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摘要

一個圖 G 的控制數是圖論中最重要的一個不變量，

在很多文獻中都有相當不錯的研究成果。但是，控制的

概念可做更進一步的探討，而 α-控制數的研究就是其中
的一種延伸研究。對於任意 α 大於 0 且小或等於 1 時，
存在一集合 S 包含於點集合 V 中，如果對於所有在點

集合 V 中卻不屬於 S 中的點 v，點 v 在 S 中的鄰居數

大或等於點 v 的鄰居數乘上 α 倍，我們就稱 S 是 α-控
制集並表示成 γα(G)。

因為我們已知對於度數為 3 的正則圖，當 α 大於 0
且小或等於 1/3 時，γα(G) = γ(G); 而當 α 大於 2/3 且
小或等於 1 時，γα(G) = α0(G); 所以在此篇論文中，我
們討論在 1

3 < α ≤ 2
3 時，廣義彼德森圖的 α-控制數，並

獲得一些具體成果。
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Abstract
Let G = (V,E) be a graph with n vertices, m edges and

no isolated vertices. For some α with 0 < α ≤ 1 and a set
S ⊆ V , we say that S is α−dominating if for all v ∈ V −S,
|N(v)∩S| ≥ α|N(v)|. The size of a smallest such S is called
the α− domination number of G denoted by γα(G).

For positive integers n and k, the generalized Petersen 
graph P (n, k) is the graph with vertex set V = {u0, u1, . . . ,
 un−1} ∪ {v0, v1, . . . , vn−1} and the edge set E = {uiui+1, uivi, 

vivi+k | i ∈ Zn} where addition is modulo n. Clearly, P (n, k) is 

a 3-regular graph.
In this thesis, we study γα(P (n, k)). Since for 3-regular

graphs γα(G) = γ(G)(domination number of G), provided
0 < α ≤ 1

3 and γα(G) = α0(G)(vertex cover number of
G) provided 2

3 < α ≤ 1, we shall focus on the case 
1
3 < α ≤ 2

3. As a consequence, the exact values of γα(P (n, k))

are obtained for certain n and k.
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Chapter 1

Introduction and Preliminaries

A puzzle mentioned by David Woolbright [9] involves occupying each cell of a 6×6

array with a guard or a prisoner, subject only to the constraint that every prisoner

is adjacent to at least as many guards as prisoners (where adjacency is vertical,

horizontal or diagonal).

This puzzle generalizes to a graph invariant in the following way. We may say that

the Woolbrightnumber of a graph G is the size of a smallest set of vertices with the

property that every vertex not in S has at least as many neighbors in S as neighbors

not in S.

1.1 Basic Notations

Graph terminology not presented here can be found in Chartrand and Lesniak [4].

The (open) neighborhood N(v) of a vertex v ∈ V is the set of vertices which are

adjacent to v. The closed neighborhood N [v] of v is N(v) ∪ {v}. For any set S ⊆ V ,

the neighborhoodN(S) of S is defined as ∪v∈SN(v), and the closed neighborhoodN [S]

of S is N(S) ∪ S. Generalizing the Woolbright number, we introduce the concept of

α-domination: For any α with 0 < α ≤ 1 and a set S ⊆ V , we say that S is α-

dominating if for all v ∈ V − S, |N(v) ∩ S| ≥ α|N(v)|. The size of the smallest such

S is called the α−domination number and is denoted by γα(G). Thus the Woolbright
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number of a graph G is γ 1
2
(G). The size of the largest minimal such set S is called

the upper α-domination number and is denoted by Γα(G).

Recall that a set S ⊆ V is said to dominate a graph if every vertex in the graph

is either in S or is adjacent to a vertex in S. Stated in the current context, we might

say that for every vertex v ∈ V − S, |N(v) ∩ S| ≥ 1. The size of a smallest such

set is called the domination number and is denoted by γ(G). The size of a largest

minimal dominating set is called the upper domination number and is denoted by

Γ(G). Since a smallest α-dominating set is a dominating set, it is immediate to see

that γ(G) ≤ γα(G) for all G and for every α.

For any graph G and for any α, with 0 < α ≤ 1, if S is any set of minimum size

which α-dominates G, we will call S a γα-set. Similarly, if S is a set of minimum size

which dominates G, we call S a γ-set.

The following known results for special graphs are straightforward.

Proposition 1.1.1. [5] If Pn is a path with n vertices, then

γα(Pn) = �n/3	, if 0 < α ≤ 1
2
,

γα(Pn) = 
n/2�, if 1
2
< α ≤ 1.

Proposition 1.1.2. [5] If Cn is a cycle with n vertices, then

γα(Cn) = �n/3	, if 0 < α ≤ 1
2
,

γα(Cn) = �n/2	, if 1
2
< α ≤ 1.

Proposition 1.1.3. [5] If Kn is a complete graph with n vertices, then

γα(Kn) = �α(n− 1)	.

We have already mentioned that for any graph G the standard domination pa-

rameter γ(G) is a lower bound for γα(G). An upper bound is found by examining
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the vertex cover number. The vertex cover number α0(G) is the size of a small-

est set of vertices S such that every edge has at least one endvertex in S. Clearly,

γ1(G) = α0(G).

A generalized Petersen graph P (n, k) is the graph with vertices {u0, u1, . . . , un−1}
and {v0, v1, . . . , vn−1} and edges uiui+1 , uivi and vivi+k where the addition is modulo

n.

1.2 Preliminaries

Next sufficient conditions are examined to guarantee that the parameter γα(G)

equals its upper or lower bound. In any graph G, we will denote the maximum

(minimum) degree of a vertex by Δ(G) (respectively, δ(G) ).

Proposition 1.2.1. [5] If G has maximum degree Δ(G), then the following holds: if

0 < α ≤ 1/Δ(G), then γα(G) = γ(G).

Proposition 1.2.2. [5] Let G be a graph. If 1 ≥ α > (Δ(G) − 1)/Δ(G), then

γα(G) = α0(G).

Theorem 1.2.3. [5] If 0 < α < 1, then for any graph G, γα(G) + γ1−α(G) ≤ n.
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Chapter 2

Known Results

In this chapter, we introduce several known results related to α-domination, dom-

ination number and vertex cover number.

2.1 Bounds on α-domination

Let S be an α-dominating set with |S| = γα(G). Let M be the set of edges

between S and V − S. Counting the edges from S to V − S, we see that |M | ≤
Σv∈Sdeg(v). Further, counting the number of edges from V−S to S, we see that

|M | ≥ Σv∈V −Sαdeg(v). Combining these it is clear that

Δ(G)|S| ≥ Σv∈Sdeg(v) ≥ Σv∈V −Sαdeg(v) ≥ αδ(G)|V − S| ............. (1)

The following proposition can be obtain by using (1).

Proposition 2.1.1. [5] For any graph G with minimum degree δ(G) and maximum

degree Δ(G),

γα(G) ≥ αδ(G)n

Δ(G) + αδ(G)

The following upper bound for γα(G) can be obtained by Theorem 1.2.3 .

Proposition 2.1.2. [5] For any graph G with minimum degree δ(G) and maximum

degree Δ(G),
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γα(G) ≤ Δ(G)n

Δ(G) + (1− α)δ(G)
.

The following corollary is straightforward.

Corollary 2.1.3. [5] For any tree T and for any α with 0 < α ≤ 1.

αn

Δ(T ) + α
≤ γα(T ) ≤ Δ(T )n

Δ(T ) + 1− α

Proposition 2.1.4. [5] For any graph G with m edges ,

γα(G) ≥ 2αm

(α + 1)Δ(G)

Proposition 2.1.5. [5] For any graph G with maximum degree Δ(G) and m edges,

γα(G) ≤ (2− α)Δ(G)n− (2− 2α)m

(2− α)Δ(G)

Next, we will consider bounds for regular graphs. If every vertex of a graph G has

degree k, we say that G is k-regular. Clearly, if G is k-regular, then γ1/k(G) = γα(G).

In a k-regular graph, the number of edges m = kn/2 and Δ(G) = δ(G) = k. The

next corollary follows from Propositions 2.1.4 and 2.1.5.

Corollary 2.1.6. [5] For a k-regular graph G, and for any α with 0 < α ≤ 1,

αn

1 + α
≤ γα(G) ≤ n

2− α
.

Lettng α = i/k where i is an integer with 1 < i ≤ k, the following lower bound

can bee obtained.

Corollary 2.1.7. [5] If G is a k-regular graph and i is an integer with 1 < i ≤ k,

then

γi/k(G) ≥ �[i/(i+ k)]n	
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2.2 Bounds on domination number and vertex cover

number

Domination numbers for graphs and associated concepts have been studied for

many years and there is an extensive literature on the subject. In general, determining

the domination number (and most of its variations) is an NP-complete problem.

We present some bounds for γ(P (n, k)).

Theorem 2.2.1. [3] For each odd integer n ≥ 3, γ(P (n, k)) ≤ �3n/5	.

Theorem 2.2.2. [8] If n ≥ 3, we have

γ(P (n, 1)) =

⎧⎪⎨
⎪⎩

n

2
+ 1 , if n ≡ 2 (mod 4)

⌈n
2

⌉
, otherwise .

.

Proposition 2.2.3. [8] If k is an even number greater than 2 and n > 2k, then

γ(P (n, k)) ≤ 5n

9
+O(k).

We present some bounds for α0(P (n, k)) and exact values of α0(P (n, k)) for some

n and k. First, we introduce some lower bounds and upper bounds.

Proposition 2.2.4. [1] If n is odd then we have α0(P (n, k)) ≥ n + (n,k)+1
2

, where

(n, k) is the greatest common divisor of n and k.

Corollary 2.2.5. [1] For all odd n, we have α0(P (n, k)) ≥ n+ 1.

Theorem 2.2.6. [1] If both n and k are odd, then α0(P (n, k)) ≤ n + k+1
2
.

Next, we introduce exact values of α0(P (n, k)) for some n and k.

Theorem 2.2.7. [2] For all n, α0(P (n, 2)) = n + �n
5
	.

Proposition 2.2.8. [1] α0(P (n, k)) = n, if and only if n is even and k is odd.
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Theorem 2.2.9. [1] α0(P (n, k)) = n + 1 if and only if n is odd and k = 1, or

(n, k) = (5, 2).

In [5], Dunbar et al, introduced α-domination, discussed bounds for γ1/2(G) for

the Kings graph, and gave bounds on γα(G) for a general α, 0 < α ≤ 1. Furthermore,

they showed that the problem of deciding whether γα(G) ≤ k is NP-complete.

In this thesis, we discuss α-domination for generalized Petersen graph.
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Chapter 3

Main Results

Throughout this chapter, the generalized Petersen graph P (n, k) is the graph

with vertex set V = {u0, u1, . . . , un−1} ∪ {v0, v1, . . . , vn−1} and the edge set E =

{uiui+1, uivi, vivi+k | i ∈ Zn} where addition is modulo n.

3.1 Exact values of α-domination number

Since for 3-regular graphs G, γα(G) = γ(G) provided 0 < α ≤ 1
3
and γα(G) =

α0(G) provided 2
3
< α ≤ 1, we consider 1

3
< α ≤ 2

3
in what follows.

We start with the graphs P (n, 1).

Proposition 3.1.1. If 1
3
< α ≤ 2

3
, then γα(P (n, 1)) = n.

Proof. Let G = P (n, 1), and let S be a α-dominating set. Now, let

S = {u0, v1, u2, . . . , vn−2, un−1}

provided n is odd and

S = {u0, v1, u2, . . . , un−2, vn−1}

provided n is even. By direct checking, S is a α-dominating set of G in respective

cases, we conclude that γα(G) ≤ n.
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On the other hand, let Ci =< ui, vi, ui+1, vi+1 >R, i = 0, 1, . . . , n− 1. Clearly, Ci

is a 4-cycle and there must exist at least two vertices in S. Since each vertex is in

exactly two Ci’s, this implies that γα(G) ≥ n.

Figure 3.1: Example

Proposition 3.1.2. If 1
3
< α ≤ 2

3
, then γα(P (5s, 5t + 2)) = 4s, for each s ≥ 0 and

0 ≤ t < s.

Proof. By Corollary 2.1.7, we have γα(G) ≥ 4s. Now, it suffices to claim γα(G) ≤
4s. This follows from the selection defined below :

S = {ui, vj | i ≡ 0 , 2 (mod 5); j ≡ 3 , 4 (mod 5)} .

It is easy to see |S| = 4s. Now we need to show that S is a α-dominating set of G,

that is, for each vertex v ∈ V (G) and v /∈ S, |N(v)∩S| ≥ 2. Consider ur /∈ S. Clearly,

r ≡ 1, 3, 4 (mod 5). If r ≡ 1 (mod 5), then (r−1) ≡ 0 (mod 5) and (r+1) ≡ 2 (mod 5).

It follows that {ur−1, ur+1} ⊆ N(ur)∩S. If r ≡ 3 (mod 5), then (r− 1) ≡ 2 (mod 5).

It follows that {ur−1, vr} ⊆ N(ur)∩S. If r ≡ 4 (mod 5), then (r+1) ≡ 0 (mod 5). It

follows that {ur+1, vr} ⊆ N(ur) ∩ S. Consider vm /∈ S. Clearly, m ≡ 0, 1, 2 (mod 5).

If m ≡ 0 (mod 5), then (m−2) ≡ 3 (mod 5). It follows that {vm−2, um} ⊆ N(vm)∩S.
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If m ≡ 1 (mod 5), then (m + 2) ≡ 3 (mod 5) and (m − 2) ≡ 4 (mod 5). It follows

that {vm+2, vm−2} ⊆ N(vm) ∩ S. If m ≡ 2 (mod 5), then (m + 2) ≡ 4 (mod 5). It

follows that {vm+2, um} ⊆ N(vm) ∩ S. Therefore, we conclude that γα(G) ≤ 4s and

we have the proof.

Figure 3.2: Example for γα(P (5s, 2)).

Proposition 3.1.3. If 1
3
< α ≤ 2

3
, then γα(P (5s+ 3, 2)) = 4s+ 3, for each s > 0.

Proof. By Corollary 2.1.7, we have γα(G) ≥ 4s + 3. Now, it suffices to claim

γα(G) ≤ 4s+ 3. This follows from the selection defined below :

S = {ui, vj | i ≡ 0 , 2 (mod 5), 0 ≤ i ≤ 5s− 1; j ≡ 3 , 4 (mod 5), 0 ≤ j ≤ 5s− 1}

∪ {vn−2, vn−1, un−3}.

It is easy to see |S| = 4s + 3. Now we need to show that S is a α-dominating

set of G, that is, for each vertex v ∈ V (G) and v /∈ S, |N(v) ∩ S| ≥ 2. Consider

ur /∈ S, for 0 ≤ r ≤ 5s− 1. Clearly, r ≡ 1, 3, 4 (mod 5). By the similar argument as

Proposition 3.1.2, we have |N(ur) ∩ S| ≥ 2. Consider vm /∈ S, for 0 ≤ m ≤ 5s − 1.

Clearly, m ≡ 0, 1, 2 (mod 5). By the similar argument as Proposition 3.1.2, we have

|N(vm) ∩ S| ≥ 2. Consider ur /∈ S, r = n− 2, n− 1. If r = n− 2, then r− 1 = n− 3.
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It follows that {ur−1, vr} ⊆ N(ur) ∩ S. If r = n − 1, then (r + 1) ≡ 0 (mod 5). It

follows that {ur+1, vr} ⊆ N(ur) ∩ S. Consider vm /∈ S, m = n − 3. If m = n − 3,

then (m − 1) ≡ 4 (mod 5). It follows that {vm−1, um} ⊆ N(vm) ∩ S. Therefore, we

conclude that γα(G) ≤ 4s+ 3 and we have the proof.

Figure 3.3: Example for γα(P (5s+ 3, 2)).

Proposition 3.1.4. If 1
3
< α ≤ 2

3
, then γα(P (5s+ 4, 2)) = 4s+ 4, for each s > 0.

Proof. By Corollary 2.1.7, we have γα(G) ≥ 4s + 4. Now, it suffices to claim

γα(G) ≤ 4s+ 4. This follows from the selection defined below :

S = {ui, vj | i ≡ 0 , 2 (mod 5), 0 ≤ i ≤ 5s− 1; j ≡ 3 , 4 (mod 5), 0 ≤ j ≤ 5s− 1}

∪ {vn−2, vn−1, un−4, un−3}.

It is easy to see |S| = 4s + 4. Now we need to show that S is a α-dominating

set of G, that is, for each vertex v ∈ V (G) and v /∈ S, |N(v) ∩ S| ≥ 2. Consider

ur /∈ S, for 0 ≤ r ≤ 5s− 1. Clearly, r ≡ 1, 3, 4 (mod 5). By the similar argument as

Proposition 3.1.2, we have |N(ur) ∩ S| ≥ 2. Consider vm /∈ S, for 0 ≤ m ≤ 5s − 1.

Clearly, m ≡ 0, 1, 2 (mod 5). By the similar argument as Proposition 3.1.2, we have
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|N(vm) ∩ S| ≥ 2. Consider ur /∈ S, r = n− 2, n− 1. If r = n− 2, then r− 1 = n− 3.

It follows that {ur−1, vr} ⊆ N(ur) ∩ S. If r = n − 1, then (r + 1) ≡ 0 (mod 5). It

follows that {ur+1, vr} ⊆ N(ur)∩S. Consider vm /∈ S, m = n−3, n−4. If m = n−3,

then (m − 2) ≡ 4 (mod 5). It follows that {vm−2, um} ⊆ N(vm) ∩ S. If m = n − 4,

then (m − 2) ≡ 3 (mod 5). It follows that {vm−2, um} ⊆ N(vm) ∩ S. Therefore, we

conclude that γα(G) ≤ 4s+ 4 and we have the proof.

Figure 3.4: Example for γα(P (5s+ 4, 2)).

3.2 Bounds of α-domination number

Proposition 3.2.1. If 1
3
< α ≤ 2

3
, then 4s+ 1 ≤ γα(P (5s+ 1, 2)) ≤ 4s+ 2, for each

s > 0.

Proof. By Corollary 2.1.7, we have γα(G) ≥ 4s + 1. Now, it suffices to claim

γα(G) ≤ 4s+ 2. This follows from the selection defined below :

S = {ui, vj | i ≡ 0 , 2 (mod 5), 0 ≤ i ≤ 5s− 1; j ≡ 3 , 4 (mod 5), 0 ≤ j ≤ 5s− 1}

∪ {vn−1, un−1}.
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It is easy to see |S| = 4s + 2. Now we need to show that S is a α-dominating

set of G, that is, for each vertex v ∈ V (G) and v /∈ S, |N(v) ∩ S| ≥ 2. Consider

ur /∈ S, for 0 ≤ r ≤ 5s− 1. Clearly, r ≡ 1, 3, 4 (mod 5). By the similar argument as

Proposition 3.1.2, we have |N(ur) ∩ S| ≥ 2. Consider vm /∈ S, for 0 ≤ m ≤ 5s − 1.

Clearly, m ≡ 0, 1, 2 (mod 5). By the similar argument as Proposition 3.1.2, we have

|N(vm)∩S| ≥ 2. Therefore, we conclude that γα(G) ≤ 4s+2 and we have the proof.

Proposition 3.2.2. If 1
3
< α ≤ 2

3
, then 4s+ 2 ≤ γα(P (5s+ 2, 2)) ≤ 4s+ 3, for each

s > 0.

Proof. By Corollary 2.1.7, we have γα(G) ≥ 4s + 2. Now, it suffices to claim

γα(G) ≤ 4s+ 3. This follows from the selection defined below :

S = {ui, vj | i ≡ 0 , 2 (mod 5), 0 ≤ i ≤ 5s− 1; j ≡ 3 , 4 (mod 5), 0 ≤ j ≤ 5s− 1}

∪ {vn−2, vn−1, un−2}.

It is easy to see |S| = 4s + 3. Now we need to show that S is a α-dominating

set of G, that is, for each vertex v ∈ V (G) and v /∈ S, |N(v) ∩ S| ≥ 2. Consider

ur /∈ S, for 0 ≤ r ≤ 5s− 1. Clearly, r ≡ 1, 3, 4 (mod 5). By the similar argument as

Proposition 3.1.2, we have |N(ur) ∩ S| ≥ 2. Consider vm /∈ S, for 0 ≤ m ≤ 5s − 1.

Clearly, m ≡ 0, 1, 2 (mod 5). By the similar argument as Proposition 3.1.2, we have

|N(vm) ∩ S| ≥ 2. Consider ur /∈ S, r = n − 1. If r = n − 1, then r − 1 = n − 2. It

follows that {ur−1, vr} ⊆ N(ur)∩S. Therefore, we conclude that γα(G) ≤ 4s+3 and

we have the proof.

Proposition 3.2.3. If 1
3
< α ≤ 2

3
, then γα(P (6, 2)) = 6.

Proof. By Corollary 2.1.7, we have γα(P (6, 2)) ≥ 4s + 1 = 5. First, we will

show that γα(P (6, 2)) ≥ 6. Let G = P (6, 2), and let C1 and C2 be subgraphs of
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G induced by {u0, u1, · · · , u5} and {v0, v1, · · · , v5}, respectively. Let S be the α-

dominating set of G. Observe that if {ui, ui+1, ui+2} ∩ S = φ, for some i, then

|N(ui+1) ∩ S| < α|N(ui+1)|. Similarly, if {vj , vj+2, vj+4} ∩ S = φ, for some j, then

|N(vj+2) ∩ S| < α|N(vj+2)|. Therefore, we have three cases to consider.

Case 1. V (C1)
⋂
S = {ur, ur+3}, for some r ∈ {0, 1, 2}.

Consider ur+1, its neighbor vr+1 must belong to S. Otherwise, |N(ur+1) ∩ S| =
{ur}. Thus, |N(ur+1) ∩ S| < α|N(ur+1)|. Hence, vr+1 ∈ S. Similarly, vr+2, vr+4, vr+5 ∈
S (see Figure 3.5). This implies that |S| ≥ 6.

Figure 3.5: {u0, u3} ⊆ S

Case 2. V (C2)
⋂
S = {vm, vm+1}, for some m ∈ {0, 1, 2, 3, 4, 5}.

Consider vm+2, its neighbor um+2 must belong to S. Otherwise, |N(vm+2) ∩ S| =
{vm}.Thus, |N(vm+2) ∩ S| < α|N(vm+2)|. Hence, um+2 ∈ S. Similarly, um+3, um+4, um+5 ∈
S (see Figure 3.6). This implies that |S| ≥ 6.
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Figure 3.6: {v0, v1} ⊆ S

Case 3. V (C2)
⋂
S = {vm, vm+3}, for some m ∈ {0, 1, 2}.

Consider vm+1 its neighbor um+1 must belong to S. Otherwise, |N(vm+1) ∩ S| =
{vm+3}.Thus, |N(vm+1) ∩ S| < α|N(vm+1)|. Hence, um+1 ∈ S. Similarly, um+2, um+4, um+5 ∈
S (see Figure 3.7). This implies that |S| ≥ 6.

Figure 3.7: {v0, v3} ⊆ S

We can let S = {u1, u2, u4, u5, v0, v3}. It is easy to see that S is a α-dominating

set of G(see Figure 3.7). Therefore, we conclude γα(P (6, 2)) = 6.
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Proposition 3.2.4. If 1
3
< α ≤ 2

3
, then γα(P (7, 2)) = 7.

Proof. By Corollary 2.1.7, we have γα(P (7, 2)) ≥ 4s+ 2 = 6. First, we will prove

that γα(P (7, 2)) ≥ 7. Let G = P (7, 2), and let C1 and C2 be subgraphs of G induced

by {u0, u1, · · · , u6} and {v0, v1, · · · , v6}, respectively. Let S be the α-dominating set

of G. Observe that if {ui, ui+1, ui+2} ∩ S = φ, for some i, then |N(ui+1) ∩ S| <
α|N(ui+1)|. Note that C2 = v0, v2, v4, v6, v1, v3, v5, v0, if {vj, vj+2, vj+4} ∩ S = φ, for

some j, then |N(vj+2) ∩ S| < α|N(vj+2)|. Therefore, we have four cases to consider.

Case 1. V (C1)
⋂
S = {ur, ur+1, ur+4}, for some r ∈ {0, 1, · · · , 6}.

Consider ur+2 its neighbor vr+2 must belong to S. Otherwise, |N(ur+2) ∩ S| =
{ur+1}.Thus, |N(ur+2) ∩ S| < α|N(ur+2)|. Hence, vr+2 ∈ S. Similarly, vr+3, vr+5, vr+6 ∈
S (see Figure 3.8). This implies that |S| ≥ 7.

Figure 3.8: {u0, u1, u4} ⊆ S

Case 2. V (C1)
⋂
S = {ur, ur+2, ur+4}, for some r ∈ {0, 1, · · · , 6}.

Consider ur+5 its neighbor vr+5 must belong to S. Otherwise, |N(ur+5) ∩ S| =
{ur+4}. Thus, |N(ur+5) ∩ S| < α|N(ur+5)|. Hence, vr+5 ∈ S. Similarly, vr+6 ∈ S. If
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vr+1 /∈ S, then vr+3 ∈ S because ur+1 /∈ S. Also, since {vr, vr+2, vr+4} ∩ S = φ, then

vr+2 ∈ S (see Figure 3.9). This implies that |S| ≥ 7.

Figure 3.9: {u0, u2, u4} ⊆ S

Case 3. V (C2)
⋂
S = {vm, vm+1, vm+2}, for some m ∈ {0, 1, · · · , 6}.

Consider vm+3, its neighbor um+3 must belong to S. Otherwise, |N(vm+3) ∩ S| =
{vm+1}.Thus, |N(vm+3) ∩ S| < α|N(vm+3)|. Hence, um+3 ∈ S. Similarly, um+4, um+5, um+6 ∈
S. Also, since {um, um+1, um+2} ∩ S = φ, then um+1 ∈ S (see Figure 3.10). This

implies that |S| ≥ 8.

Figure 3.10: {v0, v1, v2} ⊆ S
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Case 4. V (C2)
⋂
S = {vm, vm+1, vm+4}, for some m ∈ {0, 1, · · · , 6}.

Consider vm+3, its neighbor um+3 must belong to S. Otherwise, |N(vm+3) ∩ S| =
{vm+1}. Thus, |N(vm+3) ∩ S| < α|N(vm+3)|. Hence, um+3 ∈ S. Similarly, um+5 ∈ S.

If um+2 /∈ S, then um+1 ∈ S because vm+2 /∈ S. Similarly, if um+6 /∈ S, then um ∈ S

because vm+6 /∈ S (see Figure 3.11). This implies that |S| ≥ 7.

Figure 3.11: {v0, v1, v4} ⊆ S

We can let S = {u0, u1, u3, u5, v0, v1, v4}. It is easy to see that S is an α-dominating

set of G (see Figure 3.11). Therefore, we conclude γα(P (7, 2)) = 7.

We find P (5s, 5t + 2) is isomorphic to P (5s, 5(s − t − 1) + 3). The following

corollary are immediate.

Corollary 3.2.5. If 1
3
< α ≤ 2

3
, then γα(P (5s, 5t + 3)) = 4s, for each s ≥ 0 and

0 ≤ t ≤ s.

3.3 Concluding Remark

In this thesis, we are focusing on finding the α-domination number of a general-

ized Petersen Graph P (n, k) where 1 ≤ k ≤ 2. By a careful arguments, we are able
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to obtain the exact values for k = 1, and k = 2 where n ≡ 0, 3, 4 (mod 5) respec-

tively. But, for the other cases, only bounds are provided. The difficulty comes from

determining a sharp lower bound. We do believe the upper bounds we obtained for

these cases are in fact their lower bounds, but no able to prove it at this moment.

Therefore, we have the following two conjectures.

Conjecture 3.3.1. If 1
3
< α ≤ 2

3
, then γα(P (5s+ 1, 2)) = 4s+ 2.

Conjecture 3.3.2. If 1
3
< α ≤ 2

3
, then γα(P (5s+ 2, 2)) = 4s+ 3.

For future research, we shall focus on solving the remaining cases where k = 2

and larger k where k ≤ 
n
2
�.
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