential equations introduced and studied in [7]. Furthermore, singular equations of type (5)



L. Alili, C.-T. Wu / Stochastic Processes and their Applications 119 (2009) 1386–1399 1389

and the progressive enlargement of a filtration given in Corollary 3.2 can easily be applied to
insider trading models elaborated in [6,7,25].

2. Goursat–Volterra kernels and transforms

With a Brownian motion B we associate the centered Gaussian process Σ (B) defined by
(2), which we assume is well defined, where k is a continuous Volterra kernel. That is to say,
k : R2

+→ R satisfies

k(u, v) = 0, 0 < u ≤ v <∞,

and is continuous on {(u, v) ∈ (0,+∞) × (0,+∞) : u > v}. We know from [11] that Σ
preserves the Wiener measure, or Σ (B) is a Brownian motion, if and only if k satisfies the self-
reproducing property

k(t, s) =
∫ s

0
k(t, u)k(s, u)du, 0 < s ≤ t <∞. (7)

For a connection with reproducing kernels, in the usual sense, we refer the reader to the end
of this section. Observe that (2), when applied to B, can be viewed as the semi-martingale
decomposition of Σ (B) with respect to the filtration (F B

t , t ≥ 0). Now, as a consequence of
the Doob–Meyer decomposition of Σ (B) in its own filtration, we must have the strict inclusion

F Σ (B)
t $ F B

t , 0 < t <∞.

It is shown in [22] that the missing information, called the reproducing Gaussian space, is given
in the orthogonal decomposition

F B
t = F Σ (B)

t ⊗ σ(Γ (k)
t ),

where

Γ (k)
t =

{∫ t

0
f (u)dBu; f ∈ L2 ((0, t]) , f (s) =

∫ s

0
k(s, u) f (u)du a.e.

}
for any t > 0. Given a kernel k, it is not an easy task to determine a basis of Γ (k)

t for each fixed
t > 0, because this amounts to solving explicitly the integral equation

f (t) =
∫ s

0
k(t, u) f (u)du, 0 < t <∞.

It is easier to fix the family of spaces (Γ (k)
t , t > 0) and work out the corresponding Volterra

kernel. This procedure, in fact, corresponds to decomposing the Wiener measure over the interval
[0, t], for any fixed t > 0, along Γ (k)

t . Recall that a Goursat kernel is a kernel of the form

k(t, s) = φ∗(t) · f (s), 0 < s ≤ t <∞,

where φ = (φ1, . . . , φn)
∗ and f = ( f1, . . . , fn)

∗ are two vectors of functions defined on (0,∞)
and n ∈ N. For such kernels it is natural to introduce the following definition.

Definition 2.1. A Goursat–Volterra transform Σ of order (nt , t > 0) is a Volterra transform
preserving the Wiener measure such that, for any Brownian motion B and t > 0, F Σ (B)

t is
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independent of
∫ t

0 f (u)dBu for some vector f ≡ ( f1, . . . , fnt )
∗ of nt linearly independent

L2
loc(R+) functions. The associated kernel is called a Goursat–Volterra kernel. The objects

f , Span{ f } and Span{
∫
·

0 f (s)dBs} are called reproducing basis, space and Gaussian space,
respectively.

Because for each fixed t > 0, mt is positive definite, it can be seen that t → nt is
nondecreasing. However, in our setting, we always take the order to be constant and finite. The
simplest known example of a Goursat–Volterra kernel is k1(t, s) = t−1 and this gives

Σ (B). = B. −
∫
·

0

Bu

u
du.

That corresponds to setting n = 1 and taking f1 ≡ 1. It is observed in [22] that Σ when iterated
takes a remarkably simple form. That is with Σ (0)

= Id, Σ (1)
= Σ and Σ (m)

= Σ (m−1)
◦Σ , for

m ≥ 2, where ◦ stands for the composition operation, we have

Σ (n)(B)· =
∫ .

0
Ln

(
log
·

s

)
dBs,

where (Ln, n ∈ N) is the sequence of Laguerre polynomials. As a generalization of the above
kernel, we quote the following result from [15].

Theorem 2.1 (Hibino–Hitsuda–Muraoka [15]). Let f be a vector of n functions of L2
loc(R+)

such that for any t > 0 the Gramian matrix mt =
∫ t

0 f (s) · f ∗(s)ds has an inverse denoted by αt .
Then, with φ(·) = α· · f (·), the kernel k, defined by k(t, s) = 0 if s > t and k(t, s) = φ∗(t) · f (s)
otherwise, is a Goursat–Volterra kernel of order n.

For a proof of this result, we refer the reader to [15]. Some arguments of the proof are sketched in
Remark 2.3. In the remainder of this paper, unless otherwise specified, we work under the setting
of Theorem 2.1. The objective of the next result is to obtain an expression for α· in terms of φ(·).
As a straightforward application, we shall show that it allows us to obtain a new self-reproducing
property satisfied by the kernel k. To our knowledge the following result is not known.

Theorem 2.2. αt converges to a finite matrix α∞ as t →∞. Moreover, we have

αt =

∫
∞

t
φ(u) · φ∗(u)du + α∞, 0 < t <∞. (8)

Consequently, the self-reproduction property

k(t, s) =
∫
∞

t
k(u, t)k(u, s)du + f ∗(t) · α∞ · f (s), 0 < s ≤ t <∞, (9)

holds true.

Proof. Fix t > 0. Observe that the matrices αt and mt are symmetric positive definite with
absolutely continuous entries. Next, the identity αt · mt = Idn = mt · αt , when differentiated,
yields α′t · mt = −αt · m′t . It follows that

φ(t) · f ∗(t) = αt · f (t) · f ∗(t) = αt · m
′
t = −α

′
t · mt .

Consequently, we have α′t = −φ(t) · f ∗(t) · αt = −φ(t) · φ∗(t). For any 1 ≤ j ≤ n,
(α′t ) j, j = −φ

2
j (t) is negative. Hence, (αt ) j, j is decreasing. Because (αt ) j, j > 0 we get that
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∞

r φ2
j (s)ds <∞, r > 0. Since, for t ≥ r , we can write αt = αr −

∫ t
r φ(s) · φ

∗(s)ds; by letting

t →+∞, we find limt→∞ αt = αr −
∫
∞

r φ(s) ·φ∗(s)ds = α∞. Thus, α∞ is a matrix with finite
entries. The last statement follows from k(t, s) = f ∗(t) · αt · f (s) where we use the expression
for αt given in (8). �

Self-reproducing kernels, in particular Goursat–Volterra kernels, are different from but related
to kernel systems and reproducing kernel Hilbert spaces. Our next objective is to outline this
connection. For, let us start by fixing a time interval [0, t], for some t > 0. Let the vector
qt (u) := (qm,t (u), 0 < u ≤ t; 1 ≤ m ≤ n) be formed by the orthonormal sequence associated
with f1, f2, . . . , fn over the interval [0, t]. This system is uniquely characterized by∫ t

0
qm,t (r)qk,t (r)dr = δm,k, 1 ≤ m, k ≤ n,

with the requirement that for each integer 1 ≤ m ≤ n, qm,t is a linear combination of f1, . . . , fm
with a positive leading coefficient associated with fm . We refer the reader to Lemma 6.3.1, p.
294, in [3] for an expression for the latter in terms of a determinant. The classical kernel system
is then given by the symmetric kernel

κt (u, v) = qt (u) · q
∗
t (v), 0 < u, v ≤ t.

This is a reproducing kernel in the sense that

κt (u, v) =
∫ t

0
κt (u, r)κt (v, r)dr, 0 < u, v ≤ t.

For 1 ≤ i, j ≤ n, (αt )i, j is seen to be the coefficient of fi (u) f j (v) in the expansion of κt . To
be more precise, (αt )i, j = (bt · b∗t )i, j where b is an upper diagonal matrix whose entry (bt )i,k is
the coefficient of fi (u) in qk,t (u) for i ≤ k. We clearly have φ2

i (t) = −2(b′t · b
∗
t )i,i for all i and

it would be interesting to express the matrix bt in terms of φ(t). Now, we are ready to state the
following result.

Proposition 2.1. For each fixed t > 0, the kernel system associated with f , over the time interval
[0, t], is given by κt (u, v) =

∫
∞

t k(r, u)k(r, v)dr + f ∗(u) · α∞ · f (v) for 0 < u, v ≤ t . In
particular, we have k(t, s) = κt (t, s) for all 0 < s ≤ t <∞.

Proof. As in the proof of Theorem 2.2, the first part of the result follows from the well-known
relationship κt (u, v) = f ∗(u) ·αt · f (v) for any 0 < u, v ≤ t . The second part follows by taking
the limit and using continuity. �

Remark 2.1. To see an example where α∞ 6≡ 0, let us discuss the case n = 2. Assume that f1
and f2 are two functions in L2

loc(R+). We distinguish four cases and three different forms for
α∞. The first corresponds to α∞ ≡ 0 when ‖ f1‖ = ‖ f2‖ = +∞. The second corresponds to the
case when ‖ f1‖ and ‖ f2‖ are finite which implies that α∞ is positive definite. Observe that the
off-diagonal entries are zero only when

∫
∞

0 f1(s) f2(s)ds = 0. The latter integral is zero if, for
instance, we take f1 = ϕ−ψ and f2 = ϕ+ψ , where ‖ϕ‖ = ‖ψ‖ <∞. In the third case, all the
entries of α∞ are zero but (α∞)1,1 = 1/‖ f1‖

2 if ‖ f1‖ < +∞ and ‖ f2‖ = +∞. The remaining
case is similar by symmetry.

Remark 2.2. We shall now discuss examples of kernels of order n, n ∈ N, whose reproducing
spaces are Müntz spaces; see [9] for Müntz polynomials and spaces. We refer the reader to [2]
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for proofs of results given below. Take fi (s) = sλi , i = 1, 2, . . . , where Λ = {λ1, λ2, . . .} is a
sequence of reals such that λi 6= λ j for i 6= j and λi > −1/2. For a fixed n <∞, the kernel kn
defined by kn(t, s) = 0 if s > t and

kn(t, s) = t−1
n∑

j=1

a j,n(s/t)λ j , a j,n =

n∏
i=1
(λi + λ j + 1)

n∏
i=1,i 6= j

(λi − λ j )

, j = 1, . . . , n, (10)

if 0 < s ≤ t is a Goursat–Volterra kernel of order n. Its reproducing Gaussian space, at time
t > 0, is Span{

∫ t
0 si dBs; i = 1, 2, . . . , n}. Going back to the Gramian matrix (mt , t ≥ 0),

observe that it has the entries

(mt )i, j = (λi + λ j + 1)−1tλi+λ j+1, i, j = 1, . . . , n.

Thus if t = 1 then m1 is a Cauchy matrix. When λi = ci , for some constant c 6= 0, and n = ∞,
m1 is the well-known Hilbert matrix. Note that because ‖ fi‖ = +∞, i = 1, . . . , n, we have
α∞ ≡ 0. So we have φi (t) = ai,n t−λi−1, i = 1, 2, . . . , n. Furthermore, the entries of αt are
given by

(αt )i, j = ai,na j,n(λi + λ j + 1)−1t−λi−λ j−1, i, j = 1, . . . , n,

which follows from the expression for the kernels when compared with Theorem 2.2. Note that
αt , for t 6= 1, can easily be constructed from α1 which is known and can be found in [29]. Finally,
we mention that some results have been obtained concerning infinite order kernels in the Müntz
case; see [2,16].

Remark 2.3. Observe that we can write

Σ (B)t =
∫
∞

0
(I − K ∗f )1[0,t](u)dBu, 0 < t <∞

where K ∗f is the adjoint of the bounded integral operator K f defined on L2
loc(R+) by

K f α(t) =
∫ t

0
k(t, r)α(r)dr, α ∈ L2

loc(R+).

That I − K f is a partial isometry, with initial subspace L2
loc(R+)	 Span{ f } and final subspace

L2
loc(R+), follows from the generalized Hardy inequality

‖Kgα‖ ≤ 2‖α‖, α ∈ L2
loc(R+).

Consequently, the operator I − K ∗f , when defined on L2
loc(R+), is isometric which implies the

statement of Theorem 2.1. For the above results, we refer the reader to [15]. We also refer the
reader to the comments of Section 3 therein because here we are working with L2

loc(R+) instead
of L2

loc([0, 1]).

Remark 2.4. Many authors work under the condition∫ t

0

(∫ u

0
k2(u, v)dv

)1/2

du <∞ (11)
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for all t > 0, which is sufficient for Σ (B), where B is a standard Brownian motion, to be well
defined; see for instance [11]. However, condition (11) is too strong for Σ (B) to be well defined.
To see that, let us fix b ∈ L2

loc(R+). The associated Goursat–Volterra kernel of order 1 is then
found to be

k(t, v) = b(t)b(v)

/∫ t

0
b2(r)dr.

This satisfies (11) if and only if
∫ t

0 |b(s)|/(
∫ s

0 b2(r)dr)1/2ds < ∞ for all t < ∞. For example,
the kernel associated with b(t) = t−1e−1/t fails to satisfy (11).

3. On some singular linear stochastic differential equations

Consider the singular linear stochastic equation (5). Our interest lies in the set of all its
continuous semi-martingale solutions which may be defined on a possibly enlarged space. For
a particular solution X , we recall that (5) is well defined in the sense that (6) holds. If we set
W = Σ (B), where B is a Brownian motion, then the set includes at least two solutions which
we will now briefly describe. First, B is a solution. Second, there is a solution which is defined
on R+ and coincides with the f -generalized bridge over its lifetime. The latter process, denoted
by
(
B y

u , u ≤ t1
)
, for some t1 > 0 and a column vector of reals y, is defined by

B y
u = Bu − ψ

∗(u) ·
∫ t1

0
f (s)dBs + ψ

∗(u) · y, 0 < u < t1,

where ψ is the unique solution to the linear system∫ u

0
f (s)ds = ψ(u) ·

∫ t1

0
f (s) · f ∗(s)ds = ψ(u) · mt1 , 0 < u < t1.

Thus ψ(u) = αt1 ·
∫ u

0 f (s)ds which implies that
∫ t1

0 f (s)dB y
s = y, since αt1 is the inverse of

mt1 . This is why the above process is called an f -generalized bridge over [0, t1] with endpoint
y. Now, we have Σ (B y) = Σ (B) which is true because Σ is linear and Σ (

∫
·

0 f (r)dr) ≡ 0 since
f (t) =

∫ t
0 k(t, v) f (v)dv for all 0 < t < ∞. This shows that B y is also a solution to (5) which,

in fact, is a non-canonical decomposition. For further results on these processes, such as their
canonical decomposition in their own filtrations, we refer the reader to [1]. Now, we consider Eq.
(5) where the driving Brownian motion W is taken to be arbitrary.

Theorem 3.1. (1) X solves Eq. (5) if and only if there exists a random vector Y = (Y1, . . . , Yn)
∗

such that

X = X0
+

∫
·

0
f ∗(u)du · Y (12)

where

X0
= W −

∫
·

0

∫
∞

u
φ∗(v) · f (u)dWvdu.

In terms of X, Y it is given by Y = limt→∞ αt ·
∫ t

0 f (u)dXu .
(2) X0 is a Brownian motion if and only if α∞ ≡ 0. In the case α∞ 6≡ 0, a process X solving
Eq. (5) is a Brownian motion if and only if Y is centered Gaussian with covariance matrix α∞
and is independent of F X0

∞ .
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Proof. (1) We proceed by checking first that X0
t is a particular solution to (5). Using the

stochastic Fubini theorem, found for instance in [28], we perform the decompositions

X0
t −

∫ t

0

∫ u

0
k(u, v)dX0

vdu = Wt −

∫ t

0

∫
∞

u
k(v, u)dWvdu

−

∫ t

0

∫ u

0
k(u, v)

(
dWv −

∫
∞

v

k(ρ, v)dWρdv
)

du

= Wt −

∫ t

0

∫
∞

u
k(v, u)dWvdu −

∫ t

0

∫ u

0
k(u, v)dWvdu

+

∫ t

0

∫ u

0

∫ ρ

0
k(u, v)k(ρ, v)dvdWρdu +

∫ t

0

∫
∞

u

∫ u

0
k(u, v)k(ρ, v)dvdWρdu.

Since k is self-reproducing, the last four terms in the last equation cancel showing that X0
t solves

(5). Next, if X is a solution then by setting X = X0
+ Z we see that Z has to satisfy

dZr =

∫ r

0
k(r, v)dZvdr, 0 < r <∞.

Multiplying both sides by f (r) and integrating with respect to r , along [0, t], yields∫ t

0
f (v)dZv =

∫ t

0
f (v)φ∗(v) ·

∫ v

0
f (r)dZr dv

=

∫ t

0
mv · φ(v)φ

∗(v) ·

∫ v

0
f (r)dZr dv

= −

∫ t

0
mv ·

d
dv
αv ·

∫ v

0
f (r)dZr dv

where we used the expression for α′ given in the proof of Theorem 2.2 to obtain the last equality.
Because α is the inverse of m, the latter relation can be written as d

dt αt ·
∫ t

0 f (s)dZs = 0. This,
when integrated, yields αt ·

∫ t
0 f (s)dZs = Y for some random vector Y . Hence

∫ t
0 f (r)dZr =

mt · Y which implies that Z t = Y ∗ ·
∫ t

0 f (s)ds. This completes the proof of the first part of the
first assertion. For the second part, by using Theorem 2.2 we obtain

φ(t)dWt = φ(t)dX t − φ(t)φ
∗(t) ·

∫ t

0
f (u)dXudt

= αt · d

(∫ t

0
f (u)dXu

)
− φ(t)φ∗(t) ·

∫ t

0
f (u)dXudt

= d

(
αt ·

∫ t

0
f (u)dXu

)
.

Integrating on both sides over [s, t] we obtain∫ t

s
φ(u)dWu = αt ·

∫ t

0
f (u)dXu − αs ·

∫ s

0
f (u)dXu .

Next, observe that as t → ∞ the left hand side converges almost surely. So the right hand side
converges as well to some limit which we denote by Ỹ . To be more precise, setting

Ỹ = lim
t→∞

αt ·

∫ t

0
f (u)dXu,
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we have shown that∫
∞

t
φ(u)dWu = Ỹ − αt ·

∫ t

0
f (u)dXu, 0 < t ≤ ∞. (13)

Consequently, we have∫ t

0

∫
∞

u
f ∗(u) · φ(v)dWvdu − Ỹ ∗ ·

∫ t

0
f (u)du =

∫ t

0
f ∗(u) · α(u) ·

∫ u

0
f (v)dXvdu

=

∫ t

0

∫ u

0
φ∗(u) · f (v)dXvdu.

Thus, we have∫ t

0

∫
∞

u
k(v, u)dWvdu − Ỹ ∗ ·

∫ t

0
f (u)du = −

∫ t

0

∫ u

0
k(u, v)dXvdu

= Wt − X t .

Comparing with previous calculations yields Y = Ỹ , P0-almost surely.
(2) Theorem 2.2 implies that

E[X0
s X0

t ] = s ∧ t −
∫ s∧t

0

∫ t

0
f ∗(r) · α∞ · f (v)dvdr. (14)

This clearly shows that X0 is a Brownian motion if and only if α∞ ≡ 0. Next, if X is as prescribed
then by virtue of (14), and the fact that α∞ is the covariance matrix of Y , we have

E[Xs X t ] = s ∧ t −
∫ s

0

∫ t

0
f ∗(u) · α∞ · f (v)dvdu

+

∫ s

0

∫ t

0
E
[
(Y ∗ · f (u))(Y ∗ · f (v))

]
dvdu

= s ∧ t.

Because X is a continuous Gaussian process we conclude that it is a Brownian motion.
Conversely, if X is a Brownian solution to (5) then it has to be of the form (12). By virtue of
the orthogonal properties of the Goursat–Volterra transform, we see that Y is independent of
F Σ (X)

t = F W
t for any fixed t > 0. Next, by letting t go to∞, we get that Y is independent of

F X0

∞ ⊆ F W
∞ . Thus, Y is Gaussian vector, with covariance matrix α∞, which is independent of

F X0

∞ as required. �

Thanks to the importance of the symmetric matrix α∞, for instance in Theorem 2.2, it is natural
to look for a description of its structure. The following result, which is hidden in the proof of
Theorem 3.1, gives a necessary and sufficient condition for a column or a row to be zero.

Corollary 3.1. For 1 ≤ i ≤ n, (α∞)i, j = (α∞) j,i = 0 for all j , if and only if ‖ fi‖ = ∞.

Proof. For a fixed t > 0, αt is the covariance matrix of αt ·
∫ t

0 f (s)dBs . Furthermore, due to
Theorem 3.1, we conclude that αt ·

∫ t
0 f (s)dBs converges to a Gaussian vector Y , possibly with

some null components, such that E(Y · Y ∗) = α∞. Thus, Yi ≡ 0 for some i if and only if
(α∞)i,i = 0 and if and only if ‖ fi‖ = ∞. Now, (α∞)i,i = 0 if and only if (α∞)i, j = 0
for all j . In order to see that, we let t → ∞ and use continuity in the well-known inequality
|(αt )i, j |

2
≤ (αt )i,i (αt ) j, j valid for symmetric positive definite matrices. �
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Now, we take a look at the orthogonal decompositions of filtrations which arise from
Goursat–Volterra transforms and provide their interpretation.

Corollary 3.2. The orthogonal decomposition given by (4) holds true. Furthermore, the
progressive decomposition

F B
t = F Σ (B)

t ⊗ σ

(
Y −

∫
∞

t
φ(u)dΣ (B)u

)
, 0 < t <∞

holds true, where Y ≡ 0 if α∞ ≡ 0 and Y is a Gaussian vector independent of F Σ (B)
∞

with covariance matrix α∞ otherwise. Thus, we have F B
∞ = F Σ (B)

∞ in the case α∞ ≡ 0 and

F B
∞ = F Σ (B)

∞ ∨ σ {Y } otherwise.

Proof. For a fixed t > 0, Theorem 3.1 implies that

Bt = Σ (B)t −
∫ t

0

∫
∞

u
k(v, u)dΣ (B)vdu + Y ∗ ·

∫ t

0
f (u)du

where Y is a Gaussian vector with covariance α∞ which is independent of F Σ (B)
∞ . Hence, we

have ∫ t

0
f (u)dBu = mt ·

(
Y −

∫
∞

t
φ(u)dΣ (B)u

)
which gives

σ

{∫ t

0
f (u)dBu

}
= σ

{
Y −

∫
∞

t
φ(u)dΣ (B)u

}
.

This implies the first assertion while the last one follows on letting t tend to +∞. �

Remark 3.1. Recall that F B
0 and F Σ (B)

0 are trivial. So by letting t converge to 0, in Corollary 3.2,
we see that φ∗ ∈ L2([ε,∞)n) for all ε > 0 but φi 6∈ L2((0,+∞)), for i = 1, . . . , n. This fact
can also be shown by a combination of Theorem 2.2 and the inequality

(αt )i,i ≥ 1/(mt )i,i = 1/‖ fi‖
2

which follows from the orthogonal diagonalization of mt and may be found in Exercise 8, p. 274,
in [12].

Remark 3.2. It is clear that if the choice of the vector f allows the use of integration by parts for
the integrand in the right hand side of (5) then we obtain a stochastic differential equation which
does not involve a stochastic integral. For instance, that is the case for the examples given by P.
Lévy, found in [26,27]. These go back to around the middle of the last century when stochastic
integration was not yet developed worldwide.

4. Connections to some positive martingales

Let (k(t, s), t ≥ s > 0) be a Goursat–Volterra kernel of order n, where n is a natural number.
Assume that f is a reproducing basis for k, or for the associated Volterra transform Σ , and let us
keep the notation used in the Introduction. Consider the singular stochastic differential equation
(5) associated with k and driven by a given standard Brownian motion W . Our aim here is to
describe the set
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Υ (k)
=

{
P is the probability law of a continuous semi-martingale X

on (C([0,∞),R),F∗∞) solving (5) s.t. Σ (X) is a Brownian motion

and F Σ (X)
t is independent of

∫ t

0
f (s)dXs, for all 0 < t <∞

}
.

We read from Corollary 3.1 that α∞ ≡ 0 if and only ‖ fi‖ = ∞ for all i . Now, we are ready to
state the following unified characterization of the set Υ (k).

Theorem 4.1. If α∞ ≡ 0 then the following assertions are equivalent:
(1) P ∈ Υ (k).
(2) P is the law of B+Y ∗ ·

∫ .
0 f (s)ds, where B is a standard Brownian motion and Y is a vector

of random variables which is independent of F B
∞.

(3) There exists a positive function h ∈ C1,2 (R+ × Rn,R+) such that h(.,
∫ .

0 f ∗(s)dBs) is a
continuous (P0,F)-martingale with expectation 1, and P = Ph

0 with

Ph
0 |Ft = h

(
t,
∫ t

0
f ∗(s)dBs

)
· P0

∣∣∣∣
Ft

, 0 < t <∞,

where P0 stands for the Wiener measure,

Proof. We split the proof into several steps where we show that (1) ⇐⇒ (2) and (2) ⇐⇒ (3).
Let us show that (1) H⇒ (2). Let P ∈ Υ (k). Theorem 3.1 implies that there exists a vector Y
such that P is the law of X0

t + Y ∗ ·
∫ t

0 f (u)du. That combined with the assumption α∞ ≡ 0
leads to the fact that X0 is a Brownian motion. Hence, it suffices to show that Y is independent
of X0. From (13) we see that Y =

∫
∞

t φ(u)dBu + αt ·
∫ t

0 f (u)dXu ; the vector
∫ t

0 f (u)dXu is

independent of B and, consequently, it is also independent of X0. Thus, whenever Z ∈ L2(F X0

∞ ),
for any fixed t ≥ 0, we have

E

[
E
[

Z |F X0

t

]
φ

(
Y −

∫
∞

t
φ(u)dBu

)]
= E [Z ] E

[
φ

(
Y −

∫
∞

t
φ(u)dBu

)]
for any bounded function φ : Rn

→ R. By letting t → ∞ we conclude that E [Z · φ(Y )] =
E[Z ]E [φ(Y )] which implies the required independence. We shall now show that (2) H⇒ (1).
To this end, let k be a Goursat–Volterra kernel. Denote by f a reproducing basis associated with
k and put X t = Bt + Y ∗ ·

∫ t
0 f (s)ds for t > 0. For a fixed t > 0, because

∫ t
0 f (u)dBu ∈ Γ (k)

t ,
we can write

X t −

∫ t

0

∫ u

0
k(u, v)dXvdu = Bt −

∫ t

0

∫ u

0
k(u, v)dBvdu = Σ (B)t

which is, of course, a Brownian motion. Furthermore, using once more the above argument we
can easily see that

∫ t
0 f (u)dXu is independent of F Σ (B)

t . Next, we deal with (2) H⇒ (3). Denote
by ν(dy) the distribution of Y . For any measurable functional φ, we then have that

E

[
φ

(
Bs + Y ∗ ·

∫ s

0
f (u)du : s ≤ t

)]
=

∫
Rn

E

[
φ

(
Bs + y∗ ·

∫ s

0
f (u)du : s ≤ t

)]
ν(dy)

=

∫
Rn

E

[
exp

(∫ t

0
y∗ · f (u)dBu −

1
2

∫ t

0

(
y∗ · f (u)

)2 du

)
φ(Bs : s ≤ t)

]
ν(dy)
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where the last equality is obtained by the Girsanov theorem. The required space–time harmonic
function is thus given on R+ × Rn by

h(t, x) =
∫
RN

exp
(

y∗ · x −
1
2

∫ t

0

(
y∗ · f (s)

)2 ds

)
ν(dy).

It remains to show that (3) H⇒ (2). For fixed 0 < u ≤ t < +∞, set ψ(u, t) = αt ·
∫ u

0 f (s)ds.
Let us write the obvious decomposition

Bu =

(
Bu − ψ

∗(u, t) ·
∫ t

0
f (s)dBs

)
+ ψ∗(u, t) ·

∫ t

0
f (s)dBs

and denote by H t
u the first term of its right hand side. We observe that the process (H t

u, u < t)
has then the same law under P0 as under Ph

0 . Next, to simplify notation, write

Ĥ t
u = ψ

∗(u, t) ·
∫ t

0
f (s)dBs = Y ∗t ·

∫ u

0
f (s)ds,

where we set Y ∗t = αt ·
∫ t

0 f (r)dBr . For any 0 ≤ s ≤ u ≤ t , we have E[H t
s H t

u] =

s −ψ∗(s, t) ·
∫ u

0 f (v)dv and ψ∗(s, t) ·
∫ u

0 f (v)dv =
∫ u

0 f ∗(v)dv · αt ·
∫ s

0 f (r)d→ 0 as t →∞

because α∞ ≡ 0. We conclude that the convergence in distribution H t
· → B(h)· holds, where

B(h) is a Ph
0-Brownian motion. That implies the convergence of Ĥ t

. as well to a finite limit. But
that can happen if and only if Y ∗t converges to a finite limit which we denote by Y ∗. Finally, from

the above arguments we see that Y ∗ is independent of F B(h)
∞ which ends the proof. �

Remark 4.1. Unfortunately, for the case α∞ 6≡ 0, the second statement in the above theorem is
too strong. For example, X0 satisfies the assertion (1) but it is easily seen that it does not satisfy
(2). The implications (2) H⇒ (1) and (2) H⇒ (3) still work in this case. We also can replace B
by X0 in statement (2) and prove that (1)⇐⇒ (2) still holds true. However, (2) H⇒ (3) fails.
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[2] L. Alili, C.-T. Wu, Müntz linear transforms of Brownian motions. Working paper, 2008.
[3] G. Andrews, R. Askey, R. Roy, Special Functions, in: Encyclopedia of Mathematics and its Applications, vol. 71,

Cambridge University Press, 1999.
[4] N. Aronszajn, Theory of reproducing kernels, Trans. AMS 68 (1950) 307–404.
[5] M. Atteia, Hilbertian Kernels and Spline Functions, in: C. Brezinski, L. Wuytack (Eds.), Studies in Computational

Mathematics, vol. 4, North-Holland, 1992.
[6] J. Amendinger, Initial enlargement of filtrations and additional information in financial markets, Ph.D. Thesis,

Technische Universität Berlin, 1999.



L. Alili, C.-T. Wu / Stochastic Processes and their Applications 119 (2009) 1386–1399 1399

[7] F. Baudoin, Conditioned stochastic differential equations: Theory, Examples and Application to finance, Stochastic.
Process. Appl. 100 (2002) 109–145.

[8] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer Academic
Publishers, 2004.
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M. Yor (Eds.), Séminaire de Probabilités Vol. XXIV, 1988/89, in: Lecture Notes in Mathematics, vol. 1426,
Springer, 1990.

[23] Th. Jeulin, M. Yor, Moyennes mobiles et semimartingales, Sém. de Prob. XXVII (1993) 53–77.
[24] G. Kallianpur, Stochastic Filtering Theory, in: Applications of Mathematics, vol. 13, Springer, 1980.
[25] I. Karatzas, I. Pikovsky, Anticipative portfolio optimization, Adv. Appl. Probab. 28 (4) (1996) 1095–1122.
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[28] Ph. Protter, Stochastic Integration and Differential Equations. Second Edition. Version 2.1. Stochastic Modelling

and Applied Probability, vol. 21, Springer, 2005.
[29] S. Schechter, On the inversion of certain matrices, Math. Comp. 13 (1959) 73–77.
[30] M. Yor, Some Aspects of Brownian Motion, Part I: Some Special Functionals, in: Lectures in Mathematics ETH
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