
Chemical Physics 358 (2009) 137–146
Contents lists available at ScienceDirect

Chemical Physics

journal homepage: www.elsevier .com/locate /chemphys
Theoretical treatment of anharmonic effect on molecular absorption,
fluorescence spectra, and electron transfer

Chaoyuan Zhu a,*, Kuo Kan Liang b, Michitoshi Hayashi c, Sheng Hsien Lin a,b,d

a Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao-Tung University,
1001 Ta-Hseuh Rd., Hsinchu 300, Taiwan
b Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
c Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
d Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan

a r t i c l e i n f o
Article history:
Received 2 May 2008
Accepted 13 January 2009
Available online 19 January 2009

Keywords:
Anharmonic effect
Mirror image
Absorption spectra
Fluorescence spectra
Electron transfer
0301-0104/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.chemphys.2009.01.006

* Corresponding author. Tel.: +886 3 5131224; fax:
E-mail addresses: cyzhu@mail.nctu.edu.tw (C. Zhu

Liang).
a b s t r a c t

It is well-known that the mirror image between absorption and fluorescence spectra is held for the dis-
placed harmonic-oscillator system, and also this mirror image is independent to the chiral symmetry in
which the excited-state potential energy surface is right-handed or left-handed with respect to the
ground-state potential energy surface. As the first-order approximation of anharmonic correction is
added into the displaced harmonic oscillator, this mirror image is broken down, and then the spectra
can be depended on the chiral symmetry mentioned above. Both absorption and fluorescence coefficients
are derived analytically within the first-order anharmonic approximation and numerical test is carried
out to demonstrate the breaking down of the mirror image. Based on the same analysis, the electron
transfer rate is derived analytically within the first-order anharmonic approximation. This rate might
take the form of Arrhenius’s equation but not form of Marcus’s equation. Furthermore, it is found that
this rate is also depending on the chiral symmetry.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Within Born–Oppenheimer approximation, the Franck–Condon
overlap integrals between vibrational wave functions which be-
long to two different electronic states are very important quantity
in theoretical treatment of molecular processes. The Franck–
Condon overlap integrals are extensively utilized for the interpre-
tations and theoretical modeling not only for the vibronic structure
of electronic spectra like UV absorption, fluorescence, and other
nonlinear optical spectra of molecules, but also some nonradiative
processes like electronic transfer, relaxation, photodissociation,
and reactive scattering. If the vibrational normal modes for the
two electronic states are the same, these integrals can be separated
into a product of individual mode oscillators within the harmonic-
oscillator approximation. This is called displaced oscillators. If the
vibrational normal modes for the two electronic states are differ-
ent, these separations are no longer possible in general. This is
called distorted oscillators. If couplings among vibrational normal
modes are taken into account, the theoretical treatment becomes
very complicated, for example, the mode-mixing is kind of mode
couplings that are called Duschinsky’s effect. Within harmonic-
ll rights reserved.
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oscillator approximation, there are many well-developed theoreti-
cal methods [1–13]. The molecular vibration is harmonic only in
the low energy range (in the relative sense) of the potential surface
and as the energy increases and/or the energy gap between two
electronic states becomes large, the anharmonicity becomes signif-
icant. This is especially true for low frequency modes, for example,
intermolecular modes or bending modes. Anharmonicity can be
treated as kind of perturbation in harmonic treatment framework,
and this is also rapidly developing area [14–22].

It is the purpose for this paper to examine the effect of anhar-
monicity on molecular spectroscopy in a preliminary manner,
and that means to focus on the displaced oscillators. In order to de-
scribe the anharmonic effect, the Morse potential is commonly
used in literature [16,23], the potential for each vibrational mode
is given by

VjðQjÞ ¼ Dj 1� e�ajQj
� �2

: ð1:1Þ

The solution of the Schrödinger equation for the Morse oscillator
yields energy levels as

etj
¼ �hxj tj þ

1
2

� �
� xj�hxj tj þ

1
2

� �2

: ð1:2Þ

One feature of the Morse oscillator is that there exists a maximal
value of the eigenenergy ev j

. For small quantum number mj, the
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eigenenergy increases with vj until it reaches the maximal value.
Beyond that, the eigenenergy decreases with further increase in
vj. It is a common practice to truncate the possible values of vj up
to a maximum corresponding to the maximal energy value. Thus,
at high temperature the partition function of a Morse’s oscillator
reaches a constant value determined by the maximal vj, while the
partition function of a harmonic oscillator increases indefinitely
with temperature. Another feature is that the vibrational energy
level spacing is no longer constant. In the present work, we demon-
strate the basic effects of anharmonicity on molecular spectroscopy
and investigate the leading-order anharmonic correction to har-
monic oscillator. Therefore, we shall use the perturbation method
to express the anharmonic potential in the polynomial form

VjðQÞ ¼ aj2 Q2
j þ kaj3 Q 3

j þ k2aj4 Q4
j þ � � � ð1:3Þ

in which k is a small perturbation parameter. It is well understood
when the vibrational energy level spacing is similar for the ground
and electronically excited states, which results in a fluorescence
spectrum that strongly resembles the mirror image of the absorp-
tion spectrum. This is due to the fact that the same transitions are
most favorable for both absorption and fluorescence. Even when
solvent effects are included, the mirror image still preserves as
the fluorescence and absorption spectra are broaden. However, we
demonstrate in this paper when anharmonicity is taken into ac-
count, the mirror image breaks down even for displaced oscillators
where energy level spacing is still exactly same for the ground and
electronically excited states.

The anharmonic-oscillator model of molecular spectrum is for-
mulated by following method in Ref. [1] (and references therein) in
which the harmonic-oscillator model is employed in calculating
the Franck–Condon overlap integrals. The present paper is orga-
nized as follows. In Section 2, the molecular theory for absorption
and fluorescence spectroscopy is briefly presented which will be
followed by the derivation of the quantum mechanical expression
of molecular absorption coefficient using the cumulant method.
Section 3 is concerned with the treatment of anharmonic effect
on absorption and fluorescence spectra. For this purpose, the per-
turbation method will be used; that is, the harmonic wavefucntion
will be used as the basis set and the anharmonicity is treated as a
perturbation. The numerical results to demonstrate the anhar-
monic effect on absorption and fluorescence spectra will be pre-
sented in Section 4 and concluding remark will be given in
Section 5 along with analytical discussion of unharmonic effect
for absorption and fluorescence spectroscopy as well as electron
transfer rate.
Qj

Q'j
0 0'0'

Q'j=Qj-djQ'j=Qj+dj
djdj

bv'

av
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0' 00
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Fig. 1. As anharmonic effect is taken into account, absorption and fluorescence
spectra can depend on direction of shift of excited electronically state with respect
ground electrically state. (a) Potential energy surfaces for absorption. (b) Potential
energy surfaces for fluorescence.
2. General theory

By using the time-dependent perturbation method and dipole
approximation with assumption that molecular systems in the
dense media are randomly oriented, we can write down the
absorption coefficient of the electronic transition from adiabatic
state a to b [1]

aðxÞ ¼ 4p2x
3ac�h

j~lbaj2
X
~t

X
~t0

Pa~tjhHb~t0 jHa~tij2dðxb~t0 ;a~t �xÞ; ð2:1Þ

where ~lba is the electronic transition dipole moment, Pa~t is the
Boltzmann factor and jhHb~t0 jHa~tij2 is the Franck–Condon factor.
The factor a in denominator of Eq. (2.1) that stands for a function
of refractive index is introduced to take into account the solvent
effect.

With further assumption of the independent oscillators we can
expand wave function into simple product of each vibration mode
Ha~tð~QÞ ¼
Y

j

vatj
ðQ jÞ ð2:2aÞ

and

Hb~t0 ð~Q 0Þ ¼
Y

j

vbt0
j
ðQ 0jÞ ð2:2bÞ

in which Eq. (2.2a) denotes the wave function of an initial electronic
state a and Eq. (2.2b) denotes the wave function of a final electronic
state b. For absorption process as shown in Fig. 1a, a (b) represents
ground (excited) state. For fluorescence process as shown in Fig. 1b,
a (b) represents excited (ground) state. In the harmonic-oscillator
approximation, there is no observable effect in either absorption
or florescence spectrum whether the PES of the excited state in
Fig. 1 shifts to the right-handed side or the left-handed side with re-
spect to the PES of the ground state. We define this symmetry as a
chiral symmetry of the potential energy surfaces. This is nothing to
do with conventional definition of chiral symmetry of molecule it-
self. Throughout this paper, the chiral symmetry means symmetry
of the potential energy surfaces. We can easily understand this chi-
ral symmetry from the Franck–Condon overlap integrals; these
integrals are invariant with the chiral transformation for displaced
harmonical oscillators and one of consequences is leading to the
mirror image between absorption and fluorescence spectra. How-
ever, the spectra of the mirror image are obviously broken down
when anharmonic effects are taken into account because the
Franck–Condon overlap integrals are no longer invariant.

Based on the independent oscillator approximation of Eqs. (2.2a
and 2.2b), Eq. (2.1) can be derived as [1]

aðxÞ ¼ 2px
3ac�h

j~lbaj2
Z 1

�1
dt exp itðxba �xÞ½ �

Y
j

GjðtÞ; ð2:3Þ

where

GjðtÞ ¼
X
tj

X
t0

j

Patj
jhvbt0

j
jvatj
ij2 exp

it
�h
ðet0

j
� etj

Þ
� �

: ð2:4Þ

The time correlation function (TCF) GjðtÞ can be rewritten as

GjðtÞ ¼
X
tj

Patj
hvatj
jeitĤbj=�he�itĤaj=�hjvatj

i ¼ hheitĤbj=�he�itĤaj=�hii; ð2:5Þ
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where Ĥaj and Ĥbj represent the vibrational Hamiltonians corre-
sponding to the a and b electronic states, respectively. The angular
brackets in Eq. (2.5) denote an equilibrium ensemble average over
the initial vibronic states. If a particular vibronic transition (say,
corresponding to the Q‘ mode) is resolved, it is more convenient
to write Eq. (2.3) as

aðxÞ ¼ 2px
3ac�h

j~lbaj2
X
t‘

X
t0
‘

Pat‘ jhvbt0
‘
jvat‘ ij

2

�
Z 1

�1
dt exp itðxbt0

‘
;at‘ �xÞ

h iYj–‘
j

GjðtÞ; ð2:6Þ

where

xbt0
‘
;at‘ ¼ xba þ

1
�h
ðet0

‘
� et‘ Þ ð2:7Þ

in which xba ¼ 1
�h ðEb � EaÞ and Eb (Ea) is electronic energy at the

equilibrium geometry of the electronic state b (a). As is shown from
the above discussion, the central problem for deriving a(x) is the
calculation of TCF Gj(t). In this paper, we shall calculate Gj(t) by
applying the cumulant expansion method [24] to the second-order,
and then we find

GjðtÞ ¼ exp
it
�h
hhÛjii þ

i
�h

� �2 Z t

0
dsðt � sÞhhÛjð0ÞÛjðsÞiic

" #
; ð2:8Þ

where

ÛjðtÞ ¼ exp
it
�h

Ĥaj

� �
Ĥbj � Ĥaj

� 	
exp � it

�h
Ĥaj

� �
; ð2:9Þ

hhÛjð0ÞÛjðtÞiiC ¼ hhÛjð0ÞÛjðtÞii � hhÛjii2: ð2:10Þ

In the short-time approximation, aðxÞ can be expressed as

aðxÞ ¼ 2px
3ac�h

j~lbaj2
2p�h2

r2
u

 !1=2

� exp �ðEb � Ea � �hxþ hhÛiiÞ2

2r2
u

" #
; ð2:11Þ

where

hhÛii ¼
X

j

hhÛjii ð2:12Þ

and

r2
u ¼

X
j

hhÛ2
j ii � hhÛjii2

� 	
¼ hhÛ2ii � hhÛii2; ð2:13Þ

where

hhÛ2ii ¼
X

j

hhÛ2
j ii: ð2:14Þ

It should be noted that using the vibrational basis set of the elec-
tronic state a, we can find

GjðtÞ ¼ exp
it
�h
hhÛjii þ

1
2

it
�h

� �2 X
tj

Patj
hvatj

Ûj




vatj




 i



 


2 � hhÛjii2

0
@

1
A

2
4

þ i
�h

� �2X
tj

X
uj

Patj

vauj
Ûj




vatj




D E


 


2
x2

ujtj

1þ itxujtj
� eitxujtj

� 	375:
ð2:15Þ

In the double summations of Eq. (2.15), uj–tj .
3. Anharmonic potential

In this section we shall present how the anharmonic effect can
be introduced into the calculations of the absorption and fluores-
cence spectra by using the cumulant expansion of the TCF.

3.1. Absorption coefficient

Although the Schrödinger equation of the Morse oscillator can be
solved exactly and analytically, it is difficult to use its wavefunctions
and energies to compute the TCF G(t) involved in absorption and
fluorescence spectra as we mentioned in Section 1. Therefore, we
consider the perturbation expansion of vibration j-mode potential as

VjðQÞ ¼ aj2Q 2
j þ kaj3Q 3

j þ k2aj4Q 4
j þ � � �

¼ Vj2ðQ jÞ þ Vj3ðQ jÞ þ Vj4ðQjÞ þ � � �
ð3:1Þ

in which k is chosen as the perturbation parameter. In case of the
Morse potential, we can find coefficient relations as

aj2 ¼ Dja2
j ; kaj3 ¼ �Dja3

j ; k2aj4 ¼
7

12
Dja4

j ; . . . ð3:2Þ

Based on the standard perturbation method, we use the har-
monic basis set as the zero-order approximation and expand the
energy level and wave function for vibration mode – tj as

etj
¼ eð0Þtj

þ keð1Þtj
þ k2eð2Þtj

þ � � � ð3:3Þ

and

vtj
ðQ jÞ ¼ vð0Þtj

ðQ jÞ þ kvð1Þtj
ðQjÞ þ k2vð2Þtj

ðQjÞ þ � � � ; ð3:4Þ

where vð0Þtj
ðQjÞ denote the harmonic basis set. Using Appendix A, we

obtain

eð0Þtj
¼ �hxj mj þ

1
2

� �
ð3:5aÞ

eð1Þtj
¼ 0 ð3:5bÞ

and

eð2Þmj
¼ 6aj4

�h
2xj

� �2

mj þ
1
2

� �2

þ 1
4

" #

�
30a2

j3

�hxj

�h
2xj

� �3

mj þ
1
2

� �2

þ 7
60

" #
: ð3:6Þ

The first-order correction to wave function turns to be

vð1Þtj
ðQ jÞ ¼ �

aj3

�hxj

�h
2xj

� �3=2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmj þ 1Þ3

q
vð0Þtjþ1ðQ jÞ �

ffiffiffiffiffi
m3

j

q
vð0Þtj�1ðQ jÞ

� ��

þ1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtj þ 1Þðtj þ 2Þðtj þ 3Þ

q
vð0Þtjþ3ðQ jÞ

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tjðtj � 1Þðtj � 2Þ

q
vð0Þtj�3ðQjÞ

io
: ð3:7Þ

The first-order correction is zero for energy but is nonzero for wave
function. As the present discussion focuses on the first-order correc-
tion of the anharmonicity that is actually the leading term correc-
tion, we neglect all contributions of the second-order
anharmonicity in terms of k2 from now on.

Next we consider Ûj in Eq. (2.9) up to the first-order correction
of anharmonicity. In principle, the difference of Hamiltonian in Eq.
(2.9) can be written as

Ĥbj � Ĥaj ¼ VbjðQ 0jÞ � VajðQ jÞ: ð3:8Þ

For displaced oscillator surfaces, we have

Ûj ¼ Ûj2 þ Ûj3 þ � � � ; ð3:9Þ
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where

Ûj2 ¼ Dja2
j ðQ

02
j � Q2

j Þ ¼ aj2ð2Qjdj þ d2
j Þ; ð3:10Þ

Ûj3 ¼ �Dja3
j ðQ

03
j � Q 3

j Þ ¼ kaj3ð3Q 2
j dj þ 3Qjd

2
j þ d3

j Þ; ð3:11Þ

where Q 0j ¼ Qj þ dj that corresponds to left-handed shift with re-
spect to ground electronic state as shown in Fig. 1a. We can easily
calculate

hvtj
jÛj2jvtj

i ¼ aj2d2
j � k

6aj2aj3�hdj

x3
j

tj þ
1
2

� �
þ Oðk2Þ; ð3:12Þ

hvtj
jÛj3jvtj

i ¼ kaj3dj d2
j þ

3�h
xj

tj þ
1
2

� �� �
þ Oðk2Þ ð3:13Þ
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Fig. 2. Comparison of absorption and fluorescence spectra for the case of xba = 10,000 cm
stand for fluorescence spectra and solid lines stands for absorption spectra. (a) an = 0
electronically excited-state shifts at the right-handed with respect to electronically groun
at the left-handed with respect to electronically ground state (absorption and fluorescenc
2px
3ac�h j~lba j2 ¼ 1. All the following Figs. 3–5 are computed by the same equations).
and

hvtj
jÛjjvtj

i ¼ hvtj
jÛj2 þ Ûj3jvtj

i ¼ aj2d2
j 1þ k

aj3

aj2
dj

� �
þ Oðk2Þ

ð3:14Þ

or hhÛjii ¼ aj2d2
j 1þ k

aj3
aj2

dj

� 	
þ Oðk2Þ. Thus, we obtainX

tj

Patj
hvatj

Ûj




vatj




 i



 


2 � hhÛjii2 ¼ Oðk2Þ: ð3:15Þ

Inserting the above equations into Eq. (2.15) leads to
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e spectra are computed by Eqs. (3.22) and (3.24), respectively with setting up unit of
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GjðtÞ ¼ exp itSjxj 1þ kaj3

aj2
dj

� ��

þ i
�h

� �2X
tj

X
uj

Patj

vauj
Ûj




vatj




D E


 


2
x2

ujtj

1þ itxujtj
� eitxujtj

� 	375;
ð3:16Þ
where Sj ¼ 1
2�h xjd

2
j is defined as the Huang–Rhys factor, and note

that xj ¼
ffiffiffiffiffiffiffiffiffi
2aj2

p
. In order to evaluate non-zero terms in the summa-

tion of Eq. (3.16), we need to calculate the following non-zero terms
as
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D E


 


2 ¼ Sjð�hxjÞ2ðtj þ 1Þ 1þ 3k
aj3

aj2
dj

� �
þ Oðk2Þ

ð3:17Þ

and

vatj�1 Ûj




vatj




D E


 


2 ¼ Sjð�hxjÞ2tj 1þ 3k
aj3

aj2
dj

� �
þ Oðk2Þ: ð3:18Þ

Actually we have

vatjþ2 Ûj




vatj




D E


 


2 ¼ Oðk2Þ; ð3:19Þ

and
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hvatj�2 Ûj




vatj




 i



 


2 ¼ Oðk2Þ: ð3:20Þ

Within first-order approximation, we finally have

GjðtÞ ¼ exp 2itSjxj
� �

� aj3

aj2
dj

� �� �
exp �Sj 1þ 3

aj3

aj2
dj

� ��
2�tj



þ1� ð�tj þ 1Þeitxj � �tje�itxj
��
: ð3:21Þ

It follows that
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aðxÞ¼ 2px
3ac�h

j~lbaj2
Z 1

�1
dt e

it½ðxba�xÞ�2
P

j

Sjxjaj3dj=aj2 �

�exp �
X

j

Sj 1þ3
aj3

aj2
dj

� �
2�tjþ1�ð�tjþ1Þeitxj ��tje�itxj

 �" #

;

ð3:22Þ

where �mj ¼ exp �hxj

kBT

� 	
� 1

� 	�1
is phonon distribution and

xba ¼ ðEb � EaÞ=�h > 0.
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3.2. Fluorescence coefficient

The molecular fluorescence coefficient for the electronic transi-
tion a! b as shown in Fig. 1b is defined as

IðxÞ ¼ 4p2x
3ac�h

j~lbaj2
X
~t

X
~t0

Pb~tjhHa~t Hb~t0j ij2dðxa~t;b~t0 þxÞ: ð3:23Þ

Applying the similar procedure as above to calculate absorption
coefficient, within the first-order approximation of anharmonicity
we can derive
150

100

50

0
1095009000

400

300

200

100

0
1095009000

400

300

200

100

0
1095009000

Ab
s 

or
 S

E
Ab

s 
or

 S
E

Ab
s 

or
 S

E

Energy

Energy

Energy

a

b

c

Fig. 5. Comparison of absorption and fluorescence spectra for the two-mode cas
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IðxÞ¼ 2px
3ac�h

j~lbaj2
Z 1

�1
dt e

it½ðxbaþxÞþ2
P

j

Sjxjaj3dj=aj2 �

�exp �
X

j

Sj 1�3
aj3

aj2
dj

� �
2�tjþ1�ð�tjþ1Þeitxj ��tje�itxj

 �" #

ð3:24Þ

where xba ¼ ðEb � EaÞ=�h < 0. It should be noticed that Q 0j ¼ Qj � dj

for fluorescence in Fig. 1b corresponds to Q 0j ¼ Qj þ dj for absorption
in Fig. 1a. As sign in dj enters absorption coefficient in Eq. (3.22) and
fluorescence coefficient in Eq. (3.24), we can conclude that the
breaking down of mirror image between absorption and
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fluorescence spectroscopy comes from the anharmonic effects with-
in the first-order approximation to harmonic displaced oscillators. If
we return to displaced harmonic case in Eqs. (3.22) and (3.24) with
aj3 = 0, the both absorption and fluorescence coefficients agree with
the formula for harmonic oscillators in which the mirror image
holds.

4. Numerical calculations

Numerical calculations for absorption and fluorescence spectra
are carried out with numerically integrating out Eqs. (3.22) and
(3.24), respectively. We first consider the absorption and fluores-
cence spectra at temperature T = 0 K. The results are presented in
Fig. 2. The mirror image relation of the spectrum is held perfectly
in the harmonic case as shown in Fig. 2a. In contrast, the mirror im-
age breaks down in Fig. 2b and c as the anharmonic effect is turned
on. The spectra in Fig. 2b (Fig. 2c) correspond to the case in which
the excited-state potential energy surface shifts at the right-
handed (left-handed) side with respect to the ground-state poten-
tial energy surface. Obviously, the effects of the right-handed or
left-handed shifts are distinguishable. This distinction is not ob-
served in the case of harmonic oscillator. Actually we can interpret
the mirror image relation as a consequence of the chiral symmetry
of the excited-state potential energy surface with respect to the
ground-state energy surface. The more interesting effect is that
when this shift between the right-handed and left-handed is sym-
metric, the absorption (fluorescence) spectra in Fig. 2b form mirror
image with respect to the fluorescence (absorption) spectra in
Fig. 2c, but it should be emphasized that this mirror image is hap-
pened to two different systems that show chiral symmetry on their
excited-state potential energy surfaces. We conclude that when
molecule has the chiral symmetry of potential surfaces, the right-
handed or left-handed the excited-state potential energy surface
is indistinguishable from harmonic-oscillator spectra, but can be
distinguishable when the first-order anharmonic effect is turned
on. Figs. 3 and 4 demonstrate the absorption and fluorescence
spectra at temperature T = 100 and 300 cm�1, respectively. The
same conclusion is held as it is shown at T = 0 K, except that the
absorption and fluorescence spectra become more overlapped
and are broader. However, at non-zero temperature the numerical
integration of Eq. (3.22) for absorption coefficient and Eq. (3.24) for
the fluorescence coefficient requires great caution for convergence
at dips of spectra. In order to further confirm our conclusion, we
carry out two-mode calculation, and the results are shown in
Fig. 5, in which the above analysis about the chiral system is still
held except the spectra are getting broader and more structured.

5. Concluding remarks

We have demonstrated numerical calculations for breaking
down of mirror image between the absorption and fluorescence
spectroscopy in the Section 4, Actually, we can use the short-time
approximation to demonstrate it analytically. By assuming strong
vibronic coupling, i.e.,

P
jSj � 1 and

expð�itxjÞ ¼ 1� itxj �
x2

j t2

2
þ � � � ð5:1Þ

we can integral out Eq. (3.24) for absorption coefficient

aðxÞ ¼ 2px
3ac�h

j~lbaj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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and for fluorescence coefficient

IðxÞ ¼ 2px
3ac�h

j~lbaj2
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Both Eqs. (5.2) and (5.3) imply the Gaussian form of the band shape
function with the maxima shift with respect to the harmonic-oscil-
lator case, while the temperature dependence is still preserved. It is
easy to see from Eqs. (5.2) and (5.3) that the mirror image is broken
down as the first-order anharmonicity aj3 – 0 and the sign of dis-
placement dj is now observable quantity in the spectra as well.
Let us see an another limit at absolute zero temperature T = 0 K,
Eq. (3.22) for the absorption coefficient is reduced to

aðxÞ ¼ 2px
3ac�h

j~lbaj2
Z 1

�1
dt e

it½ðxba�xÞ�2
P

j

Sjxjaj3dj=aj2 �

� exp �
X

j

Sj 1þ 3
aj3

aj2
dj

� �
1� eitxj
� �" #

ð5:4Þ

and for fluorescence coefficient Eq. (3.24) turns to be

IðxÞ ¼ 2px
3ac�h j~lbaj2

R1
�1 dt e

it½ðxbaþxÞþ2
P

j

Sjxjaj3dj=aj2 �

�exp½�
P

j
Sjð1� 3 aj3

aj2
djÞð1� eitxj Þ�:

ð5:5Þ

By introducing the average frequency �x in eitxj ; further simplifica-
tion can be carried out and we can derive the following simple
expression for absorption coefficient

aðxÞ ¼ 4p2x
3ac�h2 �x

j~lbaj2
S0ne�S0

n!
; ð5:6Þ

where

n ¼
xba �x� 2

P
jSjxj

aj3
aj2

dj

� 	


 



�x

ð5:7Þ

and

S0 ¼
X

j

Sjð1þ 3
aj3

aj2
djÞ: ð5:8Þ

The derivation of Eq. (5.6) is given in Appendix B. Similarly, we can
derive the simple expression for fluorescence coefficient

IðxÞ ¼ 4p2x
3ac�h2 �x

j~lbaj2
S00ne�S00

n!
; ð5:9Þ

where

S00 ¼
X

j

Sj 1� 3
aj3

aj2
dj

� �
: ð5:10Þ

The band origin (or the 0–0 transition) for a(x) and I(x) are the
same, but their intensities are different since a(x) is proportional
to e�S0 in Eq. (5.8), while I(x) is proportional to e�S00 in Eq. (5.10).
As S0–S00; the mirror image relation between a(x) and I(x) are no
longer exist even at zero temperature. All these analytical observa-
tions are confirmed from numerical demonstrations in Section 4.

In order to make the current theory as self-completed simula-
tion method on the same level of anharmonic approximation, we
further demonstrate this anharmonic effect on photo-induced elec-
tron transfer and we will see the rate constant is depending on the
sign of displacement as well. In the Condon approximation, the
electron transfer (ET) rate W can be expressed as [1]
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W ¼ 2p
�h2 jTbaj2

X
~t

X
~t0

Pa~tjhHb~t0 jHa~tij2dðxb~t0 ;a~tÞ; ð5:11Þ

where Tba denotes the electronic coupling matrix element. As the
derivation is quite similar to those for absorption coefficient and
stimulated fluorescence coefficient given in the previous sections,
we would like just to present the results here. The rate W in the dis-
placed oscillator approximation with including the first-order
anharmonic contribution takes the following form

¼ jTbaj2
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ð5:12Þ

for the case in which the relation between the ground-state excited-
state PESs is described by Fig. 1a, and

W ¼ jTbaj2

�h2

Z 1
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dt exp it xba þ 2

X
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ð5:13Þ

for the case in which the relation between the excited-state and
ground-state PESs is described by Fig. 1b. By applying the short-
time approximation mentioned above, Eqs. (5.12) and (5.13) are re-
duced to

W ¼ jTbaj2
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where the upper plus sign corresponds to Eq. (5.12) and the lower
minus sign corresponds to Eq. (5.13). In the classical region (i.e.,
�hxj=kBT � 1), we obtain

W ¼ jTbaj2

�h2

ffiffiffiffiffiffiffiffiffiffiffiffi
p�h

k00kBT

s
exp �ðDGba þ k0Þ2

4k00kBT
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; ð5:15Þ

where DGba ¼ Eb � Ea;

k00 ¼
X

j

Sj�hxj 1� 3
aj3

aj2
dj

� �
; k0 ¼

X
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Sj�hxj 1� aj3

aj2
dj

� �
: ð5:16Þ

Since k00–k0; the rate constant W given by Eq. (5.15) does not take
the form of Marcus’s equation. In other words, it is found that if
the anharmonic effect is significant, the conventional Marcus’s
equation for electron transfer is no longer valid. Furthermore, in
the case of an anharmonic displaced oscillator, the ET rate depends
not only on whether the transfer takes place from upper to lower or
lower to upper PES, but also whether the excited-state PES shifts at
the right-handed or the left-handed with respect to the ground-
state PES.

In brief, we would like to point out that in this work only the
displaced oscillator surfaces have been studied and the anhar-
monic effect is examined only to the first-order approximation.
The chiral symmetry of potential energy surfaces can produce ob-
servable effects for absorption spectra, stimulated fluorescence
spectra and electron transfer process within the first-order anhar-
monic effect. In the near future, we will investigate the general the
displaced-distorted oscillators and the Duschinsky effect due to
normal-mode mixing of two electronic states including the first-
order as well as the higher order anharmonic corrections. The main
complicity of the Duschinsky effect is involved in dealing with
non-separable Franck–Condon overlap integrals in Eqs. (2.1),
(3.23), and (5.11),

hHb~t0 ð~Q 0ÞjHa~tð~QÞi ¼ hvbt01
ðQ 01Þvbt02

ðQ 02Þ . . .vbt0
N
ðQ 0NÞjvat1

ðQ 1Þvat2

� ðQ 2Þ . . . vatN
ðQNÞi ð5:17Þ

in the case of displaced harmonic oscillator and displaced anhar-
monic oscillator with just the first-order correction, Eq. (5.17) can
be factored out into a product of individual mode overlap integrals
as we have done in the present work. Eq. (5.17) has been integrated
out analytically for the harmonic oscillators including the Duschin-
sky effect [25]. We can generalize the method in Ref. [25] with
applying the first-order correction of wave function in Eqs. (3.7)–
(3.9), (3.12)–(3.24), (5.1)–(5.17). For the higher order anharmonic
correction, even the second-order correction can induce a different
kind of mode mixing [26] that (differs from the Duschinsky effect)
can mix wavefunctions within the same electronic state accompa-
nying energy flow among vibrational modes. It is also very interest-
ing question that how the two kinds of mode mixings are
distinguished in the experimental observations. Finally, we con-
clude that anharmonic effects should be very important in dealing
with unimolecular decomposition of molecular clusters, especially
the effect from the intermolecular modes.
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Appendix A. The first- and second-order energy corrections for
cubic and quartic anharmonic oscillator

In this appendix we use general perturbation theory to solve the
first- and second-order energy corrections for anharmonic oscilla-
tor with the following potential form

VðQÞ ¼ a2Q 2 þ ka3Q 3 þ k2a4Q 4 ¼ V2ðQÞ þ V3ðQÞ þ V4ðQÞ ðA1Þ

in which Q is mass-weighted normal-mode coordinate, and k is cho-
sen to be a small quantity such that cubic term V3(Q) and quartic
term V4(Q) represent the first-order and second-order corrections
to harmonic potential, respectively. With k ¼ 0; we have the zero-
order wave function vð0Þv ðQÞ 	 jmi with the zero-order energy level

Eð0Þm ¼ �hx mþ 1
2

� �
; m ¼ 0;1;2; . . . ; ðA2Þ

where x ¼
ffiffiffiffiffiffiffiffi
2a2
p

. By employing general perturbation theory, we
have the first-order energy correction in terms of the anharmonic
terms in Eq. (A1)

Eð1Þm ¼ hmjV3ðQÞ þ V4ðQÞjmi ¼ ka3hmjQ 3jmi þ k2a4hmjQ 4jmi: ðA3Þ

It can be easily shown that

hmjQ3jmi ¼ 0 ðA4Þ

and

hmjQ4jmi ¼ 6
�h

2x

� �2

mþ 1
2

� �2

þ 1
4

" #
: ðA5Þ
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The second-order energy correction in terms of the anharmonic
terms in Eq. (A1) can be expressed as

Eð2Þm ¼
X
l–m

jhmjV3ðQÞ þ V4ðQÞjlij2

Eð0Þm � Eð0Þl

¼ k2a2
3

X
l–m

jhmjQ3jlij2

Eð0Þm � Eð0Þl

þ k4a2
4

X
l–m

jhmjQ 4jlij2

Eð0Þm � Eð0Þl

ðA6Þ

in which the cross term can be easily proved to be zero. After te-
dious but not difficult derivation, we can evaluate the first term
in Eq. (A6) as

X
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jhmjQ 3jlij2

Eð0Þm � Eð0Þl

¼ jhmjQ
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and finally
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For the present purpose, we do not have to evaluate the second
term in Eq. (A6) as it turns to be in the order of k4. All above deri-
vations are repeated by using the following recurrence relation

Q jmi ¼
ffiffiffiffiffiffiffi
�h

2x

r ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
jmþ 1i þ
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m
p
jm� 1i

n o
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Next, we consider the first-order correction to wave function
vð0Þt ðQÞ 	 jmi by general perturbation theory

vð1Þt ðQÞ ¼
X
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ðA10Þ

The first term in Eq. (A10) can be evaluated asX
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The second-term in Eq. (A10) is not necessarily derived here it turns
to be in the order of k2. In summary, the energy level for anhar-
monic oscillator can be rewritten as

Em ¼ Eð0Þt þ Eð1Þt þ Eð2Þt ¼ eð0Þt þ keð1Þt þ k2eð2Þt þ � � � ; ðA12Þ

where the second equality rearranges the order of perturbation in
terms of k; and they are easily evaluated as follows:

eð0Þm ¼ �hx mþ 1
2

� �
; ðA13Þ

and the first-order correction to the energy is zero

eð1Þm ¼ 0 ðA14Þ
and the second-order is given by
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The first-order correction to wave function in terms of k turns to be
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In this way, we have a consistent order correction with anharmonic
potential in Eq. (A1). It should be noted that up to the first-order
correction to harmonic potential in terms of k; the energy correction
is zero but wave function correction is not.

Appendix B. The derivation Eq. (5.6)

By replacing ð1� eitxj Þ with ð1� eit �xÞ by average frequency �x
in Eq. (5.4), we turn out to deal with the following integration

D ¼
Z 1

�1
dteitA � exp �Bð1� eit �xÞ

� �
¼ e�B

Z 1

�1
dteitA � exp Beit �x

h i
ðB1Þ

in which A and B are constants. By expanding the second exponen-
tial function in power series form exp Beit �x

h i
¼
P1

n¼0
ðBÞn

n!
ein �xt;we

obtain

D¼ e�B
X1
n¼0

Bn
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dteitðAþn �xÞ ¼ e�B
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n¼0
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2pdðAþn �xÞ¼2pe�B Bn

n!







n¼jA= �xj

:

ðB2Þ

Note that d-function is even function.
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