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摘要 

 

 

 

對於一個   乘   的矩陣  ，令  ( ) 表示數值域邊界上的點 

⟨      ⟩ 所對應的正交單位向量     的最大個數。我們稱這個數 

 ( ) 為高-吳數。若   為正規或二次矩陣，則其高-吳數  ( ) 可

以明確地被計算出來。而對於一個矩陣   形如    ，我們證明了

高-吳數為 2 時，其充分且必要條件為其中一個矩陣，稱之為  ，的

數值域，完全落在另外一個矩陣   的數值域的內部且  ( ) 為 2。

對於一個不可約的矩陣  ，我們可以確切地決定何時其高-吳數等於

n 。這些結果以及已知的 4 乘 4 矩陣的數值域的圖形，可用以決定

任何一個 4 乘 4 可約矩陣的高-吳數。 

 

此外，設   為一個   乘 n (n 大於或等於 2) 的非負矩陣，其形如

下 

[

    

  
     

  

], 

此處 m  大於或等於 3 並且對角線上所出現的零均為零方陣。若  

的實部為不可約的矩陣，則其高-吳數  ( ) 的上界為 m-1。再者，我

們也得到這種矩陣的高-吳數達到其上界的充分且必要條件。除此之

外，我們也研究了另外一類型的非負矩陣，稱之為雙隨機矩陣。我們

證明了任何一個 3 乘 3 的雙隨機矩陣的高吳數必定為 3。另外，我

們也決定了 4 乘 4 的雙隨機矩陣的數值域及其高-吳數。最後我們

也考慮一般的   乘 n (n 大於或等於 5) 雙隨機矩陣，藉由其可能的

數值域的圖形得到其高-吳數的下界。 
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For any  -  -n         , let  ( ) stand for the maximal number of 

orthonormal vectors    such that the scalar products ⟨      ⟩ lie in the 

boundary of the numerical range  ( ). This number  ( ) is called the 

Gau-Wu number of the matrix    If   is a normal or a quadratic matrix, 

then the exact value of  ( ) can be computed. For a matrix   of the 

form    , we show that  ( )    if and only if the numerical range 

of one summand, say,  , is contained in the interior of the numerical 

range of the other summand   and  ( )   . For an irreducible matrix 

 , we can determine exactly when the value of  ( ) equals the size of 

 . These are then applied to determine  ( ) for a reducible matrix   of 

size   in terms of the shape of  ( )    

 

Moreover, if   is an n-  -n (n   ) nonnegative matrix of the form 

[

    

  
     

  

], 

where m    and the diagonal zeros are zero square matrices, with 

irreducible real part, then  ( ) has an upper bound      In addition, 

we also obtain necessary and sufficient conditions for  ( )      for 

such a matrix    The other class of nonnegative matrices we study is the 

doubly stochastic ones. We prove that the value of  ( ) is equal to    

for any  -by-  doubly stochastic matrix  . Next, for any  -by-  

doubly stochastic matrix, we also determine its numerical range. This 

result can be applied to find the value of  ( ) for any doubly stochastic 

matrix   of size   in terms of the shape of  ( )  Furthermore, the 

lower bound of  ( ) is also found for a general n-  -n (n   ) doubly 

stochastic matrix   via the possible shapes of  ( )  
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1 Introduction

Let A be an n-by-n complex matrix. Its numerical range W (A) is, by definition,

the set {〈Ax, x〉: x ∈ Cn, ‖x‖ = 1}, where 〈·, ·〉 and ‖ · ‖ denote the standard inner

product and its associated norm in Cn, respectively. One of the most important

properties of the numerical range is its convexity. In fact, the study of the numerical

range originates from the discovery of this property by Toeplitz [17] and Hausdorff

[7]: the former proved that the boundary of the numerical range is always a convex

curve, but left open the possibility that it may have interior holes while the latter,

using a different approach, showed that this cannot happen. An interesting account

on the history of this theorem can be found in [6].

For a matrix A, let A∗ denote its adjoint, Re A its real part (A+A∗)/2 and Im A

its imaginary part (A− A∗)/2i. The set of eigenvalues of A is denoted by σ(A). For

any subset △ of C, △∧ denotes its convex hull, that is, △∧ is the smallest convex set

containing △. We list below several important properties of the numerical range.

(1) W (U∗AU) = W (A) for any unitary matrix U .

(2) W (A) is a compact subset of C.

(3) W (aA + bI) = aW (A) + b for any scalars a and b.

(4) W (Re A) = Re W (A) and W (Im A) = Im W (A).

(5) If A =

[

B ∗

∗ ∗

]

, then W (B) ⊆ W (A).

(6) σ(A) ⊆ W (A).

(7) If A is normal, then W (A) is equal to σ(A)∧.

(8) W (
∑

n

⊕An) = (∪nW (An))
∧.

For other properties of the numerical range, the reader may consult [8, Chapter 1].

In Chapter 2, we consider the maximum number k = k(A) for which there exist

orthonormal vectors x1, ..., xk ∈ Cn with 〈Axj , xj〉 in the boundary ∂W (A) of W (A)



for all j. Note that k(A) is also the maximum size of a compression of A with all its

diagonal entries in ∂W (A). Recall that a k-by-k matrix B is a compression of A if

B = V ∗AV for some n-by-k matrix V with V ∗V = Ik. Here Ik denotes the k-by-k

identity matrix. In particular, if n equals k, then A and B are said to be unitarily

similar, which we denote by A ∼= B. The number k(A) was introduced in [5] and

[19] and is called the Gau-Wu number by [2]. It relates properties of the numerical

range to the compressions of A. In particular, it was shown in [5, Lemma 4.1 and

Theorem 4.4] that 2 ≤ k(A) ≤ n for any n-by-n (n ≥ 2) matrix A, and k(A) = ⌈n/2⌉
for any Sn-matrix A (n ≥ 3). Recall that an n-by-n matrix A is of class Sn if it

is a contraction, that is, ‖ A ‖≡ max‖x‖=1 ‖Ax‖ ≤ 1, its eigenvalues are all in the

open unit disc D ≡ {z ∈ C : |z| < 1}, and the rank of In − A∗A equals one. In

[19, Theorem 3.1], it was proven that, for an n-by-n (n ≥ 2) weighted shift matrix A

with weights w1, ..., wn, k(A) = n if and only if either |w1| = · · · = |wn| or n is even

and |w1| = |w3| = · · · = |wn−1| and |w2| = |w4| = · · · = |wn|. Recall that an n-by-n

(n ≥ 2) matrix of the form

















0 w1

0
. . .

. . . wn−1

wn 0

















is called a weighted shift matrix with weights w1, ..., wn. Moreover, in [2] k(A) is

computed for two classes of n-by-n matrices as follows. An n-by-n matrix A is almost

normal if it has n−1 orthogonal eigenvectors. Note that every almost normal matrix

is unitarily similar to An ⊕ Aa, where An is normal while Aa is almost normal and

unitarily irreducible (cf. [14]). Recall that a matrix A is unitarily reducible if and

only if A is unitarily similar to A1 ⊕ A2 for some lower-dimensional matrices A1 and

A2; otherwise, A is unitarily irreducible. In [2, Theorem 3], it was proven that, for

any almost normal matrix A, k(A) = l1 + l2, where l1 is the number of eigenvalues of
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An located on ∂W (A), counting their multiplicities, and

l2 =































0 if W (Aa) lies in the interior of W (An),

2 if there exist distinct parallel supporting lines of W (A)

passing through points of W (Aa), or

1 otherwise.

Furthermore, [2, Theorem 5] shows that if A is an n-by-n (n ≥ 3) tridiagonal Toeplitz

matrix of the form






















a c 0 . . . 0

b a c
. . .

...

0
. . .

. . .
. . . 0

...
. . . b a c

0 . . . 0 b a























,

then

k(A) =







n if |b| = |c|,
⌈n/2⌉ otherwise.

We will show that if A is a normal or a quadratic matrix, then the exact value

of k(A) can be computed. Recall that a quadratic matrix A is one which satisfies

A2 + z1A + z2I = 0 for some scalars z1 and z2. For a matrix A of the form B ⊕ C,

we show that k(A) = 2 if and only if the numerical range of one summand, say,

B is contained in the interior of the numerical range of the other summand C and

k(C) = 2. For an irreducible matrix A, we can determine exactly when the value of

k(A) equals the size of A. These are then applied to determine k(A) for a reducible

matrix A of size 4 in terms of the shape of W (A). These results also appeared in [10].

In Chapter 3, we continue to study k(A) for two classes of n-by-n nonnegative

matrices A. Recall that an n-by-n matrix A = [aij ]
n
i,j=1 is a nonnegative matrix,

denoted by A � 0, if aij ≥ 0 for all i and j. Recall also that a square matrix P

is a permutation matrix if there is exactly one 1 on every row and every column

3



and all other entries are 0. Note that any permutation matrix P is unitary with

P ∗ = P T = P−1. Two square matrices A and B of the same size are permutationally

similar if there is a permutation matrix P such that P TAP = B, which is denoted by

A ∼=p B. A matrix A is permutationally reducible if it is permutationally similar to a

matrix of the form





B C

0 D



 , where B and D are square matrices; otherwise, A is

permutationally irreducible. This should not be confused with the notion of unitarily

reducible (resp., irreducible) matrix. For nonnegative matrices, reducibility (resp.,

irreducibility) in general refers to the permutational one. Note that the reducibility

(or irreducibility, for that matter) of nonnegative matrices is preserved under the

permutational similarity, and the irreducibility of a nonnegative matrix A passes to

that of Re A. The converse of the latter is false as witness A =





0 1

0 0



 . If A is an

n-by-n (n ≥ 2) nonnegative matrix of the form

















0 A1 0

0
. . .

. . . Am−1

0 0

















,

where m ≥ 3 and the diagonal zeros are zero square matrices, with irreducible real

part, then k(A) has an upper bound m − 1. In addition, we also obtain necessary

and sufficient conditions for k(A) = m − 1 for such a matrix A. The other class of

nonnegative matrices we study is the doubly stochastic ones. Recall that an n-by-n

nonnegative matrices A is doubly stochastic if its row sums and column sums are all

equal to one. It is proven that the value of k(A) can be determined for any doubly

stochastic matrix A of size 3 or 4 in terms of the shape of W (A). Note that the

shapes of W (A) can be determined completely by the tests given in [1, Theorems 1

and 3]. Moreover, the lower bound of k(A), in general, is also found for an n-by-n

(n ≥ 5) doubly stochastic matrix via possible shapes of W (A).
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2 Gau-Wu numbers of direct sums of matrices

2.1 Introduction

In Section 2.2 below, we first determine the value of k(A) for a normal matrix

A (Proposition 2.2.1). Then we consider the direct sum A = B ⊕ C, where the

numerical ranges W (B) and W (C) are assumed to be disjoint. In this case, we show

that the value of k(A) is equal to the sum of k1(B) and k1(C) (Theorem 2.2.2), where

k1(B) and k1(C) are defined as follows. We define k1(B) to be the maximum number

k for which there are orthonormal vectors x1, . . . , xk in Cn such that 〈Bxi, xi〉 is in

∂W (A) ∩ ∂W (B) for all i = 1, . . . , k, and similarly for k1(C). Based on the proof of

Theorem 2.2.2, we obtain the same formula for k(A) under a slightly weaker condition

on B and C (Theorem 2.2.6). In Section 2.3, we give some applications of Theorem

2.2.6. The first one (Proposition 2.3.1) shows that the equality k(A) = k1(B)+k1(C)

holds for a matrix A of the form B ⊕ C with normal C. In particular, we are able

to determine the value of k(A) for any 4-by-4 reducible matrix A (Corollary 2.3.4

and Propositions 2.3.7 − 2.3.9). Moreover, the number k(A ⊕ (A + aIn)) can be

determined for any n-by-n matrix A and nonzero complex number a (Proposition

2.3.10). At the end of Section 2.3, we propose several open questions on k(B ⊕ C)

and give a partial answer for one of them (Proposition 2.3.11). That is, the equality

k(⊕m
j=1A) = m ·k(A) holds if the dimension of Hξ(A) equals one for each ξ ∈ ∂W (A),

where the subspace Hξ(A) is defined in the first paragraph of Section 2.2. By using

this, we can determine the value of k(A) for a quadratic matrix A (Corollary 2.3.12).

Note that all of the results in Sections 2.2 and 2.3 have also appeared in [10].

We end this section by fixing some notation. A finite square matrix A is called

5



positive definite, denoted by A > 0, if A is Hermitian and 〈Ax, x〉 > 0 for all x 6= 0. In

is the n-by-n identity matrix. The n-by-n diagonal matrix with diagonals ξ1, ..., ξn is

denoted by diag (ξ1, ..., ξn). The cardinal number of a set S is #(S). The notation δij

is the Kronecker delta, that is, δij has the value 1 if i = j, and the value 0 if otherwise.

The span of a nonempty subset S of a vector space V , denoted by span (S), is the

subspace consisting of all linear combinations of the vectors in S.

2.2 Direct sum

We start by reviewing a few basic facts concerning the boundary points of a numerical

range. For an n-by-n matrix A, a point ξ in ∂W (A) and a supporting line L of W (A)

which passes through ξ, there is a θ in [0, 2π) such that the ray from the origin which

forms angle θ from the positive x-axis is perpendicular to L. In this case, Re (e−iθξ) is

the maximum eigenvalue of Re (e−iθA) with the corresponding eigenspace Eξ,L(A) ≡
ker Re (e−iθ(A − ξIn)). Let Kξ(A) denote the set {x ∈ Cn : 〈Ax, x〉 = ξ‖x‖2} and

Hξ(A) the subspace spanned by Kξ(A). If the matrix A is clear from the context, we

will abbreviate these to Eξ,L, Kξ and Hξ, respectively. For other related properties,

we refer the reader to [4, Theorem 1] and [19, Proposition 2.2]. The next proposition

on the value of k(A) for a normal matrix A is an easy consequence of [19, Lemma

2.9]. It can be regarded as a motivation for our study of this topic.

Proposition 2.2.1. If A is an n-by-n normal matrix with p eigenvalues (counting

multiplicity) in ∂W (A), then k(A) = p.

Proof. We may assume, after a unitary similarity, that A is a matrix of the form

B ⊕ C, where B = diag (λ1, . . . , λp) and C = diag (λp+1, . . . , λn) with λ1, . . . , λp ∈
∂W (A) and λp+1, . . . , λn ∈ intW (B). It follows from [19, Lemma 2.9] that k(A) =

6



k(B ⊕ C) = k(B) = p. �

One of our main results of this section is the following theorem for k(A) when A

is a matrix of the form B⊕C with disjoint W (B) and W (C). Recall that the value of

k1(B) is the maximum number k for which there are orthonormal vectors x1, . . . , xk

in Cn such that 〈Bxi, xi〉 is in ∂W (A) ∩ ∂W (B) for all i = 1, . . . , k. If the subset

∂W (A)∩∂W (B) is empty, then we define k1(B) = 0. The following theorem provides

a formula for determining the value of k(A) by k1(B) and k1(C).

Theorem 2.2.2. Let A = B ⊕ C, where B and C are n-by-n and m-by-m

matrices, respectively. If the numerical ranges W (B) and W (C) are disjoint, then

k(A) = k1(B) + k1(C) ≤ k(B) + k(C). In this case, k(A) = k(B) + k(C) if and

only if k1(B) = k(B) and k1(C) = k(C). In particular, k(A) = m + n if and only if

k1(B) = k(B) = n and k1(C) = k(C) = m.

This will be proven after the following lemma which is the case when C equals a

1-by-1 matrix [c].

Recall that z is an extreme point of the convex subset ∆ of C if z belongs to ∆

and cannot be expressed as a convex combination of two other (distinct) points of ∆;

otherwise, z is a nonextreme point. Recall also that a point z is a corner of a convex

set ∆ of the complex plane if z is in the closure of ∆ and ∆ has two supporting lines

passing through z. If A is a finite matrix, ξ = 〈Ax, x〉 and ‖x‖ = 1, then x is called

a unit vector corresponding to the point ξ in W (A).

Lemma 2.2.3. If A = B ⊕ [c] is an n-by-n matrix, where B is of size n− 1 and

c is a scalar, then k(A) = k1(B) + k1([c]).

Proof. By Proposition 2.2.1, we may assume that the interior of the numerical

range W (B) is nonempty. If c is in the interior of W (B), then k(A) = k(B) by [19,

7



Lemma 2.9]. Obviously, k(B) = k1(B) and k1([c]) = 0 in this case. Hence it remains

to consider the case when c is outside the interior of W (B). That is, we will prove

that k(A) = k1(B) + 1 for c /∈ intW (B). By the definition of k(A), there are points

ξj = 〈Azj , zj〉 in ∂W (A), j = 1, 2, . . . , k(A), with 〈zi, zj〉 = δij for i, j = 1, ..., k(A).

Clearly, the inequality k(A) ≥ k1(B) + 1 holds. Assume that k(A) ≥ k1(B) + 2. Let

zj = xj ⊕ yj for each j. We claim that every xj is a nonzero vector. Indeed, if xj0 = 0

for some j0, then yj0 6= 0 and 〈zj , zj0〉 = 〈yj , yj0〉 = 0 for all j 6= j0. This implies that

yj = 0 for all j 6= j0 and thus k1(B) is at least k1(B) + 1, which is absurd. Hence

the claim has been proven. From ξj = 〈Azj , zj〉 = ‖xj‖2 bj + ‖yj‖2 c ∈ ∂W (A), where

bj = 〈B (xj/ ‖xj‖) , xj/ ‖xj‖〉, it follows that ξj is in the (possibly degenerate) line

segment [c, bj ], and bj is in the boundary of W (B) for each j. We note that there are

at least two nonzero yj’s; this is because if otherwise, then we obtain the inequality

k1(B) ≥ k1(B)+1, which is a contradiction. Hence we may assume that y1, ..., yh 6= 0,

where h ≥ 2, and that this h is the maximal such number.

If c is not in W (B), then there are exactly two points p and q in the boundary of

W (B) such that the two line segments [c, p] and [c, q] are in the boundary ofW (A) and

the relative interior of these two line segments are disjoint from the boundary ofW (B)

by the fact that W (A) is the convex hull of the union of W (B) and the singleton {c}.
Hence there are three cases to consider: the intersection of the boundary of W (B)

and the supporting line at p (resp., q) containing [c, p] (resp., [c, q]) is (1) {p} (resp.,

{q}), (2) a line segment [p, p′] (resp., {q}) or {p} (resp., a line segment [q, q′] ), or (3)

a line segment [p, p′] (resp., a line segment [q, q′]) (cf. Figure 2.2.4). We need only

prove case (2) since other cases can be done similarly.

ppp

c c c

q

qq

W (B)W (B)W (B)

p′p′

q′

(1) (2) (3)
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Figure 2.2.4

Define three (disjoint) subsets consisting of the corresponding unit vectors, and

their cardinal numbers, respectively, in the following:

R ≡ {zj : ξj ∈ [c, p′)} with r ≡ #(R) ,

S ≡ {zj : ξj ∈ (c, q)} with s ≡ #(S) , and

T ≡ {zj : ξj ∈ ∂W (A)\([c, p′) ∪ (c, q))} with t ≡ #(T ) .

So, k(A) = r + s + t. Obviously, every zj ∈ T is of the form xj ⊕ 0. Moreover, we

partition R into two disjoint subsets R1 ≡ {zj : yj 6= 0} and R2 ≡ {zj : yj = 0}. We

call their cardinal numbers r1 and r2, respectively. Without loss of generality, we

may assume that R1 = {z1, ..., zr1}, R2 = {zr1+1, ..., zr1+r2}, S = {zr+1, ..., zr+s}, and
T = {zr+s+1, ..., zr+s+t}, where r1 + r2 = r. This shows that r1 + s = h ≥ 2.

First assume that s = 0. Then r1 ≥ 2. For the clarity of the proof, the following

method is called (∗). Since every yj, j = 1, . . . , r1, is nonzero, we define the vectors

z′j = (xj/yj)⊕1 for these j’s so that the vectors in M ≡
{(

z′1 − z′j
)

/
∥

∥z′1 − z′j
∥

∥

}r1

j=2
=

{

(((x1/y1)− (xj/yj))⊕ 0) /
∥

∥z′1 − z′j
∥

∥

}r1

j=2
are linearly independent and are perpen-

dicular to vectors in T ∪R2. This together with [4, Theorem 1] shows that span (M) ⊆
∪η∈[c,p′]Kη(A) and thus every unit vector in span (M) is a unit vector corresponding

to some η ∈ ∂W (B). Choosing an orthonormal basis {vj ⊕ 0}r1j=2 for the subspace

span (M), we deduce from the orthonormality of the vectors in T ∪ R2 ∪ {vj ⊕ 0}r1j=2

that

k1(B) ≥ t + r2 + (r1 − 1) = r + s+ t− 1 = k(A)− 1 ≥ k1(B) + 1,
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which is impossible. Hence we must have s ≥ 1.

If s = 1, then r1 ≥ 1. A similar argument as above yields that

k1(B) ≥







t+ r2 + 1 if r1 = 1, and

t+ r2 + (r1 − 1) + 1 if r1 ≥ 2

by considering the orthonormal subsets T ∪R2 ∪ {(xr+1/ ‖xr+1‖)⊕ 0} and T ∪ R2 ∪
{vj ⊕ 0}r1j=2 ∪ {(xr+1/ ‖xr+1‖)⊕ 0}, where {vj ⊕ 0}r1j=2 is an orthonormal subset of

span (R1), via applying (∗) on R1. The above inequalities imply that

k1(B) ≥







r + s+ t− 1 ≥ k(A)− 1 ≥ k1(B) + 1 if r1 = 1, and

r + s+ t− 1 ≥ k(A)− 1 ≥ k1(B) + 1 if r1 ≥ 2.

This is a contradiction. Hence s ≥ 2.

If r1 = 0, then applying (∗) on S, we reach a contradiction since

k1(B) ≥ t+ r2 + (s− 1) = r + s+ t− 1 = k(A)− 1 ≥ k1(B) + 1.

If r1 = 1, then we obviously have the linear independence of the subset N ≡
{(

z′1 − z′j
)

/
∥

∥z′1 − z′j
∥

∥

}r+s

j=r+2
=
{

(((x1/y1)− (xj/yj))⊕ 0) /
∥

∥z′1 − z′j
∥

∥

}r+s

j=r+2
by ap-

plying (∗) on S again. Let {vj ⊕ 0}r+s
j=r+2 be an orthonormal basis for the subspace

span (N). Hence

k1(B) ≥ t+ r2 + (s− 1) + 1 = r + s+ t− 1 = k(A)− 1 ≥ k1(B) + 1

by the orthonormality of the vectors in T ∪ R2 ∪ {vj ⊕ 0}r+s
j=r+2 ∪ {(x1/ ‖x1‖)⊕ 0}.

This is again a contradiction. If r1 ≥ 2, then applying Method I on S and R1,

we have the linear independence of the subsets P ≡
{(

z′1 − z′j
)

/
∥

∥z′1 − z′j
∥

∥

}r+s

j=r+2
=

{

(((x1/y1)− (xj/yj))⊕ 0) /
∥

∥z′1 − z′j
∥

∥

}r+s

j=r+2
and Q ≡

{(

z′1 − z′j
)

/
∥

∥z′1 − z′j
∥

∥

}r1

j=2
=

{

(((x1/y1)− (xj/yj))⊕ 0) /
∥

∥z′1 − z′j
∥

∥

}r1

j=2
, respectively. Let {vj ⊕ 0}r+s

j=r+2 be an or-

thonormal basis for span (P ). Then span (P ) ⊕ span (x⊕ y) = span (S) for some

unit vector x ⊕ y orthogonal to span (P ). Clearly, x is a nonzero vector; this is
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because if otherwise, then 0 ⊕ y(∈ span (S)) is orthogonal to z1 = x1 ⊕ y1(∈ R1),

which contradicts the fact that y and y1 are nonzero scalars. Let {vj ⊕ 0}r1j=2 be

an orthonormal basis for the subspace span (Q). Then we conclude that the subset

T ∪R2 ∪ {vj ⊕ 0}r1j=2 ∪ {vj ⊕ 0}r+s
j=r+2 ∪ {(x/ ‖x‖)⊕ 0} is orthonormal so that

k1(B) ≥ t+ r2 + (r1 − 1) + (s− 1) + 1 = r + s+ t− 1 = k(A)− 1 ≥ k1(B) + 1,

which is a contradiction. This completes the proof of case (2).

In case (1), we define three subsets consisting of the corresponding unit vectors,

and their cardinal numbers, respectively, as follows:

R ≡ {zj : ξj ∈ [c, p)} with r ≡ #(R) ,

S ≡ {zj : ξj ∈ (c, q)} with s ≡ #(S) , and

T ≡ {zj : ξj ∈ ∂W (A)\([c, p) ∪ (c, q))} with t ≡ #(T ) .

As for case (3), we have

R ≡ {zj : ξj ∈ [c, p′)} with r ≡ #(R) ,

S ≡ {zj : ξj ∈ (c, q′)} with s ≡ #(S) , and

T ≡ {zj : ξj ∈ ∂W (A)\([c, p′) ∪ (c, q′))} with t ≡ #(T ) .

As before, we partition R (resp., S) into two disjoint subsets R1 ≡ {zj : yj 6= 0}
and R2 ≡ {zj : yj = 0} (resp., S1 ≡ {zj : yj 6= 0} and S2 ≡ {zj : yj = 0}). Based

on the arguments for case (2), we get a series of contradictions for each individual

case. In a similar fashion, we remark that if A = B ⊕ cIm, where c /∈ W (B), then

k(A) = k1(B) + k1(cIm) = k1(B) + m. This remark will be used in the remaining

part of the proof.

To complete the proof, we let c be in the boundary of W (B). Assume that

∂W (B) contains no line segment. We infer that c = bj = ξj for j = 1, ..., h since these

ξj’s are in the (possibly degenerate) line segment [c, bj ] contained in the boundary
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of W (B). Define a new vector z′j = (xj/yj) ⊕ 1 for each j = 1, ..., h. Then the

subset S ≡
{(

z′1 − z′j
)

/
∥

∥z′1 − z′j
∥

∥

}h

j=2
=
{

(((x1/y1)− (xj/yj))⊕ 0) /
∥

∥z′1 − z′j
∥

∥

}h

j=2

is linearly independent. Since c is an extreme point of W (A), we have Hc(A) =

Kc(A) by [4, Theorem 1] and span (S) is a subspace of Hc(A). Let {vj ⊕ 0}hj=2 be

an orthonormal basis for span (S). Then c = 〈A (vj ⊕ 0) , vj ⊕ 0〉 = 〈Bvj , vj〉 is in

∂W (B) for j = 2, . . . , h. Hence

k(B) ≥ (h− 1) + (k(A)− h) = k(A)− 1 ≥ k(B) + 1.

This is a contradiction. So, we may assume that ∂W (B) contains a line segment

l such that c belongs to l. If c is not an extreme point of l, then we infer that

c = bj = ξj or ξj ∈ (c, bj) for j = 1, ..., h since xj and yj are nonzero vectors for these

j’s. Hence zj ∈ Hc(A) for j = 1, ..., h by [4, Theorem 1]. Similar arguments show

that Hc(A) has an orthonormal subset {wj ⊕ 0}hj=2. Since Hc(A) = ∪η∈lKη(A) by [4,

Theorem 1], this implies that wj ⊕ 0 ∈ Kηj (A), where ηj ∈ l, for j = 2, ..., h. From

ηj = 〈A (wj ⊕ 0) , wj ⊕ 0〉 = 〈Bwj , wj〉 ∈ l ⊆ ∂W (B), where j = 2, ..., h, we reach a

contradiction since

k(B) ≥ (h− 1) + (k(A)− h) = k(A)− 1 ≥ k(B) + 1.

For the remaining part of the proof, let c be an extreme point of l, where l is a

line segment on the boundary of W (B). We consider two cases: either (a) there is

only one line segment in ∂W (B) passing through c, or (b) there are exactly two line

segments in ∂W (B) passing through c. In case (a), since xj and yj are nonzero vectors

for j = 1, ..., h, we infer that c = bj = ξj or ξj ∈ (c, bj) for these j’s. This implies that

zj ∈ Hη(A) by [4, Theorem 1], where η is not an extreme point of l. So, the same

arguments as above lead us to a contradiction. For case (b), since c is a corner of

W (B), c is a reducing eigenvalue of B by [3, Theorem 1]. Thus B is unitarily similar

to a matrix of the form B′⊕cIn′ , where c is not an eigenvalue of B′, and the size of B′

and n′ are both less than n. Obviously, c /∈ W (B′). We apply the preceding remark
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as for the case of c /∈ W (B) to see that k(A) = k(B′ ⊕ cIn′+1) = k1(B
′) + n′ + 1,

and k(B) = k(B′ ⊕ cIn′) = k1(B
′) + n′. In addition, k(B) = k1(B) in this case.

Hence we obtain that k(A) = k1(B) + 1, which contradicts our assumption that

k(A) ≥ k1(B) + 2. With this, we conclude the proof of the asserted equality. �

We remark that the part of the proof of Lemma 2.2.3 on c /∈ W (B) involves the

following three cases (1), (2), and (3) depending on whether ∂W (B) contains a line

segment or otherwise. In case (1), we have R = {zj : yj 6= 0} and S = {zj : yj 6= 0},
in (2) R = R1 ∪ R2, where R1 = {zj : yj 6= 0} and R2 = {zj : yj = 0}, and

S = {zj : yj 6= 0}, and in (3) R = R1 ∪ R2, where R1 = {zj : yj 6= 0} and

R2 = {zj : yj = 0}, and S = S1∪S2, where S1 = {zj : yj 6= 0} and S2 = {zj : yj = 0}.
Note that the key point is to handle R and S in (1), R1 and S in (2), and R1 and

S1 in (3), that is, all nonzero yj’s of the three cases. We find that the proofs of the

three cases are almost the same. This observation can facilitate the proof of Theorem

2.2.2 as follows. If ∂W (B) contains a line segment such that this line segment is a

portion of ∂W (A) and stretches to a point of ∂W (C), then we take the same method

as the proof of Lemma 2.2.3 on c /∈ W (B) to partition the corresponding R into

R1 = {zj : yj 6= 0} and R2 = {zj : yj = 0}. As mentioned above, we need only handle

R1. On the other hand, if ∂W (B) contains no such line segments, then we need only

handle the corresponding R = {zj : yj 6= 0}. From this, there is no difference between

the proofs of the two cases. Hence we may assume, in the proof of Theorem 2.2.2,

that ∂W (B) and ∂W (C) contain no line segments.

Before giving a proof of Theorem 2.2.2, we note several things. First of all, by

Lemma 2.2.3, we may assume that both of the numerical ranges W (B) and W (C) are

not singletons. Secondly, we may further assume that ∂W (B) and ∂W (C) contain no

line segment by the above remark. Thirdly, since W (A) is the convex hull of the union

of W (B) and W (C), there are two line segments, called [a, p] and [b, q], in ∂W (A),

where a, b ∈ ∂W (B) and p, q ∈ ∂W (C). Fourthly, it is easy to check that a 6= b and
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p 6= q. Indeed, if a = b, then a is a corner. By [3, Theorem 1], we obtain that a is

a reducing eigenvalue of A, and hence a is a reducing eigenvalue of B. This shows

that W (B) must contain a line segment, which contradicts our previous assumption.

Similarly, we also have p 6= q. Combining the above, we have the following Figure

2.2.5 as the numerical range W (A).

a

b

W (B) W (C)

p

q

Figure 2.2.5

As before, by the definition of k(A), there exist ξj = 〈Azj , zj〉 ∈ ∂W (A), j =

1, 2, . . . , k(A), where zj = xj ⊕ yj, and 〈zi, zj〉 = δij for i, j = 1, ..., k(A). We define

four (disjoint) subsets consisting of the corresponding unit vectors, and their cardinal

numbers, respectively, as follows:

R ≡ {zj : ξj ∈ (a, p)} with r ≡ #(R) ,

S ≡ {zj : ξj ∈ (b, q)} with s ≡ #(S) ,

TB ≡ {zj : ξj ∈ ∂W (A) ∩ ∂W (B)} with t1 ≡ #(TB) , and

TC ≡ {zj : ξj ∈ ∂W (A) ∩ ∂W (C)} with t2 ≡ #(TC) .

Since the intersection of W (B) and W (C) is empty, and ∂W (B) and ∂W (C) contain
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no line segment, we may assume that

R = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}rj=1 ,

S = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}r+s
j=r+1 ,

TB = {zj = xj ⊕ 0 : xj 6= 0}r+s+t1
j=r+s+1 , and

TC = {zj = 0⊕ yj : yj 6= 0}r+s+t1+t2
j=r+s+t1+1 .

So, k(A) = r + s + t1 + t2, k1(B) ≥ t1 and k1(C) ≥ t2. Clearly, the inequality

k(A) ≥ k1(B) + k1(C) holds. Now we are ready to prove Theorem 2.2.2.

Proof of Theorem 2.2.2. We need only prove that the reversed inequality k1(B)+

k1(C) ≥ k(A) holds. First, we consider the case r = 0. Assume that s = 0. Then our

assertion is obvious since

k1(B) + k1(C) ≥ t1 + t2 = r + s+ t1 + t2 = k(A).

Assume that s = 1, i.e., z1 = x1 ⊕ y1 ∈ S. Then k1 (B) ≥ t1 + 1 since the unit vector

(x1/ ‖x1‖)⊕ 0 is clearly orthogonal to TB and 〈B (x1/ ‖x1‖) , x1/ ‖x1‖〉 is in ∂W (B)

by the convex combination

〈Az1, z1〉 = ‖x1‖2
〈

B
x1

‖x1‖
,

x1

‖x1‖

〉

+ ‖y1‖2
〈

C
y1

‖y1‖
,

y1
‖y1‖

〉

∈ (b, q) .

Hence

k1(B) + k1(C) ≥ (t1 + 1) + t2 = r + s+ t1 + t2 = k(A).

Assume that s = 2, i.e., z1 = x1 ⊕ y1 and z2 = x2 ⊕ y2 ∈ S. If x1 and x2 are linearly

independent, then by the Gram-Schmidt process, there are two unit vectors z′1 and

z′2, where z′j = x′
j ⊕ y′j with x′

j 6= 0 for j = 1, 2 such that x′
1 and x′

2 are mutually

orthogonal, and span ({z1, z2}) is equal to span ({z′1, z′2}). Choosing the two unit

vectors (x′
1/ ‖x′

1‖)⊕ 0 and (x′
2/ ‖x′

2‖)⊕ 0, we obtain that k1 (B) ≥ t1 + 2. Hence

k1(B) + k1(C) ≥ (t1 + 2) + t2 = r + s+ t1 + t2 = k(A).
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On the other hand, if x1 and x2 are linearly dependent, say, x2 = λx1 for some scalar

λ, then we define a new unit vector

z′2 =
z2 − λz1

‖z2 − λz1‖
= 0⊕ y2 − λy1

‖y2 − λy1‖
∈ span ({z1, z2})

so that span ({z1, z2}) = span ({z′1})⊕ span ({z′2}) for some unit vector z′1 ≡ x′
1⊕ y′1,

where z′1 and z′2 are mutually orthogonal. Clearly, x′
1 6= 0 for otherwise it leads

to x1 = x2 = 0, which contradicts the definition of S. From the two unit vectors

(x′
1/ ‖x′

1‖)⊕ 0 and z′2, we infer that k1 (B) ≥ t1 + 1 and k1(C) ≥ t2 + 1. Hence

k1(B) + k1(C) ≥ (t1 + 1) + (t2 + 1) = r + s+ t1 + t2 = k(A).

Assume that s ≥ 3, that is, S = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}sj=1. We consider

the largest linearly independent subset of {xj}sj=1 as follows. Without loss of gener-

ality, we may assume that this can be {xj}sj=1, {x1} or {xj}lj=1, where 1 < l < s. For

the first two cases, it can be done by applying similar arguments as for the case of

s = 2. In the last case, since xj is a linear combination of x1, ..., xl for j = l+1, ..., s,

it is easy to check that the unit vectors

(1) z′j ≡
zj − Σl

i=1a
(j)
i zi

∥

∥

∥
zj − Σl

i=1a
(j)
i zi

∥

∥

∥

= 0⊕





yj − Σl
i=1a

(j)
i yi

∥

∥

∥
yj − Σl

i=1a
(j)
i yi

∥

∥

∥



 , j = l + 1, ..., s,

are linearly independent. Let y′j =
yj−Σl

i=1a
(j)
i yi

∥

∥

∥
yj−Σl

i=1a
(j)
i yi

∥

∥

∥

for j = l + 1, ..., s. Since F ≡

span
(

{

z′j = 0⊕ y′j
}s

j=l+1

)

is a subspace of the space V ≡ span
(

{zj}sj=1

)

, the or-

thogonal complement of F in V , called E, can be written as span
(

{

z′j ≡ x′
j ⊕ y′j

}l

j=1

)

for some unit vectors z′j , j = 1, ..., l. By (1), we see that {x′
j}lj=1 is linearly indepen-

dent since {xj}lj=1 is linearly independent. Hence we may assume that both {x′
j}lj=1

and
{

y′j
}s

j=l+1
are orthogonal subsets by the Gram-Schmidt process. This shows that

G1 ≡
{(

x′
j/
∥

∥x′
j

∥

∥

)

⊕ 0
}l

j=1
and G2 ≡

{

0⊕ y′j
}s

j=l+1
are orthogonal to TB and TC ,

respectively. Since every vector v in G1 (resp., G2) is such that 〈Av, v〉 is in ∂W (B)

(resp., ∂W (C)), we obtain that k1(B) + k1(C) ≥ k(A) from k1(B) ≥ t1 + l and

k1(C) ≥ t2 + s− l. This completes the proof of the case r = 0.
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Next, we prove for the case r = 1. Obviously, it is sufficient to consider s ≥ 1 since

the case r = 1, s = 0 is the same as the case r = 0, s = 1. Assume that s = 1, that is,

z1 = x1⊕x2 ∈ R and z2 = x2⊕ y2 ∈ S. Then k1(B) ≥ t1+1 and k1(C) ≥ t2+1 since

(x1/‖x1‖)⊕0 and 0⊕ (y2/‖y2‖) are orthogonal to TB and TC , respectively. Moreover,

〈B (x1/ ‖x1‖) , x1/ ‖x1‖〉 is in the boundary of W (B) by the convex combination

〈Az1, z1〉 = ‖x1‖2
〈

B
x1

‖x1‖
,

x1

‖x1‖

〉

+ ‖y1‖2
〈

C
y1

‖y1‖
,

y1
‖y1‖

〉

∈ (a, p) ,

and 〈C (y2/ ‖y2‖) , y2/ ‖y2‖〉 is in the boundary of W (C) by the same arguments.

Hence

k1(B) + k1(C) ≥ (t1 + 1) + (t2 + 1) = r + s+ t1 + t2 = k(A).

Assume that s = 2. Then we have R = {z1 = x1 ⊕ y1 : x1 6= 0 and y1 6= 0} and

S = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}3j=2 . If {x2, x3} is linearly independent, then

we may assume that it is an orthogonal set by the Gram-Schmidt process. By the con-

vex combination mentioned above, we infer from the three unit vectors 0⊕ (y1/ ‖y1‖),
(x2/ ‖x2‖)⊕ 0, and (x3/ ‖x3‖)⊕ 0 that k1(B) ≥ t1 + 2 and k1(C) ≥ t2 + 1. Hence

k1(B) + k1(C) ≥ (t1 + 2) + (t1 + 1) = r + s+ t1 + t2 = k(A).

On the other hand, if {x2, x3} is linearly dependent, say, x2 = λx3 for some scalar λ,

then we define a new unit vector

z′2 =
z2 − λz3

‖z2 − λz3‖
= 0⊕ y2 − λy3

‖y2 − λy3‖
∈ span ({z2, z3})

so that span ({z2, z3}) = span ({z′2})⊕ span ({z′3}) for some unit vector z′3 ≡ x′
3⊕ y′3,

where z′2 is orthogonal to z′3. Clearly, x′
3 6= 0 for otherwise it leads to x2 = x3 = 0,

which contradicts the definition of S. From the three unit vectors 0 ⊕ (y1/ ‖y1‖),
0 ⊕ ((y2 − λy3) / ‖y2 − λy3‖), and (x′

3/ ‖x′
3‖) ⊕ 0, we infer that k1(B) ≥ t1 + 1 and

k1(C) ≥ t2 + 2. Hence

k1(B) + k1(C) ≥ (t1 + 1) + (t2 + 2) = r + s+ t1 + t2 = k(A).
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Assume that s ≥ 3, that is, S = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}s+1
j=2, and R =

{z1 = x1 ⊕ y1 : x1 6= 0 and y1 6= 0}. We consider the largest linearly independent

subset of {xj}s+1
j=2, which we may assume to be {xj}s+1

j=2, {x2} or {xj}lj=2, where

2 < l < s + 1. These three largest subsets are similar to those considered under

r = 0, s ≥ 3. Indeed, we need only add the unit vector 0 ⊕ (y1/ ‖y1‖) to every

sub-case of the case r = 0, s ≥ 3. Hence we have proved that the reversed inequality

k1(B) + k1(C) ≥ k(A). This completes the proof of the case r = 1.

Let r = 2. With the help of the preceding discussions, we may assume that s ≥ 2.

Assume that s = 2, that is, R = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}2j=1 and S =

{zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}4j=3. If {x3, x4} is linearly independent, then we

consider two cases as follows. First, we assume that {y1, y2} is linearly independent.

We may further assume that {x3, x4} and {y1, y2} are orthogonal subsets by the Gram-

Schmidt process. Obviously, the two subsets H1 ≡ {0⊕ (y1/ ‖y1‖) , 0⊕ (y2/ ‖y2‖)}
andH2 ≡ {(x3/ ‖x3‖)⊕ 0, (x4/ ‖x4‖)⊕ 0} are orthogonal to TC and TB, respectively.

Since every vector v in H1 (resp., H2) is such that 〈Av, v〉 is in the boundary of W (C)

(resp., W (B)), we infer, from k1(B) ≥ t1+2 and k1(C) ≥ t2+2, that k1(B)+k1(C) ≥
k(A). On the other hand, assume that {y1, y2} is linearly dependent, say, y1 = λy2

for some scalar λ. Then we define a new unit vector z′1 = (z1 − λz2)/‖z1 − λz2‖ =

((x1−λx2)/‖x1−λx2‖)⊕0 so that span ({z1, z2}) = span ({z′1})⊕span ({z′2}) for some

unit vector z′2 ≡ x′
2⊕y′2, where z

′
1 and z′2 are mutually orthogonal. Clearly, y′2 6= 0 for

otherwise it leads to y1 = y2 = 0, which contradicts the definition of R. Moreover,

we may assume that {x3, x4} is an orthogonal subset by the Gram-Schmidt pro-

cess. Hence H3 ≡ {((x1 − λx2) / ‖x1 − λx2‖)⊕ 0, (x3/ ‖x3‖)⊕ 0, (x4/ ‖x4‖)⊕ 0}
and H4 ≡ {0⊕ (y′2/ ‖y′2‖)} are orthogonal to TB and TC , respectively. Since every

vector v in H3 (resp., H4) is such that 〈Av, v〉 is in the boundary of W (B) (resp.,

W (C)), we infer, from k1(B) ≥ t1+3 and k1(C) ≥ t2+1, that k1(B)+k1(C) ≥ k(A).

On the other hand, if {x3, x4} is linearly dependent, then we need only consider

the case that {y1, y2} is linearly dependent. So, we may assume that y1 = λy2 and
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x3 = µx4 for some scalars λ and µ. Define two new unit vectors

z′1 =
z1 − λz2

‖z1 − λz2‖
=

x1 − λx2

‖x1 − λx2‖
⊕ 0 and z′3 =

z3 − µz4
‖z3 − µz4‖

= 0⊕ y3 − µy4
‖y3 − µy4‖

.

Then span ({z1, z2}) = span ({z′1})⊕span ({z′2}) and span ({z3, z4}) = span ({z′3})⊕
span ({z′4}) for some unit vectors z′2 = x′

2 ⊕ y′2 and z′4 = x′
4 ⊕ y′4, where z′2 (resp., z′4)

is orthogonal to z′1 (resp., z′3). Clearly, y
′
2 and x′

4 are nonzero by the same argument

as above. Hence H5 ≡ {((x1 − λx2) / ‖x1 − λx2‖)⊕ 0, (x′
4/ ‖x′

4‖)⊕ 0} and H6 ≡
{0⊕ (y′2/ ‖y′2‖) , 0⊕ ((y3 − λy4) / ‖y3 − λy4‖)} are orthogonal to TB and TC , respec-

tively. Since every vector v in H5 (resp., H6) is such that 〈Av, v〉 is in the boundary

ofW (B) (resp., W (C)), we infer, from k1(B) ≥ t1+2 and k1(C) ≥ t2+2, that k1(B)+

k1(C) ≥ k(A). Assume that s ≥ 3, that is, R = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}2j=1,

and S = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}s+2
j=3. If {y1, y2} is linearly independent,

then we may assume that {y1, y2} is orthogonal by the Gram-Schmidt process. In

this case, we consider the largest linearly independent subset of {xj}s+2
j=3, which may

be assumed to be {xj}s+2
j=3, {x3} or {xj}lj=3 (3 < l < s + 2). Each of the three

cases can be handled by applying similar arguments as for the cases of r = 0,

s ≥ 2. On the other hand, if {y1, y2} is linearly dependent, say, y1 = λy2 for some

scalar λ, then we define a new unit vector z′1 = ((x1 − λx2)/‖x1 − λx2‖)⊕ 0 so that

span ({z1, z2}) = span ({z′1})⊕ span ({z′2}) for some unit vector z′2 = x′
2⊕y′2, where z

′
1

and z′2 are mutually orthogonal. Clearly, y′2 is nonzero by the same argument as for

the case of r = 0, s = 2. To complete the proof, it remains to consider the three cases

mentioned above. By applying similar arguments again as for the cases of r = 0,

s ≥ 2, we obtain the reversed inequality k1(B) + k1(C) ≥ k(A). This completes the

proof of the case r = 2.

Finally, assume that r ≥ 3. It suffices to consider s ≥ 3 since s ≤ 2 has been proven

if we exchange the roles of s and r. Hence R = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}rj=1

and S = {zj = xj ⊕ yj : xj 6= 0 and yj 6= 0}r+s
j=r+1. As mentioned previously, there are

three cases by considering the largest linearly independent subset of {yj}rj=1 (resp.,

19



{xj}r+s
j=r+1). Without loss of generality, we may assume that this subset is {yj}rj=1, {y1}

or {yj}l1j=1, where 1 < l1 < r, and {xj}r+s
j=r+1, {xr+1} or {xj}r+l2

j=r+1, where 1 < l2 < s.

There are a total of nine cases to be considered. Since each case is similar to the one

under r = 0, s ≥ 1, it follows that the reversed inequality k1(B) + k1(C) ≥ k(A)

holds. This completes the proof of the case r ≥ 3. �

At the end of the section, we give a generalization of Theorem 2.2.2 under a

slightly weaker condition on B and C. Let A be a matrix of the form B ⊕ C. Since

W (A) is the convex hull of the union of W (B) and W (C), we consider two (disjoint)

subsets of ∂W (A) as follows: one is ∂W (A) \ (∂W (B)∪ ∂W (C)) ≡ Γ1, and the other

is ∂W (A) ∩ ∂W (B) ∩ ∂W (C) ≡ Γ2. Geometrically, Γ1 consists of the line segments

contained in ∂W (A) but not in ∂W (B) ∪ ∂W (C). On the other hand, since the

common boundaries of the three numerical ranges consist of line segments and points

which are not in any line segments, every point of the latter can be regarded as a

degenerate line segment. Hence Γ2 consists of the (possibly degenerate) line segments

contained in the common boundaries of the three numerical ranges. If Γ ≡ Γ1 ∪ Γ2

consists of at most two (possibly degenerate) line segments, then we say that W (A)

has property Λ. Evidently, the disjointness of W (B) and W (C) implies that property

Λ holds since Γ1 consists of exactly two line segments and Γ2 is empty.

Applying similar arguments as in the proof of Theorem 2.2.2, property Λ is enough

to establish the equality k(A) = k1(B)+k1(C). Hence we have the following theorem.

Theorem 2.2.6. Let A = B⊕C, where B and C are n-by-n and m-by-m matrices,

respectively. If W (A) has property Λ, then k(A) = k1(B) + k1(C) ≤ k(B) + k(C). In

this case, k(A) = k(B) + k(C) if and only if k1(B) = k(B) and k1(C) = k(C). In

particular, k(A) = m+ n if and only if k1(B) = k(B) = n and k1(C) = k(C) = m.
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2.3 Applications and discussions

The first application of our results in Section 2.2 is a generalization of Lemma 2.2.3.

Indeed, we are able to determine the value of k(A) for A = B ⊕ C with normal C.

Proposition 2.3.1. Let A = B ⊕ C, where C is an m-by-m normal matrix.

Then k(A) = k1(B) + k1(C). In this case, k(A) = k(B) + k(C) if and only if

k1(B) = k(B) and k1(C) = k(C). In particular, if C = cIm for some scalar c, then

k(A) = k1(B) + k1(cIm).

Proof. Let the normal C be unitarily similar to ⊕m
j=1 [cj ]. By [19, Lemma 2.9], we

may assume that all the cj’s lie in ∂W (A). This shows that k1(C) = m immediately.

On the other hand, we also obtain k(A) = k1(B) + m by Lemma 2.2.3. Hence the

asserted equality k(A) = k1(B) + k1(C) has been proven. The remaining assertions

hold trivially by this equality. �

An easy corollary of Proposition 2.3.1 is to determine when k (A) equals the size

of A for a matrix A = B ⊕ C with normal C.

Corollary 2.3.2. Let A = B ⊕ C, where B is an n-by-n matrix and C is an m-

by-m normal matrix. Then k(A) = n +m if and only if k1(B) = n and k1(C) = m.

Assume, moreover, that dimHη = 1 for all η ∈ ∂W (B). Then k(A) = n +m if and

only if k1(B) = n ≤ 2 and k1(C) = m.

Proof. By Proposition 2.3.1, it is clear that k(A) equals the size of A if and only if

k1(B) and k1(C) equal the sizes of B and C, respectively. In this case, the assumption

on Hη implies that k1(B) = n ≤ 2 by [19, Proposition 2.10]. This completes the proof.

�

For a matrix A of the form B ⊕ C, we recall the decomposition Γ = Γ1 ∪ Γ2 at
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the end of Section 2.2, where Γ1 = ∂W (A) \ (∂W (B) ∪ ∂W (C)) and Γ2 = ∂W (A) ∩
∂W (B) ∩ ∂W (C). The next proposition gives a lower bound for k(A).

Proposition 2.3.3. Let A = B ⊕ C be an n-by-n (n ≥ 3) matrix. Then Γ is

empty if and only if the numerical range of one summand is contained in the interior

of the numerical range of the other. In particular, if Γ is nonempty, then k(A) ≥ 3.

Proof. If Γ = Γ1 ∪ Γ2 is empty, then both Γ1 and Γ2 are empty. Since Γ1 is

empty, ∂W (A) is contained in ∂W (B) ∪ ∂W (C). This implies that W (B) ∩ W (C)

is nonempty, and thus W (B) = W (C), W (B) ⊆ intW (C) or W (C) ⊆ intW (B).

Moreover, Γ2 = φ implies that W (B) 6= W (C). With this, we conclude that either

W (B) ⊆ intW (C) or W (C) ⊆ intW (B). The converse is obvious. Hence we have

proved the first assertion. Let Γ be nonempty, that is, either Γ1 or Γ2 is nonempty. If

Γ1 is nonempty, then there is a line segment on the boundary of W (A). This shows

that k(A) ≥ 3 by [19, Corollary 2.5]. On the other hand, if Γ2 is nonempty, then

there is a (possibly degenerate) line segment on the common boundaries of the three

numerical ranges W (A), W (B) and W (C). Using [19, Corollary 2.5] again, we may

assume that the line segment is degenerate, say, to {ξ}. This implies immediately

that dimξ H(A) ≥ 2. Thus k(A) ≥ 3 by [19, Proposition 2.4]. �

As an application, when A is reducible, the next corollary gives a necessary and

sufficient condition for k(A) = 2.

Corollary 2.3.4. Let A = B ⊕ C be an n-by-n (n ≥ 3) matrix. Then k(A) = 2

if and only if either k(B) = 2 and W (C) ⊆ intW (B), or k(C) = 2 and W (B) ⊆
intW (C).

Proof. If k(A) = 2, then Proposition 2.3.3 shows that Γ is empty, and thus the

numerical range of one summand, say, B is contained in the interior of the numerical

range of C. Hence k(C) = 2 by [19, Lemma 2.9]. The converse is obvious by [19,
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Lemma 2.9] again. �

The following proposition determines exactly when k(A) equals the size of A for

an irreducible matrix A. It is also stated in [2, Theorem 7] while the proof there is

different from ours.

Proposition 2.3.5. Let A be an n-by-n (n ≥ 3) irreducible matrix. Then k(A) =

n if and only if ∂W (A) contains a line segment l and there are n points (not necessarily

distinct) in l ∪ (∂W (A) ∩ L), where L is the supporting line parallel to l such that

their corresponding unit vectors form an orthonormal basis for Cn.

Proof. We need only prove the necessity. Assume that A is an n-by-n (n ≥ 3)

irreducible matrix with k(A) = n. If ∂W (A) contains no line segment, then dimHξ =

dimEξ,l ≤ n/2 for all ξ ∈ ∂W (A) by [19, Proposition 2.2]. If n is odd, say, n = 2m+1,

then dimHξ = dimEξ,l ≤ m for all ξ ∈ ∂W (A). Since k(A) = n, it follows from [19,

Theorem 2.7] that A is reducible, which is absurd. If n is even, say, n = 2m, then

m ≥ 2 by our assumption that n ≥ 3. Since k(A) = n and ∂W (A) contains no line

segment, A is unitarily similar to a matrix of the form





ξIm eiθD

−eiθD∗ ηIm





by [19, Theorem 2.7], where dimHξ = dimHη = m. Let D = USV be the singular

value decomposition of D, where U and V are unitary and S = diag (s1, ..., sm) is a

diagonal matrix with sj ≥ 0, j = 1, ..., m. Then





U∗ 0

0 V









ξIm eiθD

−eiθD∗ ηIm









U 0

0 V ∗



 =





ξIm eiθS

−eiθS ηIm





and the latter is unitarily similar to

m
⊕

j=1





ξ eiθsj

−eiθsj η



 .
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This contradicts the irreducibility of A. Hence ∂W (A) must contain a line segment.

We then apply [19, Theorem 2.7] again to complete the proof. �

An easy corollary of Proposition 2.3.5 is the following upper bound for k(A). This

was given in [19, Proposition 2.10]. Here we give a simpler proof.

Corollary 2.3.6. If A is an n-by-n (n ≥ 3) matrix with dim Hξ = 1 for all

ξ ∈ ∂W (A), then k(A) ≤ n− 1.

Proof. Assume that k(A) = n. It suffices to consider that A is reducible; this

is because if otherwise, then Proposition 2.3.5 shows that ∂W (A) contains a line

segment, which contradicts the assumption on Hξ. Let A = B ⊕ C. Then our

assumption on Hξ implies that Γ is empty. By Proposition 2.3.3, we obtain that the

numerical range of one summand is contained in the interior of the numerical range

of the other summand. It follows from [19, Lemma 2.9] that the value of k(A) equals

k(B) or k(C). Thus k(A) ≤ n− 1 as asserted. �

We now combine Proposition 2.3.1, Corollary 2.3.2, Corollary 2.3.4, and Proposi-

tion 2.3.5 to determine the value of k(A) for any 4-by-4 reducible matrix A. Corollary

2.3.4 shows exactly when the value of k(A) equals two. By Proposition 2.3.1, Corol-

lary 2.3.2 and Proposition 2.3.5, we get a necessary and sufficient condition for the

value of k(A) to be equal to four. In other words, the value of k(A) can be determined

completely for any 4-by-4 reducible matrix A. To do this, we note that a 4-by-4 re-

ducible matrix A can be written, after a unitary similarity, as (i) A = B ⊕ [c], where

B is a 3-by-3 irreducible matrix and c is a complex number, (ii) A = B ⊕ [c], where

B is a 3-by-3 reducible matrix and c is a complex number, or (iii) A = B ⊕C, where

B and C are 2-by-2 irreducible matrices. Proposition 2.3.7 below is to deal with case

(i).

Recall that for a 3-by-3 irreducible matrix A, W (A) is of one of the following
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shapes (cf. [9]): an elliptic disc, the convex hull of a heart-shaped region, in which

case ∂W (A) contains a line segment, and an oval region.

Proposition 2.3.7. Let A = B ⊕ [c], where B is a 3-by-3 irreducible matrix and

c is a complex number. Then k(A) = 4 if and only if c /∈ intW (B) and {a1, a2, b} ⊆
∂W (A), where W (B) is the convex hull of a heart-shaped region, in which case ∂W (B)

contains a line segment [a1, a2] contained in the supporting line L1 of W (B) and L2

is the supporting line of W (B) passing through b and parallel to L1.

Proof. By Corollary 2.3.2, we see that k(A) = 4 is equivalent to k1(B) = 3

and k1([c]) = 1. Since a necessary and sufficient condition for k1([c]) = 1 is that

c /∈ intW (B), it remains to show that k1(B) = 3 if and only if {a1, a2, b} ⊆ ∂W (A)

and W (B) satisfies the asserted properties. If k1(B) = 3, then k(B) = 3. Hence

it follows from Proposition 2.3.5 that ∂W (A) contains {a1, a2, b}, and W (B) is as

asserted. The converse is trivial. �

For case (ii), let A = B ⊕ [c], where B is a 3-by-3 reducible matrix. After a

unitary similarity, B can be written as C ⊕ [b], where C is a 2-by-2 matrix, so that

k(A) = k1(C) + k1([b] ⊕ [c]) by Proposition 2.3.1. The following proposition gives a

necessary and sufficient condition for k(A) to be equal to four.

Proposition 2.3.8. Let A = C ⊕ [b]⊕ [c], where C is a 2-by-2 matrix, and b and

c are complex numbers. Then k(A) = 4 if and only if both b and c are in ∂W (A) and

k1(C) = 2.

Proof. By Corollary 2.3.2, it is obvious that k (A) = 4 if and only if k1(C) = 2

and k1([b] ⊕ [c]) = 2. Moreover, it is also clear that k1 ([b]⊕ [c]) = 2 is equivalent to

both of b and c being in ∂W (A). Hence the proof is complete. �

To prove for case (iii), let A = B ⊕ C, where B and C are 2-by-2 irreducible
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matrices. Since W (A) is the convex hull of the union of the two elliptic discs W (B)

and W (C), either W (B) equals W (C), or Γ consists of at most four (possibly degen-

erate) line segments. With this, we are now ready to give a necessary and sufficient

condition for k(A) = 4.

Proposition 2.3.9. Let A = B⊕C, where B and C are 2-by-2 irreducible matri-

ces. Then k(A) = 4 if and only if Γ consists of at least three line segments (including

the possibly degenerate ones), or Γ consists of exactly two (possibly degenerate) line

segments such that k1 (B) = k1(C) = 2.

Proof. If Γ consists of more than four (possibly degenerate) line segments, then

the two elliptic discs W (B) and W (C) are identical. Hence k(A) = 4 by direct

computations. If Γ consists of four or three (possibly degenerate) line segments, then

the endpoints of the major axes of the two elliptic discs W (B) and W (C) are in

∂W (A). Hence k(A) = 4. If Γ consists of exactly two (possibly degenerate) line

segments such that k1 (B) = k1(C) = 2, then k(A) = 4 by Theorem 2.2.6. Therefore

we have proved the sufficient condition for k(A) = 4. Next assume that k(A) = 4

and either Γ consists of exactly two (possibly degenerate) line segments such that the

equalities k1 (B) = k1(C) = 2 fail, or Γ consists of at most one (possibly degenerate)

line segment. Since property Λ holds in each case, we must have k1 (B) = k1(C) = 2

by Theorem 2.2.6. This shows that we need only consider the latter. If Γ consists of

exactly one (possibly degenerate) line segment, then Γ1 is empty and Γ2 is a singleton.

Hence we may assume that W (B) is contained in W (C) and the intersection of W (B)

and W (C) is Γ. This shows that k1(B) = 1 and k1(C) = 2, which is a contradiction.

If Γ is empty, then it follows from Proposition 2.3.3 that the numerical range of one

summand, say, B is contained in the interior of the numerical range of the other

summand C. By Corollary 2.3.4 and [5, Lemma 4.1], we see that k(A) = k(C) = 2,

which is absurd. This completes the proof. �

26



As a final application of Theorem 2.2.6, it is obvious that the convex hull of the

union of W (A) and W (A + aIn) has property Λ for any a 6= 0. Hence we obtain the

following proposition.

Proposition 2.3.10. Let A be an n-by-n matrix and a be a nonzero complex num-

ber. Then k(A⊕ (A+ aIn)) = k1(A) + k1(A+ aIn). In this case, k(A⊕ (A+ aIn)) =

2k(A) if and only if k1(A+ aIn) = k1(A) = k(A).

We conclude this paper by stating the following open questions concerning this

topic. Is it true that the equality k(A) = k1(B) + k1(C) holds for a matrix A of the

form B⊕C even if property Λ fails? We note that although property Λ fails, the men-

tioned formula may still be correct (cf. Proposition 2.3.1). Another natural example

of the failure of property Λ is that both W (B) and W (C) have the same numerical

range. Is it true that k (B ⊕ C) = k(B) + k(C) in this case? In particular, can we

determine the value of k (A⊕ A) (cf. Proposition 2.3.10)? The following proposition

gives a partial answer for k (A⊕A) if we assume, in addition, that dimHξ = 1 for

all ξ ∈ ∂W (A).

Proposition 2.3.11. If A is an n-by-n matrix with dimHξ = 1 for all ξ ∈
∂W (A), then

k

(

m
⊕

j=1

A

)

= m · k (A) .

Proof. Obviously, the inequality k
(

⊕m
j=1A

)

≥ m · k (A) holds. To prove the re-

versed inequality, we consider, for convenience, the casem = 2. Let ξ1 ∈ ∂W (A⊕ A).

Then dimHξ1 (A⊕ A) = 2 by our assumption onHξ(A). Hence the subspaceHξ1 (A⊕A)

is spanned by the two unit vectors x1 ⊕ 0 and 0 ⊕ x1, where ξ1 = 〈Ax1, x1〉. Let z1

be a unit vector in Hξ1 (A⊕ A). Then z1 = (α1x1 ⊕ α2x1) /
√

|α1|2 + |α2|2, where α1

and α2 are in C. Similarly for ξ2 ∈ ∂W (A ⊕ A). That is, the subspace Hξ2(A ⊕ A)
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is spanned by the two unit vectors x2 ⊕ 0 and 0 ⊕ x2, where ξ2 = 〈Ax2, x2〉. More-

over, if z2 is a unit vector in Hξ2(A ⊕ A), then z2 = (β1x2 ⊕ β2x2) /
√

|β1|2 + |β2|2,
where β1 and β2 are in C. Obviously, the orthogonality of z1 and z2 is equivalent to
(

α1β̄1 + α2β̄2

)

〈x1, x2〉 = 0, that is,

〈





α1

α2



 ,





β1

β2





〉

〈x1, x2〉 = 0.

This shows that k(A⊕A) ≤ 2k(A) immediately by the definition of k(A).

For general m, a similar argument as above yields that

〈











α1

...

αm











,











β1

...

βm











〉

〈x1, x2〉 = 0

for some scalars α1, ..., αm and β1, ..., βm, where x1 and x2 are similarly defined. Since

the dimension of Cm is m, the number of vectors of the form [α1, ..., αm]
T which are

orthogonal to each other is at most m. We infer from this and the above equality that

the reversed inequality k
(

⊕m
j=1A

)

≤ m · k (A) holds. Therefore we have the asserted

equality. �

At the end of this section, we apply Proposition 2.3.11 to the quadratic matrices.

Recall that an n-by-n quadratic matrix A is unitarily similar to a matrix of the form

aIn1 ⊕ bIn2 ⊕





aIn3 D

0 bIn3



 ,

where n1, n2, n3 ≥ 0, n1 + n2 + n3 = n, D > 0, and a, b ∈ σ (A) (cf. [18, Theorem

2.1]).

Corollary 2.3.12. If A is an n-by-n quadratic matrix of the above form and D

is not missing, then k(A) = 2 ·#({λ ∈ σ (D) : λ = ‖D‖}).
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Proof. If D > 0, then D is unitarily similar to diag (d1, ..., dn3) , where d1 = · · · =
dp = ‖D‖ ≡ d > dp+1 ≥ · · · ≥ dn3 ≥ 0 (1 ≤ p ≤ n3). Hence A is unitarily similar to

a matrix of the form aIn1 ⊕ bIn2 ⊕p
j=1 B ⊕n3

j=p+1 Bj, where n1 + n2 + 2n3 = n,

B ≡





a d

0 b



 , and Bj ≡





a dj

0 b



 , j = p+ 1, . . . , n3.

Since the set {a, b} and all of the numerical ranges W (Bj), j = p + 1, . . . , m, are

contained in the interior of W (B), it follows from [19, Lemma 2.9] that k(A) =

k(⊕p
j=1B). Since dimHξ(B) = 1 for all ξ ∈ ∂W (B), we have k(A) = p · k(B) by

Proposition 2.3.11. Obviously, k(B) = 2 by [5, Lemma 4.1]. Thus k(A) = 2p as

asserted. �

We remark that in the preceding proof the equality k(⊕p
j=1B) = 2p can also be

established directly. Indeed, the inequality k(⊕p
j=1B) ≥ 2p holds trivially and we can

infer from [5, Lemma 4.1] that k(⊕p
j=1B) = 2p.
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3 Gau-Wu numbers of nonnegative matrices

3.1 Introduction

In Section 3.2 below, we first consider a matrix A of the form
















0 A1 0

0
. . .

. . . Am−1

Am 0

















(m ≥ 2),

where the diagonal zeros are zero square matrices. In this case, we obtain that k(A)

has a lower bound m (Proposition 3.2.1) if A has a boundary vector x = ⊕m
j=1xk, that

is, 〈Ax, x〉 ∈ ∂W (A), with all component vectors xj having the same norm 1/
√
m.

Next, we study a nonnegative matrix A of the above form with irreducible real part

and Am = 0. Proposition 3.2.3 yields that k(A) ≤ m − 1. Moreover, with the help

of [19], we are able to give necessary and sufficient conditions for such a matrix A

with the value of k(A) equal to m − 1 (Theorem 3.2.4). Finally, we also consider a

nonnegative matrix A of the above form with irreducible real part. Example 3.2.6

shows that no analogous results hold for such an A. In Section 3.3, we consider

more special nonnegative matrices, namely, the doubly stochastic matrices. It can

be proven that k(A) equals 3 for any 3-by-3 doubly stochastic matrix (Proposition

3.3.2). Moreover, for a 4-by-4 doubly stochastic matrix A, we determine the value of

k(A) completely and give the description of its numerical range W (A) (Propositions

3.3.4 and 3.3.5). For general n, we obtain the lower bound of k(A) for an n-by-n

doubly stochastic matrix A (Theorems 3.3.6 and 3.3.7). In particular, for an n-by-n

irreducible doubly stochastic matrix A, we obtain a necessary and sufficient condition

for k(A) to be equal to this lower bound (Theorem 3.3.7).

We end this section by fixing some notations. For any finite matrix A, its trace,
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determinant, and spectral radius are denoted by trA, detA, and r(A), respectively.

The numberm of eigenvalues z of A with |z| = r(A) is called the index of imprimitivity

of A.

3.2 Nonnegative block shift matrix

We start by reviewing a couple of basic facts on a block shift matrix. Recall that a

block shift matrix A is one of the form
















01 A1 0

02
. . .

. . . Am−1

Am 0m

















(m ≥ 2),

where the diagonal zeros 0j (j = 1, ..., m) are zero square matrices. Let ϕ = 2π/m.

Then it is easy to see that the numerical range W (A) is an m-symmetric compact

convex region since U∗AU = eiϕA, where U is a unitary matrix of the form
















eiϕI1 0 0

e2iϕI2
. . .

. . . 0

0 emiϕIm

















,

where the diagonal identity matrix Ij is of the same size as the corresponding 0j

(j = 1, ..., m). Let 〈Ax, x〉 be a boundary point of W (A), where x = ⊕m
k=1xj is a unit

vector. We define x0φ = x and xjϕ = ⊕m
k=1e

i(k−1)jϕxk for j = 1, ..., m− 1. With these

notations, we can give a lower bound for k(A).

Proposition 3.2.1. Let A be a block shift of the above form with the corresponding

notations as above. Then ‖xk‖ is equal to 1/
√
m for all k = 1, ..., m if and only if the

vectors xpϕ, 0 ≤ p ≤ m− 1, are orthonormal. In this case, we have k(A) ≥ m .
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Proof. Assume that 〈xpϕ, xqϕ〉 = 0 for 0 ≤ p 6= q ≤ m − 1. This is equivalent to

the equation

‖x1‖2 + ei(p−q)ϕ‖x2‖2 + · · ·+ ei(m−1)(p−q)ϕ‖xm‖2 = 0

for 0 ≤ p 6= q ≤ m− 1. That is, eiϕ, ..., ei(m−1)ϕ are the roots of the polynomial

‖x1‖2 + ‖x2‖2t+ · · ·+ ‖xm‖2tm−1.

Hence each ‖xk‖ is equal to 1/
√
m for k = 1, ..., m by comparing the coefficients of

the above polynomial with those of ‖xm‖2
∏m−1

j=1 (t−eijϕ). Conversely, if ‖xk‖ is equal

to 1/
√
m for all k = 1, ..., m, then it is a routine matter to check that xpϕ and xqϕ

are orthonormal for 0 ≤ p 6= q ≤ m− 1. Clearly, in this case, k(A) has a lower bound

m. �

Recall that the numerical radius ω(A) of a matrix A is the quantity max {|z| : z ∈
W (A)}. For a nonnegative matrix with irreducible real part, [16, Lemma 1] says that,

for ω(A)eiθ in W (A), where θ is a real number with eiθ 6= 1, (a) if θ is an irrational

multiple of 2π, then A is permutationally similar to a matrix of the form

(1)

















0 A1 0

0
. . .

. . . Am−1

0 0

















(m ≥ 2),

where the diagonal zeros are zero square matrices, and, in particular, W (A) is a circu-

lar disc centered at the origin, and (b) if θ is a rational multiple of 2π, say, θ = 2πp/q,

where p and q are relatively prime integers and q ≥ 2, then A is permutationally sim-

ilar to

(2)

















0 A1 0

0
. . .

. . . Aq−1

Aq 0

















(m ≥ 2),
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and, in particular, W (A) = e2πi/qW (A).

The following lemma is a generalization of [19, Lemma 3.6], which is useful for the

proof of Proposition 3.2.3. Recall that a vector x with positive components, denoted

by x ≻ 0, is called positive.

Lemma 3.2.2. Let A be an n-by-n (n ≥ 2) nonnegative matrix of the form (1)

with irreducible real part and m ≥ 2. Then the following hold:

(a) W (A) = {z ∈ C : |z| ≤ ω(A)}.
(b) There is a unique positive vector x = x1 ⊕ · · · ⊕ xm ∈ Cn such that 〈Ax, x〉 =

ω(A).

(c) For any a = ω(A)eiθ, θ ∈ [0, 2π), in ∂W (A), if xθ = x1⊕eiθx2⊕· · ·⊕ei(m−1)θxm,

then a = 〈Axθ, xθ〉 and Ha is generated by xθ.

(d) Let aj = ω(A)eiθj (θj ∈ [0, 2π)), j = 1, 2, be two points in ∂W (A) with the

corresponding unit vector xθj . Then xθ1 and xθ2 are orthogonal to each other if and

only if ei(θ1−θ2) is a zero of the polynomial ‖x1‖2 + ‖x2‖2t + · · ·+ ‖xm‖2tm−1.

Proof. Since U∗
θAUθ = eiθA for any θ, where Uθ = ⊕m

k=1e
i(k−1)θIk, that is, A is

unitarily similar to eiθA for any θ, (a) follows immediately. (b) is a consequence of

[11, Proposition 3.3]. To prove (c), note that

a = ω(A)eiθ = 〈eiθAx, x〉 = 〈U∗
θAUθx, x〉 = 〈A(Uθx), (Uθx)〉 = 〈Axθ, xθ〉,

which shows that xθ is in Ha. That dim Ha = 1 is by [11, Corollary 3.10]. Thus Ha

is generated by xθ. (d) follows from the fact that 〈xθ1 , xθ2〉 =
∑m

k=1 e
i(k−1)(θ1−θ2)x2

k.

This completes the proof. �

Thus, for a nonnegative matrix A of the form (1) with irreducible real part, k(A)

equals the maximum number of θ1, ..., θk in [0, 2π) for which ei(θj−θl) is a zero of

p(t) ≡ ‖x1‖2 + ‖x2‖2t + · · · + ‖xm‖2tm−1 for all j and l, 1 ≤ j 6= l ≤ k. If m = 2,

then the polynomial p(t) has degree one. Hence k(A) = 2 if m = 2. The following
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proposition says that k(A) ≤ m− 1 if m ≥ 3.

Proposition 3.2.3. Let A be an n-by-n (n ≥ 2) nonnegative matrix of the form

(1), where m ≥ 3, with irreducible real part and ω(A) = 1. Then k(A) ≤ m− 1.

Proof. From our assumptions on A and Lemma 3.2.2 (b), there is a unique vector

x = x1 ⊕ · · · ⊕ xm ∈ Cn with positive xj for all j such that 〈Ax, x〉 = 1. Letting

k(A) = k, we may assume, by the proof of [19, Theorem 3.10] that θ0 = 0, θ1 =

2π/k, ..., θk−1 = 2(k − 1)π/k, so that xθj and xθl are orthogonal to each other for

all j and l, 0 ≤ j 6= l ≤ k − 1. From Lemma 3.2.2 (d), this yields that k(A) ≤ m

since the degree of p(t) is m − 1. Assume that k(A) = m. If m is odd, then the

degree of the polynomial p(t) is equal to the even m− 1. We note that −1 is a zero

of p(t) and the zeros of the real polynomial p(t) appear in conjugate pairs, which is

a contradiction. Hence k(A) ≤ m − 1 for odd m. On the other hand, if m is even,

then ‖x1‖ = · · · = ‖xm‖ = 1/
√
m by examining the coefficients of p(t). From the

assumption that ω(A) = 1, we have (Re A)x = x by [11, Proposition 3.3]. That is,

(i) (A1/2)x2 = x1,

(ii) (AT
j /2)xj + (Aj+1/2)xj+2 = xj+1 for 1 ≤ j ≤ m− 2, and

(iii) (AT
m−1/2)xm−1 = xm.

Taking the transpose of (i) and then multiplying x1 from right on both sides, we

obtain xT
2 (A

T
1 /2)x1 = ‖x1‖2. Next, multiplying (ii) on both sides by xT

j , we have

xT
j (Aj/2)xj+1 = 0 if j is even and xT

j (Aj/2)xj+1 = ‖xj‖2 if j is odd, where 2 ≤ j ≤ m.

Similarly, we multiply (iii) on both sides by xT
m to get xT

m−1(Am−1/2)xm = ‖xm−1‖2.
These are the same as

〈Ajxj+1, xj〉 = 0 for j = 2, 4, ..., m− 2, and

〈Ajxj+1, xj〉 = ‖xj‖2 for j = 1, 3, ..., m− 1.

This implies that A2 = A4 = · · · = Am−2 = 0, which contradicts the assumption of

the irreducibility of the real part of A. Hence k(A) ≤ m−1 for even m. We complete

the proof. �
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Our next result is a characterization of n-by-n (n ≥ 2) nonnegative matrices A of

the form (1) with irreducible real part for which k(A) = m− 1, where m ≥ 3.

Theorem 3.2.4. Let A be an n-by-n (n ≥ 2) nonnegative matrix of the form

(1), where m ≥ 3, with irreducible real part and ω(A) = 1. Then the following are

equivalent:

(a) k(A) = m− 1.

(b) there is an α > 0 satisfying p(−α) = 0, where

p(t) =







1
2(m−1)

+ 1
m−1

t + · · ·+ 1
m−1

tm−2 + 1
2(m−1)

tm−1 if m is even, or

1
2(1+α)(m−1)

+ 1
m−1

t+ · · ·+ 1
m−1

tm−2 + α
2(1+α)(m−1)

tm−1 if m is odd.

(c) If x = x1 ⊕ · · · ⊕ xm ∈ Cn is the (unique) positive unit vector such that

〈Ax, x〉 = 1, then its component vectors satisfy

(i) ‖x1‖ = ‖xm‖ = 1/
√

2(m− 1) and ‖xj‖ = 1/
√
m− 1, 2 ≤ j ≤ m− 1, if m is

even,

(ii) ‖x1‖ = 1/
√

(1 + α)(m− 1), ‖xm‖ =
√

α/((1 + α)(m− 1)), and ‖xj‖ =

1/
√
m− 1, 2 ≤ j ≤ m− 1 for some α > 0, if m is odd.

Proof. If k(A) = m− 1, then, for even m, zeros of the corresponding polynomial,

denoted by pe(t), are exactly −1 and those points which are equally distributed over

the unit circle by the proof of Proposition 3.2.3. In other words, the polynomial

(t+ 1)
∏m−2

j=1 (t− ωj), where ω = e2πi/(m−1), has the same zeros as pe(t). This implies

that pe(t) =
1

2(m−1)
+ 1

m−1
t+· · ·+ 1

m−1
tm−2+ 1

2(m−1)
tm−1 for even m since ‖x‖ = ‖x1‖2+

· · ·+ ‖xm‖2 = 1. Conversely, if pe(t) =
1

2(m−1)
+ 1

m−1
t + · · ·+ 1

m−1
tm−2 + 1

2(m−1)
tm−1

for even m, then it is clear that k(A) = m− 1. On the other hand, for odd m zeros

of the corresponding polynomial, denoted by po(t), are exactly −α and those points

which are equally distributed over the unit circle and −α by the proof of Proposition

3.2.3. This α must be positive since the coefficients of po(t) are nonnegative. That

is, the polynomial (t+ α)
∏m−2

j=1 (t− ωj), where ω = e2πi/(m−1), has the same zeros as

35



po(t). It follows that po(t) =
1

2(1+α)(m−1)
+ 1

m−1
t+ · · ·+ 1

m−1
tm−2 + α

2(1+α)(m−1)
tm−1 for

odd m since ‖x‖ = ‖x1‖2 + · · · + ‖xm‖2 = 1. The converse is obvious. This proves

the equivalence of (a) and (b). The equivalence of (b) and (c) is obvious by the above

arguments. �

An easy consequence of Theorem 3.2.4 is that we can give a necessary condition

for k(A) = m − 1 by dealing with the norms of blocks, which are similar to [19,

Theorem 3.10]

Corollary 3.2.5. Let A be an n-by-n (n ≥ 2) nonnegative matrix of the form (1),

where m ≥ 3, with irreducible real part and ω(A) = 1. If k(A) = m− 1, then either

(a) m is even, ‖A1‖ = ‖Am−1‖ ≥
√
2 and ‖A2‖ = · · · = ‖Am−2‖ ≥ 1, or

(b) m is odd, ‖A1‖ ≥ 2/
√
1 + α, ‖A2j‖ ≥ 2α/(1 + α), ‖A2j+1‖ ≥ 2/(1 + α) for

1 ≤ j ≤ (n− 3)/2, and ‖Am−1‖ ≥ 2
√

α/(1 + α) for some α > 0.

Proof. Let k(A) = m− 1. If ω(A) = 1, then (Re A)x = x by [11, Proposition 3.3]

or, equivalently,

(i) (A1/2)x2 = x1,

(ii) (AT
j /2)xj + (Aj+1/2)xj+2 = xj+1 for 1 ≤ j ≤ m− 2, and

(iii) (AT
m−1/2)xm−1 = xm.

Assume first thatm is even. Then after some computations, we obtain that 〈Ajxj+1, xj〉
= 1/(m− 1) for 1 ≤ j ≤ m − 1. This along with Theorem 3.2.4 (c) proves case (a).

Similar arguments apply for odd m. We complete the proof. �

According to the above discussions and [19, Section 3], it is natural to ask whether

k(A) ≤ q holds for a matrix A of the form (2). The following gives a counterexample.
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Example 3.2.6. Let

A =











0 B 0

0 0 B

B 0 0











,where B =





0 1

1 0



 .

It is easy to check that A is a nonnegative normal matrix with irreducible real part

and σ(A) = {1, ω, · · · , ω5}, where ω = e2πi/6. Hence k(A) = 6 � 3 by Proposition

2.2.1.

In the next section, we consider the numerical ranges of certain special nonnegative

matrices, namely, those of doubly stochastic matrices.

3.3 Doubly stochastic matrix

We recall that a nonnegative matrix is doubly stochastic if its row sums and column

sums are all equal to one. Properties of such matrices were studied in [15]. The

following lemma gives some basic properties of such matrices. We omit its easy

proofs.

Lemma 3.3.1. Let A be a doubly stochastic matrix. Then

(a) 1 is an eigenvalue of A with corresponding eigenvector [1, ..., 1]T ,

(b) the norm, spectral radius, and numerical radius of A are equal to 1, and

(c) A is permutationally similar to a direct sum of irreducible doubly stochastic

matrices.

For a matrix A of the form B ⊕ C, we recall the decomposition Γ = Γ1 ∪ Γ2 at

the end of Section 2.2, where Γ1 = ∂W (A) \ (∂W (B) ∪ ∂W (C)) and Γ2 = ∂W (A) ∩
∂W (B)∩∂W (C). Based on the properties in the above lemma and Proposition 2.3.3,

we are able to determine the value of k(A) for any 3-by-3 doubly stochastic matrix.
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Proposition 3.3.2. Let A be a 3-by-3 doubly stochastic matrix. Then k(A) = 3.

Proof. Let A be a 3-by-3 doubly stochastic matrix. Then, by Lemma 3.3.1 (a) and

(b), 1 is a reducing eigenvalue of A. This implies that Γ is nonempty. By Proposition

2.3.3, we obtain that k(A) = 3. �

Recall also that the number m of eigenvalues z of A with ‖z‖ = r(A) is called the

index of imprimitivity of A, and is denoted by m(A). The following result is shown

in [15, Corollary 1.5 and Theorem 2.1], which is useful for our later work on a 4-by-4

reducible doubly stochastic matrix.

Proposition 3.3.3. Let A = [aij ]
3
i,j=1 be a 3-by-3 irreducible doubly stochastic

matrix.

(a) If m(A) = 1, then the numerical range W (A) is the convex hull of the point

1 and a compact convex set K contained in the open unit disc D, K is either a

(possibly degenerate) elliptic disc with foci (trA − 1 ±
√

(trA− 1)2 − 4 detA)/2 ∈
R and minor axis of length

√
detA− detReA, or a (possibly degenerate) elliptic

disc with foci (trA − 1 ±
√

(trA− 1)2 − 4 detA)/2 ∈ C and minor axis of length

(
√

3|a12 − a21|2 + (trA− 1)2 − 4 detA)/2, and

(b) if m(A) ≥ 2, then A is normal with the numerical range W (A) the regular

3-polygon with vertices e2πi/3, 0 ≤ j < 3.

From Proposition 3.3.2, we have proven that for any 3-by-3 doubly stochastic

matrix A the value of k(A) is always equal to its size. The following proposition

indicates that this still holds for any 4-by-4 reducible doubly stochastic matrix. Note

that any reducible doubly stochastic matrix is permutationally similar to a direct sum

of irreducible doubly stochastic matrices by Lemma 3.3.1. Applying this result, we

have the following proposition.

Proposition 3.3.4. Let A be a 4-by-4 reducible doubly stochastic matrix. Then
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k(A) = 4. Moreover, the following hold:

(a) If A is permutationally similar to a direct sum of two 2-by-2 irreducible dou-

bly stochastic matrices H1 and H2, then H1 and H2 are Hermitian, W (A) = [2a −
1, 1], where a = (trA −

√

(trA)2 − 4(detA + trA− 1))/4, with 0 ≤ a < 1, and

σ(A) consists of 1, 1, 2a − 1 and 2b − 1, where a is defined above and b = (trA +
√

(trA)2 − 4(detA+ trA− 1))/4, with 0 ≤ a ≤ b < 1.

(b) If A is permutationally similar to a direct sum [1] ⊕ B, where B is a 3-by-3

doubly stochastic matrix, then either

(i) B is reducible, W (A) = [trA − 3, 1], where 2 ≤ trA ≤ 4, and σ(A) =

{1, 1, 1, trA− 3}, or
(ii) B is irreducible, W (A) = W (B), and σ(A) = {1} ∪ σ(B), both of which were

as described in Proposition 3.3.3.

Proof. Since the proof is very similar to Proposition 3.3.3, we omit it. �

The next proposition is concerned with 4-by-4 irreducible doubly stochastic ma-

trices. If the index of imprimitivity m(A) equals one, then it shows that A is unitarily

similar to a direct sum of [1] and a 3-by-3 matrix B, and the numerical range W (B)

is contained in the open unit disc D by [15, Theorem 1.2]. Hence we can describe the

shape of W (A) in terms of W (B). Note that W (B) has four possible shapes (cf. [9]).

Moreover, if m(A) ≥ 2, then m(A) = 2 or 4 by [13, p. 51].

Proposition 3.3.5. Let A be a 4-by-4 irreducible doubly stochastic matrix.

(a) Assume that m(A) = 1. Then k(A) = 4 if and only if A = [1]⊕ [λ]⊕C, where

λ ( 6= 1) ∈ ∂W (A)∩R so that either W (A) is a 4-polygon or W (A) is the convex hull

of the (closed) interval [λ, 1] and the elliptic disc W (C).

(b) If m(A) ≥ 2, then k(A) = 4. More precisely, the following hold:

(i) If m(A) = 4, then A is normal with W (A) the regular 4-polygon with vertices

e2πi/4, 0 ≤ j < 4.
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(ii) If m(A) = 2, then W (A) is either the closed interval [−1, 1], in which case A

is Hermitian with spectrum {±1,±
√
detA}, or the convex hull of the closed interval

[−1, 1] and W (B), in which case A is permutationally similar to





0 A1

A2 0



 and

W (B) is the elliptic disc with foci ±
√
detA and minor axis of length | detA1−detA2|.

Proof. Assume that m(A) = 1. Then A is unitarily similar to the direct sum of

[1] and a 3-by-3 matrix B, and the numerical range W (B) is contained in the open

unit disc D by [15, Theorem 1.2]. Note that W (A) is symmetric with respect to the

x-axis since A is nonnegative. If k(A) = 4 and B is reducible, say, B = C ⊕ [λ], then

λ ( 6= 1) is in ∂W (A) ∩ R and k1(C) = 2 by Proposition 2.3.8. Hence it follows that

W (A) has the asserted shapes. On the other hand, if k(A) = 4 and B is irreducible,

then W (B) is the heart-shaped region which is symmetric with respect to the x-axis

via A � 0. However, this cannot happen by Proposition 2.3.7. Hence we have proven

the necessity for k(A) = 4. The converse is trivial.

Assume that m(A) ≥ 2. Then m(A) = 2 or 4 by [13, p. 51]. If m(A) = 4, then

case (i) holds trivially. Hence k(A) = 4 by Proposition 2.2.1. On the other hand, if

m(A) = 2, then −1 and 1 are eigenvalues of A by the Perron–Frobenius Theorem (cf.

[11, Theorem 15.5.1]). Since −1 and 1 are corners in the boundary of W (A), both

are reducing eigenvalues by [3, Theorem 1]. Hence A is unitarily similar to a direct

sum of diag (1,−1) and a 2-by-2 matrix B, which shows that W (A) is the convex

hull of the closed interval [−1, 1] and W (B). If W (B) is contained in [−1, 1], then it

is obvious that B is Hermitian and so is A. In this case, the value k(A) = 4 holds

obviously by Proposition 2.2.1. Therefore we may assume that W (B) is not contained

in [−1, 1]. This implies that W (B) is an elliptic disc. Furthermore, since W (A) is

symmetric with respect to the x-axis, W (B) is also symmetric to the x-axis. Thus

W (A) has four line segments, called L1, ..., L4, on its boundary so that L1 is parallel

to L2, and L3 is parallel to L4. This shows that k(A) = 4 by [19, Corollary 2.5]. For
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the remaining proof of case (ii), we only need to compute trA and detA directly.

Hence we complete the proof of case (b). �

Recall that the index of imprimitivity of A is the number of eigenvalues z of A

with |z| = r(A). By Lemma 3.3.1, for a doubly stochastic matrix A an eigenvalue

with absolute value one is a reducing eigenvalue. This implies that k(A) has the

lower bound m(A). Hence we may combine Propositions 3.3.2 and 3.3.4 to give the

following result on an n-by-n (n ≥ 3) reducible doubly stochastic matrix.

Theorem 3.3.6. Let A be an n-by-n (n ≥ 3) reducible doubly stochastic matrix.

If n = 3 or 4, then k(A) = n; otherwise, k(A) ≥ max {m(A), 4}.

Our final result is on n-by-n (n ≥ 3) irreducible doubly stochastic matrices.

Theorem 3.3.7. Let A be an n-by-n (n ≥ 3) irreducible doubly stochastic matrix.

(a) If m(A) = 1, then k(A) ≥ 3.

(b) Assume that m(A) ≥ 2.

(i) If n is a prime, then k(A) = n. In this case, A is normal with its numerical

range W (A) the regular n-polygon with vertices e2πi/n, 0 ≤ j < n.

(ii) If n is not a prime, then k(A) ≥ max {m(A), 3}. Moreover, k(A) = m(A)

if and only if m(A) ≥ 3, the numerical range W (A) is the m(A)-regular polygon

with vertices e2πi/m(A), 0 ≤ j < m(A), and the dimension of Ha equals 2 for any

nonextreme boundary point a of W (A).

Proof. Part (a) is obvious. So we assume that m(A) ≥ 2 in the following. If n is a

prime, then A is normal and its numerical range W (A) is the n-polygon with vertices

e2πi/n, 0 ≤ j < n by [15, Corollary 1.5]. Hence k(A) = n by Proposition 2.2.1. This

completes the proof of (i). To show (ii), we note that m(A) is exactly the number

of reducing eigenvalues of A since A is a doubly stochastic matrix with ω(A) = 1.

This implies that k(A) ≥ m(A). In addition, it is obvious that k(A) ≥ 3 for any n-
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by-n (n ≥ 3) doubly stochastic matrix. Hence k(A) ≥ max {m(A), 3}. Assume that

k(A) = m(A) ≡ m. Then m(A) ≥ 3 by the preceding arguments. Let ωm = e2πi/m.

Since each ωj
m, 0 ≤ j < n, is a reducing eigenvalue of A, the matrix A is unitarily

similar to





B 0

0 C



, where C = diag (1, ωm, ..., ω
m−1
m ). Since k(A) = m(A), W (B)

is contained in the interior of W (C). This proves the necessity of our assertion. The

convers is obvious. �

We end this section by stating a natural question on k(A) = n for an n-by-n

(n ≥ 3) irreducible doubly stochastic matrix A. Is it true that k(A) = n if and

only if n ≥ 3, the numerical range W (A) is the n-regular polygon with vertices

e2πi/n, 0 ≤ j < n, and the dimension of Ha equals 2 for any nonextreme boundary

point a of W (A)? Obviously, the sufficiency for k(A) = n holds since A must be

normal. Nevertheless, the necessity fails. For example, let

A =

















0 0 1/3 2/3

0 0 2/3 1/3

1 0 0 0

0 1 0 0

















.

Then A is an irreducible doubly stochastic matrix with m(A) = 2 since its spectrum

is {1,−1,
√
3i/3,−

√
3i/3}. In addition, A is clearly not Hermitian. By Proposition

3.3.5 (b) (ii), we have k(A) = 4. However, W (A) is not the regular 4-polygon with

vertices e2πi/4, 0 ≤ j < 4.
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