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Gau-Wu numbers of certain matrices

Student: Hsin-Yi Lee Advisor: Dr. Pei Yuan Wu

Department of Mathematics
National Chiao Tung University

ABSTRACT

For any n-by-n matrix A4, let k(A) stand for the maximal number of
orthonormal vectors x; such that the scalar products (Ax;,x;) lie in the
boundary of the numerical range W (A). This number k(A) is called the
Gau-Wu number of the matrix-A. If A is-a normal or a quadratic matrix,
then the exact value‘of k(A) can be computed. For a matrix A of the
form B @ C, we show that-k(A4) = 2 if and only if the numerical range
of one summand, say, B, is-contained in the interior of the numerical
range of the other.summand € and k(C) = 2. For anirreducible matrix
A, we can determine exactly when the value of k(A) equals the size of
A. These are then applied to determine k(A) for areducible matrix A of
size 4 interms of the shape of W/ (4).

Moreover, if A <isan n-by-n (n = 2) nonnegative matrix of the form
0 A 0
0 -
Al

0 0
where m > 3 and the diagonal zeros are zero square matrices, with
irreducible real part, then k(A) has an upper bound m — 1. In addition,
we also obtain necessary and sufficient conditions for k(4) = m —1 for
such a matrix A. The other class of nonnegative matrices we study is the
doubly stochastic ones. We prove that the value of k(A) is equal to 3
for any 3-by-3 doubly stochastic matrix A. Next, for any 4-by-4
doubly stochastic matrix, we also determine its numerical range. This
result can be applied to find the value of k(A) for any doubly stochastic
matrix A of size 4 in terms of the shape of W(A). Furthermore, the
lower bound of k(A) is also found for a general n-by-n (n = 5) doubly
stochastic matrix A via the possible shapes of W (A).
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1 Introduction

Let A be an n-by-n complex matrix. Its numerical range W (A) is, by definition,
the set {(Az,x): = € C", ||z|| = 1}, where (-,-) and || - || denote the standard inner
product and its associated norm in C", respectively. One of the most important
properties of the numerical range is its convexity. In fact, the study of the numerical
range originates from the discovery of this property by Toeplitz [17] and Hausdorff
[7]: the former proved that the boundary of the numerical range is always a convex
curve, but left open the possibility that it may have interior holes while the latter,
using a different approach, showed that this cannot happen. An interesting account

on the history of this thedrem can be found in [6}:

For a matrix A, let A* denote-its adjoint, Re A its real part (A+ A*)/2 and Im A
its imaginary part.(A = A*)/2i—The set of eigenvalues of A is-denoted by o(A). For
any subset A of C, A” denotes its convex hull; that is, A" is the smallest convex set
containing A. We list below several important properties of the numerical range.

(1) W(U*AU) = W (A) for any unitary matrix U.

) W(A) is a compact, subset of C.
) W(aA + bl) = aW(A) +.b for any scalars.a and b.
4) W(Re A) = Re W(A) and W (Im A) = Im W(A).
)If A= [ . ], then W(B) C W(A).
6)o(4) SW(A)

)

8) W ®A,) = (UnW(An))A-

For other properties of the numerical range, the reader may consult [8, Chapter 1].

In Chapter 2, we consider the maximum number k = k(A) for which there exist

orthonormal vectors xy, ...,z € C" with (Az;, z;) in the boundary 0W (A) of W (A)



for all j. Note that k(A) is also the maximum size of a compression of A with all its
diagonal entries in OW (A). Recall that a k-by-k matrix B is a compression of A if
B = V*AV for some n-by-k matrix V with V*V = I,. Here I, denotes the k-by-k
identity matrix. In particular, if n equals k, then A and B are said to be unitarily
similar, which we denote by A = B. The number k(A) was introduced in [5] and
[19] and is called the Gau-Wu number by [2]. It relates properties of the numerical
range to the compressions of A. In particular, it was shown in [5, Lemma 4.1 and
Theorem 4.4] that 2 < k(A) < n for any n-by-n (n > 2) matrix A, and k(A) = [n/2]
for any S,-matrix A (n > 3). Recall that an n-by-n matrix A is of class S, if it
is a contraction, that is, || A ||= maxygy=s [[Az| < 1, its eigenvalues are all in the
open unit disc D = {z € C: || < I};and the rank of I, — A*A equals one. In
[19, Theorem 3.1}, it was proven that, for an n-by-n+(n >2) weighted shift matrix A
with weights wy, ..., wyy k(A) =n-if and only if either |w;|= --- = |w,| or n is even
and |wy| = |ws| =% = |w,—rland |wa| = |wy| = - <« = |w,|. Recall that an n-by-n

(n > 2) matrix of'the form

Wn—1

W, 0

is called a weighted shift matriz with weights wy, ..., w,. Moreover, in [2] k(A) is
computed for two classes of n-by-n matrices as follows. An n-by-n matrix A is almost
normal if it has n — 1 orthogonal eigenvectors. Note that every almost normal matrix
is unitarily similar to A, & A,, where A, is normal while A, is almost normal and
unitarily irreducible (cf. [14]). Recall that a matrix A is unitarily reducible if and
only if A is unitarily similar to A; @ Ay for some lower-dimensional matrices A; and
Ay; otherwise, A is unitarily irreducible. In [2, Theorem 3], it was proven that, for

any almost normal matrix A, k(A) = [; + l5, where [; is the number of eigenvalues of



A,, located on OW (A), counting their multiplicities, and

(

0 if W(A,) lies in the interior of W (A,),

l 2 if there exist distinct parallel supporting lines of W (A)
2 p—
passing through points of W(A4,), or

1 otherwise.

Furthermore, [2, Theorem 5] shows that if A is an n-by-n (n > 3) tridiagonal Toeplitz

matriz of the form

a ¢ 0 ... 0
b a ¢
0 0 |,
b a ¢
0 0 b a
then
n if Jo} = ||,
k(A) =

[n/2] otherwise.

We will show that if A is a-normal or a quadratic matrix; then the exact value
of k(A) can be computed. Recall that a quadratic matriz A is one which satisfies
A? + 21 A + 2] = 0 for'some scalars z; and 2. For'a‘matrix A of the form B @ C,
we show that k(A) = 2 if and enly if the numerical range of one summand, say,
B is contained in the interior of the numerical range of the other summand C and
k(C) = 2. For an irreducible matrix A, we can determine exactly when the value of
k(A) equals the size of A. These are then applied to determine k(A) for a reducible
matrix A of size 4 in terms of the shape of W(A). These results also appeared in [10].

In Chapter 3, we continue to study k(A) for two classes of n-by-n nonnegative

matrices A. Recall that an n-by-n matrix A = [ay]},—, is a nonnegative matriz,
denoted by A = 0, if a;; > 0 for all ¢ and j. Recall also that a square matrix P

is a permutation matriz if there is exactly one 1 on every row and every column



and all other entries are 0. Note that any permutation matrix P is unitary with
P* = PT = P~ Two square matrices A and B of the same size are permutationally
similar if there is a permutation matrix P such that PT AP = B, which is denoted by

A=, B. A matrix A is permutationally reducible if it is permutationally similar to a

matrix of the form , where B and D are square matrices; otherwise, A is
0 D

permutationally irreducible. This should not be confused with the notion of unitarily
reducible (resp., irreducible) matrix. For nonnegative matrices, reducibility (resp.,
irreducibility) in general refers to the permutational one. Note that the reducibility
(or irreducibility, for that matter) of nonnegative matrices is preserved under the

permutational similarity, and. the irreducibility of a nonnegative matrix A passes to

that of Re A. The converse of the latter is false as witness A = I Alds an
00
n-by-n (n > 2) nonnegative matrix of the form
0 A 0
0
Am—l ’
0 0

where m > 3 and the diagonal zeros are zero squaré matrices, with irreducible real
part, then k(A) has an upper bound m="1. In addition, we also obtain necessary
and sufficient conditions for k(A) = m = 1 for such a matrix A. The other class of
nonnegative matrices we study is the doubly stochastic ones. Recall that an n-by-n
nonnegative matrices A is doubly stochastic if its row sums and column sums are all
equal to one. It is proven that the value of k(A) can be determined for any doubly
stochastic matrix A of size 3 or 4 in terms of the shape of W(A). Note that the
shapes of W(A) can be determined completely by the tests given in [1, Theorems 1
and 3|. Moreover, the lower bound of k(A), in general, is also found for an n-by-n

(n > 5) doubly stochastic matrix via possible shapes of W (A).



2 Gau-Wu numbers of direct sums of matrices

2.1 Introduction

In Section 2.2 below, we first determine the value of k(A) for a normal matrix
A (Proposition 2.2.1). Then we consider the direct sum A = B @ C, where the
numerical ranges W (B) and W (C) are assumed to be disjoint. In this case, we show
that the value of k(A) is equal to the sum of k;(B) and k1 (C) (Theorem 2.2.2), where
ki1(B) and ki (C) are defined as follows.~We.define & (8) to be the maximum number
k for which there are orthonérmal vectors xy, . .., Zp in‘C" such that (Bz;, z;) is in
OW (A) N oW (B) forall4 = 1, k, and similarly for k;(C'). Based on the proof of
Theorem 2.2.2, we obtain the same formula for k(A) under a slightly weaker condition
on B and C (Theorem 2.2.6). In Section 2.3, we give some applications of Theorem
2.2.6. The first one (Proposition 2.3.1) shows that the equality k(A) = ki1(B) + k1 (C)
holds for a matrix«A of the form B & C' with normal C. In particular, we are able
to determine the value of k(A) for any 4-by-4 reducible' matrix A (Corollary 2.3.4
and Propositions 2.3.7¢—2.3.9). Moreover, the number k(A @& (A + al,)) can be
determined for any n-by-n matrix-A and nonzero complex number a (Proposition
2.3.10). At the end of Section 2.3, we propose several open questions on k(B & C')
and give a partial answer for one of them (Proposition 2.3.11). That is, the equality

k(@74 A) = m-k(A) holds if the dimension of H¢(A) equals one for each £ € 0W (A),

=1
where the subspace H¢(A) is defined in the first paragraph of Section 2.2. By using
this, we can determine the value of k£(A) for a quadratic matrix A (Corollary 2.3.12).

Note that all of the results in Sections 2.2 and 2.3 have also appeared in [10].

We end this section by fixing some notation. A finite square matrix A is called



positive definite, denoted by A > 0, if A is Hermitian and (Az,z) > 0 for all z # 0. I,
is the n-by-n identity matrix. The n-by-n diagonal matrix with diagonals &, ..., &, is
denoted by diag (&1, ...,&,). The cardinal number of a set S is #(S5). The notation 6;;
is the Kronecker delta, that is, d,; has the value 1 if ¢ = j, and the value 0 if otherwise.
The span of a nonempty subset S of a vector space V', denoted by span (.5), is the

subspace consisting of all linear combinations of the vectors in S.

2.2 Direct sum

We start by reviewing a few basie facts concerning the boundary points of a numerical
range. For an n-by-n matrix A, a point £ in 91/ (A) and asupporting line L of W (A)
which passes through €, there is-a-# in [0, 27) such that the ray from the origin which
forms angle # fromthe peositive a-axis is perpendicular to L. Ti'this case, Re (e7%¢) is
the maximum eigenvalue of Re (e "’ A) with the corresponding eigenspace F¢ 1(A) =
ker Re (e7(A — &dy)). Let K¢(A)denote the set {x € C" =fAzx,z) = ¢|z|*} and
H¢(A) the subspace spanned by K¢(A). If the matrix A is clear from the context, we
will abbreviate these t0 Ee¢yp, K¢ and H¢, respectively. Forother related properties,
we refer the reader to [4,Theorem. 1] and [19, Propesition 2.2]. The next proposition
on the value of k(A) for a normal matrix A is an easy consequence of [19, Lemma

2.9]. It can be regarded as a motivation for our study of this topic.

Proposition 2.2.1. If A is an n-by-n normal matriz with p eigenvalues (counting

multiplicity) in OW (A), then k(A) = p.

Proof. We may assume, after a unitary similarity, that A is a matrix of the form
B & C, where B = diag (A1,...,,) and C' = diag (Api1,...,An) with Ay,... A, €
OW(A) and A\piq,..., A\, € int W(B). It follows from [19, Lemma 2.9] that k(A) =



KB o C)=k(B) =p. m

One of our main results of this section is the following theorem for k£(A) when A
is a matrix of the form B @ C with disjoint W (B) and W (C'). Recall that the value of
k1(B) is the maximum number k for which there are orthonormal vectors z1, ..., xy
in C" such that (Bx;,z;) is in OW(A) N OW(B) for all i = 1,...,k. If the subset
OW (A)NOW (B) is empty, then we define k;(B) = 0. The following theorem provides
a formula for determining the value of k(A) by ky(B) and ki(C).

Theorem 2.2.2. Let A = B & C, where B and C are n-by-n and m-by-m
matrices, respectively. If the numerical ranges-W (B) and W (C) are disjoint, then
k(A) = ki(B) + ki(C) < B(B) +k(C). In thas case, .k(A) = k(B) + k(C) if and
only if ki(B) = k(B) and ki(C) = k(€)= dn-particular, k(A) = m + n if and only if
ki(B) =k(B) =n and k1 (C) =k(C) =m.

This will be proven after the following lemma which is the'case when C equals a

1-by-1 matrix [¢].

Recall that z istan extreme point of the convex subset’ A of C if z belongs to A
and cannot be expressed as a convex combination of twoe ether (distinct) points of A;
otherwise, z is a nonextreme point-Recall also-that a point z is a corner of a convex
set A of the complex plane if z is'in the closure of A and A has two supporting lines
passing through z. If A is a finite matrix, £ = (Az,z) and ||z|| = 1, then z is called

a unit vector corresponding to the point £ in W (A).

Lemma 2.2.3. If A= B ®|[c| is an n-by-n matriz, where B is of size n — 1 and

c is a scalar, then k(A) = ki(B) + k1([¢]).

Proof. By Proposition 2.2.1, we may assume that the interior of the numerical

range W (B) is nonempty. If ¢ is in the interior of W (B), then k(A) = k(B) by [19,



Lemma 2.9]. Obviously, k(B) = k1(B) and k;([c]) = 0 in this case. Hence it remains
to consider the case when c is outside the interior of W(B). That is, we will prove
that k(A) = ky(B) + 1 for ¢ ¢ int W(B). By the definition of k(A), there are points
& = (Azj,z) in OW(A), j =1,2,...,k(A), with (z;,z;) = d;; for 1,5 =1, ..., k(A).
Clearly, the inequality k£(A) > ki(B) + 1 holds. Assume that k(A) > ki(B) + 2. Let
zj = x; Dy, for each j. We claim that every z; is a nonzero vector. Indeed, if z;, = 0
for some jy, then y;, # 0 and (z;, z;,) = (y;,Y;,) = 0 for all j # jo. This implies that
y; = 0 for all j # jo and thus ky(B) is at least ky(B) + 1, which is absurd. Hence
the claim has been proven. From &; = (Az;, z;) = ||z;]|*b; + |ly;]|” ¢ € OW (A), where
bj = (B (z;/ |lz;ll),x;/ lz;]]), it follows.that &; is in the (possibly degenerate) line
segment [c, b;], and b; is in the boundary-of W(B) for.each j. We note that there are
at least two nonzero y;’s; this is because if otherwise, then we obtain the inequality
ki(B) > ki(B)+1, which'is a econtradiction. Hence we mayassume that yi, ...,y # 0,

where h > 2, and that this A is-the maximal such number.

If ¢ is not in W(B), then there are exactly two points p and ¢ in the boundary of
W (B) such that the two line segments.{e, p| and [¢, g] are in the boundary of W (A) and
the relative interior of these two line segments are disjoint/ from the boundary of W (B)
by the fact that W (A) is the convex hull of the union6f W (B) and the singleton {c}.
Hence there are three cases to-consider: the-intersection of the boundary of W(B)
and the supporting line at p (resp., ¢) containing [c, p] (resp., [c,q]) is (1) {p} (resp.,
{q}), (2) aline segment [p, p'] (resp., {q}) or {p} (resp., a line segment [g,¢'] ), or (3)
a line segment [p,p'] (resp., a line segment [q,q']) (cf. Figure 2.2.4). We need only

prove case (2) since other cases can be done similarly.

(1) 2) (3)




Figure 2.2.4

Define three (disjoint) subsets consisting of the corresponding unit vectors, and

their cardinal numbers, respectively, in the following:

R = {z:& € e, p)} withir = # (R),
= {z;:& € (cq)} with s =4(S), .and
T = {506 e oW (AN(E B Wit 1 = £ (7).

So, k(A) = r + s +¢. Obviously;-every z; & T is of the form z; & 0. Moreover, we
partition R into two disjoint subsets Ry = {7, :y; # 0} and R, = {2, : y; =0}. We
call their cardinal'numbers r; and rg, respectively. Without loss of generality, we
may assume that Ry’ = {21, L2i feRa=Azmaasmszr 1t 9= {Zr11, ..., Zr1s ), and

T = {21541, - Zristtt, Where 7o ro = This shows thatr; + s = h > 2.

First assume that s = 0. Then »y.> 2. Forthe clarity of the proof, the following
method is called (x). Since every y;, j = 1,...,r;, is nonzero, we define the vectors
2, = (x;/y;) ® 1 for these j’s so that the vectors in M = { (2 — 2}) / ||z} — ;H};;z =
{(((z1/91) = (zj/y;)) ®0) ] ||21 — ;H}lez are linearly independent and are perpen-
dicular to vectors in TURy. This together with [4, Theorem 1] shows that span (M) C
Unefep15n(A) and thus every unit vector in span (M) is a unit vector corresponding
to some 1 € W (B). Choosing an orthonormal basis {v; ® 0}'_, for the subspace
span (M), we deduce from the orthonormality of the vectors in T'U Ry U {v; & O};;2
that

ki(B)>t+ro+(ri—1)=r+s+t—1=kA) —1>k(B)+1,

9



which is impossible. Hence we must have s > 1.

If s=1, then r;y > 1. A similar argument as above yields that

t+ry+1 ifr; =1, and
k1 (B) > ? '

t+T2—|—(T1—1)+1 1f’l"122

by considering the orthonormal subsets T'U Ry U {(x,11/ ||zr11]|) ® 0} and T'U Ry U
{v; ® 0}51:2 U {(zr1/ |lzrsal]) © 0}, where {v; © 0};L, is an orthonormal subset of
span (R;), via applying (*) on R;. The above inequalities imply that

r+s+t—1>k(A)—1>k(B)+1 ifr; =1, and
r+s+t—=1>kA)=1>kB)+1 ifr, >2.

ki(B) >

This is a contradiction.<Hence s > 2.

If 71 = 0, then applying (*)-omn-S, we reach a contradiction. since
ki(B) >t+r+(s—1)=r+s+t=1=kA) —-1> k(B)+1.

If 1 = 1, then we obviously have-the linear independence of the subset N =
r+ts r+s

{(Zi _ZQ)/H%_ g'H}jzr-;-z \ { (((21/91) =(2,/95)) ©0) /“21_ ]H}] =r42 by ap-

plying (%) on S again. Let{v; ® 0};3 4+ be an orthonormal basis for the subspace

span (V). Hence
ki(B)>t+r+(s—1)+1=r+s+t—1=k(A)—1>k(B)+1

by the orthonormality of the vectors in T'U Ry U {v; @ O};:jH U {(x1/ ||z1]]) @ 0}.

This is again a contradiction. If r; > 2, then applying Method I on S and Ry,
. . _ r+s

we have the linear independence of the subsets P = {(z} — 2/ Hzi - M}j:rn =
r+s T

{((@1/y) = @s/y) @ 0) /|2 = #1500 and @ = {(51 = %) /[l ==}, =

{(((x1/y1) = (x;/y)) ®0) /|| — ;H};;, respectively. Let {v; & 0};:i+2 be an or-

thonormal basis for span (P). Then span (P) @ span (z @ y) = span(S) for some

unit vector = @ y orthogonal to span (P). Clearly, = is a nonzero vector; this is

10



because if otherwise, then 0 @ y(€ span (S)) is orthogonal to z; = x1 @ y1(€ Ry),
which contradicts the fact that y and y; are nonzero scalars. Let {v; ®0}'L, be
an orthonormal basis for the subspace span (Q)). Then we conclude that the subset

TURyU{v; ® 0}, U{v; @ 0};:i+2 U{(z/ ||z|) @0} is orthonormal so that
ki(B)>t+mr+(ri—1)+(s—1)+1=r+s+t—1=k(A) —1>ki(B)+1,

which is a contradiction. This completes the proof of case (2).

In case (1), we define three subsets consisting of the corresponding unit vectors,

and their cardinal numbers, respectively, as follows:

R = {z: & .Ele,p)pwithr=# (R)4
= {z &€ (c,q)} with s = #(S5)} and
T =l ¢ RN DU (6D b= 4 (7).

As for case (3), we-have

R = {% :¢ € e, p)pwith r = #(R),
= {2:& €(e, ¢} with s=#(S), and
T = {458 WA (e, p) U (g YA t = 4 (T).

As before, we partition R (resp.,=S) into two disjoint subsets Ry = {z; : y; # 0}
and Ry = {z;:y; =0} (resp., S1 = {z;:y; #0} and Sy = {z; : y; = 0}). Based
on the arguments for case (2), we get a series of contradictions for each individual
case. In a similar fashion, we remark that if A = B & cl,,,, where ¢ ¢ W(B), then
k(A) = ki(B) + ki(cl,,) = ki(B) +m. This remark will be used in the remaining
part of the proof.

To complete the proof, we let ¢ be in the boundary of W(B). Assume that
OW (B) contains no line segment. We infer that ¢ = b; = ¢; for j = 1, ..., h since these

¢;’s are in the (possibly degenerate) line segment |[c, b;] contained in the boundary
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of W(B). Define a new vector z; = (z;/y;) © 1 for each j = 1,...,h. Then the

subset § = { (4 = ) / [l = 1}, = {(((@r/m) = (@3/m) @ 0) /|24 = [},
is linearly independent. Since ¢ is an extreme point of W(A), we have H.(A) =
K.(A) by [4, Theorem 1] and span (5) is a subspace of H.(A). Let {v; ® O}?:2 be
an orthonormal basis for span (S). Then ¢ = (A (v; ®0),v; $0) = (Bvj,v;) is in
OW(B) for j =2,...,h. Hence

k(B) > (h—1) + (k(A) — h) = k(A) — 1 > k(B) + 1.

This is a contradiction. So, we may assume that OW (B) contains a line segment
[ such that ¢ belongs to [. If ¢ is not.an extreme point of [, then we infer that
c=0bj=¢ or&; € (c,b;) for j =1, ..;hsince z;and y; are nonzero vectors for these
j’s. Hence z; € H.(A)for 7= 1,...,h by [4, Theorem1]. Similar arguments show
that H.(A) has an orthonormal subset {w; & O}?ZZ. Sinee H.(A) = U, K, (A) by [4,
Theorem 1], this implies that-w;® 0 € K, (A), where.n; €1, for j = 2,...,h. From
n; = (A(w; ®0) Jw; & 0) = (Bw,;,w;) € | € IW(B), where j'= 2, ..., h, we reach a

contradiction since

For the remaining part of the proof, let.ebe an extreme point of [, where [ is a
line segment on the boundary of W(B). We consider two cases: either (a) there is
only one line segment in 0W (B) passing through ¢, or (b) there are exactly two line
segments in W (B) passing through c. In case (a), since x; and y; are nonzero vectors
for j =1,..., h, we infer that ¢ = b; = ¢; or &; € (¢, b;) for these j’s. This implies that
z; € H,(A) by [4, Theorem 1], where 7 is not an extreme point of {. So, the same
arguments as above lead us to a contradiction. For case (b), since ¢ is a corner of
W (B), cis a reducing eigenvalue of B by [3, Theorem 1]. Thus B is unitarily similar
to a matrix of the form B’ @ cl,, where ¢ is not an eigenvalue of B’, and the size of B’

and n’ are both less than n. Obviously, ¢ ¢ W(B’). We apply the preceding remark

12



as for the case of ¢ ¢ W(B) to see that k(A) = k(B @® clyi1) = ki(B') +n' + 1,
and k(B) = k(B' @ cly) = k1(B’) + n/. In addition, k&(B) = ki(B) in this case.
Hence we obtain that k(A) = ki(B) + 1, which contradicts our assumption that
k(A) > ki(B) + 2. With this, we conclude the proof of the asserted equality. |

We remark that the part of the proof of Lemma 2.2.3 on ¢ ¢ W (B) involves the
following three cases (1), (2), and (3) depending on whether 0W (B) contains a line
segment or otherwise. In case (1), we have R = {z; : y; # 0} and S = {z; : y; # 0},
in (2) R = Ry UR,, where Ry = {z; : y; # 0} and Ry, = {2; : y; = 0}, and
S ={z :y; # 0}, and in (3) R = R; U Ry, where Ry = {z; : y; # 0} and
Ry ={z; :y; =0}, and S = S;US,, where S = {2, y; # 0} and S, = {2, : y; = 0}.
Note that the key point is to handle R and S in“(1), R, and S in (2), and R; and
Sy in (3), that is, all nonzero y,’s of the three cases. We find that the proofs of the
three cases are almost the same.-This observation can facilitate the proof of Theorem
2.2.2 as follows. If W (B) contains a line segment such-that this line segment is a
portion of 0W (A) and stretches to a point of 9W (C'), then we take the same method
as the proof of Lemma 2.2.3 on.¢ ¢« (B) to partition the corresponding R into
Ry ={z; 1 y; # 0} and Ry = {z; :'y; = 0}. Asmentioned above, we need only handle
R;. On the other hand, if OW (B) contains no such line'segments, then we need only
handle the corresponding R = {z; #w;.# 0}. From this, there is no difference between
the proofs of the two cases. Hence we may assume, in the proof of Theorem 2.2.2,

that OW (B) and 0W (C') contain no line segments.

Before giving a proof of Theorem 2.2.2, we note several things. First of all, by
Lemma 2.2.3, we may assume that both of the numerical ranges W (B) and W (C') are
not singletons. Secondly, we may further assume that OW (B) and OW (C') contain no
line segment by the above remark. Thirdly, since W (A) is the convex hull of the union
of W(B) and W(C'), there are two line segments, called [a,p| and [b, ¢], in OW (A),
where a,b € OW(B) and p,q € OW(C). Fourthly, it is easy to check that a # b and
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p # q. Indeed, if a = b, then a is a corner. By [3, Theorem 1], we obtain that a is
a reducing eigenvalue of A, and hence a is a reducing eigenvalue of B. This shows
that W (B) must contain a line segment, which contradicts our previous assumption.
Similarly, we also have p # ¢. Combining the above, we have the following Figure

2.2.5 as the numerical range W (A).

Figure 2.2.5

As before, by the-definition of k(A), there exist &; = (Az;, z;) € OW (A), j =
1,2,...,k(A), where z;;= a;® y;, and (z;,2;) = 0;5for 4,5 = 1, ..., k(A). We define
four (disjoint) subsets consisting of thescorresponding unit vectors, and their cardinal

numbers, respectively, as follows:

R

{z:& € (a,p)} with r =# (R),

{z;:& € (b,q)} with s =#(S5),

Tp = {z:{ € oW(A)NOW(B)} withty =# (Tp), and
(

Te = {z:& € OW(A)NOW(C)} with ty = #(T¢).

Since the intersection of W(B) and W (C') is empty, and 0W (B) and 0W (C') contain
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no line segment, we may assume that

R = {zj::chByj:xj;éOandyjséO};:l,
S = {zj:ijByj:xjgéOandyjséO};iiH,
Tg = {z2;=2;®0:2; # O};::i?—i—l , and
To = {z =0y :y; A0y,
So, k(A) = r+ s+t + to, k1(B) > t; and k1 (C) > to. Clearly, the inequality
k(A) > ki(B) + k1(C) holds. Now we are ready to prove Theorem 2.2.2.

Proof of Theorem 2.2.2. We need only prove that the reversed inequality ki (B) +
k1(C) > k(A) holds. First,«we consider the case r = 0. Assume that s = 0. Then our

assertion is obvious since
kl(B) + ]ﬁ(C) Z tl —|—t2 =7r—+Ss +t1 —|—t2 = k(A)

Assume that s = 1,d.e., 21 = 2 @ y; € S. Then ki (B) > t; + 1 since the unit vector
(x1/ ||1]]) @ 0 is clearly orthogonal to I and (B (z1/ ||z1||) 21/ ||21]]) is in OW (B)
by the convex combination

v €T
<Azl,zl>=||a:1||2<B L o >+||y1||2<o By _u >e<b,q>.

a1 oyl N1yl

Hence

]fl(B) +l{31(0) > (tl —|—1) +t2 :T+S+t1 —|—t2 = ]{I(A)

Assume that s =2, i.e., 2y =21 Dy, and 2o = 22 B ys € S. If 21 and x5 are linearly
independent, then by the Gram-Schmidt process, there are two unit vectors z; and
zy, where 2 = 2/ @ y; with 2/ # 0 for j = 1,2 such that z} and ry are mutually
orthogonal, and span ({z1, 22}) is equal to span ({z],25}). Choosing the two unit

vectors (2} / ||}]]) @ 0 and (z4/ ||5||) @ 0, we obtain that ky (B) > ¢, + 2. Hence

ko(B) + ki(C) > (t1+2) +ta =7+ s+t + 1, = k(A).
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On the other hand, if z; and x5 are linearly dependent, say, x5 = Az for some scalar

A, then we define a new unit vector

o 29 — A%y —0® Y2 — A1
2z = Az 2 — Ayl

€ span ({21, 22})

so that span ({z1, 22}) = span ({z}}) @span ({z,}) for some unit vector z; = x| ® v},
where z] and z) are mutually orthogonal. Clearly, x| # 0 for otherwise it leads
to 1 = w9 = 0, which contradicts the definition of S. From the two unit vectors

(/ |2}|]) @ 0 and 25, we infer that ki (B) > t; + 1 and k1(C') >t + 1. Hence

Assume that s > 3, that is, § = {2; =a;@y;: #; # 0 and y; # 0}_,. We consider
the largest linearly independent subset of {l’j}jzl as follows. Without loss of gener-
ality, we may assume that this can be {@; }7_,. {#1} or {xj}gzl, where 1 <[ < s. For
the first two cases,.it can be done by applying similar arguments as for the case of
s = 2. In the last case, since #; is a linear combinationof 'z, ..., x; for j =1 +1, ..., s,

it is easy to check that the unit vectors

e s
(j)zi yj > } Zézlagj)yi

)

. g\
i =N o) =1+1,..s,

(1) z; =

l

are linearly independent: Let yi = for 7 =101+1,...,s. Since F =

S

span ({z; =06 y;»}j:lﬂ) is a subspace of the space V' = span ({zj}j.:l>, the or-
thogonal complement of F'in V', called E, can be written as span ({z; =20 y;}i:1>
for some unit vectors 2}, j = 1,...,I. By (1), we see that {a}}_, is linearly indepen-

l
J=1

dent since {x;}!_, is linearly independent. Hence we may assume that both {

and {y;»}j,:H , are orthogonal subsets by the Gram-Schmidt process. This shows that
l s

G, = {(:):;/ Hx;H) 690}].:1 and Gy = {O@y;'}j:zﬂ are orthogonal to T and T¢,

respectively. Since every vector v in Gy (resp., Gq) is such that (Av,v) is in OW (B)

(resp., OW(C)), we obtain that ki (B) + ki (C) > k(A) from ki(B) > t; + [ and

ki1(C) >ty + s — [. This completes the proof of the case r = 0.
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Next, we prove for the case r = 1. Obviously, it is sufficient to consider s > 1 since
the case r = 1, s = 0 is the same as the case r = 0, s = 1. Assume that s = 1, that is,
21 =21 Pxe € Rand 25 = 2o @ ys € S. Then k1(B) > t;+ 1 and k1 (C) > to+ 1 since
(x1/]|z1]]) ®0 and 0 (y2/||y2||) are orthogonal to T and T, respectively. Moreover,
(B (z1/ ||z1]]) , 21/ ||z1]|) is in the boundary of W (B) by the convex combination

X X
uuba>:nxm2<3 1 1>+4Wﬂ2<03“ b >e<%p»

lzall” fle lya ™ s

and (C (y2/ |y2]|) s y2/ ||y2]|) is in the boundary of W(C) by the same arguments.
Hence

ki(B) +ki(C) > (t1 £ 1) + (ot d) =7+ s+t + 1 = k(A).

Assume that s = 2. Then we have R = {Zp=a; By, : 1 # 0 and y; # 0} and
S={z;=1;0y;:z57%# 0and y; # 0}?22. If {&5, x3} is linearly independent, then
we may assume that'it is an orthogonal set by the Gram-Schmidt process. By the con-

vex combination mentioned.above; we infer fromthe three unitvectors 0@ (y1/ ||y1]]),

(xo/ ||z2|]) @ 0, and(zs/ ||z3]l) @ O that ky(B)= t1 + 2 and ky(€) > to + 1. Hence
ki(B) +k1(C) >0t 2) £t F 1) =1+ s+ 4o = k(A).

On the other hand, if{zy, 43} is linearly dependent, say; r9-= Az for some scalar A,

then we define a new unit vector

, 29 — A23 Yz — \Y3
Zg=—————- =0 ——— € span ({29, 2
> = o=l 0 g =g © P20 (2228})

so that span ({22, 23}) = span ({z,}) @ span ({z}}) for some unit vector 2} = x4 G y3,
where 2} is orthogonal to z;. Clearly, % # 0 for otherwise it leads to zo = 23 = 0,
which contradicts the definition of S. From the three unit vectors 0 & (y1/ [|y1]|),
0® ((y2 — Ays) / llya — Aysll), and (a%/ [|z5]]) @ 0, we infer that ki (B) > t; + 1 and
ki1(C) >ty + 2. Hence

ki(B) 4 ki (C) > (ti+ 1)+ (t2 +2) =7+ 5+t +ty = k(A).
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Assume that s > 3, that is, S = {z; =2; Py; : z; #0 and y; # O}j:;, and R =

{z1i=21®y;:x1 #0and y; #0}. We consider the largest linearly independent

s+1

subset of {z;}5X}, which we may assume to be {715,

=2 {zs} or {xj}é-zz, where
2 <l < s+ 1. These three largest subsets are similar to those considered under
r =0, s > 3. Indeed, we need only add the unit vector 0 @& (yi/ ||y1]]) to every
sub-case of the case r = 0, s > 3. Hence we have proved that the reversed inequality

ki(B) + k1(C) > k(A). This completes the proof of the case r = 1.

Let » = 2. With the help of the preceding discussions, we may assume that s > 2.
Assume that s = 2, that is, R = {z; =2;®y; : z; # 0 and y; # 0}?21 and S =
{zj=2;®y;:2; #0 and y; # O}?:?). If-{as, x4} is linearly independent, then we
consider two cases as follows. First, we assume that {g;,4-} is linearly independent.
We may further assume that {3, x4} and {y;, 42} are orthogonal subsets by the Gram-
Schmidt process. Obviously, the two subsets H; = {0 ® (yi/lv1l]), 0 (v2/ llv2lD)}
and Hy = {(z3/ ||23]]) ©0, (24/ ||24]]) & 0} are orthogonal to T and T, respectively.
Since every vector v in H; (resp., Hs) issuch that (Av, v) is in the boundary of W (C')
(resp., W(B)), we'infer, fromék(B) >4, +2 and ky(C) > t5+ 2, that ki (B)+ k1 (C) >
k(A). On the other hand, assume that {y,9} is linearly dependent, say, y1 = Ayo
for some scalar A. Then we define a new unit vector zj = (z1 — A\z2)/||z1 — Az =
((x1—Ax2)/||x1—Ax2||) B0 so that span.({21,20F) =S8pan ({z]})®span ({z5}) for some
unit vector 2, = x}, ®yh, where 2| and 2 are mutually orthogonal. Clearly, v} # 0 for
otherwise it leads to y; = y» = 0, which contradicts the definition of R. Moreover,
we may assume that {3, x4} is an orthogonal subset by the Gram-Schmidt pro-
cess. Hence Hy = {((x1 — Aza) /|lz1 — Azol)) 0, (23/ [[23]) €0, (24/ [lz4]]) & 0}
and Hy = {0 (v5/ ||v4]])} are orthogonal to T and T¢, respectively. Since every
vector v in Hj (resp., Hy) is such that (Av,v) is in the boundary of W (B) (resp.,
W(C)), we infer, from ki(B) > t;+3 and k1 (C) > to+ 1, that ki (B)+k1(C) > k(A).
On the other hand, if {x3, x4} is linearly dependent, then we need only consider

the case that {y;,ys2} is linearly dependent. So, we may assume that y; = Ay, and
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x3 = pxy for some scalars A and p. Define two new unit vectors

’ Zl_)\ZQ o l’l—)\l’g

2 Z3 — M2y —0a Y3 — KY4

25 — paall 7 llys — pwall

= = ®0and 2z, =
|21 = Azl [z — Az ’

Then span ({z1, 22}) = span ({z1}) @span ({z3}) and span ({z3, z4}) = span ({z3})®
span ({z}}) for some unit vectors 2, = x, ® y, and 2 = 2} @ y;, where 2} (resp., 2})
is orthogonal to 2{ (resp., z4). Clearly, y5 and xy are nonzero by the same argument
as above. Hence Hs = {((x1 — A\xg) /||z1 — Axo]|) @0, (2/||2}]|) © 0} and Hg =
{0& (y3/ llall) . 0@ ((y3 — Aya) / [lys — Auall)} are orthogonal to T and Tc, respec-
tively. Since every vector v in Hj (resp., Hg) is such that (Av,v) is in the boundary
of W(B) (resp., W(C)), we infer, fromk(B) > t1+2 and ki (C) > to+2, that ki (B)+
ki1(C) > k(A). Assume that s > 3, thatis; R= {2, =2, ®y; : x; # 0 and y; # O}?Zl,
and S = {z; =2, Py, 2a;# 0 and y; # O}jig If {51492} is linearly independent,
then we may assume that {yr;y2} is orthogonal by the Gram-Schmidt process. In

s+2

this case, we consider the largest-linearly independent subset of {z,} i3, which may

be assumed to be {xj}jig, {x3} or {xj};:?) (3 < I < s+ 2). Each of the three
cases can be handled by applying similar arguments ‘as for the cases of r = 0,
s > 2. On the other hand, if {91, y2}-is.linearly dependent, say, y; = Ay, for some
scalar A, then we define a new unit vector zj = (3 — Az2)/||z1 — Az2]|) ® 0 so that
span ({z1, 22}) = span ({2} }) @span ({z5}) for someamit vector 2, = z}, ®y), where z]
and 24, are mutually orthogonal. Clearly, 15 ismonzero by the same argument as for
the case of r = 0, s = 2. To complete the proof, it remains to consider the three cases
mentioned above. By applying similar arguments again as for the cases of r = 0,

s > 2, we obtain the reversed inequality k1(B) + ki(C) > k(A). This completes the

proof of the case r = 2.

Finally, assume that r > 3. It suffices to consider s > 3 since s < 2 has been proven
if we exchange the roles of s and r. Hence R = {z; = x; ®y; : z; # 0 and y; # O};:1
and S ={z; =z; @y; :z; #0 and y; # 0};:i+1. As mentioned previously, there are

three cases by considering the largest linearly independent subset of {y;}7_; (resp.,
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{z;}753,1). Without loss of generality, we may assume that this subset is {y;}7_,, {11}

or {yj}?zl, where 1 < Iy <7, and {z;};5,,, {z,41} or {:E]}gifirl, where 1 < [y < s.

There are a total of nine cases to be considered. Since each case is similar to the one
under r = 0, s > 1, it follows that the reversed inequality ki(B) + k1(C) > k(A)
holds. This completes the proof of the case r > 3. [

At the end of the section, we give a generalization of Theorem 2.2.2 under a
slightly weaker condition on B and C. Let A be a matrix of the form B & C. Since
W (A) is the convex hull of the union of W(B) and W (C'), we consider two (disjoint)
subsets of 0W (A) as follows: one is OW (A) \ (W (B)U0W (C')) = I'y, and the other
is OW(A) N oW (B) N oW (C) = Ty, Geometrically, I'y consists of the line segments
contained in 0W(A) but not-in oW (B) U OW(C).  On the other hand, since the
common boundaries of the three numerical ranges consist of line segments and points
which are not in any line segments, every point of the latter can be regarded as a
degenerate line segment.” Hence I'y consists of the (possibly degenerate) line segments
contained in the common boundaries of the three numerical ranges. If ' = T'y U T,
consists of at most two (possibly degenerate) line segments, then we say that W (A)
has property A. Evidently, the disjointness of W (B) and WV (C') implies that property

A holds since I'; consists of exactly two line segments and I' is empty.

Applying similar arguments as in the proof of Theorem 2.2.2, property A is enough
to establish the equality k(A) = k1(B)+k1(C). Hence we have the following theorem.

Theorem 2.2.6. Let A = B&C, where B and C' are n-by-n and m-by-m matrices,
respectively. If W (A) has property A, then k(A) = k1(B) + k1(C) < k(B) + k(C). In
this case, k(A) = k(B) + k(C) if and only if k1(B) = k(B) and k1 (C) = k(C). In
particular, k(A) = m +n if and only if k1(B) = k(B) = n and k1 (C) = k(C) = m.
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2.3 Applications and discussions

The first application of our results in Section 2.2 is a generalization of Lemma 2.2.3.

Indeed, we are able to determine the value of k(A) for A = B & C with normal C.

Proposition 2.3.1. Let A = B & C, where C' is an m-by-m normal matriz.
Then k(A) = ki(B) + ki1(C). In this case, k(A) = k(B) + k(C) if and only if
ki1(B) = k(B) and k1(C) = k(C). In particular, if C = cl,, for some scalar ¢, then
k(A) = ki1(B) + ki(cl).

Proof. Let the normal C be'unitarily similar to @7, [c;]. By [19, Lemma 2.9], we
may assume that all the ¢;’s lie'in OW (A). This shows that k;(C') = m immediately.
On the other hand, sve also obtain k(A) = ki (B) 4+ m by Lemma 2.2.3. Hence the
asserted equality k(A) = ki (B)=k;(C) has been proven. The remaining assertions
hold trivially by this equality. [

An easy corollary of Proposition 2.3:1 is to determine when k (A) equals the size

of A for a matrix A= B @ C with normal C.

Corollary 2.3.2. Let A= B & C, where B is.ann-by-n matriz and C' is an m-
by-m normal matriz. Then k(A) =mn+ m if end only if k1(B) = n and k1 (C) = m.
Assume, moreover, that dim H, = 1 for alln € OW(B). Then k(A) =n+ m if and
only if ki(B) =n <2 and k(C) = m.

Proof. By Proposition 2.3.1, it is clear that k(A) equals the size of A if and only if
ki1(B) and k1(C') equal the sizes of B and C', respectively. In this case, the assumption
on H, implies that k1 (B) = n < 2 by [19, Proposition 2.10]. This completes the proof.
[

For a matrix A of the form B & C, we recall the decomposition I' = I'y UT, at
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the end of Section 2.2, where I'y = W (A) \ (OW(B) UIW (C)) and I'y = OW (A) N
OW (B) N oW (C). The next proposition gives a lower bound for k(A).

Proposition 2.3.3. Let A = B & C be an n-by-n (n > 3) matriz. Then I' is
empty if and only if the numerical range of one summand is contained in the interior

of the numerical range of the other. In particular, if I' is nonempty, then k(A) > 3.

Proof. f I' = I'y UT'y is empty, then both I'y and I'y are empty. Since I'; is
empty, OW (A) is contained in OW (B) U OW (C). This implies that W(B) N W(C)
is nonempty, and thus W(B) = W(C), W(B) C int W(C) or W(C) C int W(B).
Moreover, I'y = ¢ implies that W/(B) # W (C). With this, we conclude that either
W(B) C int W(C) or W(C) C intW(B). Theconverse is obvious. Hence we have
proved the first assertion. lLiet I' be nonempty; that is;either I'; or I'y is nonempty. If
I’y is nonempty, then there is-a-line segment on the boundary of W(A). This shows
that k(A) > 3 bys[l9, Corollary 2.5]. On the other hand, if-I's is nonempty, then
there is a (possibly degenerate) line segment on the common boundaries of the three
numerical ranges W-(A), W (B) and W (C). Using [19, Corollary 2.5] again, we may
assume that the line segment is degenerate, say, to {{}. This implies immediately

that dime H(A) > 2. Thus £(A) > 3 by [19, Proposition 2:4]. |

As an application, when A is reducible, the next corollary gives a necessary and

sufficient condition for k(A) = 2.

Corollary 2.3.4. Let A= B® C be an n-by-n (n > 3) matriz. Then k(A) = 2
if and only if either k(B) = 2 and W(C) C int W(B), or k(C) = 2 and W(B) C
int W(C).

Proof. 1f k(A) = 2, then Proposition 2.3.3 shows that ' is empty, and thus the
numerical range of one summand, say, B is contained in the interior of the numerical

range of C. Hence k(C) = 2 by [19, Lemma 2.9]. The converse is obvious by [19,

22



Lemma 2.9] again. |

The following proposition determines exactly when k(A) equals the size of A for
an irreducible matrix A. It is also stated in [2, Theorem 7] while the proof there is

different from ours.

Proposition 2.3.5. Let A be an n-by-n (n > 3) irreducible matriz. Then k(A) =
n if and only if OW (A) contains a line segment | and there are n points (not necessarily
distinct) in U (OW (A) N L), where L is the supporting line parallel to | such that

their corresponding unit vectors form an orthonormal basis for C™.

Proof. We need only prove the necessity. Assume that A is an n-by-n (n > 3)
irreducible matrix with%(A)= n. If 9W (A) contains nodine segment, then dim H, =
dim E¢; < n/2 for all € € OW (A) by [19, Proposition 2.2}, Ifn is odd, say, n = 2m+1,
then dim Hy = dim B ; < m for-all £ € JW(A). Since k(A) = n, it follows from [19,
Theorem 2.7] that#A is reducible, which is absurd. If n is even, say, n = 2m, then
m > 2 by our assumption that n > 3« Since k(A) = n and OW (A) contains no line

segment, A is unitarily similar to a matrix of the form
£, €D
_eiHD* n[m
by [19, Theorem 2.7], where dim Hg = dim H,, = m. Let D = USV be the singular

value decomposition of D, where U and V are unitary and S = diag (sy, ..., s;,) is a

diagonal matrix with s; > 0, j = 1,...,m. Then

U0 ¢, ¢*p | lU o I, ¢S
0V —eD* i, 0o v —eS i,

and the latter is unitarily similar to



This contradicts the irreducibility of A. Hence W (A) must contain a line segment.

We then apply [19, Theorem 2.7] again to complete the proof. [ |

An easy corollary of Proposition 2.3.5 is the following upper bound for k(A). This

was given in [19, Proposition 2.10]. Here we give a simpler proof.

Corollary 2.3.6. If A is an n-by-n (n > 3) matriz with dim He = 1 for all
£ € OW (A), then k(A) <n—1.

Proof. Assume that k(A) = n. It suffices to consider that A is reducible; this
is because if otherwise, then Proposition 2.3.5 shows that 0WW (A) contains a line
segment, which contradicts the assumption on' He. . Let A = B & C. Then our
assumption on H implies that I' is empty. By Propesition 2.3.3, we obtain that the
numerical range of one summand-is contained in the interior of the numerical range
of the other summand. It follows-from [19, Lemma 2.9] that the value of k£(A) equals
k(B) or k(C). Thus k(A) < n — 1 as asserted. [

We now combine Proposition 2:3.15 Corollary 2.3.2, Corollary 2.3.4, and Proposi-
tion 2.3.5 to determine the value of k(A) for-any 4-by-4 reducible matrix A. Corollary
2.3.4 shows exactly when the value of k£(A) equals two. By Proposition 2.3.1, Corol-
lary 2.3.2 and Proposition 2.3.5, we.get a necessary and sufficient condition for the
value of k(A) to be equal to four. In other words, the value of k(A) can be determined
completely for any 4-by-4 reducible matrix A. To do this, we note that a 4-by-4 re-
ducible matrix A can be written, after a unitary similarity, as (i) A = B @ [c|, where
B is a 3-by-3 irreducible matrix and c is a complex number, (ii) A = B @ [c|, where
B is a 3-by-3 reducible matrix and ¢ is a complex number, or (iii) A = B @ C, where

B and C are 2-by-2 irreducible matrices. Proposition 2.3.7 below is to deal with case

(i)-
Recall that for a 3-by-3 irreducible matrix A, W(A) is of one of the following
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shapes (cf. [9]): an elliptic disc, the convex hull of a heart-shaped region, in which

case OW (A) contains a line segment, and an oval region.

Proposition 2.3.7. Let A= B @ [c], where B is a 3-by-3 irreducible matriz and
c is a complex number. Then k(A) =4 if and only if ¢ ¢ int W(B) and {ay, as, b} C
OW (A), where W (B) is the convex hull of a heart-shaped region, in which case OW (B)
contains a line segment [ay, as] contained in the supporting line Ly of W(B) and Ly

is the supporting line of W(B) passing through b and parallel to L.

Proof. By Corollary 2.3.2, we see that k(A) = 4 is equivalent to ki(B) = 3
and k;i([c]) = 1. Since a necessary and sufficient condition for ki([c]) = 1 is that
¢ ¢ int W(B), it remains_to show that k,(B) =3if and only if {a,,as, b} C OW (A)
and W(B) satisfies the asserted properties.If &y (B). = 3, then k(B) = 3. Hence
it follows from Propesition 2:3.5-that dW (A) contains {ayaz,b}, and W (B) is as

asserted. The converse is trivial: [ |

For case (ii), let A = B @/ [¢|, where B is a 3-by-3 reducible matrix. After a
unitary similarity, B can be written as C' @ [b], where C' is a2-by-2 matrix, so that
k(A) = k1(C) + k1 ([b) @ [¢]) by Proposition 2.3:1. The following proposition gives a

necessary and sufficient’condition for £(A) to be equal to four.

Proposition 2.3.8. Let A ="C'@ [b] & [c], where C is a 2-by-2 matriz, and b and
¢ are complex numbers. Then k(A) =4 if and only if both b and ¢ are in OW (A) and

Proof. By Corollary 2.3.2, it is obvious that k (A) = 4 if and only if k1 (C) = 2
and k1 ([b] @ [c]) = 2. Moreover, it is also clear that ki ([b] @ [c]) = 2 is equivalent to
both of b and ¢ being in OW (A). Hence the proof is complete. [

To prove for case (iii), let A = B @ C, where B and C are 2-by-2 irreducible
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matrices. Since W (A) is the convex hull of the union of the two elliptic discs W (B)
and W (C'), either W (B) equals W(C), or I consists of at most four (possibly degen-

erate) line segments. With this, we are now ready to give a necessary and sufficient

condition for k(A) = 4.

Proposition 2.3.9. Let A= B&C, where B and C' are 2-by-2 irreducible matri-
ces. Then k(A) =4 if and only if I' consists of at least three line segments (including

the possibly degenerate ones), or I' consists of exactly two (possibly degenerate) line

segments such that ky (B) = ki(C) = 2.

Proof. If T' consists of more than four (possibly degenerate) line segments, then
the two elliptic discs W (B) and W (C) are identical.. Hence k(A) = 4 by direct
computations. If I' consists of four orithree (possibly degenerate) line segments, then
the endpoints of the major axes-of the two elliptic dises W.(B) and W(C) are in
OW (A). Hence k(A) = 4. If I’ consists of exactly two (pessibly degenerate) line
segments such that &y (B) = k1 (C) = 2, then £(A) =4 by Theorem 2.2.6. Therefore
we have proved the sufficient condition for k(A) = 4. Next .assume that k(A) = 4
and either I' consists of exactly two (possibly degenerate) line segments such that the
equalities ki (B) = k1(€') = 2 fail, or I consists of at most.one (possibly degenerate)
line segment. Since propertyA+holds in each case; we must have ki (B) = ki (C) = 2
by Theorem 2.2.6. This shows that we need only consider the latter. If I' consists of
exactly one (possibly degenerate) line segment, then I'; is empty and I's is a singleton.
Hence we may assume that W (B) is contained in W(C') and the intersection of W (B)
and W (C') is I". This shows that k;(B) = 1 and k,(C) = 2, which is a contradiction.
If I is empty, then it follows from Proposition 2.3.3 that the numerical range of one
summand, say, B is contained in the interior of the numerical range of the other
summand C. By Corollary 2.3.4 and [5, Lemma 4.1], we see that k(A) = k(C) = 2,
which is absurd. This completes the proof. [ |
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As a final application of Theorem 2.2.6, it is obvious that the convex hull of the
union of W(A) and W (A + al,,) has property A for any a # 0. Hence we obtain the

following proposition.

Proposition 2.3.10. Let A be an n-by-n matriz and a be a nonzero complex num-
ber. Then k(A® (A+ al,)) = k1(A) + ki (A+al,). In this case, k(A® (A + al,)) =
2k(A) if and only if ki(A+ al,) = ki1(A) = k(A).

We conclude this paper by stating the following open questions concerning this
topic. Is it true that the equality k(A) = ki(B) + k1(C) holds for a matrix A of the
form B@ C even if property A fails?We note that although property A fails, the men-
tioned formula may still be eorreet (cf. Proposition 2.3.1). Another natural example
of the failure of property A'is that both 14/ (B)and W (C) have the same numerical
range. Is it true that k(B @& €)= k(B) + £(C') in this case? In particular, can we
determine the value of k (A & A) (cf. Proposition 2:3.10)? The following proposition
gives a partial answer for k(A @ A) if we assume, in addition; that dim H; = 1 for

all £ € OW (A).

Proposition 2.3:11. If A 4s an n-by-n -matric with dim He = 1 for all § €
OW (A), then

k(éA) =il (A).

Proof. Obviously, the inequality k (@7, A) > m -k (A) holds. To prove the re-
versed inequality, we consider, for convenience, the case m = 2. Let § € OW (A @ A).
Then dim He, (A @ A) = 2 by our assumption on H¢(A). Hence the subspace He, (A & A)
is spanned by the two unit vectors z; @ 0 and 0 @ 1, where § = (Azy,x1). Let z

be a unit vector in He, (A @® A). Then z; = (aqx1 ® aozy) /1/|oa|* + |as|’, where oy

and oy are in C. Similarly for §& € OW (A @ A). That is, the subspace He,(A @ A)
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is spanned by the two unit vectors xo @ 0 and 0 @ x9, where & = (Axy, x5). More-
over, if z, is a unit vector in He,(A @ A), then z, = (b1 @ fas) /1/|Ba]” + |52],
where (8, and 5 are in C. Obviously, the orthogonality of z; and 2, is equivalent to

(1B + ) (1, 22) = 0, that is,

< a s 51 > <LU1, l’2> = 0.
Q2 B2

This shows that k(A @ A) < 2k(A) immediately by the definition of k(A).

For general m, a similar argument as above yields that

g ﬂl

< : , : > (z13a2) =10

(6% Bn

for some scalars a, ..., ¢, and-By,..., By where 24 and x5 are similarly defined. Since
the dimension of C™ is m, the number of véctots of the form [a, ..., a,,|T which are
orthogonal to each other is at most m: We infer from this and the above equality that
the reversed inequality k (@;"ZlA) <smyoko(A)holds: Therefore we have the asserted

equality. |

At the end of this section; we.apply-Proposition 2.3.11 to the quadratic matrices.

Recall that an n-by-n quadratic matrix A is unitarily similar to a matrix of the form

al,, D
al,, ®bl,, ® ,
0 0l

where ny,ng,n3 > 0, ny +ne +n3 =n, D >0, and a,b € o (A) (cf. [18, Theorem
2.1]).

Corollary 2.3.12. If A is an n-by-n quadratic matriz of the above form and D
is not missing, then k(A) =2-#({A € o (D): A= |D|}).
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Proof. If D > 0, then D is unitarily similar to diag (dy, ..., d,,), where dy = - -+ =
dy=|D|=d>dys1>--->dy, >0 (1 <p<ng). Hence A is unitarily similar to
a matrix of the form al,,, @ bI,, @;7:1 B&j2,,, Bj, where ny + ny + 2n3 = n,

B = o d , and B; = o d; , J=p+1,...,ns.
0 b 0 b
Since the set {a,b} and all of the numerical ranges W(B;), j = p+ 1,...,m, are
contained in the interior of W(B), it follows from [19, Lemma 2.9] that k(A4) =
k(@) B). Since dim H¢(B) = 1 for all {£ € OW(B), we have k(A) = p - k(B) by
Proposition 2.3.11. Obviously, k(B) = 2 by [5, Lemma 4.1]. Thus k(A) = 2p as

asserted. [ |

We remark that in the preceding proof the equality k(EB‘?:lB) = 2p can also be
established directly. Indeed, the-inequality A(©;_,5).> 2p holds trivially and we can
infer from [5, Lemima 4.1} that k(< B) = 2p:
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3 Gau-Wu numbers of nonnegative matrices

3.1 Introduction

In Section 3.2 below, we first consider a matrix A of the form

0 A 0
0
(m > 2),
Am—l
Ap 0

where the diagonal zeros are zero square matrices:.In this case, we obtain that k(A)
has a lower bound m,(Proposition.3.2.1) if A has a boundary,vector x = @L, 1y, that
is, (Az,z) € OW(A), with all-component vectors =, having the same norm 1/y/m.
Next, we study a nonnegative matrix A of the above form with irreducible real part
and A,, = 0. Proposition 3.2.3 yields that &£(A) < m — 1. Moreover, with the help
of [19], we are able to give necessary<and sufficient conditions for such a matrix A
with the value of k(A) equal to m — 1 (Theorem-3.2.4), Finally, we also consider a
nonnegative matrix A of the above form with irreducible real part. Example 3.2.6
shows that no analogous results hold for such an A.  In Section 3.3, we consider
more special nonnegative matrices,; namely, the doubly stochastic matrices. It can
be proven that k(A) equals 3 for any 3-by-3 doubly stochastic matrix (Proposition
3.3.2). Moreover, for a 4-by-4 doubly stochastic matrix A, we determine the value of
k(A) completely and give the description of its numerical range W (A) (Propositions
3.3.4 and 3.3.5). For general n, we obtain the lower bound of k(A) for an n-by-n
doubly stochastic matrix A (Theorems 3.3.6 and 3.3.7). In particular, for an n-by-n
irreducible doubly stochastic matrix A, we obtain a necessary and sufficient condition

for k(A) to be equal to this lower bound (Theorem 3.3.7).

We end this section by fixing some notations. For any finite matrix A, its trace,
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determinant, and spectral radius are denoted by tr A, det A, and r(A), respectively.

The number m of eigenvalues z of A with |z| = r(A) is called the index of imprimitivity

of A.

3.2 Nonnegative block shift matrix

We start by reviewing a couple of basic facts on a block shift matriz. Recall that a

block shift matrix A is one of the form

0; ¢ Ay 0
02
(m =2),
Am—l
Am Om

where the diagonal zeros 0; (j = 1,...,m) are zero square matrices. Let ¢ = 27/m.
Then it is easy to see that the numerical range W (A) is an m-symmetric compact

convex region since U*AU =«"? Ay where U is a unitary matrix of the form

S A 0
e ],
\ )
0 emer

where the diagonal identity matrix I; is of the same size as the corresponding 0,
(j=1,...,m). Let (Az, x) be a boundary point of W (A), where z = @}, z; is a unit
vector. We define 2oy = z and z;, = @ e'* D%y for j =1,...,m — 1. With these

notations, we can give a lower bound for k(A).

Proposition 3.2.1. Let A be a block shift of the above form with the corresponding
notations as above. Then ||zg|| is equal to 1/\/m for all k = 1,...,m if and only if the

vectors xp,, 0 < p < m — 1, are orthonormal. In this case, we have k(A) > m .
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Proof. Assume that (z,,,2,,) = 0 for 0 < p # ¢ < m — 1. This is equivalent to

the equation
||371H2 + ei(p—q)s0’|x2’|2 4ot ei(m—l)(p—q)eonmH2 -0
for 0 < p# ¢ <m — 1. That is, €%, ..., /™ D¢ are the roots of the polynomial
lzall? + Pt + - - + [l

Hence each ||| is equal to 1/y/m for k = 1,...,m by comparing the coefficients of

the above polynomial with those of ||z,,||? H;%:_ll (t—€%). Conversely, if ||z is equal
to 1/y/m for all k = 1,...,m, then it is a routine matter to check that z,, and z,
are orthonormal for 0 < p # ¢ < m — 1. Clearly, in this case, k(A) has a lower bound

m. [ |

Recall that the numerical radius w(A) of a matrix A is the quantity max {|z| : z €
W (A)}. For a nonnegative matrix withirreducible real part, [16, Lemma 1] says that,
for w(A)e? in W(A), where @ is a real number with € = 1, (a) if 0 is an irrational

multiple of 27, then A is permutationally similar to a matrix of the form

0 A4 0
0o .
(1) (m/=2);
R Am—l
0 0

where the diagonal zeros are zero square matrices, and, in particular, W (A) is a circu-
lar disc centered at the origin, and (b) if 6 is a rational multiple of 27, say, = 27p/q,

where p and q are relatively prime integers and ¢ > 2, then A is permutationally sim-

ilar to
0 A 0
0o .
(2) (m >2),
A
A, 0




and, in particular, W(A) = >™/1W (A).

The following lemma is a generalization of [19, Lemma 3.6], which is useful for the
proof of Proposition 3.2.3. Recall that a vector x with positive components, denoted

by z > 0, is called positive.

Lemma 3.2.2. Let A be an n-by-n (n > 2) nonnegative matriz of the form (1)
with irreducible real part and m > 2. Then the following hold:

(a) W(A) ={2z€C:|z] <w(A)}.

(b) There is a unique positive vector x = x1 @ - - - ® z,, € C" such that (Azx, x) =
w(A).

(c) For any a = w(A)el% 0 €10,27), in OW(A), if g = 110 2,®- - @l Vg,
then a = (Axg, xg) and H, is generated by xg-

(d) Let a; = w(A)e% (0;-€-10,27))s 7 = 1,2, be two points in OW (A) with the
corresponding unitwector xq, . Then xg, and gy are orthogonal to each other if and

only if €91792) s g zero of the polynomial||z|® + 22|24+ oot ||zt L

Proof. Since UgAUy = é®Afor any 0, where Uy = @ e’* V9, that is, A is
unitarily similar to €A for any ¢, (a) follows immediately: (b) is a consequence of

[11, Proposition 3.3]. To prove (c), note that
a=w(A)e? = (" Az, x) = (U; AUpz, 1) = (A(Ugz), (Upz)) = (Axg, x9),

which shows that xy is in H,. That dim H, = 1 is by [11, Corollary 3.10]. Thus H,
is generated by z,. (d) follows from the fact that (zg,,7e,) = > v, /B DE1=02)52,

This completes the proof. [ |

Thus, for a nonnegative matrix A of the form (1) with irreducible real part, k(A)
equals the maximum number of 6, ...,60; in [0,27) for which €% ~% is a zero of
p(t) = |lz1* + llzallPt + - + [lzm [Pt for all jand 1, 1 < j #1 < k. If m = 2,

then the polynomial p(¢) has degree one. Hence k(A) = 2 if m = 2. The following
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proposition says that k(A) <m — 1 if m > 3.

Proposition 3.2.3. Let A be an n-by-n (n > 2) nonnegative matriz of the form

(1), where m > 3, with irreducible real part and w(A) = 1. Then k(A) < m — 1.

Proof. From our assumptions on A and Lemma 3.2.2 (b), there is a unique vector
r=x1 @ - x, € C" with positive z; for all j such that (Azr,z) = 1. Letting
k(A) = k, we may assume, by the proof of [19, Theorem 3.10] that 6, = 0,6, =
2m/k,...,0ck—1 = 2(k — 1)7/k, so that x4, and x4, are orthogonal to each other for
all jand 1, 0 < j #1 < k—1. From Lemma 3.2.2 (d), this yields that k(A) < m
since the degree of p(t) is m — 1« "Assume that k(A) = m. If m is odd, then the
degree of the polynomial p(#) is equal to the evenm/— 1. We note that —1 is a zero
of p(t) and the zeros of the real polynemial p(#) appear in'conjugate pairs, which is
a contradiction. Hence k(A) <-m— 1 for odd m. On the other hand, if m is even,
then ||zi|| = -+ =J|onll = L/3/m by examining the coefficients of p(¢). From the
assumption that w(A) = 1, we have (Re A)xr = z by [11, Propesition 3.3]. That is,

(i) (A/2)x =z,
(11) (A,]T/Q)I’J + (Aj+1/2)l'j+2 = Tj%1 for 1 S ] S m — 2, and
(iii) (AL /)1 = Tom.

Taking the transpose of (i) and then multiplying z; from right on both sides, we

T

75 we have

obtain z1 (AT /2)z; = ||z1|*>. Next, multiplying (ii) on both sides by x
x](A;/2)xzj1 = 01if j is even and z] (A;/2)z;11 = |l;]]? if j is odd, where 2 < j < m.
Similarly, we multiply (iii) on both sides by xZ, to get z1 _;(A,_1/2)Tm = ||Tm_1]*
These are the same as

(Ajzjg, ) =0 for j =2,4,...,m—2, and

(Ajzjir,x;) = ||z||* forj=1,3,...,m—1.
This implies that Ay = Ay = --- = A,,_» = 0, which contradicts the assumption of
the irreducibility of the real part of A. Hence k(A) < m—1 for even m. We complete

the proof. (]
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Our next result is a characterization of n-by-n (n > 2) nonnegative matrices A of

the form (1) with irreducible real part for which k(A) = m — 1, where m > 3.

Theorem 3.2.4. Let A be an n-by-n (n > 2) nonnegative matriz of the form
(1), where m > 3, with irreducible real part and w(A) = 1. Then the following are
equivalent:

(a) k(A) =m — 1.

(b) there is an o > 0 satisfying p(—«) = 0, where

p(t) = 2(m1—1) T L e LA 2(m1_1)tm_1 if m is even, or
1 1 1 gm—2 o m—1 .
2(14a)(m—1) + m—lt yyE m—lt '3 Wt me is odd.

(c) If v = 21 ® --aBxm € C" is the (unique) positive unit vector such that
(Az,x) =1, then itstcomponent-vectors satisfy

@) llzall = llemlh= 1//2m=1) and |[2]| = 1/y/m =12 <j <m—1, ifm is
even,

(i) lloall = L/ +a)(m=1), el = o/ (U+ )i — 1)), and ||z;] =
1/vVm—1, 2<j<m—1 for soime & >0, if m is odd.

Proof. 1f k(A) = m— 1,.then, for even m, zeros of the corresponding polynomial,
denoted by p.(t), are exaetly =1vand those points which are equally distributed over
the unit circle by the proof of Proposition 3.2.3. In other words, the polynomial
(t+1) H;”:_lz (t —w?), where w = €>™/(M=1) has the same zeros as p,(t). This implies

that p(t) = 2(m—1_1)+ﬁt+- : -+ﬁtm_2+2(ml_l)tm_1 for even m since ||z|| = ||1[|*+

<+ [|lzm||* = 1. Conversely, if p.(t) = m + At St g 2(ml_1)tm—1
for even m, then it is clear that k(A) = m — 1. On the other hand, for odd m zeros
of the corresponding polynomial, denoted by p,(t), are exactly —a and those points
which are equally distributed over the unit circle and —a by the proof of Proposition

3.2.3. This a must be positive since the coefficients of p,(t) are nonnegative. That

m—2
Jj=1

2mi/(m—1

is, the polynomial (t + o) [T/, (t — w?), where w = e ), has the same zeros as
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Po(t). It follows that p(t) = sprajmm=y T megt + + mit™ + aggasgy - for
odd m since ||z|| = ||z1||* + -+ - + ||zm]|*> = 1. The converse is obvious. This proves
the equivalence of (a) and (b). The equivalence of (b) and (c) is obvious by the above

arguments. |

An easy consequence of Theorem 3.2.4 is that we can give a necessary condition
for k(A) = m — 1 by dealing with the norms of blocks, which are similar to [19,
Theorem 3.10]

Corollary 3.2.5. Let A be an n-by-n (n > 2) nonnegative matriz of the form (1),
where m > 3, with irreducible real part and W(A) = 1. If k(A) = m — 1, then either

(a) m is even, || Aill = JAnsalF=V2 and WAdalf & 1 = Al > 1, or

(b) m is odd, || AdfZ2/v1 + a, flAgll= 20/ (1% @) || Azja || = 2/(1 + a) for
1<j < (n—3)/2, and || An_t>2\/a/(1 + ) forsome a.> 0.

Proof. Let k(Ay=m=1. lf w(A) = 1, then (Re A)z =« by [11, Proposition 3.3]
or, equivalently,
() (Ay2)xe = 21,
(11) (A;f/2):v] \ (Aj+1/2).§l]j+2 = Tj+1 for 1 S ] <m-— 2, and
(iii) (AL /2 xmi =2
Assume first that m is even. Then after some computations, we obtain that (A;z,.1, ;)

=1/(m—1) for 1 <j <m — 1. This along with Theorem 3.2.4 (c) proves case (a).

Similar arguments apply for odd m. We complete the proof. [ |

According to the above discussions and [19, Section 3|, it is natural to ask whether

k(A) < ¢ holds for a matrix A of the form (2). The following gives a counterexample.
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Example 3.2.6. Let

0 B 0
A=1 0 0 B |,where B=
10
B 0 0

It is easy to check that A is a nonnegative normal matrix with irreducible real part
and o(A) = {1,w,--+,w’}, where w = €*/6. Hence k(A) = 6 £ 3 by Proposition
2.2.1.

In the next section, we consider the numerical ranges of certain special nonnegative

matrices, namely, those of doubly stochastic matrices.

3.3 Doubly stochastic-matrix

We recall that a nennegative matrix is doubly stochastic if its:row sums and column
sums are all equal-to one. Properties of such matrices were studied in [15]. The
following lemma gives some basi¢ properties .of such matrices. We omit its easy

proofs.

Lemma 3.3.1. Let A be‘a doubly stochastic matriz. Then

(a) 1 is an eigenvalue of A with corresponding eigenvector (1, ..., 1T,

(b) the norm, spectral radius, and numerical radius of A are equal to 1, and

(c) A is permutationally similar to a direct sum of irreducible doubly stochastic

matrices.

For a matrix A of the form B & C, we recall the decomposition I' = I'y UT', at

the end of Section 2.2, where I'y = OW(A) \ (OW(B) U oW (C)) and I'y = W (A) N
OW (B)NOW (C). Based on the properties in the above lemma and Proposition 2.3.3,

we are able to determine the value of k(A) for any 3-by-3 doubly stochastic matrix.

37



Proposition 3.3.2. Let A be a 3-by-3 doubly stochastic matriz. Then k(A) = 3.

Proof. Let A be a 3-by-3 doubly stochastic matrix. Then, by Lemma 3.3.1 (a) and
(b), 1 is a reducing eigenvalue of A. This implies that I" is nonempty. By Proposition
2.3.3, we obtain that k(A) = 3. |

Recall also that the number m of eigenvalues z of A with ||z|| = r(A) is called the
index of imprimitivity of A, and is denoted by m(A). The following result is shown
in [15, Corollary 1.5 and Theorem 2.1], which is useful for our later work on a 4-by-4

reducible doubly stochastic matrix.

Proposition 3.3.3. Let'A = [a)} =y be a 3:by-3 irreducible doubly stochastic

ij=1
matriz.

(a) If m(A) = 1, then the-numerical range W (A) 1s.the convex hull of the point
1 and a compact ‘conver set Is—contained in the open unit disc D, K is either a

(possibly degenerate) elliptic disc with foci(tr A—1 £ \/(trA—1)2 —4det A)/2 €

R and minor aziscof length /det A —detRe A, or a (possibly degenerate) elliptic
disc with foci (tr A=1 4 \/(trA —1)2 —4ddet A)/2 € C and minor azis of length
(v/3larz — az |? + (tuA —1)2 — 4det A) /2, and

(b) if m(A) > 2, then Awis normal with the numerical range W (A) the regular

3-polygon with vertices ™30 <4j.<'3;

From Proposition 3.3.2, we have proven that for any 3-by-3 doubly stochastic
matrix A the value of k(A) is always equal to its size. The following proposition
indicates that this still holds for any 4-by-4 reducible doubly stochastic matrix. Note
that any reducible doubly stochastic matrix is permutationally similar to a direct sum
of irreducible doubly stochastic matrices by Lemma 3.3.1. Applying this result, we

have the following proposition.

Proposition 3.3.4. Let A be a 4-by-4 reducible doubly stochastic matriz. Then

38



k(A) = 4. Moreover, the following hold:

(a) If A is permutationally similar to a direct sum of two 2-by-2 irreducible dou-
bly stochastic matrices Hy and Hs, then Hy and Hy are Hermitian, W (A) = [2a —
1,1], where a = (tr A — \/(tr A)2 —4(det A+ tr A —1))/4, with 0 < a < 1, and
o(A) consists of 1,1,2a — 1 and 2b — 1, where a is defined above and b = (tr A +
V(r A2 —4(det A+tr A—1))/4, with0<a<b<1.

(b) If A is permutationally similar to a direct sum [1] & B, where B is a 3-by-3
doubly stochastic matriz, then either

(i) B is reducible, W(A) = [trA — 3,1], where 2 < trA < 4, and 0(A) =
{1,1,1,tr A — 3}, or

(i) B is irreducible, W(A) =W{(B);-and c(A) = {1} Uc(B), both of which were

as described in Proposition 3.5.3.
Proof. Since the proof is very similar to. Proposition 3.3.3, we omit it. [ |

The next propesition is concerned with 4-by-4 irreducible doubly stochastic ma-
trices. If the index of imprimitivity m(A) equals one, then it shows that A is unitarily
similar to a direct sum of [1] and a 3-by-3 matrix B, and the numerical range W (B)
is contained in the open unit dise I by [15, Theorem 1:2]. Hence we can describe the
shape of W(A) in terms of W.(B). Note that W (B) has four possible shapes (cf. [9]).
Moreover, if m(A) > 2, then m(A) =2or4 by [13, p. 51].

Proposition 3.3.5. Let A be a 4-by-4 irreducible doubly stochastic matrix.

(a) Assume that m(A) = 1. Then k(A) =4 if and only if A = [1]® [\|® C, where
A (#1) € IW(A)NR so that either W(A) is a 4-polygon or W (A) is the convex hull
of the (closed) interval [\, 1] and the elliptic disc W (C).

(b) If m(A) > 2, then k(A) = 4. More precisely, the following hold:

(i) If m(A) = 4, then A is normal with W (A) the reqular 4-polygon with vertices

e/t 0 < j < 4.
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(i) If m(A) = 2, then W (A) is either the closed interval [—1,1], in which case A
is Hermitian with spectrum {£1, £v/det A}, or the convex hull of the closed interval

A
[—1,1] and W(B), in which case A is permutationally similar to " and
Ay 0

W (B) is the elliptic disc with foci £v/det A and minor axis of length | det A} —det As|.

Proof. Assume that m(A) = 1. Then A is unitarily similar to the direct sum of
[1] and a 3-by-3 matrix B, and the numerical range W (B) is contained in the open
unit disc D by [15, Theorem 1.2]. Note that W (A) is symmetric with respect to the
x-axis since A is nonnegative. If k(A) =4 and B is reducible, say, B = C & [)], then
A(#1)isin OW(A)NR and & (€') = 2 by Proposition 2.3.8. Hence it follows that
W (A) has the asserted shapes. On the other hand, if k(A) = 4 and B is irreducible,
then W (B) is the heart-shaped region which is Symmetric with respect to the x-axis
via A > 0. However, this cannot-happen by Proposition 2.3.7. Hence we have proven

the necessity for k(A) =.4..The converse is trivial.

Assume that m(A) > 2. Then m(A) = 2 or 4 by [13, p. 51]. If m(A) = 4, then
case (i) holds trivially. Hence k(A) =4 by Propesition 2:2.1.:7On the other hand, if
m(A) = 2, then —1 and 1 are eigenvalues of ‘A by the Perron=Frobenius Theorem (cf.
[11, Theorem 15.5.1]). ‘Sinee =1 and 1 are corners’in the boundary of W(A), both
are reducing eigenvalues by [3, Theorem 1].. Hence A is unitarily similar to a direct
sum of diag (1,—1) and a 2-by-2 matrix B, which shows that W (A) is the convex
hull of the closed interval [—1,1] and W (B). If W (B) is contained in [—1, 1], then it
is obvious that B is Hermitian and so is A. In this case, the value k(A) = 4 holds
obviously by Proposition 2.2.1. Therefore we may assume that W (B) is not contained
in [—1,1]. This implies that W (B) is an elliptic disc. Furthermore, since W(A) is
symmetric with respect to the z-axis, W(B) is also symmetric to the z-axis. Thus
W (A) has four line segments, called Ly, ..., Ly, on its boundary so that L, is parallel
to Lo, and Ls is parallel to Ly. This shows that k(A) = 4 by [19, Corollary 2.5]. For
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the remaining proof of case (ii), we only need to compute tr A and det A directly.

Hence we complete the proof of case (b). [

Recall that the index of imprimitivity of A is the number of eigenvalues z of A
with |z| = r(A). By Lemma 3.3.1, for a doubly stochastic matrix A an eigenvalue
with absolute value one is a reducing eigenvalue. This implies that k(A) has the
lower bound m(A). Hence we may combine Propositions 3.3.2 and 3.3.4 to give the

following result on an n-by-n (n > 3) reducible doubly stochastic matrix.

Theorem 3.3.6. Let A be an n-by-n (n > 3) reducible doubly stochastic matric.
If n =3 or4, then k(A) = n; otherwise, k(A) > max {m(A),4}.

Our final result is onn=by=n (n > 3) irreducible doubly stochastic matrices.

Theorem 3.3.7. Let A beann-by-n (n.> 3) irreducible doubly stochastic matriz.

(a) If m(A) =1, them k(A) > 3.

(b) Assume that m(A) > 2.

(i) If n is a prime, then k(A)= n: In this case, A is normal with its numerical
range W (A) the regular n-polygon with vertices =™, 0 £j < n.

(i) If n is not a prime,.then k(A) > maz {m(A),3}. Moreover, k(A) = m(A)
if and only if m(A) > 3, the-numerical range W(A) s the m(A)-regular polygon
with vertices e2™/™A) 0 < j <'‘m(A), and the dimension of H, equals 2 for any

nonextreme boundary point a of W(A).

Proof. Part (a) is obvious. So we assume that m(A) > 2 in the following. If n is a
prime, then A is normal and its numerical range W (A) is the n-polygon with vertices
e?™/m (0 < j < n by [15, Corollary 1.5]. Hence k(A) = n by Proposition 2.2.1. This
completes the proof of (i). To show (ii), we note that m(A) is exactly the number
of reducing eigenvalues of A since A is a doubly stochastic matrix with w(A) = 1.

This implies that k(A) > m(A). In addition, it is obvious that k(A) > 3 for any n-
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by-n (n > 3) doubly stochastic matrix. Hence k(A) > max {m(A),3}. Assume that
k(A) = m(A) = m. Then m(A) > 3 by the preceding arguments. Let w,, = €™/,

Since each w? 0 < j < n, is a reducing eigenvalue of A, the matrix A is unitarily
similar to ? 2’ , where C' = diag (1, Wy, ..., w™ ). Since k(A) = m(A), W(B)
is contained in the interior of W (C'). This proves the necessity of our assertion. The
convers is obvious. |

We end this section by stating a natural question on k(A) = n for an n-by-n
(n > 3) irreducible doubly stochastic matrix A. Is it true that k(A) = n if and
only if n > 3, the numerical range W(A) is the n-regular polygon with vertices
e?™/m () < j < n, and the dimension of H, equals.2 for any nonextreme boundary

point a of W(A)? Obviously, the sufficiency for'k(A4) = n holds since A must be

normal. Nevertheless, the necessity fails. For example, let

0.0 1/3 2/3
00 2/3 1/3
A 3.4/
1700 0
0-d0 0

Then A is an irreducible deubly stochastic matrix with m(A) = 2 since its spectrum
is {1,—1,v/3i/3, —/3i/3}. In addition, A is clearly not' Hermitian. By Proposition
3.3.5 (b) (ii), we have k(A) =4., However, W (A) is not the regular 4-polygon with

vertices e2™/* 0 < j < 4.
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