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Abstract

Let G = (V, E) be a graph with n vertices, m edges and
no isolated vertices. For some a with 0 < o < 1 and a set
S C V., wesay that S is a—dominating if forallv € V-5,
|IN(v)NS| > a|N(v)|. The size of a smallest such S is called
the o — domination number of G denoted by v,(G).

For positive integers n and k, the generalized Petersen
graph P(n, k) is the graph with vertex set V' = {ug, uy, . . .,
Up—1} U {vg, v1, . .., vy_1} and the edge set E = {uu; 11, uv;,
ViVt | 1 € Zy} where addition is modulo n. Clearly, P (n, k) is
a 3-regular graph.

In this thesis, we study 7,(P(n, k)). Since for 3-regular
graphs 7,(G) = v(G)(domination number of G), provided
0 < a < 3 and 7,(G) = ay(G)(vertex cover number of
G) provided 2 < o < 1, we shall focus on the case

+ < a < 2. Asaconsequence, the exact values of v, (P(n, k))

are obtained for certain n and k.
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Chapter 1

Introduction and Preliminaries

A puzzle mentioned by David Woolbright [9] involves occupying each cell of a 6 x 6
array with a guard or a prisoner, subject only to the constraint that every prisoner
is adjacent to at least as many guards as prisoners (where adjacency is vertical,
horizontal or diagonal).

This puzzle generalizes to a graph invariant in the following way. We may say that
the Woolbrightnumber of a graph G is the size of a smallest set of vertices with the
property that every vertex not in S has at least as many neighbors in S as neighbors

not in S.

1.1 Basic Notations

Graph terminology not presented here can be found in Chartrand and Lesniak [4].

The (open) neighborhood N(v) of a vertex v € V' is the set of vertices which are
adjacent to v. The closed neighborhood N[v] of v is N(v) U {v}. For any set S C V,
the neighborhood N (S) of S is defined as U,csN(v), and the closed neighborhood N[S]
of S'is N(S) U S. Generalizing the Woolbright number, we introduce the concept of
a-domination: For any a with 0 < a < 1 and a set S C V', we say that S is a-
dominating if for all v € V — S, [N(v) NS| > a|N(v)|. The size of the smallest such

S is called the av—domination number and is denoted by 7, (G). Thus the Woolbright
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number of a graph G is 71 (G). The size of the largest minimal such set S is called
the upper a-domination number and is denoted by I',(G).

Recall that a set S C V is said to dominate a graph if every vertex in the graph
is either in S or is adjacent to a vertex in S. Stated in the current context, we might
say that for every vertex v € V. — S, |[N(v) N'S| > 1. The size of a smallest such
set is called the domination number and is denoted by v(G). The size of a largest
minimal dominating set is called the upper domination number and is denoted by
['(G). Since a smallest a-dominating set is a dominating set, it is immediate to see
that v(G) < 7,(G) for all G and for every a.

For any graph GG and for any «, with 0 < o < 1, if S is any set of minimum size
which a-dominates G, we will call S a ~,-set. Similarly, if S is a set of minimum size
which dominates G, we call S a ~-set.

The following known results for special graphs are straightforward.

Proposition 1.1.1. [5] If P, is a path with n vertices, then

Yo(Pn) = [n/3],if 0 < ar < 3,

Yal(Pn) = [n/2], if% <a<l.

Proposition 1.1.2. [5] If C, is a cycle with n vertices, then

Ya(Cr) = [n/3],if 0 < a < 1,

Yo (Cr) = [n/2], if% <

IN

1.

Proposition 1.1.3. [5] If K, is a complete graph with n vertices, then

Ya(Kn) = [a(n —1)].
We have already mentioned that for any graph G the standard domination pa-

rameter v(G) is a lower bound for 7,(G). An upper bound is found by examining
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the vertex cover number. The vertex cover number ay(G) is the size of a small-
est set of vertices S such that every edge has at least one endvertex in S. Clearly,
71(G) = ao(G).

A generalized Petersen graph P(n, k) is the graph with vertices {ug, w1, ..., u,_1}
and {vg, vq,...,0,_1} and edges u;u; 1 , u;v; and v;v;, where the addition is modulo

n.

1.2 Preliminaries

Next sufficient conditions are examined to guarantee that the parameter ~,(G)
equals its upper or lower bound. In any graph G, we will denote the maximum

(minimum) degree of a vertex by A(G) (respectively, §(G) ).

Proposition 1.2.1. [5] If G has maximum degree A(G), then the following holds: if

0 < a<1/A(G), then v,(G) = v(G).

Proposition 1.2.2. [5] Let G be a graph. If 1 > a > (A(G) — 1)/A(G), then

10(G) = ao(G).

Theorem 1.2.3. [5] If 0 < a < 1, then for any graph G, 7,(G) + 71-o(G) < n.



Chapter 2

Known Results

In this chapter, we introduce several known results related to a-domination, dom-

ination number and vertex cover number.

2.1 Bounds on a-domination

Let S be an a-dominating set with |S| = 7,(G). Let M be the set of edges
between S and V — S. Counting the edges from S to V — S, we see that |M| <
Yesdeg(v). Further, counting the number of edges from V—S to S, we see that
|M| > X,ev_sadeg(v). Combining these it is clear that

A(G)|S| > Epesdeg(v) > Epey_gadeg(v) > ad(G)|V = S| ... (1)

The following proposition can be obtain by using (1).

Proposition 2.1.1. [5] For any graph G with minimum degree §(G) and maximum

degree A(G),

ad(G)n
A(G) + ad(G)

Va(G) =
The following upper bound for 7, (G) can be obtained by Theorem 1.2.3 .

Proposition 2.1.2. [5] For any graph G with minimum degree §(G) and maximum

degree A(G),



The following corollary is straightforward.

Corollary 2.1.3. [5] For any tree 7" and for any a with 0 < o < 1.
an A(T)n
PN (s o I AL
N T N F
Proposition 2.1.4. [5] For any graph G with m edges ,

2am

(%) 2 T AG

Proposition 2.1.5. [5] For any graph G with maximum degree A(G) and m edges,

(2—a)A(G)n— (2 —2a)m
(2 = a)A(G)

Va(G) <

Next, we will consider bounds for regular graphs. If every vertex of a graph G has
degree k, we say that G is k-regular. Clearly, if G is k-regular, then v/, (G) = 7. (G).
In a k-regular graph, the number of edges m = kn/2 and A(G) = §(G) = k. The
next corollary follows from Propositions 2.1.4 and 2.1.5.

Corollary 2.1.6. [5] For a k-regular graph G, and for any a with 0 < o <1,

an n
< 7, (G) <
1—1—04_7()_

2—a
Lettng o = i/k where i is an integer with 1 < i < k, the following lower bound

can bee obtained.

Corollary 2.1.7. [5] If G is a k-regular graph and i is an integer with 1 < i < k,

then

Yisk(G) 2 [1if (i + k)]n]



2.2 Bounds on domination number and vertex cover
number

Domination numbers for graphs and associated concepts have been studied for
many years and there is an extensive literature on the subject. In general, determining
the domination number (and most of its variations) is an NP-complete problem.

We present some bounds for y(P(n, k)).
Theorem 2.2.1. [3] For each odd integer n > 3, v(P(n,k)) < [3n/5].

Theorem 2.2.2. [8] If n > 3, we have
g+1, if n=2(mod4)
(P, 1) =19 tn
{gw , otherwise .

Proposition 2.2.3. [8] If k is an even number greater than 2 and n > 2k, then

AP, ) < 5+ Ok).

We present some bounds for an(P(n, k)) and exact values of a(P(n, k)) for some

n and k. First, we introduce some lower bounds and upper bounds.

Proposition 2.2.4. [1] If n is odd then we have ag(P(n,k)) > n + Z2% where

(n, k) is the greatest common divisor of n and k.
Corollary 2.2.5. [1] For all odd n, we have ag(P(n,k)) > n+ 1.

Theorem 2.2.6. [1] If both n and k are odd, then ag(P(n, k)) < n+ &

Next, we introduce exact values of ay(P(n, k)) for some n and k.
Theorem 2.2.7. [2] For all n, ag(P(n,2)) =n+ [F].

Proposition 2.2.8. [1] ag(P(n,k)) = n, if and only if n is even and k is odd.



Theorem 2.2.9. [1] op(P(n,k)) = n+ 1 if and only if n is odd and k = 1, or

(n,k) = (5,2).

In [5], Dunbar et al, introduced a-domination, discussed bounds for v, 2(G) for
the Kings graph, and gave bounds on 7,(G) for a general a,0 < o < 1. Furthermore,
they showed that the problem of deciding whether 7,(G) < k is NP-complete.

In this thesis, we discuss a-domination for generalized Petersen graph.



Chapter 3

Main Results

Throughout this chapter, the generalized Petersen graph P(n,k) is the graph
with vertex set V. = {ug,u1,...,up_1} U {vo,v1,...,0,_1} and the edge set F =

{uiwisy, uvi, vivigy | @ € Zy,} where addition is modulo n.

3.1 Exact values of a-domination number

Since for 3-regular graphs G, 74(G) = 7(G) provided 0 < o < % and 7,(G) =

ao(G) provided 2 < o < 1, we consider 3 < a < 2 in what follows.

We start with the graphs P(n,1).

Proposition 3.1.1. If 1 < a < 2, then 7,(P(n,1)) = n.

Proof. Let G = P(n,1), and let S be a a-dominating set. Now, let
S = {ug, v1, U2, ..., Vp_2,Up_1}

provided n is odd and
S = {ug, v1, U2, ..., Up_2,Vy_1}

provided n is even. By direct checking, S is a a-dominating set of GG in respective

cases, we conclude that v,(G) < n.



On the other hand, let C; =< u;, v;, w1, vi01 >g, ¢ = 0,1,...,n — 1. Clearly, C;
is a 4-cycle and there must exist at least two vertices in S. Since each vertex is in

exactly two C’s, this implies that v,(G) > n.

P(n, 1)

Figure 3.1: Example

Proposition 3.1.2. If 3 < o < 2, then 7, (P(5s,5t + 2)) = 4s, for each s > 0 and

0<t<s.

Proof. By Corollary 2.1.7, we have v,(G) > 4s. Now, it suffices to claim 7,(G) <

4s. This follows from the selection defined below :
S =A{u;,v; |i=0,2(mod 5);j =3, 4(mod 5)}.

It is easy to see |S| = 4s. Now we need to show that S is a a-dominating set of G,
that is, for each vertex v € V(G) and v ¢ S, |[N(v)NS| > 2. Consider u, ¢ S. Clearly,
r=1,3,4(modb5). If r =1 (mod 5), then (r—1) = 0 (mod 5) and (r+1) = 2 (mod 5).
It follows that {u,_1,u,11} C N(u,)NS. If r =3 (mod 5), then (r—1) = 2 (mod 5).
It follows that {u,_1,v,} € N(u,)NS. If r =4 (mod 5), then (r+1) =0 (mod 5). It
follows that {u,41,v,} € N(u,)NS. Consider v, ¢ S. Clearly, m = 0,1,2 (mod 5).

If m =0 (mod 5), then (m—2) = 3 (mod 5). It follows that {v,,—2, un} € N(v,)NS.



If m =1 (mod 5), then (m + 2) = 3 (mod 5) and (m — 2) = 4 (mod 5). It follows
that {vmio, Um_2} € N(v,) NS. If m =2 (mod 5), then (m + 2) = 4 (mod 5). Tt
follows that {vyi2, Um} C N(v,) N S. Therefore, we conclude that v,(G) < 4s and

we have the proof. [

Figure 3.2: Example for v,(P(5s,2)).

Proposition 3.1.3. If + < o < 2, then v,(P(5s + 3,2)) = 4s + 3, for each s > 0.

Proof. By Corollary 2.1.7, we have 7,(G) > 4s + 3. Now, it suffices to claim

Ya(G) < 4s + 3. This follows from the selection defined below :

S = {u,v;|i=0,2(modb),0<i<5s—1;j=3,4(mod5),0<j<bs—1}

U {’Un727 Un-1, un73}-

It is easy to see |S| = 4s + 3. Now we need to show that S is a a-dominating
set of G, that is, for each vertex v € V(G) and v ¢ S, |[N(v) NS| > 2. Consider
u, ¢ S, for 0 <r < 5s—1. Clearly, r = 1,3,4 (mod 5). By the similar argument as
Proposition 3.1.2, we have |N(u,) N S| > 2. Consider v,, ¢ S, for 0 < m < 5s — 1.
Clearly, m = 0,1,2 (mod 5). By the similar argument as Proposition 3.1.2, we have

|IN(v,) N S| > 2. Consider u, ¢ S, r=n—-2,n—11fr=n—2 thenr—1=n-3.
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It follows that {u,_1,v.} € N(u,)NS. If r =n —1, then (r+1) =0 (mod 5). It
follows that {u,4+1,v,} € N(u,) N S. Consider v,, ¢ S, m =n —3. If m =n — 3,
then (m — 1) = 4 (mod 5). It follows that {vy—1,un} C N(v,) N S. Therefore, we

conclude that v,(G) < 4s + 3 and we have the proof. ]

Figure 3.3: Example for v,(P(5s + 3,2)).

Proposition 3.1.4. If + < o < 2, then v,(P(5s + 4,2)) = 4s + 4, for each s > 0.

Proof. By Corollary 2.1.7, we have 7,(G) > 4s + 4. Now, it suffices to claim

Ya(G) < 4s + 4. This follows from the selection defined below :

S = {u,v;|i=0,2(mod5),0<i<55s—1;j=3,4(mod5),0<j<bs—1}

U {’Un727 Un—1, Up—4a, un73}-

It is easy to see |S| = 4s + 4. Now we need to show that S is a a-dominating
set of G, that is, for each vertex v € V(G) and v ¢ S, |[N(v) N S| > 2. Consider
u, ¢ S, for 0 <r < 5s—1. Clearly, r = 1,3,4 (mod 5). By the similar argument as
Proposition 3.1.2, we have |N(u,) N S| > 2. Consider v,, ¢ S, for 0 < m < 5s — 1.

Clearly, m = 0,1,2 (mod 5). By the similar argument as Proposition 3.1.2, we have

11



|IN(v,) NS| > 2. Consider u, ¢ S, r=n—2n—1.1fr=n—2 thenr—1=n-3.
It follows that {u,_i,v,} € N(u,)NS. If r =n —1, then (r +1) =0 (mod 5). It
follows that {u,.1,v,} C N(u,)NS. Consider v, ¢ S,m=n—3,n—4. If m =n—3,
then (m — 2) =4 (mod 5). It follows that {v,_2,un} € N(v,)NS. If m =n — 4,
then (m — 2) = 3 (mod 5). It follows that {vy—2, um} C N(v,) NS. Therefore, we

conclude that v,(G) < 4s 4+ 4 and we have the proof. ]

Figure 3.4: Example for v,(P(5s +4,2)).

3.2 Bounds of a-domination number

Proposition 3.2.1. If § < o < 2, then 4s + 1 < 7,(P(5s + 1,2)) < 4s + 2, for each

s > 0.

Proof. By Corollary 2.1.7, we have 7,(G) > 4s + 1. Now, it suffices to claim

Ya(G) < 4s + 2. This follows from the selection defined below :

S = {u,v;|i=0,2(modb5),0<i<5s—1;j=3,4(mod5),0<j<5bs—1}

U {Un—lv un—l}-

12



It is easy to see |S| = 4s + 2. Now we need to show that S is a a-dominating
set of G, that is, for each vertex v € V(G) and v ¢ S, |[N(v) NS| > 2. Consider
u, ¢ S, for 0 <r < 5s—1. Clearly, r = 1,3,4 (mod 5). By the similar argument as
Proposition 3.1.2, we have |N(u,) NS| > 2. Consider v,, ¢ S, for 0 < m < 5s — 1.
Clearly, m = 0,1,2 (mod 5). By the similar argument as Proposition 3.1.2, we have

|N(v,,) NS| > 2. Therefore, we conclude that v,(G) < 4s+ 2 and we have the proof.s

Proposition 3.2.2. If § < o < 2, then 4s + 2 < 7,(P(5s + 2,2)) < 4s + 3, for each

s> 0.

Proof. By Corollary 2.1.7, we have 7,(G) > 4s + 2. Now, it suffices to claim

Ya(G) < 4s + 3. This follows from the selection defined below :

S = {u,v;|i=0,2(modb),0<i<5s—1;j=3,4(mod5),0<j<bs—1}
U {’Unf%vnflauan}-

It is easy to see |S| = 4s + 3. Now we need to show that S is a a-dominating
set of G, that is, for each vertex v € V(G) and v ¢ S, |[N(v) N S| > 2. Consider
u, ¢ S, for 0 <r < 5s— 1. Clearly, r = 1,3,4 (mod 5). By the similar argument as
Proposition 3.1.2, we have |N(u,) N S| > 2. Consider v,, ¢ S, for 0 < m < 5s — 1.
Clearly, m = 0,1,2 (mod 5). By the similar argument as Proposition 3.1.2, we have
|IN(v,) NS| > 2. Consider u, ¢ S, 7 =n—1.1fr=n—1,thenr —1=n—2. It
follows that {u,_1,v,} € N(u,)NS. Therefore, we conclude that 7,(G) < 4s+ 3 and

we have the proof. [

Proposition 3.2.3. If £ < a < 2, then 7,(P(6,2)) = 6.

Proof. By Corollary 2.1.7, we have v,(P(6,2)) > 4s+ 1 = 5. First, we will

show that v,(P(6,2)) > 6. Let G = P(6,2), and let C; and Cy be subgraphs of

13



G induced by {ug,uq, - ,us} and {vg, vy, - ,vs}, respectively. Let S be the a-
dominating set of G. Observe that if {u;, u;11,ui2} N S = ¢, for some i, then
|N(uit1) N S| < a@|N(witr)]. Similarly, if {v;, vj42,vj44} N S = ¢, for some j, then

|IN(vj42) NS| < a|N(vj42)|. Therefore, we have three cases to consider.
Case 1. V(C1) N S = {ur, ur43}, for some r € {0, 1, 2}.

Consider u,1, its neighbor v,,; must belong to S. Otherwise, |N(u,4+1) N S| =
{u,}. Thus, |N(u,11) N S| < a|N(u,41)|. Hence, v, € S. Similarly, v, 19, Upya, Upys €

S (see Figure 3.5). This implies that |S| > 6.

P(6, 2)

Figure 3.5: {ug,u3} C S

Case 2. V(Cy) NS = {vm, U1}, for some m € {0,1,2,3,4,5}.

Consider vy,,42, its neighbor u,, 12 must belong to S. Otherwise, |N(v;,12) N S| =
{vm}. Thus, [N (vmi2) NS| < | N(vpmi2)|. Hence, w19 € S. Similarly, w13, Umia, Umis €

S (see Figure 3.6). This implies that |S| > 6.

14



Figure 3.6: {vg,v1} C S
Case 3. V(C3) (NS = {vm, Um+s}, for some m € {0, 1,2}.
Consider vy, its neighbor u,,; must belong to S. Otherwise, |N(v;,11) N S| =

{vm+s}. Thus, |N(vmni1) N S| < a|N(vpni1)|- Hence, upiq € S. Similarly, w2, i, s €

S (see Figure 3.7). This implies that |S| > 6.

Figure 3.7: {vg,v3} C S

We can let S = {uq, ug, uy, us, vg, v3}. It is easy to see that S is a a-dominating

set of G(see Figure 3.7). Therefore, we conclude v,(P(6,2)) = 6. |

15



Proposition 3.2.4. If : < o < 2, then 7,(P(7,2)) = 7.

Proof. By Corollary 2.1.7, we have v,(P(7,2)) > 4s+ 2 = 6. First, we will prove
that v, (P(7,2)) > 7. Let G = P(7,2), and let C} and C5 be subgraphs of G induced
by {ug, w1, ,ug} and {vg,v1,- - ,vs}, respectively. Let S be the a-dominating set
of G. Observe that if {u;, ujr1, w2} NS = ¢, for some i, then |N(u;q) N S| <
a|N(uit1)|. Note that Cy = vy, v, va, Vg, V1, U3, Vs, Vo, if {vj, 040,044} N S = ¢, for

some j, then |N(vj12) NS| < a|N(vj42)|. Therefore, we have four cases to consider.
Case 1. V(C1) NS = {ur, Ups1, uriq}, for some r € {0,1,---,6}.

Consider w9 its neighbor v, o must belong to S. Otherwise, |N(u,42) N S| =
{t41}. Thus, [N (uys2) NS| < a|N(ups2)|. Hence, v,19 € S. Similarly, v,13, V15, Uri6 €

S (see Figure 3.8). This implies that |S| > 7.

Figure 3.8: {ug, ui,us} C S

Case 2. V(C1) NS = {ur, tps2, Urta}, for some r € {0,1,--- 6}

Consider u,, 5 its neighbor v, 5 must belong to S. Otherwise, |[N(u,,5) N S| =

{ty4}. Thus, |[N(us5) N S| < «|N(upys5)|. Hence, v,y 5 € S. Similarly, v,,6 € S. If

16



Urp1 € S, then v, 43 € S because u,41 ¢ S. Also, since {v,, V42,004 NS = ¢, then

Upt2 € S (see Figure 3.9). This implies that |S| > 7.

Figure 3.9: {ug, uz,us} C S

Case 3. V(C3) (NS = {vm), Ums1, Umasa}, for some m € {0,1,---,6}.

Consider vy, 3, its neighbor w,, 3 must belong to S. Otherwise, |N(v,,13) N S| =
{vms1}. Thus, |N(vya3) NS| < a|N(vpa3)|. Hence, w3 € S. Similarly, w14, Umis, Umie €
S. Also, since {Upm, Um+1, Ums2} N S = @, then uyp1 € S (see Figure 3.10). This

implies that |S| > 8.

Figure 3.10: {vg,v1,v2} C S

17



Case 4. V(C3) (NS = {vm, Um+1, Vmsa}, for some m € {0,1,---,6}.

Consider vy, 3, its neighbor w,,,3 must belong to S. Otherwise, |N(v,,43) N S| =
{vm+1}. Thus, |[N(vmes) N S| < a|N(vmys)|. Hence, w43 € S. Similarly, w45 € S.
If wpeo ¢ S, then u,, 1 € S because vy, 4o ¢ S. Similarly, if w,,.6 ¢ S, then u,, € S

because v, ¢ S (see Figure 3.11). This implies that |S| > 7.

Figure 3.11: {vg,v1,04} C S

We can let S = {uyg, uy, ug, us, vo, v1,v4}. It is easy to see that S is an a-dominating

set of G (see Figure 3.11). Therefore, we conclude v,(P(7,2)) = 7. |

We find P(5s,5t 4+ 2) is isomorphic to P(5s,5(s —t — 1) + 3). The following

corollary are immediate.

Corollary 3.2.5. If % <a< %, then ~vo(P(5s,5t + 3)) = 4s, for each s > 0 and

0<t<s.

3.3 Concluding Remark

In this thesis, we are focusing on finding the a-domination number of a general-

ized Petersen Graph P(n,k) where 1 < k < 2. By a careful arguments, we are able
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to obtain the exact values for k = 1, and k = 2 where n = 0,3,4 (mod 5) respec-
tively. But, for the other cases, only bounds are provided. The difficulty comes from
determining a sharp lower bound. We do believe the upper bounds we obtained for
these cases are in fact their lower bounds, but no able to prove it at this moment.

Therefore, we have the following two conjectures.

Conjecture 3.3.1. If 1 < a < 2, then 7, (P(5s +1,2)) = 45 + 2.

Conjecture 3.3.2. If 1 < o < 2, then 7, (P(5s +2,2)) = 45 + 3.

For future research, we shall focus on solving the remaining cases where k£ = 2

and larger k where k < [7].
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