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· i ·

摘要

秘密分享機制（secret sharing scheme）是一個將秘密
分成許多份（share）分給所有的參與者，使得只有特定
被授權的子集（qualified subset）中的人所擁有的 shares
才可以重新建構出這個秘密; 而任意非授權子集中的人，
則無法由他們所擁有的 shares 中找出任何與秘密相關的
資訊的一種機制。其中，所有的授權子集所形成的集合

我們稱之為該機制的存取結構（access structure）。
所謂以一個圖 G 為基礎的存取結構，是將圖 G 上

每一個點都視為一個參與者，而任意一個包含某個邊的

一些點所成的集合都是一個授權的子集。其中秘密分享

機制的訊息比率（information ratio）則是該秘密分享機
制下所有參與者所擁有的 shares 的最大長度與秘密的長
度的比值。而我們在這篇論文中所討論圖 G 的訊息比

率（information ratio of G）則是在以圖 G 為基礎的存

取結構中所能造出的所有秘密分享機制的訊息比率的

infimum。
在這篇論文中，我們求出了特定無窮圖類的訊息比

率的下界，並且利用向量空間的方式，完整造出這特定

無窮圖類中兩種特殊子圖類的秘密分享機制，並算出其

訊息比率的值皆為 2。如此便得出這二種子圖類的訊息

比率的上界。在某些情形下，此上界與我們推導的下界

是相當接近的，亦即我們構造的秘密分享機制是相當好

的。
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Abstract
A perfect secret sharing scheme based on a graph G is

a randomized distribution of a secret among the vertices of

the graph so that the secret can be recovered from the in-

formation assigned to the endvertices of any edge, while the

total information assigned to an independent set of vertices

is independent (in statistical sense) of the secret itself.

The (worst case) information ratio of G is the largest

lower bound on the amount of information some vertex must

remember for each bit of the secret. Using entropy method,

we calculate a lower bound on the information ratio for an

infinite class of graphs we consider in this thesis. We also use

the generalized vector space construction to construct perfect

secret sharing schemes with information ratio 2 for two sub-

classes of graphs. This upper bounded is very close to our

lower bound in some circumstances, which means the secret

sharing schemes we construct are in fact very good.
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Chapter 1

Introduction

Secret sharing scheme is a method for a dealer to distribute a secret data among

a set of participants so that only qualified subsets are able to recover the data. If,

in addition, unqualified subsets have no extra information, i.e. their joint shares

is statistically independent of the secret, the scheme is called perfect. The access

structure of the scheme is the collection of all qualified subsets. When the access

structure is based on a graph, the vertices of the graph are the participants, and if a

collection of vertices contains an edge, then it is qualified. The efficiency of a scheme

is usually measured by how much information (in bits) a participant must remember

in the scheme in the worst case, or in the average. The (worst case) information ratio

of a graph G is the infimum of the information (in bits) a participant has to remember

for each bit of the secret over all possible schemes based on G. In some literatures,

the inverse of this number, called the information rate of G, is used in resemblance

to the coding efficiency on noisy channels.

Determining the information ratio for a simple graph could be very challenging.

Despite the difficulty, the ratios were exactly determined for several infinite families of

graphs [4, 11, 12, 13]. Interestingly, almost all of these ratios are of the forms 2− 1/k

or 3/2 for some positive integer k. In this thesis we investigate the information ratio

of another family of graphs. Our lower bound on the information ratio of this family
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of graphs is also of the form 2− 1
k

for some integer k.

This thesis is organized as follows. In the rest sections of this chapter, we introduce

our approaches for deriving lower bounds and upper bounds on R(G). In Chapter

2, some important known results are introduced. Our main results are presented in

Chapter 3. First, in Section 3.1, we propose an infinite class of graphs Gk,n, and then

use the idea introduced in Section 1.2 to derive a lower bound on the information ratio

of them. Subsequently, the constructions of the secret sharing schemes based on two

subclasses of these graphs with information ratio 2 are introduced. The information

ratio of our constructions is very closed to the lower bound we derive in Section 3.1

for large n. A concluding remark will be given in Section 3.4.

1.1 Basic Notations

Let G be a graph. A secret sharing scheme for the access structure base on G is a

collection of random variable ζs and ζv for all vertices v in G with a joint distribution,

where ζs is the secret and ζv is the share of v. We called the secret sharing scheme

perfect whenever the following condition is satisfied. If vu is an edge of G, then ζv and

ζu together determine the value of the secret ζs uniquely; while if A is an independent

set in G, then the collection {ζv : v ∈ A} and ζs are statistically independent, i.e.

the collection {ζv : v ∈ A} provides no information about the secret.

Let A and B be two sets. We use AB in place of A∪B in this thesis. Using

the usual (Shannon) entropy [9], A determines B if and only if the entropy of A

and the entropy of AB are the same, while A and B are statistically independent

if and only if the entropy of AB is the sum of the entropy of A and the entropy

of B. Given a discrete random variable X with possible values {x1, x2, · · · , xn} and

a probability distribution {p(xi)}ni=1 , the Shannon entropy is defined as H(X) =
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−
∑n

i=1 p(xi) log p(xi) which is roughly the number of independent bits necessary to

encode the value of X. Applying this notation to secret sharing we see that the size of

the share assigned to the participant v ∈ G is H(ζv), and the size of the secret is H(ζs).

Thus the information ratio of the secret sharing scheme
∑

= {ζs, ζv : v ∈ V (G)} on

G is defined as

R∑ =
maxv∈GH(ζv)

H(ζs)
,

and the information ratio of G is defined as

R(G) = inf
{
R∑ :

∑
is a secret sharing scheme on G

}
.

1.2 A Lower Bound on R(G)

Let the distribution {ζv, ζs} be any perfect secret sharing scheme on G. Consider

the real-valued function f which assigns the value

f(A) =
H({ζv : v ∈ A})

H(ζs)

to the subset A of vertices. Using standard properties of the entropy function [9, 10,

14], the function f has the following properties.

(a) f(A) > 0, f(φ) = 0

(b) f(B) > f(A), when A ⊆ B ⊆ V (G)

(c) f(A) + f(B) > f(A ∪B) + f(A ∩B)

(d) f(B) > f(A) + 1, when A ⊆ B ⊆ V (G), A is an independent set and B is not.

(e) f(A)+f(B) > f(A∪B)+f(A∩B)+1, when A∩B is an independent set but A

and B are not.
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Suppose there exists a real number r so that, for any real-valued function f satisfy-

ing properties (a) to (e), the inequality maxv∈Gf(v) > r holds. Then, the information

ratio R(G) of G is at least r.

1.3 An Upper Bound on R(G)

Upper bounds are in general easier to find. One has to construct an appropriate

scheme which reaches the given bound. We use some algebraic or geometric structures

to build up the desired scheme. The following construction is a general one given in

[6].

Let F be a finite-dimensional vector space over a finite field, and the secret and

the participants are both (non-trivial) linear subspaces of F. Let Lv be the subspace

assigned to v ∈ G and Ls be the subspace assigned to the secret. These subspace

should have the following properties:

(i) If vu is an edge in G, then the linear span of Lv and Lu must contains Ls.

(ii) If {v1, v2, ..., vk} is an independent set of G, then the intersection of the lin-

ear span of {Lv1 , Lv2 , ..., Lvk} and Ls must be trivial. (i.e. the single element

subspace {0}.)

The dealer chooses an element from F randomly. The secret, i.e. the value of ζs, is

the orthogonal projection of this random element on Ls. The value of the share ζv of

participant v ∈ G is the orthogonal projection of the dealer’s element on Lv.

Now, if vu is an edge of G, by elementary linearly algebra, we know that the secret

can be expressed as an appropriate linear combination of the shares. On the other

hand, if {v1, v2, ..., vk} is an independent set of G, then the intersection of the linear

span of {Lv1 , Lv2 , ..., Lvk} and Ls is {0}. Therefore, the projection on the first one
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gives no information at all on the value of projection on the other.

Looking at this construction more carefully, the function f defined in Section 1.2

takes the same value as the ratio of the the dimensions of the corresponding subspaces,

that is,

f(A) =
H({ζv : v ∈ A})

H(ζs)
=

dim(〈Lv : v ∈ A〉)
dim(Ls)

.

The amount of information (i.e. entropy) in the secret is proportional to the

dimension of Ls, and the information v gets is proportional to the dimension of Lv.

Hence, the ratio of this construction
∑

is

R∑ =
maxv∈Gdim(Lv)

dim(Ls)
.

Therefore, we have

R(G) 6
maxv∈Gdim(Lv)

dim(Ls)
.
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Chapter 2

Known Results

In this chapter, we introduce several lemmas and known results.

Theorem 2.1. ([2]) Suppose that G is a connected graph, then R(G) = 1 if and only

if G is a complete multipartite graph.

Lemma 2.2. ([3]) Suppose that u and v are two vertices of a graph G who have the

same neighbors, then R(G) = R(G− v).

Theorem 2.3. ([1]) Let G be a graph with V (G) = {vi|i = 1, 2, ..., 4}. If v1v2, v2v3,

v3v4 ∈ E(G) and v1v4, v1v3 /∈ E(G). Then R(G) > 3
2
.

van Dijk also used this approach to characterize graphs of order six whose infor-

mation ratio is not less than 5
3
.

Theorem 2.4. ([12]) Let G be a graph with V (G) = {vi|i = 1, 2, ..., 6}.

If G satisfies both

(i) v1v2, v3v4, v5v6 ∈ E(G) and

(ii) v1v5, v1v6, v2v5, v2v6, v3v5, v3v6 /∈ E(G)

and at least one of the following conditions.

• v2v4, v4v6 ∈ E(G)
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• v2v3, v3v4 ∈ E(G)

• v2v3, v2v4 ∈ E(G) or

• v3v4, v2v4 ∈ E(G)

Then R(G) > 5
3
.

Lemma 2.5. ([1]) If G′ is an induced subgraph of a graph G, then R(G) > R(G′).

Theorem 2.6. ([1]) Suppose that G is a connected graph which is not complete

multipartite, then R(G) > 3
2
.

Theorem 2.7. ([11]) Let Cn and Pn be the cycle and the path of length n, respectively.

Then

R(Cn) =
3

2
for n > 5, and

R(Pn) =
3

2
for n > 3.

Theorem 2.8. ([5]) Let Gi ⊆ G be arbitrary (finite or infinite) subgraphs of G, and

assume that each edge of G is in at least k of the subgraphs. For a vertex v ∈ G define

ri(v) = 0 if v /∈ G, and ri(v) = R(Gi), i.e. the information ratio of Gi otherwise.

Then

R(G) 6 sup
v∈G

∑
ri(v)

k
.

Corollary 2.9. ([5]) If the maximal degree of G is d, then R(G) 6 (d+ 1)/2.

The following lemma will be frequently used in Section 3.1.

Lemma 2.10. ([6]) Let X be a subset of an independent set W , w ∈ W −X, a, b ∈ V ,

where V is the vertex set of a complete graph with n vertices, so that a is not connected

to any vertex in X ∪ {w}, while b is connected to w. Then

f({a} ∪X)− f(X) + f({b} ∪X)− f(X) > f({a, w} ∪X)− f({w} ∪X) + 2.
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A subset V0 of V (G) is called connected if it induces a connected subgraph of G.

Csirmaz and Tardas [8] defined a core V0 of a graph G as a connected subset V0 of G

satisfying the following two conditions:

(i) each v ∈ V0 has a neighbor v̄ outside V0 and is not adjacent to any other vertices

in V0, and

(ii) {v̄|v ∈ V0} is an independent set in G.

They had an important breakthrough on the study of the information ratio of graphs

in 2007.

Theorem 2.11. ([8]) Let c(T ) be the maximum size of a core in the tree T , then

R(T ) = 2− 1

c(T )
.

In 2009, Csirmaz and Ligeti [7] proved the following result which is so far the best

on the information ratio of graphs.

Theorem 2.12. [7] Let d be the maximum degree of G and G satisfy the following

properties:

(i) every vertex has at most one neighbor of degree one;

(ii) vertices of degree at least three are not connected by an edge, and

(iii) the girth of G is at least six.

Then we have

R(G) = 2− 1

d
.
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Chapter 3

Main Results

Throughout of this chapter we letGk,n be the graph with vertex set V (Gk,n) = {vi,j|

i = 1, 2, ..., k, j = 1, 2, ..., n} ∪ {w1, w2, ..., wn} and satisfy the following conditions.

(1) vi,jvi,m is an edge of Gk,n for each i ∈ {1, 2, ..., k} and j ∈ {1, 2, ..., n};

(2) wj is only connected to vi,j for each i and j.

Let us denote the set of vertices {vi1, vi2, ..., vin} as Vi for each i ∈ {1, 2, ..., k} and

{w1, w2, ..., wn} as W . Then the subgraph induced by Vi is a complete graph and W

is an independent set in Gk,n. For clearness, we show the structure of G3,4, in figure

3.1.

Note that in such a graph Gk,n, there may be some edges between Vi’s. No matter

whether Gk,n contains such edges or not, the derivation of the lower bound in Section

3.1 works. In addition, we use G′k,n to denote the graph Gk,n which contains all edges

of the form vi,jv`,m for all i, ` ∈ {1, 2, ..., k} and j,m ∈ {1, 2, ..., n}. The Gk,n which

contains no edges between different Vi’s is written as G′′k,n. We shall introduce the

constructions of perfect secret sharing schemes for graphs G′k,n and G′′k,n in Section

3.2 and Section 3.3 respectively.

9



Figure 3.1: G3,4

3.1 A Lower Bound on R(Gk,n)

Let f be the real-valued function defined in Section 1.2 which assigns non-negative

values to subsets of vertices so that f satisfies properties (a)-(e) listed there. Our goal

is to give the best possible lower estimate for maxv∈V (G)f(v). We will use Lemma 2.10.

to prove that the the information ratio of the graph Gk,n is not less than 2− 2−n+1.

As it is customary, we leave out the {} and ∪ signs in the following discussion.

For example, we write vX for the set {v} ∪X.

Theorem 3.1. R(Gk,n) > 2− 2−n+1.

Proof. For every i ∈ {1, 2, ..., k} and j ∈ {1, 2, ..., n}, using Lemma 2.10 with

X = {φ}, a = vi,j, b = vi1, w = w1, we get

f(vi2) + f(vi1) > f(vi2w1)− f(w1) + 2 and

f(vi,j) + f(vi1) > f(vi,jw1)− f(w1) + 2, where 3 6 j 6 n.
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Adding up these inequalities, we have

f(vi,j) + f(vi2) + 2f(vi1) > f(vi,jw1)− f(w1) + f(vi2w1)− f(w1) + 2 + 2,

where 3 6 j 6 n.

Applying Lemma 2.7 to the right hand side of the inequality leads to

f(vi3) + f(vi2) + 2f(vi1) > f(vi3w2w1)− f(w2w1) + 2 + 2 · 2 and

f(vi,j) + f(vi2) + 2f(vi1) > f(vi,jw2w1)− f(w2w1) + 2 + 2 · 2, where 4 6 j 6 n.

Adding up these inequalities and using Lemma 2.7 again, we get

f(vi4) + f(vi3) + 2f(vi2) + 4f(vi1) > f(vi4w3w2w1)− f(w3w2w1) + 2 + 2 · 2 + 2 · 22

and

f(vi,j) + f(vi3) + 2f(vi2) + 4f(vi1) > f(vi,jw3w2w1)− f(w3w2w1) + 2 + 2 · 2 + 2 · 22

, where 5 6 j 6 n.

Continuously doing this process, we will eventually arrive at the following inequality.

f(vin) + f(vi(n−1)) + 2f(vi(n−2)) + 22f(vi(n−3)) + · · ·+ 2n−3f(vi2) + 2n−2f(vi1)

> f(vinwn−1 · · ·w2w1)− f(wn−1 · · ·w2w1) + 2 + 2 · 2 + · · ·+ 2 · 2n−2

> f(vinwn−1 · · ·w2w1)− f(wn−1 · · ·w2w1) + 2(2n−1 − 1).

Let S = {wn−1 · · ·w2w1)}. Conditions (c) and (d) imply that

f(vinS) + f(wnS) > f(vinwnS) + f(S)

and

f(vinwnS) > f(wnS) + 1.
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Adding these up and transpose f(S) we have

f(vinS)− f(S) > 1.

Hence,

f(vinwn−1 · · ·w2w1)− f(wn−1 · · ·w2w1) + 2(2n−1 − 1) > 1 + 2(2n−1 − 1) = 2n − 1.

Consequently,

f(vin) + f(vi(n−1)) + 2f(vi(n−2)) + · · ·+ 2n−2f(vi1) > 2n − 1.

Observe that the inequality remain true after shifting vertices in Vi, that is

f(vin) + f(vi(n−1)) + 2f(vi(n−2)) + · · ·+ 2n−3f(vi2) + 2n−2f(vi1) > 2n − 1,

f(vi(n−1)) + f(vi(n−2)) + 2f(vi(n−3)) + · · ·+ 2n−3f(vi1) + 2n−2f(vin) > 2n − 1,

...

f(vi1) + f(vin) + 2f(vi(n−1)) + · · ·+ 2n−3f(vi3) + 2n−2f(vi2) > 2n − 1.

Adding them up, each f(vi,j) will have coefficient

1 + 1 + 2 + 4 + · · ·+ 2n−2 = 2n−1,

hence the sum is

2n−1[f(vi1) + f(vi2) + · · ·+ f(vin)] > n(2n − 1), for all i = 1, 2, ..., k.

Therefore,

2n−1
k∑

i=1

n∑
j=1

f(vi,j) > nk(2n − 1).

There must exist a vertex whose value is not less than (2n − 1)/2n−1 = 2− 2−n+1.

The proof is complete. �
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3.2 A Construction of Perfect Secret Sharing

Scheme on G′k,n

In this section we introduce our construction of perfect secret sharing scheme on

G′k,n whose information ratio is equal to 2.

Our constructions follow the ideal outlined in Section 1.3. In order to construct

a perfect secret sharing scheme with ratio maxv∈Gdim(Lv)/dim(Ls), we start with a

high-dimensional vector space F, and assign linear subspaces to the vertices and the

secret so that

• if vu is an edge of the graph, then the linear span of the subspaces Lv and Lu

contains the subspace Ls which is assigned to the secret, and

• if {v1, v2, ..., vk} is an independent set, then Span({Lv1 , Lv2 , ..., Lvk}) ∩ Ls = {0}.

In our construction, F is a d(kn+ 1)-dimensional vector space and subspaces will

be given as the linear span of certain vectors. We split these coordinates into kn+ 1

groups of d coordinates each. Now, we need some more definition and notation to

help us describe our construction. If x and y are two `-dimensional vectors, then xk

is defined as the k`-dimensional vector obtained by repeating the coordinates of x k

times. The vector x⊕ y is 2`-dimensional vector obtained by concatenating vector

y after x. For example , if x = (010) and y = (101), then x3 = (010010010) and

y ⊕ x2 = (101010010).

Construction 3.2. Let λ1, λ2, ..., λkm be km distinct integers, and let λx − λy be

denoted as λx,y.

The subspace Ls assigned to the secret is spanned by the following d vectors:

(1000 · · · 0)kn+1, (0100 · · · 0)kn+1, (0010 · · · 0)kn+1, ..., (000 · · · 01)kn+1.
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The subspace Lwj
assigned to wj is spanned by the following d vectors:

(0 · · · 0)k(j−1) ⊕ (100 · · · 0)k ⊕ (0 · · · 0)k(n−j)+1,

(0 · · · 0)k(j−1) ⊕ (010 · · · 0)k ⊕ (0 · · · 0)k(n−j)+1,

...

(0 · · · 0)k(j−1) ⊕ (00 · · · 01)k ⊕ (0 · · · 0)k(n−j)+1.

Furthermore, the subspace Lvi,j assigned to vi,j is spanned by the following 2d vectors:

(100 · · · 0)k(j−1) ⊕ (00 · · · 0)k ⊕ (100 · · · 0)k(n−j)+1,

(010 · · · 0)k(j−1) ⊕ (00 · · · 0)k ⊕ (010 · · · 0)k(n−j)+1,

...

(00 · · · 01)k(j−1) ⊕ (00 · · · 0)k ⊕ (00 · · · 01)k(n−j)+1,[
kn⊕

m=1

(λk(j−1)+i,m00 · · · 0)

]
⊕ (λk(j−1)+i00 · · · 0),

[
kn⊕

m=1

(0λk(j−1)+i,m0 · · · 0)

]
⊕ (0λk(j−1)+i0 · · · 0),

...[
kn⊕

m=1

(00 · · · 0λk(j−1)+i,m)

]
⊕ (00 · · · 0λk(j−1)+i).

Figure 3.2 shows the graphs G′2,2 and we give our construction of secret sharing

scheme on it in Example 3.3.

Example 3.3.

Ls = Span{(100100100100100), (010010010010010), (001001001001001)}

Lw1 = Span{(100100000000000), (010010000000000), (000000000000000)}

14



Figure 3.2: G′2,2

Lw2 = Span{(000000100100000), (000000010010000), (000000001001000)}

Lv1,1 = Span{(000000100100100), (000000010010010), (000000001001001),

(λ1,100λ1,200λ1,300λ1,400λ100), (0λ1,100λ1,200λ1,300λ1,400λ10),

(00λ1,100λ1,200λ1,300λ1,400λ1)}

Lv2,1 = Span{(000000100100100), (000000010010010), (000000001001001),

(λ2,100λ2,200λ2,300λ2,400λ200), (0λ2,100λ2,200λ2,300λ2,400λ20),

(00λ2,100λ2,200λ2,300λ2,400λ2)}

Lv1,2 = Span{(100100000000100), (010010000000010), (001001000000001),

(λ3,100λ3,200λ3,300λ3,400λ300), (0λ3,100λ3,200λ3,300λ3,400λ30),

(00λ3,100λ3,200λ3,300λ3,400λ3)}
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Lv2,2 = Span{(100100000000100), (010010000000010), (001001000000001),

(λ4,100λ4,200λ4,300λ4,400λ400), (0λ4,100λ4,200λ4,300λ4,400λ40),

(00λ4,100λ4,200λ4,300λ4,400λ4)}

Theorem 3.4. Constriction 3.2. defines a perfect secret sharing scheme on G′k,n with

information 2.

Proof. To show that Construction 3.2. is a perfect secret sharing scheme on G′k,n,

we need to check the following conditions.

1. the span of Lw1 , Lw2 , ..., Lwn must be trivial,

2. the span of Lvi,j and Lwj
must contain Ls,

3. the span of Lvi,j and {Lwm : m 6= j} intersects Ls in the trivial space {0}, and

4. the span of two different Lvi,j and Lvm,n should contain Ls.

Since the linear span of all subspaces Lwj
’s contains those vectors where all coor-

dinates in the (kn + 1)-th group are zero and any non-trivial linear combination of

Ls has non-zero coordinates in each group, we have

Span{Lw1 , Lw2 , ..., Lwn} ∩ Ls = {0},

The first requirement for the independent set W is satisfied.

To verify the second condition, for each ` ∈ {1, 2, ..., d}, the sum of the `-th gen-

erating vector of Lvi,j and Lwj
gives the `-th generating element of Ls. For example,

when ` = 1 {
(10 · · · 0)k(j−1) ⊕ (00 · · · 0)k ⊕ (10 · · · 0)k(n−j)+1

}

+

{
(00 · · · 0)k(j−1) ⊕ (10 · · · 0)k ⊕ (00 · · · 0)k(n−j)+1

}
=(1000 · · · 0)kn+1.
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This implies that the linear span of Lvi,j and Lwj
contains Ls as required.

Observe that the first d generating vectors in Lvi,j have all 0 in the (k(j−1)+1)-th

to the (kj)-th groups, and the other d generating vectors in Lvi,j have all 0 in the

(k(j− 1) + i)-th group. Hence the linear span of Lvi,j and all other Lwm ’s with j 6= m

has all zero coordinates in this group and therefore contains only the zero element

from Ls.

In order to have the last condition satisfied, subtracting the d+1 generating vector

of Lvs,r from the d+ 1 generating vector of Lvi,j with (i, j) 6= (s, r) gives[
kn⊕

m=1

(λk(j−1)+i,m00 · · · 0)

]
⊕ (λk(j−1)+i00 · · · 0)

−

[
kn⊕

m=1

(λk(r−1)+s,m00 · · · 0)

]
⊕ (λk(r−1)+s00 · · · 0)

=(λk(j−1)+i,k(r−1)+s00 · · · 0)kn+1

=λk(j−1)+i,k(r−1)+s(100 · · · 0)kn+1

The linear span of this vector contains the first generating vector of Ls. Since each

generating vector of Ls can be obtained in the same way, the last condition holds as

well.

With dim(Lvs) = d, dim(Lwj
) = d and dim(Lvi,j) = 2d, we also know that the per-

fect secret sharing scheme we have constructed has information ratio 2. �

By Theorem 3.1. and Theorem 3.4. we have the following corollary.

Corollary 3.5.

2− 2−n+1 6 R(G′k,n) 6 2.
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3.3 A Construction of Perfect Secret Sharing

Scheme on G′′k,n

Recall that in the graph G′′k,n defined at the beginning of this chapter, there is no

edge between the vertices from different Vi’s.

Construction 3.6. Let λ1, λ2, ..., λkm be km distinct integers. For convenience, let

λx − λy be denoted by λx,y and

ai,j,m =

{ λk(j−1)+i , where m = k(t− 1) + i for t = 1 · · ·n

λk(j−1)+i,m , otherwise.

Assign to Ls the subspace spanned by the following d vectors:

(1000 · · · 0)kn+1, (0100 · · · 0)kn+1, (0010 · · · 0)kn+1, ..., (000 · · · 01)kn+1.

Assign to Lwj
the subspace spanned by the following d vectors:

(0 · · · 0)k(j−1) ⊕ (100 · · · 0)k ⊕ (0 · · · 0)k(n−j)+1,

(0 · · · 0)k(j−1) ⊕ (010 · · · 0)k ⊕ (0 · · · 0)k(n−j)+1,

...

(0 · · · 0)k(j−1) ⊕ (00 · · · 01)k ⊕ (0 · · · 0)k(n−j)+1.

In addition, Lvi,j is assigned the subspace spanned by the following 2d vectors:

(100 · · · 0)k(j−1) ⊕ (00 · · · 0)k ⊕ (100 · · · 0)k(n−j)+1,

(010 · · · 0)k(j−1) ⊕ (00 · · · 0)k ⊕ (010 · · · 0)k(n−j)+1,

...

(00 · · · 01)k(j−1) ⊕ (00 · · · 0)k ⊕ (00 · · · 01)k(n−j)+1,
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[
kn⊕

m=1

(ai,j,m00 · · · 0)

]
⊕ (λk(j−1)+i00 · · · 0),

[
kn⊕

m=1

(0ai,j,m0 · · · 0)

]
⊕ (λk(j−1)+i00 · · · 0),

...[
kn⊕

m=1

(00 · · · 0ai,j,m)

]
⊕ (λk(j−1)+i00 · · · 0).

Figure 3.3 shows the graphs G′′2,2 and we give our construction of secret sharing

scheme on it in Example 3.7.

Figure 3.3: G′′2,2

Example 3.7.

Ls = Span{(100100100100100), (010010010010010), (001001001001001)}

Lw1 = Span{(100100000000000), (010010000000000), (000000000000000)}

Lw2 = Span{(000000100100000), (000000010010000), (000000001001000)}
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Lv1,1 = Span{(000000100100100), (000000010010010), (000000001001001),

(a1,1,100a1,1,200a1,1,300a1,1,400λ100),

(0a1,1,100a1,1,200a1,1,300a1,1,400λ10),

(00a1,1,100a1,1,200a1,1,300a1,1,400λ1)}

Lv2,1 = Span{(000000100100100), (000000010010010), (000000001001001),

(a2,1,100a2,1,200a2,1,300a2,1,400λ200),

(0a2,1,100a2,1,200a2,1,300a2,1,400λ20),

(00a2,1,100a2,1,200a2,1,300a2,1,400λ2)}

Lv1,2 = Span{(100100000000100), (010010000000010), (001001000000001),

(a1,2,100a1,2,200a1,2,300a1,2,400λ300),

(0a1,2,100a1,2,200a1,2,300a1,2,400λ30),

(00a1,2,100a1,2,200a1,2,300a1,2,400λ3)}

Lv2,2 = Span{(100100000000100), (010010000000010), (001001000000001),

(a2,2,100a2,2,200a2,2,300a2,2,400λ400),

(0a2,2,100a2,2,200a2,2,300a2,2,400λ40),

(00a2,2,100a2,2,200a2,2,300a2,2,400λ4)}

Theorem 3.8. Constriction 3.6. defines a perfect secret sharing scheme on G′′k,n with

information 2.

Proof. To show that Construction 3.6. is a perfect secret sharing scheme on G′′k,n,

we need to check the following condition.

1. the span of Lw1 , Lw2 , ..., Lwn is trivial,
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2. the span of Lvi,j and Lwj
must contain Ls,

3. the span of Lvi,j and {Lwm : m 6= j} intersects Ls in {0},

4. the span of two different Lv and Lu, where v, u ∈ Vi, should contains Ls, and

5. the span of two different Lv and Lu, where v ∈ Vi and u ∈ Vj with i 6= j, should

be the trivial space {0}.

Note that Construction 3.6. is very similar to Construction 3.2, the only difference

lies in the last d generating vectors of each Lvi,j for 1 6 i 6 k and 1 6 j 6 n. Hence

the first, second, and third conditions hold by the proof of Theorem 3.4.

To verify that the forth condition holds as well, we observe that{[
kn⊕

m=1

(ai,j,m00 · · · 0)

]
⊕ (λk(j−1)+i00 · · · 0)

}

−

{[
kn⊕

m=1

(ai,r,m00 · · · 0)

]
⊕ (λk(r−1)+i00 · · · 0)

}
= (λk(j−1)+i,k(r−1)+i00 · · · 0)kn+1

= (λk(j−1)+i,k(r−1)+i)(100 · · · 0)kn+1

The first generating vector of Ls can be obtained from the (d + 1)-th generating

vectors of Lvi,j and Lvi,r with j 6= r. The linear span of Lvi,j and Lvi,r contains the

generating vectors of Ls, hence the forth condition is also satisfied. To check the fifth

condition, one can easily verify that any generating vector of Ls cannot be generated

by the vectors in any two different vector subspaces Lvi,j and Lvs,r with s 6= i.

In this construction, Lvi,j is generated by 2d linearly independent vectors, Lwj

and Ls are both generated by d linearly independent vectors, thus dim(Lvi,j) = 2d

and dim(Lwj
) = dim(Ls) = d. This shows that the information ratio of Construction

3.6. is also 2.

�
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By Theorem 3.1. and Theorem 3.8. we have the following corollary.

Corollary 3.9.

2− 2−n+1 6 R(G′′k,n) 6 2.

3.4 Concluding Remark

The lower bound of the information ratio in Corollary 3.5. and Corollary 3.9. are

very close to the upper bound when n is sufficiently large. Hence Construction 3.2.

and Construction 3.6. perform well for large n. However, we are not sure that if there

exists a secret sharing scheme for any member of the family Gk,n whose information

ratio is strictly less than 2. For those members of Gk,n which contain some, but not

all, edges between different Vi’s, finding a general construction of Lvi,j is very difficult.

However if this kind of member has a symmetric structure, this job can be done by

making modifications to the constructions we have given in Section 3.2 and Section

3.3.
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