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SUMMARY

This study presents the use of Tustin’s friction model and a disturbance observer (DOB) to improve
the steady-state error (SSE) of a bi-axial inverted pendulum–cart system (IPCS). Furthermore, a hybrid
controller contains a feedback linearization control for pendulum angle in the region of 3–12◦ to enlarge
the angle of operation and an H∞ control using loop shaping design procedure (LSDP) for cart position
and pendulum angle in the region of 0–3◦ to stabilize the IPCS, respectively. Experimental results reveal
that the pendulum maximum angle of operation is improved from 7 to 12◦; the SSE of the angle of the
pendulum is reduced from 0.85 to 0.1◦, and the SSE of the position of the cart is reduced from 10 to 1.4mm.
Experimental results are illustrated and films are provided at the web site http://hinfinity.myweb.hinet.net
to show the effectiveness and robustness of the hybrid controller with Tustin’s friction model and DOB
compensation. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many approaches have been applied to inverted pendulum–cart systems (IPCSs). Furuta et al. [1]
used linear state feedback with an integrator controller to regulate a double-inverted pendulum on
an inclined rail. Tsachouridis and Medrano-Cerda [2] implemented an H∞ controller via a robust
reduced-order dynamic observer with an integrator to control a triple-inverted pendulum on an
inclined rail. Chen et al. [3] used sliding-mode control (SMC) to erect a parallel-rod IPCS. Some
papers [4–8] performed different two-phase hybrid control to swing-up and stabilize an IPCS from
the pendant position. A hammer was adopted in [7] to cause an external disturbance force to
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demonstrate the robustness of the system. Sprenger et al. [9] balanced a 2D IPCS on a two-joint
rotational robot. They further compared the performance of three pendulum angle sensors and
concluded that the encoder is the best followed by the Hall effect sensor with the potentiometer least
favored. Cho and Jung [10] presented decentralized neural network for a circular trajectory position
tracking control while balancing a 2D IPCS on an X–Y table. Similar to [10], Wai and Chang
[11] used decentralized adaptive SMC to track a periodic sinusoidal command. However, no clear
experimental data were shown. The decentralized control of [9–11] treats the coupling effects of a
2D IPCS as a disturbance. van der Linden and Lambrechts [12] implemented an H∞ controller to
eliminate the dry frictional force between the cart and the rail to stabilize an IPCS. Grasser et al. [13]
built a revolutionary two-wheeled IPCS that can perform stationary U-turns. Many experimental
films are provided at their web site to show the performances of the revolution machine. Table I
shows the control strategies, types of pendulum and friction compensation methods used in the
reference papers described above. As for the newly developed control algorithms, Olfati-Saber [14]
developed a fixed point backstepping procedure for global/semiglobal stabilization of an IPCS.
Aguilar-Ibañez and Gutierrez [15] presented a simple model matching controller for stabilization

Table I. Control strategies in the references and this study.

Reference Control strategy
Pendulum

dimension/rod
Friction

compensation Photo/film

1 Linear state feedback with
integrator

1D/2 rods, inclined
rail

Viscous model Photo

2 H∞ control with integrator 1D/3 rods, inclined
rail

No No

3 Sliding-mode control 1D/2 rods, parallel
rods

No No

4 Fuzzy (swing-up) and linear
state feedback

1D/1 rod No Photo

5 Fuzzy (swing-up) and
adaptive sliding mode

1D/1 rod Coulomb/bounded
uncertainty

No

6 Energy approach (swing-up)
and linear state feedback

1D/1 rod No No

7 Gray prediction (swing-up)
and PD (hammer impact)

1D/1 rod Coulomb/bounded
uncertainty

Photo

8 Quasi-zero torque trajectory
(swing-up) and linear
quadratic regulator

1D/2 rods No Photo/film

9 Linear state feedback
(decentralized algorithm)

2D/1 rod Coulomb+viscous
model

Photo

10 Neural networks
(decentralized algorithm)

2D/1 rod No Photo

11 Adaptive sliding-mode
(decentralized algorithm)

2D/1 rod No No

12 H∞ control 1D/1 rod Coulomb/bounded
uncertainty

No

13 Pole-assignment 1D/1 rod No Photo/film
This study Hybrid control with

performance specification
list (9V battery impact)
(ball balancing)

2d/1 rod, inclined
rail (shown in film)

Coulomb+stiction+
Stribeck+viscous
model and DOB

Photo/film
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the IPCS. In [16, 17] a Lyapunov function combined with LaSalle’s invariance principle was
proposed to stabilize a 1D/2D IPCS. The simulation results in [14–17] showed that the IPCSs
have a very large attraction domain over the upper half-plane and a very slow time convergence.

However, most authors have focused on the control law, in either the swing-up or the stabilizing
region. The frictional forces that may degrade the system performance are usually ignored or treated
as a bounded uncertainty. Some works considered friction compensation, but only for Coulomb
and/or viscous forces. The authors’ observations show that Coulomb and/or viscous friction are
not the only existing forces that can cause undesirable phenomena such as stick–slip oscillation,
poor tracking performance and steady-state error (SSE).

In this study, Tustin’s friction model [18–20] and a disturbance observer (DOB) [21] are proposed
to compensate for the friction and disturbance between the cart and the rail to reduce the SSE of
the IPCS. Then, a hybrid controller is employed, which contains the following:

1. A feedback linearization control for pendulum angle. The approach has the advantages on
the maximum angle of operation and system robustness in the region of 3–12◦.

2. An H∞ control using loop shaping design procedure (LSDP) is performed to stabilize the
cart position and pendulum angle of the IPCS in the region of 0–3◦. The advantage is that
LSDP dose not require �-iteration for its solution, and explicit formulas for the corresponding
controllers are available.

The overall control system shown in Figure 1 consists the following elements: the ��-filter [22]
used to estimate the cart velocity ẋ and the pendulum angular velocity �̇; Tustin’s friction model
and a DOB based on the cart velocity loop proposed to compensate for the frictional force f and
disturbance d between the cart and the rail of the IPCS; the Mux block combining vector signals
into larger vector; the Demux block splitting vector signal into smaller vectors; the hybrid control
designed to eliminate the nonlinear and unstable characteristics of the system; the final control
signals through the 16-bit digital-to-analog converter (DAC) and the motor driver with servo gain
KaKtKn applied to control the bi-axial IPCS. The experimental results show that the proposed
approach effectively controls the system.

The experimental setup of the bi-axial IPCS includes the following.

1. A cart moving within an operation range 320×320mm on a ball-screw-driven X–Y table,
where the X -axis is on the top.

2. A pendulum with a maximum angle of inclination ±18◦ hinged on a universal joint so as
to rotate freely in the 2D working space. Two 1800-Pulse/Rev incremental optical encoders
with an angular resolution of 0.05◦ are used to measure the angles of the pendulum.

3. Two 300W DC motors with 1000-Pulse/Rev encoders used as actuators to drive the cart on
the X–Y table through the ball screw. Since the pitch of the ball screw is 5mm, the resolution
of the cart’s horizontal displacement is 1.25�m.

4. In torque mode, two motor drivers applied to actuate the DC motors with the following spec-
ifications; maximum input voltage is ±10V and maximum output current is 15A (transient)
and 5A (continuous).

5. A 4-axis motion control card connected between a PC and the IPCS to record the angles of
the pendulum and the positions of the cart, and to send DAC signals to the motor drivers.

6. AMD K6-2 500MHz PC as the host computer and the control algorithm written in Borland
C++ 3.1 with a sampling rate of 500Hz.

The remainder of the paper is organized as follows: Section 2 deals with modeling the bi-axial
IPCS. In Section 3, Tustin’s friction model and the DOB are addressed to compensate for the
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Figure 1. Whole control loop of the bi-axial inverted pendulum system.

friction and disturbance between the cart and rail. The hybrid controller is described in Section 4. In
Section 5, the experiments show the effectiveness and robustness of the control schema. Section 6
discusses the system with friction and DOB compensation results. The final conclusion is drawn
in Section 7.

2. SYSTEM MODELING

The 2D IPCS as shown in Figure 2 is adopted to formulate the equations of motion. Tables II and III
are the nomenclature and values of the real system. The equations of motion are obtained by using
the Euler–Lagrange formulation [1]:[

ẍ

ÿ

]
=

[
c3c0 −c3c1

−c̄3c̄1 c̄3c̄0

][
(Fx − fx )

(Fy− fy)

]
+

[
c3c2
c̄3c̄2

]
(1a)

[
�̈

�̈

]
=

[
−c4c6c3c0 c4c6c3c1
c̄4c̄6c̄3c̄1 −c̄4c̄6c̄3c̄0

][
(Fx − fx )

(Fy− fy)

]
+

[
−c4c6c3c2+c4c5−c4��

−c̄4c̄6c̄3c̄2+ c̄4c̄5− c̄4��

]
(1b)

where k0x =m0x +m1+m2, k0y =m0y+m1+m2, k1=m1l1+m2l2, k2= J1+ J2+m1l21 +m2l22 ,

�x =k0xk2−k21 cos
2 �, �y =k0yk2−k21 cos

2�, c0=k2�y cos�, c1=k21k2 cos
2�sin�sin�

c2 = k1�y cos� ·��−k0yk1k2 cos�sin�sin� ·��

+k1k2�y cos�[cos�sin�(�̇2+�̇2)+2�̇�̇sin�cos�]
+k0yk1k2 cos�sin2�sin�(k1g cos�−k2�̇

2 cos�)−k31k2 cos
2�sin2�sin��̇2

−k1�y cos�cos�(k1g sin�+2k2�̇�̇sin�)

c3 = (�x�y cos�−k0yk
2
1k2 cos�sin2�sin2 �)−1, c4=(k2 cos�)−1

c5 = k1g sin�+2k2�̇�̇sin�, c6=k1 cos�
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Figure 2. Coordination of the 2D inverted pendulum system.

and c̄i can be obtained by interchanging (x,�) with (y,�) in ci , i.e.

c̄0 = k2�x cos�, c̄1=k21k2 cos
2 �sin�sin�

c̄2 = k1�x cos�·��−k0xk1k2 cos�sin�sin� ·��

+k1k2�x cos�[cos�sin�(�̇2+ �̇2)+2�̇�̇sin�cos�]
+k0xk1k2 cos�sin

2 �sin�(k1g cos�−k2�̇
2 cos�)

−k31k2 cos
2 �sin2 �sin��̇2

−k1�x cos�cos�(k1g sin�+2k2�̇�̇sin�)

c̄3 = (�y�x cos�−k0xk
2
1k2 cos�sin

2 �sin2�)−1, c̄4=(k2 cos�)−1

c̄5 = k1g sin�+2k2�̇�̇sin�, c̄6=k1 cos�

In the text, the following symbols are defined:

x= [x y]T, �=[� �]T, F=[Fx Fy]T, f=[ fx fy]T, s=[�� ��]T

Ka = [Kax Kay]T

Xd =
[

�d �̇d xd

�d �̇d yd

]T

, X=
[

� �̇ x

� �̇ y

]T

From (1), it is observed that the frictional force f and the joint frictional torque s will degrade the
performance of the IPCS.
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Table II. Nomenclature.

Symbol Description

x/y Position of the cart at the X/Y -axis
�/� Angle of pendulum about the X/Y direction
Fx/Fy Control force on the X/Y -axis
fx/ fy Frictional force on the X/Y -axis
��/�� Joint frictional torque in the �/� direction
m0x/m0y Cart mass of the X/Y -axis
m1 Pendulum head mass
m2 Rod mass
meq=m1+m2 Equivalent mass of the pendulum
M The summation of the cart mass and meq
l1 Length of the pendulum from the head to the cart
l2 Half-length of the rod
leq Equivalent length of the pendulum
r1 Radius of the pendulum head
r2 Rod radius
rjoint Bearing radius of the joint
J1 Moment of inertia of the pendulum head with respect to the cart
J2 Moment of inertia of the rod with respect to the cart
Kax/Kay Amplifier gain of X/Y axis
Kt Motor torque constant
Kn Ball screw transfer factor
Kp Gain
Tc Coulomb force between the cart and the rail
Ts Stiction force between the cart and the rail
Td Viscous damping coefficient between the cart and the rail
vs Stribeck velocity constant
v Cart velocity
jdx /jdy Joint viscous damping coefficient in the X/Y direction
jcx /jcy Joint Coulomb force in the X/Y direction

3. TUSTIN’S FRICTION MODEL AND THE DOB

The static Tustin’s friction model and the DOB are employed to compensate for the friction
and disturbance between the cart and the rail. Considering the resolution of the cart’s horizontal
displacement is 1.25�m, one employs Tustin’s model to model the frictional force (neglecting the
presliding effect) in cart–rail. Tustin’s model shown in Figure 3 comprises Coulomb force Tc, stic-
tion force Ts, Stribeck force (Ts−Tc)e−(v/vs) and viscous force Tdv, and it is expressed as follows:

f =Tc+(Ts−Tc)e
−(v/vs)+Tdv (2)

In Tustin’s model, the schema shown in Figure 4 is used to establish the friction–velocity map.
Since steady-state velocity is concerned to obtain the friction–velocity map, the effect of phase
shift induced by DAC, encoder and ��-filter is negligible in the case. The dynamic equation of
the velocity feedback system for Figure 4 is

M v̇+(Td+KpKaKtKn)v+Tf=KpKaKtKnu (3)

where Tf=Tc+(Ts−Tc)e−(v/vs).
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Table III. Parameters of the real system.

m0x 3.1 kg
m0y 14.2 kg
m1 0.25 kg
m2 0.05 kg
meq 0.3 kg
l1 0.32m
l2 0.1675m
leq 0.2946m
r1 0.025m
r2 0.004m
rjoint 0.0045m
J1 8.6×10−3 kgm2

J2 4.68×10−4 kgm2

Kt 2.65kgcm/A
Kn Force/torque=2�/0.005
Kax KtKn 2.3N/V
Kay KtKn 10.57N/V
Kp 1.5

When the system’s velocity response v reaches a steady state, i.e. v̇∼=0 and v=vss, Equation (3)
equals the following:

Tdvss+Tf=KpKaKtKn(u−vss) (4)

Namely, the input force KpKaKtKn(u−vss) to the IPCS is equal to the frictional force Tdvss+Tf.
Varying the step command u from low velocity to high velocity yields the force set KpKaKtKn
(u−vss) and the IPCS velocity response set vss. Meanwhile, the stiction force Ts is obtained by
using the open-loop breakaway test. A voltage increase of 2−14V/s is applied to the IPCS. Ts is
obtained from the abrupt change in the IPCS position response with the threshold set at 2 encoder
counts. Figure 5 plots the friction–velocity experimental data. The parameters of Tustin’s friction
model are obtained with the following procedures.

1. For the positive X -axis direction, when the speed is higher than the upper limit speed of
the Stribeck friction region (about 0.0017m/s), the friction–velocity relation forms a straight
line:

f =Tc+Tdv (5)

Then, by the least-square method, one can obtain the viscous damping coefficient Td and
Coulomb friction force Tc.

2. When the speed is lower than the upper limit speed of the Stribeck friction region, rearranging
(2) yields

ln[( f −Tc−Tdv)/(Ts−Tc)]=−(v/vs) (6)

The friction–velocity relation also becomes a straight line. Similarly, with known values on
the left term of (6), one could obtain the slope −(1/vs) by the least-square method.
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v
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cT−

sT−
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Coulomb Friction

Viscous Friction 

Stribeck Friction

vTd

)(T cs eT
−(v/vs)−

Figure 3. Tustin’s friction model.

Figure 4. Control schema used in constructing Tustin’s friction model.

Thus, Tustin’s friction model for the positive X -axis direction is obtained. The model for the
other direction or axis can also be obtained similarly. Finally, the equations for both axes are as
follows:

fx

⎧⎪⎨
⎪⎩

fv+
x

=[0.4151+(0.54−0.4151)e−(v+
x /(7.389×10−4))+11.1871v+

x ]N

fv−
x

=−[0.4701+(0.55−0.4701)e−(|v−
x |/(8.392×10−4))+12.976|v−

x |]N
(7a)

fy

⎧⎪⎨
⎪⎩

fv+
y

=[1.7789+(2.4311−1.7789)e−(v+
y /(3.662×10−3))+54.7558v+

y ]N

fv−
y

=−[2.116+(2.9596−2.116)e−(|v−
y |/(4.094×10−3))+68.5919|v−

y |]N
(7b)

In relation to the pendulum joint friction, the Stribeck force cannot be experimentally observed,
only viscous force and Coulomb force are considered. Considering the dynamics of pendulum (not
inverted) including viscous friction and Coulomb friction with respect to the joint, one can obtain
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Figure 5. Friction–velocity map for the two axes: (a) X -axis and (b) Y -axis.

the following equation:

meql
2
eq�̈+jdr2joint�̇+meqgleq sin�−rjointjcsgn(�)=0 (8)

where jd=[ jdx jdy ]T, jc=[ jcx jcy ]T.
Figure 6 illustrates the experimental and simulation results of the pendulum natural oscillation

starting around 16◦ in �/� directions, respectively. The jc is obtained when the oscillations reach
steady state, i.e. �̈=�̇=0 and �=0.05◦ (1 count) and the jd is obtained from best fitting of the
experimental data. They are listed as follows: jc=[0.168 0.168]TN and jd=[45 30]T kg/s.
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Figure 6. Natural oscillations of the pendulum in two directions: (a) X -axis and (b) Y -axis.

Since the frictional force of the physical plant depends on time, temperature, the position of the
cart and other factors. The static Tustin’s friction model cannot exactly model the frictional force
at all times. Moreover, external disturbances and plant uncertainties will degrade the performance
of the system. For the cart velocity feedback loop system, the DOB shown in Figure 7 is employed
to solve this problem. In Figure 7, P(s)=KaKtKn/(Ms+Td) denotes the transfer function of cart
model including the servo gain between cart velocity command and response; Pn(s) is nominal
plant of P(s); d is disturbance; U(s) is measurement noise. A DOB is generally introduced into
motion control systems to eliminate the ‘equivalent disturbance’ as much as possible, and to
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Figure 7. DOB structure (dashed line).

Table IV. Parameters of DOB.

Q(z) Pn(s)
Q
Pn

(z)

0.4215z−1+0.229z−2

1−0.5186z−1+0.1691z−2 Pnx (s)= 2.3
3.4s+12

Q
Pnx

(z)= 421.4768z−1−418.083z−2

1−0.5186z−1+0.1691z−2

Pny(s)= 10.57
14.5s+61.68

Q
Pny

(z)= 391.54z−1−387.75z−2

1−0.5186z−1+0.1691z−2

force the actual system to become a nominal plant. The details of how a DOB works have been
explained elsewhere [21]. In DOB,Q(s) can be interpreted as a complementary sensitivity function.
Therefore, a sensible choice is to let the low-frequency dynamics of Q(s) closed to one for
disturbance rejection and model uncertainties. In this study, a second-order Butterworth low-pass
filter (LPF) [23]

Q(s)= 1

(s/wc)2+√
2(s/wc)+1

(9)

is designed so that the equationQ(s)/Pn(s) in DOB is a strict proper function. The cutoff frequency
wc is designed at 100Hz and the zero-order hold (ZOH) equivalence of analog filter is used
to determine the digital Butterworth LPF Q(z). The parameters of DOB are listed in Table IV.
Therefore, the DOB output −d(z) is obtained as

−d(z)=
[
Q(z)F∗− Q

Pn
(z)ẋ

]
N (10)

4. DESIGN OF CONTROL LAW

In this section, Tustin’s friction model and the DOB are assumed to compensate for the friction
and disturbance between the cart and the rail. The hybrid controller consisting of two controls is
employed. One is a feedback linearization control for pendulum angle in the region of 3◦�|�|�12◦
and the other is an H∞ control using LSDP in the region of 0◦�|�|<3◦.

4.1. The feedback linearization control for pendulum angle

Since the feedback linearization method is hardly used for both angle and position controls and in
order to enhance the dynamic response of IPCS, the method is applied for pendulum angle in the
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region of 3◦�|�|�12◦. The control of the position of the cart is temporarily ignored and will be
reactivated in 0◦�|�|<3◦. A feedback linearization control is implemented to ensure the erection
of the pendulum and to drive the angle of the pendulum into 0◦�|�|<3◦. The control strategy
provides the advantages of maximized operation angle of the pendulum and system robustness.
The control law in this region is

F=−
[−c4c6c3c0 c4c6c3c1

c̄4c̄6c̄3c̄1 −c̄4c̄6c̄3c̄0

]−1
⎡
⎣ −c4c6c3c2+c4c5−c4��+(k�̇�̇+k��)

−c̄4c̄6c̄3c̄2+ c̄4c̄5− c̄4��+(k�̇�̇+k��)

⎤
⎦ (11)

Setting k� =[k� k�]T and k�̇ =[k�̇ k�̇]T as positive definite and substituting (11) into (1b) yields

�̈+k�̇�̇+k��=�̈+(k1+k2)�̇+(k1k2)�=
(
d

dt
+k1

)(
d

dt
+k2

)
� (12)

where ki>0.
Therefore, Equation (12) is asymptotically stable. In this study, k� =[254.5 145.6]T, k�̇ =

[32.02 24.3]T and ki=(−17.3−14.7)/X -axis;(−13.5−10.8)/Y -axis.

4.2. The H∞ control using LSDP

Since the H∞ control is designed in 0◦�|�|<3◦, the model of (1) is linearized and decoupled as
two independent subsystems. The linear state equation for the X -axis is

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ

ẍ

�̇

�̈

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0
−k21g

k0xk2−k21
0

0 0 0 1

0 0
k0xk1g

k0xk2−k21
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x

ẋ

�

�̇

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

k2
k0xk2−k21

0

−k1
k0xk2−k21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Fx − fx )+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

k1
k0xk2−k21

0

−k0x
k0xk2−k21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

��+ex (13)

where ex denotes the linearization error (including dynamic coupling effect), which is considered
as input disturbance to the system. The estimate of ‖ex‖ is about 0.0129 for the underlying system.
Similarly, the linear state equation of the Y -axis can be obtained by changing the (x,�) with the
(y,�). Table V lists the open-loop characteristics of the IPCS revealing that the system is an
unstable and a non-minimum phase system.

Table V. Characteristics of the pendulum–cart system.

Open-loop poles (0 0 ±5.07)/X -axis
(m1=250g, l1=32cm) (0 0 ±4.94)/Y -axis
Open-loop poles (0 0 ±10.49)/X -axis
(m1=50g, l1=8cm) (0 0 ±10.4)/Y -axis
Open-loop zeros for two axes (±4.9)/(m1=250g, l1=32cm)

(±10.38)/(m1=50g, l1=8cm)
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Figure 8. Loop shaping design procedure: (a) W1, W2 shaping the nominal plant G and (b) combining
the Ks with the shaping functions W1, W2.

The LSDP includes three systematic procedures as follows [24].
1. Loop shaping: Figure 8(a) shows a pre-compensator W1 and/or a post-compensator W2 to

shape the nominal plant G. The shaping functions W1 and W2 are combined to form the
shaped plant GS=W2GW1, and GS has a normalized left coprime factorization expression
GS=M−1

s Ns. The singular values of the shaped plant GS are high gain at low frequencies,
low gain at high frequencies and the slope near the crossover frequencies should not be large.

2. Robustly stabilize the shaped plant GS: A controller Ks internally stabilizes the nominal
system GS if and only if ∥∥∥∥∥

[
Ks

I

]
(I −GSKs)

−1M−1
s

∥∥∥∥∥∞
�� (14)

for a specific �>�min (�=1.1�min in this study). The lowest achievable value of � and the
corresponding maximum stability margin 	 were derived by McFarlane and Glover [25] as

�min=	−1
max={1−‖[Ns Ms]‖2H}−1/2=(1+
max(X Z))1/2 (15)

where 
max denotes the spectral radius (maximum eigenvalue), and for a minimal state
space realization (A,B,C,D) of GS, Z and X are the unique positive-definite solutions to the
following algebraic Riccati equations:

(A−BS−1DTC)Z+Z(A−BS−1DTC)T−ZCTR−1CZ+BS−1BT = 0 (16)

(A−BS−1DTC)TX+X (A−BS−1DTC)−XBS−1BTX+CTR−1C = 0 (17)

where R= I +DDT, S= I +DTD.
A controller Ks for a specific � is obtained

Ks=
[
A+BF+�2(LT)−1ZCT(C+DF) �2(LT)−1ZCT

BTX −DT

]
(18)

where F=−S−1(DTC+BTX), L=(1−�2)I +X Z .
3. The final feedback controller K for the plant G is then obtained by combining the Ks with

the shaping functions W1 and W2 such that K =W1KsW2, Figure 8(b).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 19:512–531
DOI: 10.1002/rnc



HYBRID CONTROLLER DESIGN 525

Frequency (rad/sec)

G
ai

n
(d

B
)

Singular Values

10-1 100 101 102
-100

-80

-60

-40

-20

0

20

40

60

G
W2*G*1

Gs

W2*G*1

Figure 9. Open-loop singular values of nominal plant G, W2∗G∗1 and shaped plant GS.

The authors follow the above procedures to obtain the controller K and a stability margin
	�	max. If 	max is small, W1 and W2 should be adjusted so as the specific loop shape met the
robust stability requirements and then K is re-evaluated.

In this study, considering the control energy and the angle of the pendulum is more important
than the position of the cart, we select W1=2.4(s+5)/(s+12) and W2=[ 300 0

90 ]. The open-loop
singular values of G, W2∗G∗1 and GS=W2GW1 are plotted in Figure 9. The value of � is 4.01
(or stability margin 	=1/4.01, which is much larger than the value of input disturbance ‖ex‖ in
Equation (13)). The transfer functions of FHe(s)/He(s) and Fxe(s)/xe(s) in the controller K are

FHe(s)
He(s)

= −802.2s5−21746s4−216109s3−1039525s2−2556007s−2720982

s5+55.38s4+764.2s3+3173.9s2+2991s+32.45
(19a)

Fxe(s)
xe(s)

= −61.6s5−2254.5s4−33626.4s3−208642s2−492628s−233563

s5+55.38s4+764.2s3+3173.9s2+2991s+32.45
(19b)

The output of K is F(s)=FHe(s)+Fxe(s). For implementing the controller, the fifth order (19) is
reduced to the fourth order by using the balanced truncation method [26]. The controller K in the
LSDP control for the two axes is the same. However, the amplifier gains (in the drivers) Kax/Kay
are tuned in proportional to the cart mass m0x/m0y so that the two axes have similar transfer
function.

5. EXPERIMENTAL RESULTS

For swing-up pendulum from rest (maximum inclination angle ±18◦) into |�|�12◦, one adopts a
simple algorithm based on the following rationale. The torques due to gravity with respect to the
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Figure 10. Bi-axial control performance of the hybrid controller: (a) position, control, and angle about
the X -axis and (b) position, control, and angle about the Y -axis.

universal joint on the X–Z and Y–Z planes are obtained as follows:

−(m1l1+m2l2)g cos�sin� (20a)

−(m1l1+m2l2)g cos�sin� (20b)

The IPCS is accelerated by a force larger than Equations (20a) and (20b) for a short time and then
pushed back immediately to generate a reverse torque to counteract (20a) and (20b). The swing-up
algorithm is chosen as follows:

F=
{
a sin�, t�0.5s

−a sin�, t>0.5s
, a= 6

sin18◦KaKtKn (21)

Figure 10 plots the experimental data of the bi-axial hybrid control with friction compensation
and DOB. Figures 11 and 12 illustrate the performances of the H∞ control with/without friction
compensation and DOB (Film: Friction DOB). Table VI summarizes the control performances
among several compensation strategies. The results show that the control strategy in this study is
the best, which improves the control performance more than 7 times as compared with the method
of no friction compensation. The following experiments are conducted to verify that the proposed
control schema ensures the system stability and robustness.

1. Maximum operation angle (MOA) test: The MOA is an important performance index for
the hybrid controller. The operation angle to trigger the controller is varied from |�|=10◦
to 18◦. The rod is slowly pushed from rest to an angle �. When the pendulum rod reaches
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Figure 11. Performance of H∞ control with friction compensation and DOB: (a) X -axis and (b) Y -axis.
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Figure 12. Performance of H∞ control without friction compensation and DOB: (a) X -axis and (b) Y -axis.
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Table VI. Comparison of steady-state error among several compensation strategies.

Control strategy |�e|max/|�e|max |xe|max/|ye|max

H∞+DOB+Tustin’s model (this study) 0.1◦/0.1◦ 1.4mm/1.2mm
H∞ 0.45◦/0.85◦ 5.7mm/10mm
H∞+DOB 0.3◦/0.75◦ 5.1mm/8.5mm
H∞+Tustin’s model 0.1◦/0.1◦ 1.6mm/1.3mm
H∞+(Tustin’s—Coulomb) 0.3◦/0.75◦ 4.5mm/9mm
H∞+(Tustin’s—viscous) 0.1◦/0.1◦ 2.1mm/1.6mm
H∞+(Tustin’s—Stribeck) 0.1◦/0.1◦ 1.8mm/1.5mm
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Figure 13. A 9V battery impacts on the head of the pendulum at 1 and 9.9 s: (a) X -axis and (b) Y -axis.

angle �, a small force is applied to the rod to push it into the hybrid controller and to
determine whether the pendulum is erect. This procedure is repeated on the X -axis/Y -axis.
The MOA is obtained |�|max=[14◦ 12◦]T (Film: MOA Test). Moreover, if only the H∞
control is active, the MOA is |�|max=[8◦ 7◦]T.

2. A 9V battery is used to impact the pendulum head to verify the system robustness. Figure 13
is the experimental data and the impacts applied at 1 and 9.9 s, respectively. For showing
the system’s non-minimum phase phenomenon, a 75mm rapid shift backward and forward
of the IPCS is performed. Figure 14 is the experimental data and the non-minimum phase
phenomenon of the cart position occurs at 0.4 and 10.4 s in the sub-figures ‘Position of
X -axis/Y -axis’ (Film: Swing Impact 75mmShift).
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Figure 14. The non-minimum phase phenomenon occurs at 0.4 and 10.4 s: (a) X -axis and (b) Y -axis.

Figure 15. The pendulum–cart with a ping-pong ball shifted inside the H∞-form slot.

3. An H∞-form slot shown in Figure 15 is used to show the tracking control of the bi-axial
IPCS. In this experiment, the X -axis is inclined at 10◦ and the Y -axis remains horizontal
(shown in film). A square transparent acrylic plate with a width of 200mm is mounted on
the top of the pendulum and a ping-pong ball falls free at a height of 50mm above the plate.
Then, the H∞-form plastic plate with a slot width of 22mm is inserted into the pendulum
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rod and the IPCS with a moving step size of 0.1mm is shifted within the slot to demonstrate
the system stability (Film: H-infinity Slot).

4. A 9V battery impacts on a 50 g pendulum head at a height of 8 cm above the universal joint
to verify the system robustness with parameters variation (see Figure 1). The typical values
of the system in the previous experiments are 250 g pendulum head at a height of 32 cm
(Film: 50gHead 8cmHeight).

6. DISCUSSION

1. In Table VI, it is observed that Tustin’s friction compensation is more critical than the
DOB compensation. As for Tustin’s friction model, compensation for the Coulomb force is
more important than that for the viscous force; notably, Stribeck force compensation also
contributes to the performance of the system.

2. In Figure 11, since it is difficult to obtain the vertical reference point of pendulum angle in
experiments, the data of ‘angle �/�’ has one count (0.05◦) bias error.

7. CONCLUSION

In this study, the hybrid control with Tustin’s friction model and the DOB compensation have
been successfully applied to a bi-axial IPCS. The experimental results show that the proposed
control schema that improves the SSE more than 7 times and enlarge the MOA more than 1.7
times can effectively control the IPCS. Moreover, experimental films are provided at the web site
http://hinfinity.myweb.hinet.net to show the effectiveness and robustness of the control schema.
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17. Aguilar-Ibañez C, Gutierrez FO, Sossa AH. Lyapunov approach for the stabilization of the inverted spherical
pendulum. Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, U.S.A., 2006;
6133–6137.

18. Tustin A. The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems.
Journal of the Institution of Electrical Engineers 1947; 94(2A):143–151.

19. Armstrong-Hélouvry B, Dupont P, Canudas de Wit C. A survey of models, analysis tools and compensation
methods for the control of machines with friction. Automatica 1994; 30(7):1083–1138.

20. Canudas de Wit C, Olsson H, Astrom KJ, Lischinsky P. A new model for control of systems with friction. IEEE
Transactions on Automatic Control 1995; 40(3):419–425.

21. Lee HS, Tomizuka M. Robust motion controller design for high-accuracy positioning systems. IEEE Transactions
on Industrial Electronics 1996; 43(1):48–55.

22. Edward PC. Digital Filtering: An Introduction. Houghton Mifflin: Boston, 1992.
23. Millman J. Microelectronics: Digital and Analog Circuits and Systems. McGraw-Hill: New York, 1979.
24. Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Wiley: New York, 1996.
25. McFarlane DC, Glover K. Robust Controller Design Using Normalized Coprime Factor Plant Descriptions.

Lecture Notes in Control and Information Sciences, vol. 138. Springer: Berlin, 1990.
26. Zhou K. Essentials of Robust Control. Prentice-Hall: Englewood Cliffs, NJ, 1998.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 19:512–531
DOI: 10.1002/rnc


