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Abstract

A perfect secret sharing scheme based on a graph G is
a randomized distribution of a secret among the vertices of
the graph so that the secret can be recovered from the in-
formation assigned to the endvertices of any edge, while the
total information assigned to an independent set of vertices
is independent (in statistical sense) of the secret itself.

The (worst case)information ratio of G is the largest
lower bound ontthe amount of information seme vertex must
remember foreach bit of the secret.«Using entropy method,
we calculate a-lower bound on the information ratio for an
infinite class of graphs we consider in this thesis. We also use
the generalized vector space construction to construct perfect
secret sharing schemes ‘with information ratio 2 for two sub-
classes of graphs. This upper bounded is very close to our
lower bound in some circumstances, which means the secret

sharing schemes we construct are in fact very good.
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Chapter 1

Introduction

Secret sharing scheme is a method for a dealer to distribute a secret data among
a set of participants so that only qualified subsets are able to recover the data. If,
in addition, unqualified subsets-have no extra information, ice. their joint shares
is statistically independent of the-secret, the schemeis called perfect. The access
structure of the scheme is the collection of all qualified subsets. When the access
structure is based on-a graph, the vertices of the graph are the participants, and if a
collection of vertices ¢ontains an edge, then it is qualified. The efficiency of a scheme
is usually measured by how much information (in bits) a participant must remember
in the scheme in the worst case; or in the-average. The (worst case) information ratio
of a graph G is the infimum of the information (in bits) a participant has to remember
for each bit of the secret over all possible schemes based on G. In some literatures,
the inverse of this number, called the information rate of G, is used in resemblance
to the coding efficiency on noisy channels.

Determining the information ratio for a simple graph could be very challenging.
Despite the difficulty, the ratios were exactly determined for several infinite families of
graphs [4, 11, 12, 13]. Interestingly, almost all of these ratios are of the forms 2 —1/k
or 3/2 for some positive integer k. In this thesis we investigate the information ratio

of another family of graphs. Our lower bound on the information ratio of this family



of graphs is also of the form 2 — % for some integer k.

This thesis is organized as follows. In the rest sections of this chapter, we introduce
our approaches for deriving lower bounds and upper bounds on R(G). In Chapter
2, some important known results are introduced. Our main results are presented in
Chapter 3. First, in Section 3.1, we propose an infinite class of graphs Gy, ,,, and then
use the idea introduced in Section 1.2 to derive a lower bound on the information ratio
of them. Subsequently, the constructions of the secret sharing schemes based on two
subclasses of these graphs with information ratio 2 are introduced. The information
ratio of our constructions is very closed to the lower bound we derive in Section 3.1

for large n. A concluding remark will be given in Section 3.4.

1.1 Basic Netations

Let G be a graph. A secret sharing scheme for the access structure base on G is a
collection of random variable (5 and ¢, for all vertices v in G with-a joint distribution,
where (, is the secret @and ¢, is the share of v.- We called the secret sharing scheme
perfect whenever the following condition is satisfied. If vu is.an edge of G, then (, and
(. together determine the value of the secret ¢, uniquely; while if A is an independent
set in G, then the collection {(, : v € A} and (, are statistically independent, i.e.
the collection {(, : v € A} provides no information about the secret.

Let A and B be two sets. We use AB in place of AUB in this thesis. Using
the usual (Shannon) entropy [9], A determines B if and only if the entropy of A
and the entropy of AB are the same, while A and B are statistically independent
if and only if the entropy of AB is the sum of the entropy of A and the entropy
of B. Given a discrete random variable X with possible values {x1,zs, - ,z,} and

a probability distribution {p(x;)}?, , the Shannon entropy is defined as H(X) =



— > p(x;) log p(z;) which is roughly the number of independent bits necessary to
encode the value of X. Applying this notation to secret sharing we see that the size of
the share assigned to the participant v € G is H((,), and the size of the secret is H ((s).
Thus the information ratio of the secret sharing scheme ) = {(;,(, : v € V(G)} on

G is defined as

maXUGGH(Cv)

H(¢G)

and the information ratio of GG is defined as

Ry~ =

R(G) = inf {RZ : Z is-a secret sharing scheme on GG } :
1.2 A Lower Bound on R(G)

Let the distribution {(,, (;} be-any perfect-secret sharing scheme on G. Consider

the real-valued function f which assigns the value

. H{G v e A}

i e

to the subset A of vertices. Using standard properties of the entropy function [9, 10,

14], the function f has the following properties.
(a) f(4)=0,f(¢)=0
(b) f(B) = f(A), when A C BC V(G)
(c) f(A)+f(B) = f(AUB) + f(AN B)
(d) f(B) = f(A)+1, when A C B CV(G), A is an independent set and B is not.

(e) f(A)+f(B) > f(AUB)+f(ANB)+1, when ANB is an independent set but A

and B are not.



Suppose there exists a real number r so that, for any real-valued function f satisfy-
ing properties (a) to (e), the inequality max,cc f(v) = r holds. Then, the information

ratio R(G) of G is at least 7.

1.3 An Upper Bound on R(G)

Upper bounds are in general easier to find. One has to construct an appropriate
scheme which reaches the given bound. We use some algebraic or geometric structures
to build up the desired scheme. The following construction is a general one given in
6].

Let F be a finite-dimensional vector space.over a finite field, and the secret and
the participants are both (non-trivial) linear subspaces of F. Let L, be the subspace
assigned to v € G and L be the subspace assigned to the secret. These subspace

should have the following properties:

(i) If vu is an edgedn @, then the linear span of Ly and L, must contains Ls.

(i) If {vy,v9,..., v} is @an independent set of G, then the intersection of the lin-
ear span of {Ly,,, Ly,, ..., Ly, } and Ly must be trivial. (i.e. the single element

subspace {0}.)

The dealer chooses an element from F randomly. The secret, i.e. the value of (;, is
the orthogonal projection of this random element on L,. The value of the share ¢, of
participant v € (G is the orthogonal projection of the dealer’s element on L,,.

Now, if vu is an edge of GG, by elementary linearly algebra, we know that the secret
can be expressed as an appropriate linear combination of the shares. On the other
hand, if {v1,vs, ..., v} is an independent set of G, then the intersection of the linear

span of {L,,, Ly,, ..., L, } and Ly is {0}. Therefore, the projection on the first one



gives no information at all on the value of projection on the other.
Looking at this construction more carefully, the function f defined in Section 1.2
takes the same value as the ratio of the the dimensions of the corresponding subspaces,

that is,
_ H{¢ :v e A}) _ dim((L, : v € A))

f4) @) dim(L,)

The amount of information (i.e. entropy) in the secret is proportional to the
dimension of L,, and the information v gets is proportional to the dimension of L,.

Hence, the ratio of this construction. )

Therefore, we have



Chapter 2

Known Results

In this chapter, we introduce several lemmas and known results.

Theorem 2.1. (/2]) Suppose that G is a_connected-graph, then R(G) = 1 if and only

if G is a complete multipartite graph.

Lemma 2.2. (/3]) Suppose that u and v are two vertices of a graph G who have the

same neighbors, thew R(G) = R(G — v).

Theorem 2.3. ([1])det G be a graph with V{G ) =+v;|i =1,25...,4}. If vivg, vovs,

vsvs € E(G) and vivy, t1v3 ¢ E(G). Then R(G) > 3.

van Dijk also used this approach to characterize graphs of order six whose infor-

mation ratio is not less than %

Theorem 2.4. (/12]) Let G be a graph with V(G) = {v;|i = 1,2,...,6}.

If G satisfies both

(1) v1v9, V304, V506 € E(G) and

(17) v1vs, V106, VoUs, VUG, V3U5, U3V & E(G)
and at least one of the following conditions.

o vovy, 0406 € E(G)



e vyv3,v3v4 € E(G)

o vz, vy € E(G) or

o v3uy, 19U € E(G)
Then R(G) > 2.
Lemma 2.5. ([1]) If G’ is an induced subgraph of a graph G, then R(G) > R(G").
Theorem 2.6. ([1]) Suppose that G is a connected graph which is not complete

multipartite, then R(G) > 3.

Theorem 2.7. ([11]) Let'C,, and P, be the cycle and the path of length n, respectively.

Then

Theorem 2.8. (/5]) Let G; C'G be arbitrary (finite or infinite) subgraphs of G, and
assume that each edge of G 1s.1n at least k of the subgraphs. For a vertex v € G define
ri(v) =0 if v ¢ G, and r{(v) =R(Gy), i.c. theanformation ratio of G; otherwise.

Then

R(G) < sup =)
veG k

Corollary 2.9. (/5]) If the mazimal degree of G is d, then R(G) < (d+1)/2.
The following lemma will be frequently used in Section 3.1.

Lemma 2.10. ([6]) Let X be a subset of an independent set W, w e W — X, a,b €V,
where V' is the vertex set of a complete graph with n vertices, so that a is not connected

to any vertex in X U{w}, while b is connected to w. Then

f{a} U X) = f(X) + F({o; UX) = f(X) = f({a,w} UX) — f{w} U X) +2.



A subset Vj of V(G) is called connected if it induces a connected subgraph of G.
Csirmaz and Tardas [8] defined a core Vj of a graph G as a connected subset V; of G

satisfying the following two conditions:

(1) each v € Vj has a neighbor v outside 1 and is not adjacent to any other vertices

in Vy, and
(11) {v]v € Vu} is an independent set in G.

They had an important breakthrough onthe study of the information ratio of graphs

in 2007.

Theorem 2.11. ([8])/Let ¢(T) be-the mazimum size of a core’in the tree T, then

In 2009, Csirmaz and Ligeti [7] proved the following result which is so far the best

on the information ratio of graphs.

Theorem 2.12. [7] Letd be the mazimum degree of G and G satisfy the following

properties:

(1) every vertex has at most one neighbor of degree one;

(13) wvertices of degree at least three are not connected by an edge, and
(1ii) the girth of G is at least six.

Then we have



Chapter 3

Main Results

Throughout of this chapter wedet Gy, be the graph with vertex set V(Gy.,) = {vi ;]

i=1,2,..,k, 7=1,2 .. n}uU{w), w,, .., w,} and satisfy the following conditions.
(1) v; v is an edgeof Gy, for-each i € {172, ...k} and j €{l,2,...,n};
(2) w; is only connected to v;; for each i and j.

Let us denote the set.of vertices {wj1, via, ..., v; b as V; for each.i € {1,2,...,k} and
{wy, wy, ...,w,} as W. Then the subgraph induced by V; is a complete graph and W
is an independent set in Gy, For clearness, we show the structure of G4, in figure
3.1.

Note that in such a graph Gy, ,,, there may be some edges between V;’s. No matter
whether Gy, ,, contains such edges or not, the derivation of the lower bound in Section
3.1 works. In addition, we use G}, to denote the graph G}, which contains all edges
of the form v; jug,, for all 4, € {1,2,...,k} and j,m € {1,2,...,n}. The Gy, which
contains no edges between different V;’s is written as G7 . We shall introduce the
constructions of perfect secret sharing schemes for graphs G}, and GJ,, in Section

3.2 and Section 3.3 respectively.



Figure 3.1: G54

3.1 A Lower Bound on R(Gy,)

Let f be the real-valued function defined in-Section 1.2 which-assigns non-negative
values to subsets of vertices so.that f satisfies properties(a)-(¢) listed there. Our goal
is to give the best possible lower estimate for.max, cy () f (v). We will use Lemma 2.10.
to prove that the the information ratio of the graph Gy, is not less than 2 — 2771,

As it is customary, we leave out the {} and U signs in the following discussion.

For example, we write vX for the set {v} U X.
Theorem 3.1. R(Gy,) =2 — 27",

Proof. For every i € {1,2,....,k} and j € {1,2,...,n}, using Lemma 2.10 with

X = {gb}, a =V, b= v, w=wp, we get

fu) + f(vi1) = f(vpwy) — f(wy) + 2 and

f(vij) + f(vir) = f(vijwi) — f(wr) + 2, where 3 < j < n.

10



Adding up these inequalities, we have

f(uig) + fuie) +2f(vir) = f(vijwi) — flwr) + flvigwr) — fwi) +2+2,

where 3 < 7 < n.

Applying Lemma 2.7 to the right hand side of the inequality leads to

f(uiz) + f(vi2) +2f(vir) = f(vizwow;) — f(waws) +2+2-2 and

f(vig) + flvie) +2f(via) = f(vs jwowr) — fwowr) + 2+ 2 -2, where 4 < j < n.
Adding up these inequalities-and using Lemma 2.7 again, we get
f(via) + f(viz) + 2 (vig) HAS ()= of (Viawgwaty) —.f (wathgwy ) +2 42 -2+ 2 - 22
and
F(vig) + f(vis) + 2 (0iz) + 4f (vir) 2= [0 jwswawy) — f(wiwauy) =2 +2-2+2- 22

, where 5 < <.

Continuously doing this process, we will eventually arrive at the following inequality.

Jf(in) + [(Vin—1)) + 2f (Vin—2)) + 22f(’0z'(n—3)) o+ 2" (i) + 2772 f (vi1)

> f(VipWpot -+ Wowy) — f(Wny -+ wowy) 24224 - +2.2"72

> f(Vinwn—1 - wawy) — fwp_y -+ wawy) +2(2"7 = 1),
Let S = {w,_1 -+ wow;)}. Conditions (c) and (d) imply that

and
f(inw,S) = f(w,S) + 1.

11



Adding these up and transpose f(S) we have

f(winS) = f(5) = 1.

Hence,

fUinwp_1 - wowy) — flwp_1 - wowy) +2(2" 1 —1) > 1+22" 1 —1)=2" 1.

Consequently,
fin) + [ (vign-1)) + 2fLvigy g 20 f (o) 22" — 1
Observe that the ine tices in Vj, that is
f(vin) + f(vign i) 22" —1,

1—|—1—|—2—{—4_|_..._|_2n—2:2n—1’

hence the sum is
2n_1[f(7)il) + f(Uiz) + e+ f(’Um)] 2 ’I’L(Qn — 1), fOI‘ all Z = 1, 2, ceey k‘
Therefore,

2NN f(vig) = nk(2" - 1),

i=1 j=1

There must exist a vertex whose value is not less than (2" —1)/2""1 =2 — 271,

The proof is complete.

12
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3.2 A Construction of Perfect Secret Sharing
Scheme on G,

In this section we introduce our construction of perfect secret sharing scheme on
%.n Whose information ratio is equal to 2.

Our constructions follow the ideal outlined in Section 1.3. In order to construct
a perfect secret sharing scheme with ratio max,ccdim(L,)/dim(Ly), we start with a

high-dimensional vector space [F, and assign linear subspaces to the vertices and the

secret so that

e if vu is an edge of the graph, then the linear span of the subspaces L, and L,

contains the subspace Ly which is assigned to the secret, and
o if {v1, vy, ..., Ut 18 an independent set, thenSpan({ Ly, , Ly : w5 Ly, }) N Ls = {0}.

In our construction, F is a d(kn 41)-dimensional vector spacerand subspaces will
be given as the linear span of certain vectors. -We-split these coordinates into kn + 1
groups of d coordinates each. "Now, we need some mere definition and notation to
help us describe our construction. If @ and y aretwo (-dimensional vectors, then z*
is defined as the kf-dimensional vector obtained by repeating the coordinates of x k
times. The vector = @ y is 2/-dimensional vector obtained by concatenating vector
y after . For example , if z = (010) and y = (101), then x* = (010010010) and

y & 22 = (101010010).

Construction 3.2. Let A, Ay, ..., A\, be km distinct integers, and let A\, — A, be
denoted as A; .

The subspace L assigned to the secret is spanned by the following d vectors:

(1000---0)**, (0100 - - 0)*"*%, (0010 - - - 0)*"**, ..., (000 - - - 01)*"*.

13



The subspace L,,; assigned to w; is spanned by the following d vectors:

(0---0)*0=Y g (100---0)k @ (0 - - - 0)k(n=9)+1

Y

(0---0)*U=Y @ (010---0)* @ (0 - - - 0)kn=D+1

)

- O)k(j—l) ®(00---01)f @ (0--- O)k(n—j)ﬂ'
Furthermore, the subspace L., ; assigned to v; ; is spanned by the following 2d vectors:
(100 - - - O)k(j—l) @ (00=-20)*.(100 - - O)k("—j)'i‘l,

(00~ - 01)k(j—1) ® (00---0)*® (00--- 01)k(n4j)+1

kn

@(Ak(jfl)%moo' : 0)} ® (Ak(j-1)+:00 - 1+ 0);
Lm=1

kn

Lm=1

kn

D00 - 0Xkgj—1)im)

m=1

Figure 3.2 shows the graphs G5, and we give our construction of secret sharing

scheme on it in Example 3.3.

Example 3.3.

L, = Span{(100100100100100), (010010010010010), (001001001001001)}

Lu, = Span{(100100000000000), (010010000000000), (000000000000000) }

14



Vo o V1.1

Figure 3.2: G5,

L., = Span{(000000100100000), (000000010010000), (000000001001000)}

Ly, , = Span{(000000100100100), (000000010010010),/(000000001001001),

V1,1

(A1 001 200X 300A;.4,00A,00), (0A; 1001 500X4,300A; 400,0),

(00X1100\; 500X, 5001 1001}

Ly,, = Span{(000000100100100), (000000010010010), (000000001001001),
(A2.100A2.500A,500A2,400A200), (0A2,100A5,200A2.300A, ,00150),

(00A2,100A2.500A5,500A5,400A;)}

L, , = Span{(100100000000100), (010010000000010), (001001000000001),
(A3.100A3200A3 500A3.400A300), (0A3.100A3200A5 300A5.400A30),

(00A3100A3.500A3,300A3,400A3)}

15



Ly, , = Span{(100100000000100), (010010000000010), (001001000000001),
(A1,100\4 2004 30024, 4002400), (0A4,1004 2004 30014 400140),
(004,100,200 30024 400A4) }

Theorem 3.4. Constriction 3.2. defines a perfect secret sharing scheme on G, with

information 2.

Proof.  To show that Construction 3.2. is a perfect secret sharing scheme on G} ,,,

we need to check the following conditions.

1. the span of Ly, , Ly,, ..., L, must be trivial,
2. the span of L,, ; and Ly, must contain Lg;
3. the span of L,, “and { L., +m+# j} intersects Lgin the trivial space {0}, and

4. the span of two different L, . and L., = should contain L.

Um,n

Since the linear span of all subspaces L,,,’s contains those veetors where all coor-
dinates in the (kn + 1)-th group are zero and any non-trivial linear combination of

L, has non-zero coordinates in each group, we have
Span{ Ly, , Ly, oy Lis, F N Lg = {0},

The first requirement for the independent set W is satisfied.
To verify the second condition, for each ¢ € {1,2,...,d}, the sum of the ¢-th gen-
erating vector of L,, ; and L, gives the {-th generating element of L. For example,

when ¢ =1

{(10 e o)k(j—l) ® (00---0)*® (10--- O)k(n—j)H}

+{(()0 e o)k(j—l) ® (10---0)*® (00- - - O)k(n—j)+1}

=(1000- - - 0)**1,

16



This implies that the linear span of L,,; and L, contains L, as required.

Observe that the first d generating vectors in L, ; have all 0 in the (k(j—1)+1)-th
to the (kj)-th groups, and the other d generating vectors in L,, ; have all 0 in the
(k(j —1) +1)-th group. Hence the linear span of L,, ; and all other L,,,’s with j # m
has all zero coordinates in this group and therefore contains only the zero element
from L.

In order to have the last condition satisfied, subtracting the d+1 generating vector

of L,,, from the d + 1 generating vector of L,, . with (i, j) # (s,7) gives

[ kn

B Ne—1y#:m00- - - 0)

Lm=1
[ kn

- @(/\k(r—l)—f—s,moo . O)

Lm=1

® ()‘k(j—l)+i00 -++0)

@ (Apr—1)+50050)

=( Ak 1)+ kr—1)+s00 - - - 0)Fm+t

=N 1) i,k (r— 1) (1005 Q)7

The linear span of this vector contains the first generating vector of L,. Since each
generating vector of L, can be ebtained in the same way; the last condition holds as

well.
With dim(L,,) = d, dim(L,;) = d and dim(L,, ;) = 2d, we also know that the per-

fect secret sharing scheme we have constructed has information ratio 2. O

By Theorem 3.1. and Theorem 3.4. we have the following corollary.

Corollary 3.5.

22" < R(G,) <2

17



3.3 A Construction of Perfect Secret Sharing

Scheme on G}

Recall that in the graph Gy, defined at the beginning of this chapter, there is no

edge between the vertices from different V;’s.

Construction 3.6. Let A\i, Ao, ..., A\r,, be km distinct integers. For convenience, let
Az — Ay be denoted by A, , and
NeGj—1)+i > wherem =k(t—1)+ifort=1---n
Qi jom = {
Ak(j—1)4iim. - otherwise.
Assign to L, the subspace spanned by the following d vectors:
(1000 - - - 0)*™ (0200 - - - 0)*" 1 (0010 <= 0) L 11000 - 01)*

Assign to L, the subspace spanned by the following d vectors:

(0% o)k(j—l) ® (100---0)* @ (0 - .O)k(n—j)ﬂ’

0--- o)k(ﬂ'—l) (010 - - - 0)* @ (0~ AQ)km=a)+1

0--- Q)k(j—l) ® (00---01) @ (0--- O)k(n—j)ﬂ'
In addition, L, ; is assigned the subspace spanned by the following 2d vectors:

(010---0)*=Y g (00- - - 0)* @ (010 - - LQ)k(n=a+1



kn
P (@i jm00-+-0)| & (A(j—1)+:00---0),

m=1

kn
(0 jm0 -+ 0)| & (A(j—1)+i00- - - 0),

Lm=1

& (Ak(j_1)4:00 - - 0).

kn
[@(00 o 05 j.m)

m=1

Figure 3.3 shows the graphs G, and we give our construction of secret sharing

scheme on it in Example 3.7.

Vo2 V1.1

Vi2 Vo 1

Figure 3.3: G,

Example 3.7.
L, = Span{(100100100100100), (010010010010010), (001001001001001) }

L,,, = Span{(100100000000000), (010010000000000), (000000000000000) }

Lu, = Span{(000000100100000), (000000010010000), (000000001001000)}
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Ly, , = Span{(000000100100100), (000000010010010), (000000001001001),
<a1’17100(11’17200(11’17300(11’17400/\1OO),
(0(1,1717100(1,17172000,1717300&1717400)\10)7

(OOCLLLl00@171,20001171,30001171,40())\1)}

= Span{(000000100100100), (000000010010010), (000000001001001),

v2,1
(a27171OO(IZ17200(12717300(12717400/\200),
(0&2717100&2717200&2,17300(12,17400)\2[)),
(00012’17100@2,1’20001271’30001271’400)\2)}
Ly, , = Span{(100100000000100), (010010000000010), (001001000000001),

(a1,271OOa1,2,200a1,2,300a1,27400)\300),
(OG/LQJ000/1’27200@172’3000/172’400)\3()),

(00&172,100@1’2,200011727300011’27400A3)}

Ly, , = Span{(100100000000160), (010010000000010), (001001000000001),
(a2,271 00a272,2 00a272,300a272,400)\400) N
(0&2,2’100@2,2’200(12,27300(12,27400)\40) y

(00@2727100@2727200@27273006@727400/\4)}

Theorem 3.8. Constriction 3.6. defines a perfect secret sharing scheme on Gy, with

information 2.

Proof.

we need to check the following condition.

1. the span of Ly, , Ly, .., Ly, is trivial,

20

To show that Construction 3.6. is a perfect secret sharing scheme on G ,,



2. the span of L,, ; and L,,; must contain L,

3. the span of L,, . and {L,,, : m # j} intersects Ly in {0},

Vi, j
4. the span of two different L, and L,, where v, u € V;, should contains L, and

5. the span of two different L, and L,,, where v € V; and u € V; with 7 # j, should

be the trivial space {0}.

Note that Construction 3.6. is very similar to Construction 3.2, the only difference
lies in the last d generating vectors_of-each Dy, 5 for 1 <i<kand 1< j<n. Hence
the first, second, and third conditions hold by theproof of Theorem 3.4.

To verify that the forth condition holds as well, we observe that

[ kn

P (im0~ - - 0)] B (A(j-1)4400. - - 0)}

Lm=1
[ kn

B (@irm00- - 0} HAkr—1)4:00 0)}

Lm=1

|
I - — )

(AbG—1)+ik(r—1)4400 - - - 0)knrt

= (M) itk(r—1)+1) (100 - - - 0)F

The first generating vector of Ly canbe-obtained from the (d + 1)-th generating

vectors of L, , and L, with j # r. The linear span of L, ; and L,,  contains the

Vi,
generating vectors of L, hence the forth condition is also satisfied. To check the fifth
condition, one can easily verify that any generating vector of L, cannot be generated
by the vectors in any two different vector subspaces L., ; and L, , with s # i.

In this construction, L., is generated by 2d linearly independent vectors, L.,
and L, are both generated by d linearly independent vectors, thus dim(L,, ;) = 2d

and dim(L,,) = dim(L,) = d. This shows that the information ratio of Construction

3.6. is also 2.
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By Theorem 3.1. and Theorem 3.8. we have the following corollary.

Corollary 3.9.

22" CR(GE,) <2
3.4 Concluding Remark

The lower bound of the information ratio in Corollary 3.5. and Corollary 3.9. are
very close to the upper bound when n is sufficiently large. Hence Construction 3.2.
and Construction 3.6. perform well for large n. However, we are not sure that if there
exists a secret sharing scheme for-any member of the family G/, whose information
ratio is strictly less than 2. For those members of G, which contain some, but not
all, edges between different V;’s, finding a general construction of L,, ; is very difficult.
However if this kind of member has a symmetric structure, this job can be done by
making modifications to the constructions we have given in Section 3.2 and Section

3.3.
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