Abstract

The as-quenched microstructure of the alloy A (Cu_{2.9}Mn_{0.1}Al) was D0₃ phase containing plate-like γ_1 ' martensite. When the manganese content was added to the 8 at%, the as-quenched microstructures of alloys B (Cu_{2.8}Mn_{0.2}Al) and C (Cu_{2.7}Mn_{0.3}Al) were changed to (D0₃+L-J) phases. However, when manganese content was added over 8 wt. pct. further, the as-quenched microstructure of the Alloy D (Cu_{2.6}Mn_{0.4}Al) was a mixture of (D0₃ + L2₁+L-J) phases. Thus, the martensite start (Ms) temperature was decreased with increasing the manganese content. On the contrary, the amount of the L-J particles was increased with increasing the manganese content.

Both of the a/2<100> and the a/4<111> APBs could be observed by the A2 \rightarrow B2 \rightarrow D0₃ continuous ordering transition during quenching in the both alloy B and alloy C. The a/4<111>APBs have never been found by other workers in the Cu-Mn-Al alloys before. Besides, no evidence of the a/4 < 111 > APBs could be observed in the as-quenched microstructure of the alloy D. It clearly shows that the a/4 < 111 > APBs was increased with increasing the manganese content.

