List of Figures

Fig. 1 A schematic drawing of the ordering temperatures Tc(B2) and $Tc(D0_3+L2_1)$ and the miscibility gap of the Cu_{3-x}Mn_xAl alloy.....12 Fig. 2 Schematic representation of the ordering sequence of the quenched $Cu_{2,5}Mn_{0,5}Al$ alloy (vertically) and its isothermal decomposition (horizontally).....13 Fig. 3 Optical micrographs of the as-quenched alloys. (a) through (d) are alloy A ($Cu_{2.9}Mn_{0.1}Al$), B ($Cu_{2.8}Mn_{0.2}Al$), $(Cu_{2.7}Mn_{0.3}Al)$ and alloy D $(Cu_{2.6}Mn_{0.4}Al)$, С Fig. 4 Electron micrographs of the as-quenched alloy A. (a) BF, (b) and (c) two SADPs. The zone axes of the $D0_3$ phase, γ_1 martensite and internal twin are (b) [001], [101] and $[\overline{101}]$, (c) [111], $[2\overline{10}]$ and $[\overline{210}]$, respectively (<u>hkl</u>= D0₃ phase, hkl= γ_1 ' martensite, hkl_T=internal twin), (d)

- Fig. 5 Electron micrographs of the as-quenched alloy B. (a) BF, (b) and (c) two SADPs. The zone axes of the DO_3 phase are (b) [001] and (c) [110], respectively (hkl= D0₃ phase, hkl= L-J phase,), (d) and (e) (002) and $(\bar{1}11)$ D0₃ DF, respectively, (f) (020) L-J DF......26 Fig. 6 Electron micrographs of the as-quenched alloy C. (a) BF, (b) and (c) two SADPs. The zone axes of the DO_3 phase are (b) [001] and (c) [110], (d) and (e) (002) and (111) $D0_3$ DF, respectively, (f) ($0\overline{2}0$) L-J DF......30 Fig. 7 Electron micrographs of the as-quenched alloy D. (a) BF, (b) SADP. The zone axes of the matrix are [001], (hkl= $DO_3 + L2_1$ phase, hkl= L-J phase,) (c) and (d) (002) and
 - (111) D0₃ DF, respectively, (e) $(0\overline{2}0)$ L-J DF......35