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摘 要       
 

   過去數十年來，囊泡問題的動態數值問題一直是個熱門的議題。在本論文中，

我們透過沉浸邊界法 (immersed boundary method)來描述囊泡的流體數學模型，

公式，包含 Eulerian 座標系下的流體方程式以及建立在 Lagrangian 座標系中有關

界面的變數，而這兩個座標系之間各個變數的轉換，則是藉由 Dirac delta function 
來連結。本論文致力於發展簡易且精確的數值方法來模擬此流體界面問題。 

 
首先，我們提出了一個 fractional step immersed boundary method 用於模擬不

可延展界面之問題(不考慮 bending effect)。我們證明了作用在表面張力 spreading 
operator 是 surface divergence operator 的斜自伴算子 (skew-adjoint)。利用這個特

性，對於流體變數之離散我們可獲得一個對稱矩陣，並可使用 fractional step 方法

解決此線性系統。我們比較了此數值方法的精確度，以及利用本方法研讀不可延

展界面在 shear flow 底下之數值模擬。 
 
再來我們研發出一種 unconditionally stable immersed boundary method 作為二

維的囊泡在 Navier-Stokes 流體之模擬。我們用一種半隱示 (semi-implicit)的方法

來表示囊泡之界面力，而與介面力相關的 stretching factor 則可透過其他的方程式

獲得。我們證明出在本方法中，流體系統的總能量將隨時間而遞減。另外，利用

projection method，對於流場我們推導出一個對稱正定的線性系統，此矩陣可利

用多重網格法 (multi-grid method)有效率地計算其解。在數值實驗中，我們驗證

本方法之精準度，並在效率上遠勝於傳統之顯示邊界力處裡方法。同樣我們也利

用本方法研讀囊泡在二維座標底下之型變動態系統。 
 
最後，我們延伸至三維軸對稱的囊泡問題。與其將表面張力作為一 Lagrange's 

multiplier 來迫使囊泡之不可延展性，我們定義一種 spring-like 表面張力作為本模

型之逼近。囊泡的邊界可利用 Fourier spectral 方法來表示，並且我們可精準地計

算出界面上的平均曲率、高斯曲率等等。透過一系列之數值模擬，我們展示出本

方法之應用性與可靠性。我們使用本方法研讀囊泡在靜止流、重力場影響及

Poiseuille flow 下之動態型變問題。 
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Abstract

Numerical simulation of vesicle dynamics has been a popular issue for many decades.
In this dissertation, a mathematical formulation for suspension of vesicle in fluid is
modeled by immersed boundary method, where a mixture of Eulerian fluid variables
and curve-linear Lagrangian interfacial variables are used, and the linkage between
these two variables is a smoothed Dirac delta function. The purpose of this disser-
tation is to develop accurate and efficient numerical schemes for simulating vesicle
dynamics through immersed boundary method.

Firstly, we propose a fractional step immersed boundary method to mimic dynam-
ical system of an inextensible interface (vesicle without bending effect). In addition to
solving for the fluid variables such as the velocity and pressure, the present problem
involves finding an extra unknown elastic tension such that the surface divergence of
the velocity is zero along the interface. By taking advantage of skew-adjoint prop-
erty between force spreading operator and surface divergence operator, the resultant
linear system of equations is symmetric and can be solved by fractional steps so that
only fast Poisson solvers are involved. The convergent tests for present fluid solver
is performed and confirm the desired accuracy. The tank-treading motion for an in-
extensible interface under a simple shear flow has been studied extensively, and the
results are in good agreement with those obtained in literature. This part of work
has been published in SIAM Journal of Scientific Computing as in [37].

Secondly, we develop an unconditionally stable immersed boundary method to
simulate 2D vesicle under a Navier-Stokes flow. We adopt a semi-implicit bound-
ary forcing approach, where the stretching factor used in the forcing term can be
computed from the derived evolutional equation. By using the projection method to
solve the fluid equations, the pressure is decoupled and we have a symmetric positive
definite system that can be solved efficiently. The method can be shown to be un-
conditionally stable, in the sense that the total energy of fluid system is decreasing.
A resulting modification benefits from this improved numerical stability, as the time
step size can be significantly increased. The numerical result shows the severe time
step restriction in an explicit boundary forcing scheme is avoided by present method.
The part of work has been published in East Asian Journal of Applied Mathematics
as in [22].

Lastly, we extend to simulate three-dimensional axisymmetric vesicle suspended

v



in a Navier-Stokes flow. Instead of introducing a Lagrange’s multiplier to enforce
the vesicle inextensibility constraint, we modify the model by adopting a spring-
like tension to make the vesicle boundary nearly inextensible so that solving for the
unknown tension can be avoided. We also derive a new elastic force from the modified
vesicle energy and obtain exactly the same form as the originally unmodified one.
In order to represent the vesicle boundary, we use Fourier spectral approximation
so we can compute the geometrical quantities on the interface more accurately. A
series of numerical tests on the present schemes have been conducted to illustrate the
applicability and reliability of the method. We perform the convergence check for
fluid variables for present schemes. Then we study the vesicle dynamics in quiescent
flow, Poiseuille and under influence of gravity in detail. The numerical results are
shown to be in good agreement with those obtained in literature. The part of work
has been published in Journal of Computational Physics as in [23].
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Chapter 1

Introduction

Blood flow is a continuous circulation of blood in cardiovascular system. The main
cell in blood is red blood cell, which plays an important role in transporting system
in human body. Especially, vesicles share similar features with red blood cells and
thus its model can be viewed as a simplification of red blood cell. Vesicle dynamics
has been widely investigated in large amount of literatures. The long turn of present
work is to understand the mechanism of red blood cells, and the short turn is to fully
study the hydrodynamical system of vesicle.

1.1 Blood flow and vesicles

Blood flow has been at the center of the attention of scientists since the 19th century.
Blood is circulated around the body through blood vessels by the pumping action
of the heart. Blood flow is a bodily flow that transport essential substances such
as oxygen and nutrients to the cells and take away metabolic wastes from the same
cells. In vertebrates, blood is composed by blood plasma, platelets, red blood cells
and white blood cells. The main part of blood is plasma, which is a Newtonian fluid
and constitutes around 55% of blood fluid (the large part of it is water). The rest
45% is red blood cells , while white blood cells and platelets only occupy less than 1%
in blood. The white blood cells are the cells of the immune system that are involved
in defending the body against both infectious disease and foreign materials; the main
function of platelets is to stop bleeding. A scanning electron microscope image of a
normal red blood cell, a platelet, and a white blood cell is shown in Figure 1.1.

Red blood cells (RBCs), also called erythrocytes, delivering oxygen (O2) to the
body tissues via the blood flow through the circulatory system. They take up oxygen
in the lungs or gills and release it by diffusing thorough membrane of RBC into tis-
sues while squeezing through the body’s vessels. RBCs are also able to transport 2%
carbon dioxide (CO2) away from organisms while the major part of CO2 are trans-
ported by plasma. The membrane of RBC forms a lipid bilayer, which is constructed
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Figure 1.1: The cells in blood. From left to right: red blood cell, platelet and white
blood cell.

by a cytoskeleton network embedding different kinds of proteins, as sketched in Fig-
ure. 1.2. The proteins of the membrane skeleton are responsible for the deformability,
flexibility and durability of the red blood cell. In general, a healthy RBC exhibits
in biconcave shape (see Figure. 1.1) to accommodate maximum carry of oxygen; the
shape of RBC is flexible, especially it can highly deformed while flowing thorough
tiny capillaries with blood.

Figure 1.2: A cartoon showing major proteins on the membrane of RBC.

As mentioned in previous paragraph, the model of RBCs is quite complex due to
variety features on its cell membrane. In order to grasp the fundamentals of blood
flow and link them to the properties of RBCs, we consider a model system of vesicles.
Vesicles are fluidic drops which is similar to the one surrounding living cells without
cytoskeleton network structures (compare to RBCs). The most feature of vesicle is
that it can be viewed as an approximation model of RBC. The membrane of vesicles
has similar properties to the membrane of RBCs, resisting strongly surface dilatation
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and exhibits a resistance against bending. Despite the simplicity structure of vesicle,
many features observed by RBCs were also observed by vesicles. The mechanical
details of vesicles will be introduced later in Chapter 2.

1.2 Existing works

For the past years, the vesicle problems have been extensively explored by the classic
[24] and small deformation theories [40, 32, 12], flow experiments [26, 10], and com-
puter simulations [25, 3, 45, 66, 67, 28, 4, 60, 68, 72]; just to name a few recent ones.
Readers who are interested in more details on those relevant works can refer to the
recent article [72].

The study of vesicle dynamics is a fluid-structure interaction problem. The nu-
merical simulation of the problem consists of not only solving a two-phase flow but
also requiring to enforce an inextensibility constraint along the surface which makes
the problem challenging. Among the numerical methods for simulating vesicle prob-
lems in literature, one can characterize those methods by how the membrane surface
(or interface) is represented and what the fluid solver is used. Based on this charac-
terization, several methods have been developed such as boundary integral method
[25, 66, 67, 4, 68, 72], level set method [41, 60, 36, 43, 11], phase field method [9, 3, 43],
particle collision method [45], immersed interface method [35, 65], and immersed
boundary method [28, 37] et. al.

1.3 Immersed boundary method

The immersed boundary (IB) method proposed by Peskin [48] has been successfully
applied to many fluid-structure interaction problems, see the review [50]. The IB
formulation employs an Eulerian description for the fluid velocity and the pressure,
and Lagrangian description for the configuration of the immersed elastic structure
(immersed boundary or interface). The immersed structure exerts some force into
the fluid that drives the fluid flow and at the same time the fluid flow carries the
immersed structure to a new configuration. This interaction between the fluid and
the immersed structure is linked through a force spreading and velocity interpolating
operator by the usage of smoothed version of Dirac delta function [50]. This method
is easy to implement and efficient simply because the immersed structure (no matter
how complex) is regarded as a force generator to the fluid so the fluid variables can
be solved in a fixed Eulerian domain without generating any structure-fitting grid.
Therefore, many fast efficient fluid solvers can be applied through the framework of
IB method. We will introduce the numerical part of IB method in detail in Chapter 3.
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1.4 Contribution of the present work

In this dissertation, we focus on developing numerical method to mimic vesicle rhe-
ology dynamics through IB method. For two-dimensional space, we propose a frac-
tional step IB method and unconditionally energy stable method, then we extend to
three-dimensional axial symmetric coordinate by using a nearly inextensible approach.
These works are based on our previous work [37, 22, 23]. The brief descriptions of
numerical method are illustrated as below.

• Fractional step immersed boundary method. The governing equation is
an incompressible Stokes equation with a suspension of inextensible interface
(that is, the bending rigidity is neglected). We found that the spreading opera-
tor of force generator has skew-adjoint property to surface divergence operator
both in theoretical continuous and numerical discrete version. By taking advan-
tage of this crucial property, the time-stepping numerical discretization involves
solving a symmetric positive semi-definite matrix, and this linear system can be
done efficiently by employing a preconditioned conjugate gradient method. We
successfully reproduce vesicle-like dynamics such as tank-treading motion under
shear flow. As a benchmark, we also measure the inclination angle and tank-
treading frequency when reaching steady state. The numerical result shows a
highly agreement with those in many other literatures.

• Unconditionally energy stable immersed boundary method. The fluid
equation is governed by a Navier-Stokes equation with suspension of vesicle.
Rather than enforcing purely inextensible constrain, we adopt a nearly inexten-
sible approach to simulate vesicle dynamics. The fluid equations are discretized
by projection method so the pressure is decoupled. Again by using skew-adjoint
property, it leads to solve a symmetric positive sparse linear system respect to
intermediate fluid variable, this can be done efficiently by aggregation-based
multigrid. Meanwhile, we prove that the developed scheme shows an uncondi-
tional stability in energy sense, which means the total energy of fluid system
decreases during time integration. This is a significant step to release restric-
tion of numerical time step due to applying the penalized method. Again we
successfully simulated vesicle dynamics, such as a free relaxation to equilibrium
state, tank-treading motion under shear flow, the numerical cost is substantial
saved by this scheme.

• Simulating three-dimensional axisymmetric vesicles. We extend previ-
ous work to three-dimensional space to link the real world. An axisymmetric
vesicle is suspended in incompressible Navier-Stokes flow in three-dimensional
capillary. Again the nearly inextensible approximation in axisymmetric version
is applied. We have shown that the modified interfacial force due to nearly inex-
tensible approaching has exactly the same form to the original one. Besides, we
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adopt a high accuracy spectral method to evaluate interfacial quantities such
as mean curvature, Gaussian curvature and surface Laplace of mean curvature.
The fluid variables are solved numerically by traditional projection method in
which fast Poisson solver can be applied to obtain fluid velocity filed and pres-
sure increment. We investigated behaviors of axisymmetric vesicle in situation
of freely suspended, under influence of gravity field and passing through capil-
lary in Poiseuille flow. The numerical result shows a good agreement with what
observed in experiment, and this is an evidence showing the reliability of our
proposed scheme.
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Chapter 2

Mathematical model of vesicle
hydrodynamics

The first model used for vesicles can be tracked back to Helfrich (1973) [18], who inves-
tigated the rheology dynamics of vesicle through a elasticity theory. In this chapter,
we introduce more details about vesicle, such as vesicle mechanism, the vesicle sur-
face energy and the the boundary forces on vesicle membrane. The mathematical
formulation of hydrodynamical system for suspended vesicle is given.

2.1 Vesicle mechanics

A vesicle can be visualized as a liquid droplet within another liquid enclosed by a
lipid membrane with the size about 100 nm to 10 µm. Such lipid membrane consists
of tightly packed lipid molecules with hydrophilic heads facing the exterior and inte-
rior fluids and with hydrophobic tails hiding in the middle and thus forms a bilayer
phospholipid with thickness about 6 nm (see Figure 2.1).

Vesicle is widely used for mimicking model of biological cells and also gives many
features observed by living cells. The shape of vesicle is deformable, in equilibrium
state, the vesicle usual appears in shape of biconcave disk because of minimized
surface energy (see Figure 2.2). Topological changes (fusion, division, etc.) of vesicle
are possible but rarely happened in real world. In principle, the vesicle membrane
mainly undergoes two basic deformation factors, which are inextensibility and bending
effect.

At usual room temperature, since the phospholipidic molecules do not bind with
each other, the membrane is thus regard as a liquid phase. In this scenario, phos-
pholipids stay very close and tend to approximate a constant density, it would lead
to local conservation of vesicle surface. Therefore, the membrane is considered as an
inextensible surface. Moreover, because the permeability of vesicle membrane is very
small and fluid inside vesicle is Newtonian incompressible fluid, this contributes to
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Figure 2.1: A cartoon showing a vesicle and its molecular structure on membrane.
Picture is taken from the web site of Wikipedia.

Figure 2.2: Biconcave equilibrium state of vesicles.

total volume of vesicle is conserved as well. The phospholipid membrane is known to
exhibit a resistance against bending, we have to take bending effect into account in
our mathematical formulation.

In consequence, we list three features of vesicle as below.

• The total surface area of vesicle is conserved because of the inextensibility. This
is the intrinsic feature of vesicle which is regarded as a simplified model of red
blood cell. The mathematical formulation of inextensibility will be explained
later in Section 2.3.

• The total volume of vesicle remains a constant since it contains incompressible
Newtonian fluid. The mathematical statement is shown in Section 2.4.

• The bending effect should be considered in modeling vesicle dynamics. The
explicit form of bending force is given in Section 2.2.
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When it comes to vesicle dynamics, we must mention a dimensionless characteristic
variable, the reduced volume, which measures the deflation of the vesicle, plays a
significant role in the vesicle dynamics. It is defined as

ν3D =
V0

4
3
π(S0/4π)3/2

,

where V0 and S0 represent the volume and the surface area of vesicle, respectively.
This dimensionless number is nothing but the volume ratio of the vesicle to a sphere
with the same surface area, and thus is equal to 1 for a sphere. In two dimensions a
parameter equivalent to reduced volume is defined by reduced area, which is defined
by

ν2D =
A0

π(L0/2π)2
,

where A0 and L0 denote for the area and the arc-length of vesicle respectively. Again
this definition follows the ratio of the vesicle to a circle with the same arc-length. In
the rest of dissertation, we would use the notation ν to denote reduced volume (3D)
or reduced area (2D) for convenience.

2.2 Interfacial forces on vesicle

A vesicle membrane is known to be inextensible and exhibits a resistance against
bending. Thus, the membrane energy can be modeled by two parts; namely, the elastic
tension energy Eσ to enforce the inextensibility constraint [71], and the Helfrich type
energy Eb [18] to resist the bending of the membrane. A way to derive the interfacial
forces on vesicle is from the energy point of view, a variational method. Assume E[X]
is an energy functional corresponding to vesicle configuration X (or interface), we can
obtain the interfacial force F by taking variational derivative as

F = −δE[X]

δX
,

where δX is a perturbation on interface. In next subsection, the mathematical defi-
nition of two energies Eσ and Eb are given in both two and three-dimensional space,
and the corresponding interfacial force are obtained.

2.2.1 In two dimensions

Let us define the vesicle by Γ(t), and its configuration is presented by X = X(s, t) =
(X(s, t), Y (s, t)), 0 ≤ s ≤ Lb, where s is a Lagrangian parameter along interface. The
unit tangent vector (along the interface counterclockwise) and normal vector (pointed
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outward of interface) are denoted by τ and n respectively, and these two vectors can
be obtained by

τ = (τ1, τ2) =
Xs

|Xs| and n = (n1, n2) = (τ2,−τ1).

The total vesicle energy E(t) which consists of elastic and bending energy is defined
by

E(t) = Eσ(t) + Eb(t) =

∫

Γ

σ ds +
cb

2

∫

Γ

κ2 ds,

where σ is the surface tension, κ is the curvature and cb is the strength of bend-
ing rigidity. Let us get start the process of variational derivative. Denote X̃(s) =

(X̃(s), Ỹ (s)) as a perturbation of the interface X (omit time variable t) and ε as a
small number. Then the perturbed elastic energy becomes

Eσ(X + εX̃) =

∫ Lb

0

σ|Xs + εX̃s| ds.

Taking the derivative of above energy with respect to ε, we obtain

dEσ

dε
(X + εX̃) =

∫ Lb

0

σ
(Xs + εX̃s)X̃s + (Ys + εỸs)Ỹs√

(Xs + εX̃s)2 + (Ys + εỸs)2

ds.

Then we evaluate the above equation at ε = 0 to obtain

dEσ

dε
(X + εX̃)

∣∣∣∣∣
ε=0

=

∫ Lb

0

σ
Xs

|Xs| · X̃s ds =

∫ Lb

0

στ · X̃s ds

= στ · X̃
∣∣∣∣∣

Lb

0

−
∫ Lb

0

∂

∂s
(στ ) · X̃ ds (integration by part)

= −
∫ Lb

0

∂

∂s
(στ ) · X̃ ds.

This leads to the corresponding elastic tension force

Fσ =
∂

∂s
(στ ). (2.1)

Especially notice that, if tension σ is a constant (for the case of clean droplet), then
the elastic tension force would act only along normal direction of interface. On the
other hand, for obtaining the bending force we perturb the bending energy by

Eb(X + εX̃) =
cb

2

∫ Lb

0

∣∣∣∣
∂2X + εX̃

∂s2

∣∣∣∣
2

ds.

9



Taking derivative with respect to ε obtains

dEb

dε
(X + εX̃)

∣∣∣∣∣
ε=0

= cb

∫ Lb

0

∂X + εX̃

∂s2

∂2X̃

∂s2
+

∂Y + εỸ

∂s2

∂2Ỹ

∂s2
ds

= cb

∫ Lb

0

∂2X

∂s2
· ∂2X̃

∂s2
ds

= −
∫ Lb

0

−cb
∂4X

∂s4
· X̃ ds (integration by part twise)

Therefore we obtain the explicit form of bending force as

Fb = −cb
∂4X

∂s4
. (2.2)

Notice that there is another remarkable version of bending force as

Fb = cb

(
∂2κ

∂s2
+

κ3

2

)
n. (2.3)

One can see the derivation in detail in [27]. Throughout this dissertation, we select
the two-dimensional bending force Fb in Eq. (2.2).

2.2.2 In three dimensions

In three-dimensional case, the vesicle surface is presented by parametric form as
X(α, β, t) = (X(α, β, t), Y (α, β, t), Z(α, β, t)), 0 ≤ α ≤ Lα and 0 ≤ β ≤ Lβ, where α
and β are two Lagrangian parameters. The total energy of vesicle is defined by

E(t) = Eσ(t) + Eb(t) =

∫

Γ

σ dS +
cb

2

∫

Γ

H2 dS,

where H is the surface mean curvature and dS is the local surface element. By taking
variational derivative to the surface energy, one can derive the vesicle boundary force
consisting of the elastic force Fσ and the bending force Fb as

Fσ = ∇sσ − 2Hσn and Fb = cb

(
∆sH + 2H(H2 −K)

)
n, (2.4)

where K is the Gaussian curvature respectively, ∇s is the surface gradient operator,
and ∆s is the surface Laplacian operator. The detailed derivation can be found in
[69]. The computation of these geometrical quantities and operators can be obtained
by geometrical fundamental form, ant they are given in detail in Appendix A.

Remark: Notice that there are terms of derivative of function along interface hap-
pened in the interfacial force term, especially fourth derivative of interfacial position
is involved when evaluating bending force. These terms shall be treated very carefully
in numerical simulation due to there might be a contributed interfacial stiffness.
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2.3 Inextensible formulation

As mentioned previously, the vesicle exhibits inextensible property, which means the
local surface element conserves as a quantity, and obviously this leads to conservation
of global surface area of vesicle. The mathematical description of inextensibility in
two and three-dimensional spaces are shown in the following.

2.3.1 In two dimensions

In two-dimensional space, the vesicle is represented by closed curve and its local arc-
length is conserved. It is straightforward to write changing rate of local arc-length
by

∂

∂t
(|Xs|) =

∂

∂t

(√
X2

s + Y 2
s

)
=

XsXst + YsYst

|Xs| =
∂U

∂s
· τ = (∇s ·U) |Xs| , (2.5)

where U = ∂X
∂t

denotes for velocity defined on the vesicle (interface). From Eq. (2.5),
since local arc-length does not change with time varying, i.e. ∂

∂t
(|Xs|) = 0, we can

deduce that surface divergence of velocity must be zero, that is

∇s ·U = 0. (2.6)

2.3.2 In three dimensions

In three-dimensional case, we start by using the fact

|Xα ×Xβ|n = Xα ×Xβ.

Then taking time derivative to the above equation obtains

∂

∂t
(|Xα ×Xβ|)n + |Xα ×Xβ| ∂n

∂t
=

∂

∂t
(Xα ×Xβ) .

By taking inner product of n on the both side of above equation, we have

∂

∂t
(|Xα ×Xβ|) =

∂

∂t
(Xα ×Xβ) · n

= n · (Uα ×Xβ) + n · (Xα ×Uβ)

= Uα · (Xβ × n) + Uβ · (n×Xα)

=
Uα

W
(Xβ × (Xα ×Xβ)) +

Uβ

W
((Xα ×Xβ)×Xβ)

=
Uα

W
(GXα − FXβ) +

Uβ

W
(EXβ − FXα)

=
GUα − FUβ

W
·Xα +

EUβ − FUα

W
·Xβ

= (∇s ·U) |Xα ×Xβ| .
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Notice that we use the notation of first fundamental form (refer to Appendix A). One
can see that, from the above equation, inextensible property again leads zero surface
divergence of velocity field as

∇s ·U = 0. (2.7)

In summary, inextensible property is equivalent zero surface divergence of velocity
field as in Eqs. (2.6) and (2.7), and this is regarded as an additional constraint. In
fact, tension plays a role as Lagrangian’s multiplier to enforce inextensibility, we will
explain it in detail in later section.

2.4 Hydrodynamical equations

In previous section, the membrane driven force of vesicle is obtained by minimizing
total vesicle energy. The next step is to couple the motion of equation for fluid to
the membrane force. The framework of fluid vesicle mechanism system will be clearly
stated in this section.

2.4.1 Incompressible Navier-Stokes equations

Firstly, we begin by explaining mathematical formulation of fluid incompressibility.
Consider a specific system of fluid with control volume V (shape can change with
time), but the total mass does not change. Denote density by ρ and velocity field by
u, under Lagrangian framework, by tracking total mass of this control volume, the
mass conservation law is stated as

D

Dt

∫

V (t)

ρ dV = 0, (2.8)

where D
Dt

= ∂
∂t

+u·∇ denotes for material derivative. By Reynolds transport theorem,
the above equation can be written by

∫

V

∂ρ

∂t
+∇ · (ρu) dV = 0. (2.9)

Since control volume is arbitrary chosen, the integrand in Eq. (2.9) is always zero,
i.e.,

∂ρ

∂t
+∇ · (ρu) = 0. (2.10)

Eq. (2.10) is called continuity equation and can be alternatively written in the form
of

Dρ

Dt
+∇ · u = 0. (2.11)
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For incompressible fluid, shape of control volume can change but mass and volume
remain, that is, the density of fluid element remains constant. Under this assumption,
we can deduce Dρ

Dt
= 0, thus mass conservation law of Eq. (2.11) is reduced by

∇ · u = 0. (2.12)

The Navier-Stokes equation is govern by conservation law of momentum. In clas-
sical mechanics, momentum is the product of the mass and velocity of an object.
The conservation of momentum describes the total amount of momentum within a
control volume keeps as a constant. That is to say, momentum is neither created
nor destroyed, but it can be changed by external forces. Actually, the conservation
of momentum is an application of Newton’s second law of motion, which states the
rate change of momentum of a fluid mass is equal to net external forces acting one
the mass. Such external forces are consisted of two classes. One is the body force
(body force per unit mass), gravitational force or electromagnetic force for instance;
the other one is surface force (surface force per unit area), such as pressure forces or
viscous stress.

With basic physical property of fluid mechanics, now we begin to introduce math-
ematical formulation of Navier-Stokes equation. We assume the fluid is Newtonian,
based on constitutive law, the expression for stress tensor is

σij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.13)

where δij presents Kronecker delta function (δij = 1 if i = j; δij = 0 if i 6= j), p
is the pressure and µ is the viscosity. Throughout this dissertation, the density and
viscosity are both assumed to be uniform constant. Coupling the fluid incompress-
ibility constrain Eq. (2.12), the mathematical equations of motion consist of a viscous
incompressible fluid in a domain Ω can be written as follows.

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σij = −∇p + µ∆u in Ω,

∇ · u = 0 in Ω.

Notice that there is no equation describing evolution of pressure p. In fact, pressure p
plays a role as Lagrange’s multiplier to enforce the fluid incompressibility constraint.
On the other hand, for well-poseness of Navier-Stokes equation, the velocity field is
equipped with boundary condition, and we name several types of boundary condition
as follows.

• No-slip boundary condition: There is no fluid which penetrates the boundary,
the fluid is at rest status on boundary, that is

u|∂Ω = 0.
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• Inflow boundary condition: The velocity field is given specifically on the bound-
ary, that is

u|∂Ω = ub.

• Outflow boundary condition: Neither velocity component changes in normal
direction to the boundary, that is

∂u

∂n
= 0.

2.4.2 Coupling the fluid equations to vesicle forces

In this section, the governing equation of fluid motion and force acting on vesicle
membrane are combined by Immersed boundary formulation. In immersed boundary
framework, the fluid variables (velocity field, pressure, etc.) are defined in Eulerian
coordinate and interfacial variables (membrane position, membrane force, etc.) are
defined in Lagrangian coordinate. These two types of variable are linked by inter-
action equations in which the Dirac delta function plays a prominent role. Now we
come to state the whole fluid system of vesicle dynamics through immersed boundary
method in two-dimensional space. The mathematical equations of motion consist of
a viscous incompressible fluid in a domain Ω containing an immersed, inextensible,
massless vesicle boundary (or interface) Γ(t) which can be written in an immersed
boundary formulation as

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + µ∆u +

∫

Γ

F(s, t)δ(x−X(s, t)) ds in Ω, (2.14)

∇ · u = 0 in Ω, (2.15)

∇s ·U = 0 on Γ, (2.16)

∂X

∂t
(s, t) = U(s, t) =

∫

Ω

u(x, t)δ(x−X(s, t)) dx on Γ. (2.17)

The interfacial force F consists of tension and bending force as

F = Fσ + Fb =
∂

∂s
(στ )− cb

∂4X

∂s4
. (2.18)

Eqs. (2.14)-(2.15) are the incompressible Navier-Stokes equations with a singular
force term F arising from the vesicle membrane force. Eq. (2.16) represents the
inextensibility constraint of the vesicle surface which is equivalent to the zero surface
divergence of the velocity along the interface. Eq. (2.17) simply explains that the
interface moves along with the local fluid velocity (the interfacial velocity). Here, the
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interfacial velocity U is the interpolation of the fluid velocity at the interface defined
as in traditional IB formulation. The interaction between the fluid and the interface
is linked by the two-dimensional Dirac delta function δ(x) = δ(x)δ(y). One can easily
extend to fully three-dimensional Navier-Stokes equation by taking three-dimensional
vesicle membrane force mentioned previously.

It is worthy to mention that, in fact, the tension σ acts like a Lagrange’s multiplier
function to enforce the local inextensibility constraint along the surface which is
exactly the same role played by the pressure to enforce the fluid incompressibility
in Navier-Stokes equations. Therefore, the development of an efficient and accurate
algorithm for vesicle dynamics remains quite challenging; not to mention the vesicle
surface moves along with the surrounding fluid as well.
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Chapter 3

Immersed boundary method

The immersed boundary (IB) method was firstly proposed by Peskin [48] to simulate
blood heart value problems. The IB method has found a wide variety of applications
in biological mechanics and has been successfully applied to study fluid-structure
interaction problems. The main idea of IB method is to treat Lagrangian material
as a part of fluid in which arises additional interfacial forces. The fluid variables
are solved in regular Cartesian domain (uniform rectangular lattice) without any
modification of fluid equation; the interface is tracked by a set of discrete Lagrangian
markers which can freely move in Eulerian domain and the shape of interface can has
complex geometry. The interfacial forces can be computed through spatial position
of Lagrangian markers and only has effect in its vicinity fluid, i.e. these forces are
spread into its surrounding fluid lattices. With presence of these forces, the new fluid
velocity can be obtained. The interface position is then advanced by this new fluid
velocity through an interpolation.

3.1 Connection between fluids and interfaces

In this section, we introduce the linkage between fluid equation and Lagrangian in-
terface. By taking advantage of Dirac delta function, a value of function can be
obtained through product with a shifted delta source function, and then integrate
over the whole space (thus the shifted delta function is regarded as a kernel of in-
tegral). We clarify this definition by writing the spreading forces on Cartesian grid
by

f(x, t) =

∫

Γ

F(s, t) δ(x−X(s, t)) ds, (3.1)

and the interpolation of fluid velocity field by

u(X(s, t), t) = U(s, t) =

∫

Ω

u(x, t) δ(x−X(s, t)) dx. (3.2)
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Notice that Eqs. (3.1) and (3.2) represent for a line integral along the interface and an
area integral over whole fluid domain respectively (in three-dimensional case, they are
surface and volume integral). It is interesting to see that the total amount of singular
force in Eq. (3.1), which is an integral of f(x, t) over whole domain, is equal to the
total force on the immersed interface. This means although the interfacial forces
(force per length) are converted to body force (force per area), the total amount of
applied body force still preserves to act on the fluids. The important feature of IB
method is Eq. (3.1) converts Lagrangian to Eulerian coordinate while Eq. (3.2) does
in opposite direction.

3.2 Discrete delta function

As mentioned in previous section, the major novelty of IB method is introducing a
delta function, which plays an important role converting coordinate between Eulerian
and Lagrangian manner. Since delta function is in a view point of distribution under
generalized function theorem, in the aspect of numerics, the discrete version of delta
function shall be acquired.

The discrete version of delta function δh(x) should be smooth enough to guarantee
the smoothness of distribution of Eqs. (3.1) and (3.2), and has compact support in
a narrow region to ensure the numerical efficiency when computing spreading and
interpolation. A two-dimensional delta function is required to be the form of

δh(x) =
1

h2
φ

(x

h

)
φ

(y

h

)
,

where x = (x, y), φ(r) is a real function, and δh → δ as h → 0. We say φ(r) has
moment condition of order q if

∑
i

(α− i)rφ(α− i) =

{
1, r = 0
0, 1 ≤ r ≤ q − 1

(3.3)

for all values of α. When r = 0, ensures total mass of the discrete delta function is
identically one. The moment condition (3.3) represents for the numerical accuracy of
interpolation. For instance of one-dimensional case, suppose φ has moment condition
q, let f be a real smooth function and α be an arbitrary real number, we have

f(α)− h
∑

i

f(xi)δh(xi − α) = O(hq),

where xi = ih. The above equation can be done directly by using Taylor expansion
on f(xi) at the point x = α. Now we list several regular discrete functions which are
popular and widely used in lot of literatures. They are the 2-point hat function φ1

[29], the 4-point cosine function φ2 [48], the 3-point discrete function φ3 [54], and the
4-point piecewise function φ4 [50] as follows (with moment condition of order 2,1,2
and 2 respectively).
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• A 2-point hat function φ1:

φ1(r) =

{
1− |r|, |r| ≤ 1,
0, 1 ≤ |r|.

• A 4-point cosine function φ2:

φ2(r) =

{
1
4

(
1 + cos(πr

2
)
)
, |r| ≤ 2,

0, 2 ≤ |r|.

• A 3-point function φ3:

φ3(r) =





1
3
(1 +

√−3r2 + 1), |r| ≤ 0.5,
1
6

(
5− 3|r| −

√
−3(1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1,

0, 1.5 ≤ |r|.

• A 4-point function φ4:

φ4(r) =





1
8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1
8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, 2 ≤ |r|.

However, it has been found that with these regular discrete functions, a non-physical
oscillations might happened in numerical simulation which is mainly due to the deriva-
tive of regular functions do not satisfy certain moment condition. In [70], the authors
developed an simple smoothing technique for discrete delta function φ∗(r) by extend-
ing a half mesh wider support as

φ∗(r) =

∫ r+0.5

r−0.5

φ(r′) dr′. (3.4)

In terms of the definition (3.4), the smoothed functions φ∗1, φ∗2, φ∗3 and φ∗4 correspond-
ing to φ1, φ2, φ3 and φ4 can be formulated as follows.

• A smoothed 2-point hat function φ∗1:

φ∗1(r) =





3
4
− r2, |r| ≤ 0.5,

9
8
− 3

2
|r|+ r2

2
, 0.5 ≤ |r| ≤ 1.5,

0, 1.5 ≤ |r|.
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• A smoothed 4-point cosine function φ∗2:

φ∗2(r) =





1
4π

[
π + 2 sin

(
π
4
(2r + 1)

)− 2 sin
(

π
4
(2r − 1)

)]
, |r| ≤ 1.5,

− 1
8π

[−5π + 2π|r|+ 4 sin
(

π
4
(2|r| − 1)

)]
, 1.5 ≤ |r| ≤ 1.5,

0, 2.5 ≤ |r|.

• A smoothed 3-point function φ∗3:

φ∗3(r) =





17
48

+
√

3π
108

+ |r|
4
− r2

4
+ 1−2|r|

16

√
−12r2 + 12|r|+ 1

−
√

3
12

sin−1
(√

3
2

(2|r| − 1)
)

, |r| ≤ 1,

55
48
−

√
3π

108
− 13|r|

12
+ r2

4
+ 2|r|−3

48

√
−12r2 + 36|r| − 23

+
√

3
36

sin−1
(√

3
2

(2|r| − 3)
)

, 1 ≤ |r| ≤ 2,

0, 2 ≤ |r|.

• A smoothed 4-point function φ∗4:

φ∗4(r) =





3
8

+ π
32
− r2

4
, |r| < 0.5,

1
4

+ 1−|r|
8

√
−2 + 8|r| − 4r2 − 1

8
sin−1

(√
2(|r| − 1)

)
, 0.5 ≤ |r| ≤ 1.5,

17
16
− π

64
− 3|r|

4
+ r2

8
+ |r|−2

16

√
−14 + 16|r| − 4r2

+ 1
16

sin−1
(√

2(|r| − 2)
)
, 1.5 ≤ |r| ≤ 2.5,

0, 2.5 ≤ |r|.

A comparative plot between regular function φ and corresponding smoothed func-
tion φ∗ are depicted in Figure. 3.1. To summarize, we list the advantages of smoothed
function below.

• Through Eq. (3.4), the smoothed function has a half mesh wider support and
gains one higher derivative than regular one

• The moment conditions of smoothed function are preserved from original regular
function except φ∗2 gains moment condition of order 2.

• The derivative of smoothed functions φ′(r) have one order higher moment con-
dition than φ(r).

One can refer the details of proof for last two points in [70]. In our numerical exper-
iments, the smoothed delta function indeed benefits not only improving the stability
of whole numerical scheme, but also removing nonphysical interfacial oscillation. We
take φ∗4 as a standard to construct discrete delta function throughout all numerical
simulations in this dissertation.
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Figure 3.1: The figure of discrete function φi (i = 1, 2, 3, 4) and correspond smoothed
functions φ∗i (i = 1, 2, 3, 4).

3.3 Numerical setup

In this section, we introduce a numerical setup for spatial discretization based on
standard finite difference method in detail. Firstly, a famous and traditional stag-
gered grid is applied for discretization of fluid equations. Under layout of staggered
grid, fluid equations can be solved accurately by some existing fluid solver, such as
projection method. Secondly, the usage of boundary conditions and approximation
of values at ghost point will be carried out. Lastly, the numerical setting of interfacial
values are presented.

3.3.1 Staggered grid

The staggered marker-and-cell (MAC) grid was proposed by Harlow and Welsh [17] to
simulate viscous impressible flow with free surface. The rectangular computational
domain Ω is set by Ω = [a, b] × [c, d], speaking in detail, the pressure is defined
on the grid points labeled as x = (xi, yj) = (a + (i − 1/2)4x, c + (j − 1/2)4y),
i = 1, 2, · · · ,m and j = 1, 2, · · · , n, while the velocity components u and v are
defined at (xi, yj−1/2) = (a + (i− 1)4x, c + (j − 1/2)4y) and (xi−1/2, yj) = (a + (i−
1/2)4x, c + (j − 1)4y), respectively. Here, we assume that a uniform mesh width
h = 4x = 4y is used, although that is not necessary. One can see the sketch of
staggered grid from Figure 3.2.

Let us demonstrate a standard second-order finite difference method based on stag-
gered grid for fluid equation. In two-dimensional space, the incompressible Navier-
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Figure 3.2: The layout of staggered grid in two-dimensional rectangular domain. The
red dots indicate location of pressure p, while the green and blue triangles represent
for velocity component u and v respectively.

Stokes equation is expressed explicitly by

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ f, (3.5)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2

)
+ g, (3.6)

∂u

∂x
+

∂v

∂y
= 0, (3.7)

where f and g represent external forces. Let start with discretization of fluid incom-
pressibility in Eq. (3.7), a second-order accurate finite difference based on Figure. 3.2
gives

ui+1/2,j − ui−1/2,j

h
+

vi,j+1/2 − vi,j−1/2

h
= 0. (3.8)

In Eqs. (3.5) and (3.6), the standard second-order finite difference expressions for the
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derivatives with respect to space for (i, j)-cell are computed by
(

u
∂u

∂x

)

i+1/2,j

= ui+1/2,j

ui+3/2,j − ui−1/2,j

2h
,

(
v
∂u

∂y

)

i+1/2,j

= vi+1/2,j

ui+1/2,j+1 − ui+1/2,j−1

2h
,

(
∂p

∂x

)

i+1/2,j

=
pi+1,j − pi,j

h
,

(
∂2u

∂x2

)

i+1/2,j

=
ui−1/2,j − 2ui+1/2,j + ui+3/2,j

h2
,

(
∂2u

∂y2

)

i+1/2,j

=
ui+1/2,j−1 − 2ui+1/2,j + ui+1/2,j+1

h2
,

(
u

∂v

∂x

)

i,j+1/2

= ui,j+1/2

vi+1/2,j+1 − ui+1/2,j−1

2h
,

(
v
∂v

∂y

)

i,j+1/2

= vi,j+1/2

vi,j+3/2 − vi,j−1/2

2h
,

(
∂p

∂y

)

i,j+1/2

=
pi,j+1 − pi,j

h
,

(
∂2v

∂x2

)

i,j+1/2

=
vi−1,j+1/2 − 2vi,j+1/2 + vi+1,j+1/2

h2
,

(
∂2v

∂y2

)

i,j+1/2

=
vi,j−1/2 − 2vi,j+1/2 + vi,j+3/2

h2
.

Notice that the terms ui,j+1/2 and vi+1/2,j do not show up in staggered grid formation,
and these two terms can be evaluated by a second-order linear interpolation as

ui,1+1/2 =
1

4

(
ui−1/2,j + ui+1/2,j + ui−1/2,j+1 + ui+1/2,j+1

)
,

vi+1/2,j =
1

4

(
vi,j−1/2 + vi+1,j−1/2 + vi,j+1/2 + vi+1,j+1/2

)
.

In further chapters, we will use the notations ∇h, ∇h· and ∆h to denote for numerical
gradient, divergence and Laplace mentioned above.

3.3.2 Ghost values from boundary conditions

In this section, we demonstrate the evaluation of approximation for ghost values due
to they are used in fluid solver. In staggered grid formation, the pressure is define on
a cell center, while velocity component u and v are on cell face.
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In our numerical simulation, we always assume that u is given on x = a and
x = b, and v is also known on y = c and y = d. That is, Dirichlet boundary
conditions (either no-slip or inflow) are assigned to u(a, y), u(b, y), v(x, c) and v(x, d).
For the rest boundary conditions ,u(x, c), u(x, d), v(a, y) and v(b, y), can be set as
either Dirichlet or Neumann boundary type. Under this assumption, the boundary
values of u1/2,j and um+1/2,j can be obtained exactly corresponding to its boundary
conditions u(a, y) and u(b, y), as well as boundary values of vi,1/2 and vi,n+1/2 to
v(x, c) and v(x, d). Therefore, the ghost points are ui+1/2,0, ui+1/2,m+1, v0,j+1/2 and
vm+1,j+1/2. We separate two types of boundary condition to approximate those ghost
values bellow.

• Dirichlet boundary condition: The value of ghost point is evaluated by a
second-order extrapolation as follows.

ui+1/2,0 = 2u(xi+1/2, c)− ui+1/2,1,

ui+1/2,n+1 = 2u(xi+1/2, d)− ui+1/2,n,

v0,j+1/2 = 2v(a, yj+1/2)− v1,j+1/2,

vm+1,j+1/2 = 2v(b, yj+1/2)− vm,j+1/2.

• Neumann boundary condition: Suppose the value of ∂u
∂y

(x, c) is given, then
the ghost value ui+1/2,0 can be obtained by a central difference with local trun-
cation error O(h2) by

ui+1/2,1 − ui+1/2,0

h
=

∂u

∂y
(xi+1/2, c).

Rearranging the above equation gives

ui+1/2,0 = h
∂u

∂y
(xi+1/2, c)− ui+1/2,1.

The other ghost values are computed in the similar way as

ui+1/2,n+1 = h
∂u

∂y
(xi+1/2, d) + ui+1/2,n,

v0,j+1/2 = h
∂v

∂x
(a, yj+1/2)− v1,j+1/2,

vm+1,j+1/2 = h
∂v

∂x
(b, yj+1/2) + vm,j+1/2.
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3.3.3 Lagrangian manners

For the immersed interface X, we use a collection of discrete points sk = k∆s, k =
0, 1, · · · ,M , with the interface mesh width ∆s so the Lagrangian markers of the
interface are represented by Xk = X(sk). Other interfacial quantities, such as force
density F and velocity U are defined on position Xk so the notations Fk = F(sk)
and Uk = U(sk) are used. One can see the illustration of IB framework of regular
uniform grid and set of discrete Lagrangian markers in Figure 3.3.

Figure 3.3: The basic framework of IB method, spreading discrete Lagrangian markers
in a computational domain with uniform mesh.

Especially pay attention that we often have to compute derivatives of interfacial
quantities. For instance, the vesicle membrane forces which consist of tension and
bending force involve evaluating derivatives of position Xk. Therefore calculation of
derivative along the interface plays an important role to the dynamics of the interface.
Here we provide two ways to compute derivative of a function along interface. Without
loss of generality, for any function defined on the interface ψ(s), we approximate the
partial derivative ∂ψ

∂s
by

• Finite difference method: The value of ∂ψ
∂s

can be approached by standard
second-order central difference scheme as

Dfψ(s) =
ψ(s + ∆s/2)− ψ(s−∆s/2)

∆s
.

• Spectral method: Since ψ is assumed to be periodic along interface, we can
adopt the spectral Fourier discretization to achieve higher-order of accuracy.
The interface is represented by the discrete Fourier series expansion as

ψ(s) =

M/2−1∑

k=−M/2

ψ̂ke
iks,
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where ψ̂k is the corresponding Fourier coefficients for ψ(s). This Fourier coef-
ficients can be performed very efficiently by using the Fast Fourier Transform
(FFT). Then the Fourier coefficients of P -th derivative of ψ(s) can be obtained

by taking an inverse FFT to (ik)P ψ̂k.
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Chapter 4

Fractional step immersed
boundary method

In this chapter, we develop a fractional step method based on IB formulation for
Stokes flow with an inextensible interface (vesicle without bending stiffness). Solving
the fluid variables such as the velocity and pressure, the present problem involves
finding extra unknown elastic tension such that the surface divergence of the velocity
is zero along the interface. Once the velocity is found, the interface is moving accord-
ing to the local fluid velocity. Since the fluid is incompressible and the interface is
inextensible, both the area enclosed by the interface and the total length of the in-
terface should be conserved. Notice that, the dynamics of vesicles are determined by
their boundary rigidity, inextensibility, and the hydrodynamical forces. Our present
model for inextensible interface can be regarded as a simplified vesicle model without
bending effect.

The rest of the chapter are organized as follows. In the next section, we describe
our governing equations for the Stokes flow with an inextensible interface based on
IB formulation. We also show the skew-adjoint property between the spreading oper-
ator acting on the tension and the surface divergence of the velocity. In Section 4.2,
the symmetry of the resultant matrix equation is provided first, and then a numerical
algorithm based on the fractional step method is developed. Finally, the numerical re-
sults including the convergence tests and the tank-treading motion for an inextensible
interface under a simple shear flow are shown in detail in Section 4.4.

4.1 Governing equations

We begin by stating the mathematical formulation of the Stokes flow with an inex-
tensible interface. Consider there is a moving, immersed, inextensible interface Γ(t)
in the fixed fluid domain Ω. We assume that the fluids inside and outside of the
interface are the same so the governing equations in IB formulation can be written
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as follows.

−∇p + µ∆u +

∫

Γ

∂

∂s
(στ )δ(x−X(s, t)) ds = 0 in Ω, (4.1)

∇ · u = 0 in Ω, (4.2)

∇s ·U = 0 on Γ, where U(s, t) =

∫

Ω

u(x, t)δ(x−X(s, t)) dx, (4.3)

∂X

∂t
(s, t) = U(s, t) on Γ. (4.4)

Eqs. (4.1) and (4.2) are the familiar incompressible Stokes equations with a singular
force term arising from the interface. Eq. (4.3) represents the inextensibility constraint
of the interface which is equivalent to the zero surface divergence of the velocity along
the interface. Here, the interfacial velocity U is simply the interpolation of the fluid
velocity at the interface which is defined as in traditional IB formulation. Eq. (4.4)
simply represents that the interface moves along with the local fluid velocity (the
interfacial velocity). The interaction between the fluid and the interface is linked
by the two-dimensional Dirac delta function δ(x) = δ(x)δ(y). Unlike the traditional
IB formulation in which the elastic tension σ(s, t) is either known or a function of
immersed boundary configurations, here, the tension is a part of solution needed to
be determined. In this model, we consider the Stokes flow; however, the numeri-
cal method can be extended to Navier-Stokes flow straightforwardly by treating the
nonlinear advection terms explicitly during the time evolution.

The difficulties in solving the above interfacial problem are as follows. Firstly, since
the fluid is incompressible and the interface is inextensible, both the area enclosed
by the interface and total length of the interface should be conserved simultaneously.
Furthermore, the local inextensibility constraint (4.3) is more stringent than the con-
servation of the total interfacial length since the latter one is a global constraint.
Secondly, the elastic tension must be treated as an unknown function which is needed
to be solved with the fluid variables simultaneously. In previous literature, most of
related work is based on boundary integral methods, see for example, [71, 66, 59] and
the references therein. However, boundary integral methods generally assume infi-
nite domains, and cannot be generalized to full Navier-Stokes equations since there
is no corresponding Green function. Until recently, Kim and Lai [28] have applied a
penalty IB method to simulate the dynamics of inextensible vesicles. By introduc-
ing two different kind of Lagrangian markers, the authors are able to decouple the
fluid and vesicle dynamics so that the computation can be performed more efficiently.
One potential problem of this approach is that the time step depends on the penalty
number and must be chosen smaller as the penalty number becomes larger. In [35],
a new finite difference scheme based on immersed interface method (IIM) has been
developed for solving the present problem in Navier-Stokes flow. The authors treat
the unknown elastic tension as an augmented variable so that the augmented IIM can
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be applied. In this chapter, we discretize the equations (4.1)-(4.3) directly without
decoupling and use a fractional step method to solve the resultant linear system of
equations. The numerical algorithm will be given in next section.

Before to continue, we first prove that spreading operator acting on the function σ
and the surface divergence operator of the velocity are skew-adjoint with each other.
To proceed, let us define the spreading operator S of σ and the surface divergence
operator ∇s of U as follows.

S(σ) =

∫

Γ

∂

∂s
(στ )δ(x−X(s)) ds. (4.5)

∇s ·U =
∂U

∂τ
·τ =

∂U

∂s
·τ

/
|Xs| = ∂

∂s

(∫

Ω

u(x)δ(x−X(s)) dx

)
·τ

/
|Xs| . (4.6)

We also define the inner product of functions on Ω and Γ in the following.

〈u,v〉Ω =

∫

Ω

u(x) · v(x) dx, 〈f, g〉Γ =

∫

Γ

f(l) g(l) dl, (4.7)

where l in Eq. (4.7) is the arc-length parameter. Then we have

〈S(σ),u〉Ω =

∫

Ω

(∫

Γ

∂

∂s
(στ )δ(x−X(s)) ds

)
· u(x) dx

=

∫

Γ

∂

∂s
(στ ) ·

(∫

Ω

u(x)δ(x−X(s)) dx

)
ds

= −
∫

Γ

σ

(
τ · ∂U

∂s

)
ds (intergartion by parts and the closed interface)

=

∫

Γ

σ

(
−∂U

∂s
· τ

/
|Xs|

) ∣∣∣∣
∂X

∂s

∣∣∣∣ ds

= 〈σ,−∇s ·U〉Γ = 〈σ, S∗(U)〉Γ (4.8)

By comparison, it leads that the spreading operator and the surface divergence oper-
ator are skew-adjoint.

The reason for showing the skew-adjointness of those two operators are two fold.
Firstly, since the surface divergence of velocity is zero in Eq. (4.8), from the above
derivation, we have 〈S(σ),u〉Ω = 0. That is, the present elastic tension does not do
work to the fluid which is not surprising since it is the Lagrange multiplier for the
inextensible constraint. However, if we add the bending force along the interface as
the one in vesicle problems [66, 28], then the bending force does do work to the fluid.
Secondly, the skew-adjointness is also satisfied in discrete sense (see in next section)
so that the resultant matrix equation is symmetric; therefore, some efficient iterative
solvers such as conjugate gradient (CG) method can be easily applied.
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4.2 Numerical algorithm

We now are ready to discretize Eq. (4.1)-(4.4) by the IB method. Let ∆t be the time
step size, and the superscript of the variables denote the time step index. At the
beginning of each time step n, the interface configuration Xn

k , and the unit tangent
τ n

k−1/2 are all given. The numerical algorithm can be written as follows.

−∇hp
n+1 + µ∆hu

n+1 +
M−1∑

k=0

Ds

(
σn+1τ n

)
k
δh(x−Xn

k)∆s = 0, (4.9)

∇h · un+1 = 0, (4.10)

∇sh
·Un+1

k =
Un+1

k −Un+1
k−1

∆s
· τ n

k−1/2

/
|DsX

n|k−1/2 = 0, (4.11)

Un+1
k =

∑
x

u(x)n+1δh(x−Xn
k) h2. (4.12)

Once we obtain the new velocity field un+1 on the fluid grid, we can interpolate the
new velocity to the marker points by Eq. (4.12), and move the Lagrangian markers
to new positions. That is,

Xn+1
k = Xn

k + ∆tUn+1
k . (4.13)

Therefore, we have

Xn+1
k −Xn+1

k−1

∆s
=

Xn
k −Xn

k−1

∆s
+ ∆t

Un+1
k −Un+1

k−1

∆s
.

By multiplying the above equation by itself and using the zero discrete surface diver-
gence (4.11), we obtain the following quality

∣∣∣∣
Xn+1

k −Xn+1
k−1

∆s

∣∣∣∣
2

=

∣∣∣∣
Xn

k −Xn
k−1

∆s

∣∣∣∣
2

+ (4t)2

∣∣∣∣
Un+1

k −Un+1
k−1

∆s

∣∣∣∣
2

,

which leads to

|DsX
n+1|2k−1/2 = |DsX

n|2k−1/2 + (∆t)2 |DsU
n+1|2k−1/2. (4.14)

Thus, we conclude the point-wise error for the local stretching factor is first-order
accurate which is comparable to the accuracy of the IB method.
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4.3 Implementation details

4.3.1 Discrete skew-adjoint operators

In this subsection, we show that the spreading operator S acting on the elastic tension
and the surface divergence operator ∇s acting on the velocity are also skew-adjoint
in the discrete sense. That is, we shall prove the numerical identity for Eq. (4.8). To
proceed, we first define the corresponding discrete inner product on the fluid grid Ωh

and the interfacial grid Γh in the following

〈u,v〉Ωh
=

∑
x

u(x)·v(x) h2, 〈φ, ψ〉Γh
=

M∑

k=1

φk−1/2 ψk−1/2 |DsX|k−1/2 ∆s, (4.15)

where the second summation is nothing but the mid-point rule for the second integral
of (4.7). We also define the discrete spreading operator Sh acting on the discrete
elastic tension σh as

Sh(σh) =
M−1∑

k=0

Ds (στ )k δh(x−Xk)∆s. (4.16)

Then we have

〈Sh(σh),u〉Ωh
=

∑
x

(
M−1∑

k=0

Ds (στ )k δh(x−Xk)∆s

)
· u(x) h2

=
M−1∑

k=0

Ds (στ )k ·
(∑

x

u(x)δh(x−Xk) h2

)
∆s =

M−1∑

k=0

Ds (στ )k ·Uk∆s

=
M−1∑

k=0

σk+1/2 τ k+1/2 − σk−1/2 τ k−1/2

∆s
·Uk∆s

= −
M∑

k=1

σk−1/2

(
Uk −Uk−1

∆s

)
· τ k−1/2 ∆s (summation by parts)

= 〈σh,−∇sh
·U〉Γh

= 〈σh, S
∗
h(U)〉Γh

.

One should notice that this discrete skew-adjoint property is crucial to our IB formu-
lation for solving Eqs. (4.9) to (4.11). Due to the fact that discrete surface divergence
of the velocity is zero in Eq. (4.11), we can re-scale this constraint to make the resul-
tant matrix obtained by Eq. (4.11) is the transpose of the resultant matrix obtained
by the discrete spreading operator of the tension. One can also verify this symmetric
property by expressing the terms explicitly. The detail is given in the Appendix B.
We now are ready to write down the linear system of equations for Eqs. (4.9) to
(4.11), and develop a numerical algorithm to solve the system.
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4.3.2 Existence of the solution

By using the staggered grid for the discretization of fluid variables, it is well-known
that the matrix obtained by the discrete divergence operator of the fluid velocity
can be written as the transpose of the discrete gradient operator of the pressure. As
discussed in previous subsection, the resultant matrix obtained by the discrete surface
divergence of velocity can be written as the transpose of the matrix obtained by the
discrete spreading operator of the tension. Thus, the linear system for Eqs. (4.9)-
(4.11) is symmetric and can be written as




L G S

GT 0 0

ST 0 0







u

p

σ


 =




bc1

bc2

bc3


 , (4.17)

where the sub-matrix L, G and S are represented the discrete Laplacian µ∆h, discrete
gradient −∇h, and the discrete spreading operator Sh. The sub-matrix size of L, G
and S are ((m−1)n+m(n−1))×((m−1)n+m(n−1)), ((m−1)n+m(n−1))×(mn)
and (m− 1)n+m(n− 1)×M , respectively. The right-hand side vector [bc1, bc2, bc3]

T

of Eq. (4.17) consists only of the velocity boundary conditions since the pressure does
not need the boundary condition in staggered grid formulation.

Let us discuss the existence of the linear system of Eq. (4.17). From now on, we
denote the matrix in (4.17) by A. As is known, without the effect of the inextensible
interface, the linear system becomes pure Stokes flow as

[
L G

GT 0

][
u

p

]
=

[
bc1

bc2

]
. (4.18)

Let us denote the matrix in Eq. (4.18) by Ã. It is also well-known that the nullity

of Ã equals to one since the pressure is unique up to a constant, and the existence
of a solution can be verified by using the discrete incompressible constraint (4.10).

To be precisely, since the rank of deficiency of Ã is only one, based on the algebraic
structure of the sub-matrix G, the kernel of Ã is

ker(Ã) = span{[ 0 · · · 0︸ ︷︷ ︸
(m−1)n+m(n−1)

1 · · · 1︸ ︷︷ ︸
mn

]T}. (4.19)
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And for any vector z ∈ ker(ÃT ) = ker(Ã), we have

zT

[
bc1

bc2

]
=

mn∑

k=1

(bc2)k =
n∑

j=1

u0,j

h
−

n∑
j=1

um,j

h
+

m∑
i=1

vi,0

h
−

m∑
i=1

vi,n

h

= −
(
−

n∑
j=1

u0,jh +
n∑

j=1

um,jh−
m∑

i=1

vi,0h +
m∑

i=1

vi,nh

)
h−2

=

(
m∑

i=1

n∑
j=1

(
ui,j − ui−1,j

h
+

vi,j − vi,j−1

h

)
h2

)
h−2

= 0, (by the discrete incompressibility (4.10)) (4.20)

which shows the compatibility condition for the existence of a solution.
If the effect of the inextensible interface is added, the matrix Ã is augmented by

S and ST to become A as in (4.17). Since the matrix S comes from the discrete
spreading operator of the tension, the entries of S depend on the number of moving
Lagrangian markers, their positions and tangents. It is unlikely to show rigorously
that the nullity of A is exactly equal to one; however, we have checked the above
statement to be true in our numerical experiments. So the apparent kernel will be

ker(A) = span{[ 0 · · · 0︸ ︷︷ ︸
(m−1)n+m(n−1)

1 · · · 1︸ ︷︷ ︸
mn

0 · · · 0︸ ︷︷ ︸
M

]T}, (4.21)

and the existence of a solution for the linear system (4.17) follows the equality of
(4.20) immediately.

4.3.3 Fractional step method

In this subsection, we follow the idea of fractional step method developed by Taira
and Colonius [64] to solve the resultant linear system of equations (4.17). In [64], the
authors applied the IB method to simulate the incompressible flow over solid bodies
with prescribed body surface motion. Unlike the previous approaches in [13, 57, 30],
they introduce the boundary force as another Lagrange multiplier to enforce the no-
slip constraint for the velocity at the immersed boundary. From this point of view, the
present approach shares the similar spirit as in [64] by introducing the elastic tension
as a new Lagrange multiplier to enforce the surface divergence free constraint (4.11)
along the interface. Since the pressure can be regarded as a Lagrange multiplier
for the fluid divergence free constraint (4.10), one can group those two Lagrange
multipliers as a new column vector φ = [p, σ]T and combine the sub-matrices G and
S as Q = [G,S], the linear system (4.17) now becomes

[
L Q

QT 0

][
u

φ

]
=

[
bc1

b̃

]
, where b̃ =

[
bc2

bc3

]
. (4.22)
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As in [64], we perform a block LU decomposition to the above equation to obtain

[
L 0

QT −QT L−1Q

][
I L−1Q

0 I

][
u

φ

]
=

[
bc1

b̃

]
. (4.23)

Note that, the above decomposition is possible (L−1 exists) since the matrix L arising
from the discrete Laplacian operator is symmetric and negative definite. This matrix
decomposition is also referred to Uzawa method. One can further split the above
matrix equation into following steps by introducing an intermediate velocity vector
u∗ as

Lu∗ = bc1, (4.24)

(−QT L−1Q)φ = b̃−QTu∗, (4.25)

u = u∗ − L−1Qφ. (4.26)

Recall that the original matrix denoted by A in Eq. (4.17) is singular due to the
pressure value is unique up to a constant, thus the singularity cannot be removed from
applying the block LU decomposition. In fact, the matrix (−QT L−1Q) in Eq. (4.25)
is symmetric and singular with rank mn+M −1 since G is singular. We now provide
an existence of solution for Eq. (4.25) as follows.

For any vector y ∈ ker((−QT L−1Q)T ) = ker(−QT L−1Q), then the vector y satis-
fies yT (−QT L−1Q)y = (Qy)T (−L−1)(Qy) = 0. This implies that Qy = 0 since −L−1

is a positive definite matrix; thus, y ∈ ker(Q). By writing L · 0 + Qy = 0, we can
immediately obtain the vector [ 0 y ]T ∈ ker(A) = ker(AT ). Notice that, such y also

satisfies yT (̃b−QTu∗) = 0 since yT b̃ = 0 due to the discrete incompressible constraint
(4.10). Therefore, the right-hand side vector of Eq. (4.25) belongs to the range of the
matrix (−QT L−1Q) in which a solution exists. One can also immediately see from the
structure of sub-matrix G that the solution in Eq. (4.25) is unique up to a constant.

Now we are ready to describe the detailed numerical implementation for solving
Eqs. (4.24)-(4.26). It is a common practice to avoid the direct computation of the
inverse of the matrix L since it is too expensive. In [64], a second-order approximation
for L−1 based on Taylor expansion is implemented for solving similar equations as our
Eqs. (4.25)-(4.26), and conjugate gradient method is applied to solve those equations
iteratively. However, this leads to another time step constraint related to the viscosity
and the eigenvalues of the discrete Laplacian. In this chapter, since we are working
on the Stokes flow rather than the Navier-Stokes, we are unable to approximate L−1

using Taylor’s expansion. Although we do not approximate the L−1 directly, we still
can solve Eqs. (4.25)-(4.26) efficiently thanks to the fast Poisson solver developed in
public software package FISHPACK [1]. (The present matrix L is nothing but the
discrete Laplacian operator.) The detailed steps for solving Eqs. (4.24)-(4.26) are as
follows.
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Step 1. Solve Eq. (4.24) by two fast Poisson solvers to obtain intermediate velocity field
u∗.

Step 2. Since the matrix (−QT L−1Q) is symmetric and positive semi-definite, the conju-
gate gradient method can be applied. In each iteration, a matrix-vector product
(−QT L−1Q) ϕ is needed; fortunately, this can be done by letting z = L−1Qϕ,
and solving Lz = Qϕ. Once it is done, we multiply z by −QT to obtain the
product needed. Again, the time-consuming cost in each iteration is one fast
Poisson solver.

Step 3. Find the velocity field u from Eq. (4.26). Since φ is solved via Step 2, by solving
Lw = Qφ, we then obtain u = u∗ − w. Again, this involves applying one fast
Poisson solver.

Therefore, the overall cost in Step 1-3 for our present numerical algorithm can be
counted in terms of the number of fast Poisson solver applied. In next section, we
shall show the numbers of fast Poisson solver used in the Stokes flow for different grid
resolutions.

4.4 Numerical results

In this section, we perform a series of numerical tests for the present scheme. We first
provide the convergence and efficiency tests for the Stokes flow without interfaces. We
then perform the convergence test for the Stokes flow with an inextensible interface.
Finally, we simulate single interface problems in a shear flow to mimic the vesicle
problems in [28] without the bending effect. As expected, one can still see the tank-
treading motion along the interface. Throughout this section, the computational
domain is chosen as Ω = [−1, 1]× [−1, 1].

4.4.1 Convergence and efficiency tests

In this subsection, we perform the convergence test and evaluate the efficiency for the
present Stokes solver without an interface. The numerical algorithm for solving this
problem is exactly same as Step 1-3 described in previous section but with a simpler
version; that is, Q = G and φ = p. The different efficient Stokes solver can be found
in [55, 2, 53] and the references therein.

Here, we use the following analytic solution so we can easily compute the errors
between the exact and the numerical solutions.

ue(x, y) = sin x cos y, ve(x, y) = − cos x sin y and pe(x, y) = ex sin y.

Note that, the above solution does not satisfy the pure Stokes equations so we need to
add some external force field (can be easily computed) into the equations. However,
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m = n 32 64 128 256 512

‖ue − uh‖∞ 1.578e-4 4.481e-5 1.206e-5 3.153e-6 8.120e-7
rate - 1.82 1.89 1.94 1.96
‖ve − vh‖∞ 1.578e-4 4.481e-5 1.206e-5 3.153e-6 8.120e-7
rate - 1.82 1.89 1.94 1.96
‖pe − ph‖∞ 9.615e-4 4.286e-4 2.052e-4 1.005e-4 4.970e-5
rate - 1.17 1.06 1.03 1.02

Table 4.1: Numerical accuracy of Stokes solver.

m = n 32 64 128 256 512

iterations 12 14 15 16 18
CPU time(sec) 0.02 0.05 0.20 0.93 4.97

Table 4.2: The cost of CPU time and iterations.

it does not change the method or algorithm since the extra force term appears in
the right-hand side of equations. Along the boundary of computational domain,
the Dirichlet boundary conditions for the velocity are provided while no pressure
boundary condition is needed in our setting.

It is also worth mentioning that the pressure is unique up to a constant in Stokes
equations. Rather than pinning a certain value to a particular discrete pressure as
in [64], the uniqueness can be guaranteed by setting up a constraint for the discrete
pressure as

∑
i,j

pi,j h2 =

∫

Ω

pe(x) dx. (4.27)

So it is straightforward that our initial guess p0
ij in conjugate gradient iteration can be

chosen as p0
ij =

∫
Ω

pe(x) dx/|Ω|. By using the mathematical induction, one can easily
show that during the conjugate gradient iteration, the discrete pressure does satisfy
the constraint (4.27). In those tests, the tolerance of residual is chosen as 10−8.

Table 4.1 shows the maximum errors between the exact and numerical solutions
for different grid resolutions. One can see that the velocity field has clean second
order accuracy while the pressure has clean first-order accuracy. Table 4.2 shows
the efficiency of present Stokes solver. One can see that the number of conjugate
gradient iterations increase slightly even we double the grid sizes and the CPU time
for 512× 512 mesh is just a few seconds.
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4.4.2 Convergence test for an inextensible interface

In this subsection, we perform the convergence study for the present numerical algo-
rithm to the Stokes flow with an inextensible interface. Here, we put an inextensible
interface Γ with initial configuration (X(s), Y (s)) = (0.2 cos(s), 0.5 sin(s)) under a
shear flow (u, v) = (γ y, 0) in a fluid domain Ω, see Figure 4.1 in detail. The shear
rate γ is chosen to be γ = 1 and the fluid viscosity is µ = 1. We choose the different
mesh sizes as m = n = 64, 128, 256, 512 so the corresponding mesh is h = 2/m. We
also set the Lagrangian mesh width as ∆s ≈ h/2 and the time step duration for
interface evolution as ∆t = h/4.

Since the analytical solution is not available in this test, we choose the result
obtained from the finest mesh m = n = 512 as our reference solution, and compute
the maximum error between the reference solution and the numerical solution. All
the numerical solutions are computed up to time T = 0.5. Since the interface is
inextensible and the fluid is incompressible, the perimeter of the interface and the
enclosed area by the interface should remain constants theoretically as time goes on.
Let L0 and Lh be the perimeters of the interface at the initial time and final time
T = 0.5, respectively. The relative error of the perimeter is defined as |Lh − L0|/L0,
and the relative error of the area enclosed is |Ah−A0|/A0. Table 4.3 shows the relative
errors of the perimeter, the area of the region bounded by the interface, the maximum
error of the interface configuration, and the maximum error for the fluid velocity field.
Note that, the fluid variables are defined at the staggered grid so when we refine the
mesh, the numerical solutions will not coincide with the same grid locations. In these
runs, we simply use a linear interpolation to compute the solutions at the desired
locations. Due to the fact that the IB formulation has the singular forcing term in
the equations, regularizing the singular term by smoothing discrete delta function
causes the method to be first-order accurate. The numerical results shown in Table

Figure 4.1: A diagram of an inextensible interface in a shear flow.
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m = n = 64 m = n = 128 rate m = n = 256 rate

|Lh − L0|/L0 1.349e-03 7.201e-04 0.91 3.364e-04 1.10
|Ah − A0|/A0 9.069e-04 4.132e-04 1.14 2.010e-04 1.04
‖Xh −Xref‖∞ 6.878e-03 2.498e-03 1.46 7.808e-04 1.68
‖uh − uref‖∞ 4.110e-02 1.675e-02 1.30 5.589e-03 1.46
‖vh − vref‖∞ 4.050e-02 1.672e-02 1.28 6.086e-03 1.58

Table 4.3: The mesh refinement results for the perimeter of the interface Lh, the
enclosed area Ah, the interface configuration Xh, and the velocity uh and vh.

4.3 are consistent with what we expect from theory.

4.4.3 Tank-treading motion under shear flow

Unlike the previous subsection that we focus on the numerical convergence test for
our present scheme, in this subsection, we consider the physical transient deformation
of an inextensible interface subject to a simple shear flow. As mentioned before, the
motivation of this test is to mimic the simulation of the vesicle dynamics which has
a lot of applications in bio-fluid problems.

As in previous test, we put an inextensible interface Γ with initial configuration
(X(s), Y (s)) = (0.18 cos(s), 0.5 sin(s)) under a shear flow (u, v) = (γ y, 0) in a fluid
domain Ω = [−1, 1] × [−1, 1], see Figure 4.1 in detail. The shear rate γ is chosen to
be γ = 1 and the fluid viscosity is µ = 1. The mesh used is 128×128 and the residual
tolerance for is 10−4. It is worth mentioning that the elastic tension σ computed in
previous numerical experiments [71, 28, 35] tends to oscillate along the interface which
makes the conjugate gradient method for solving in Eq. (4.25) difficult to converge if
the residual tolerance is too large. It will be more appealing if we can find a good
preconditioner for the matrix in Eq. (4.25) so that PCG method converges faster.
This issue should be investigated further in later work. Figure 4.2 shows the interface
configuration at three different times t = 0.0625, 1.25, 3.125, while Figure 4.3 shows
the corresponding elastic tension σ plotted counterclockwise along the interface. (The
starting point of zero length in Figure 4.3 is marked by x in Figure 4.2.) One can
indeed see some slight oscillations of the tension along the interface as seen in previous
literature [71, 28, 35]. Furthermore, one can see that the tension has smallest values
at the interface positions where the curvatures are largest (both tips) which also in
agreement with those in previous literature.

To be more physically realistic, we now run the problem to a longer time. It is
well-known that the equilibrium dynamics of inextensible interface or vesicle under
a simple shear flow undergoes a tanking-treading motion if the viscosity contrast
under a certain threshold [24]. Here, by tank-treading motion we mean that the
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Figure 4.2: The motion of an inextensible interface in a shear flow with initial con-
figuration (X(s), Y (s)) = (0.18 cos(s), 0.5 sin(s)).
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Figure 4.3: The plots of tension σ along the interface.

configuration of the interface or vesicle remains stationary while there is a tangential
motion along the interface. Figure 4.4 shows the evolutional motion of the interface
(bi-concave shape initially) at different times. We can see that after some time, the
interface shape does not seem to change at all; however, the Lagrangian point along
the interface marked by ”∗” moves along with its tangential velocity. The streamlines
at three different chosen times are shown in Figure 4.5 in which we can see no normal
motion in equilibrium. This tank-treading motion is good agreement in previous
studies [71, 66, 28, 35].
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T = 0 T = 0.015625 T = 0.51563 T = 1.0156

T = 7.5781 T = 10.0781 T = 12.5781 T = 15.0781

T = 17.5781 T = 20.0781 T = 22.5781 T = 25.0781

Figure 4.4: The tank-treading motion of an inextensible interface under a shear flow.

Figure 4.5: The streamlines of the flow along with an interface.

As discussed in previous literature [71, 26, 25, 66, 28], the motion of a steady or
an equilibrium inextensible interface (or vesicle) can be characterized by both the
inclination angle θ between the long axis of interface and the flow direction, and the
tank-treading frequency f = 2π

/ ∫
Γ

dl
uτ

of the revolution, where uτ is the tangential
velocity component. The inclination angle has been founded to be strongly dependent
on the reduced area ν. However, the angle is independent of the shear rate γ. This
behavior has been verified in the left panel of Figure 5.2 and is in good agreement with
previous studies [71, 26, 25, 66, 28] which shows the steady inclination angle (θ/π)
versus the reduced area (ν) with different shear rates γ = 1, 5, 10. We have observed
that the inclination angle increases with the reduced area but is nearly independent of
the shear rate. The right panel of Figure 5.2 shows that the tank-treading frequency
f versus the reduced area ν for different shear rates. One can see that as the shear
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Figure 4.6: The inclination angles θ/π (left) and the tank-treading frequency f =

2π
/∫

Γ
dl

u · τ
(right) versus reduced areas ν with different shear rates for the tank-treading motions
of an inextensible interface in a shear flow.

rate increases, the tangential motion becomes stronger; thus, the frequency becomes
larger. Moreover, by fixing the shear rate, if the interface has larger reduced area then
it has larger frequency as well. Again, our numerical results are in a good agreement
with previous studies in literature.
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Chapter 5

Unconditionally energy stable
immersed boundary method

In this chapter, we propose an unconditionally stable IB method to simulate vesicle
dynamics. The vesicle is assumed to be nearly inextensible, that is, the magnitude
of time changing of stretching factor is not exactly zero but quite small. Under
this penalty method, the tension of vesicle has an explicit form so we do not need to
solve fluid variables and surface tension simultaneously (differ form previous chapter).
However, since the cost of penalty method contributes to interfacial stiffness, there is
a harsh restriction on choosing time step ∆t to maintain numerical stability.

As known in literature [62, 38, 58, 50], the IB method suffers a time step restriction
to maintain numerical stability. This restriction becomes more stringent when the
elastic force is stiff and the force spreading occurs at the beginning of each time
step (an explicit scheme). Note that, such time step restriction cannot be elevated
even the fluid solver is discretized in a semi-implicit manner (the explicit differencing
of the advection term and implicit differencing of the diffusion term). Rather than
performing the force spreading at the beginning of the time step, one might consider
to perform the procedure at the intermediate (semi-implicit scheme) or even at the
end of time step (implicit scheme). There have been many attempts to reduce the
stiffness or to overcome this difficulty of time step restriction in the past decade
[44, 46, 20, 21, 6, 7, 16]. However, there is always a trade-off between the stability
and efficiency of those algorithms. In this chapter, we shall propose a new semi-
implicit scheme that can be solved quite efficiently (the resultant linear system is
symmetric positive definite) and the time step size can be significantly increased.

This chapter is organized as follows. In Section 5.1, we introduce the formulation
of incompressible Navier-Stokes equations with an ordinary immersed elastic interface
(tension has explicit formulation). We then develop semi-implicit IB schemes based
on the projection method for the fluid solver in Section 5.2. We also show those
developed schemes to be unconditionally energy stable. Then we modify those semi-
implicit schemes to be more efficient so that the resultant linear system is symmetric
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positive definite. Finally we apply present method to simulation of vesicle dynamics,
the numerical results are given in Section 5.6.

5.1 Governing equations

We begin by stating the mathematical formulation of the Navier-Stokes flow with
an immersed boundary (or an interface). We consider a moving, immersed, elastic
boundary Γ(t) which exerts forces into an incompressible fluid in a fixed fluid domain
Ω. We assume that the fluids inside and outside of the boundary are the same so the
governing equations in immersed boundary formulation can be written as follows.

ρ

(
∂u

∂t
+ (u · ∇)u

)
+∇p = µ∆u +

∫

Γ

F(s, t)δ(x−X(s, t)) ds in Ω, (5.1)

∇ · u = 0 in Ω, (5.2)

∂X

∂t
(s, t) = U(s, t) =

∫

Ω

u(x, t)δ(x−X(s, t)) dx on Γ. (5.3)

Eqs. (5.1) and (5.2) are the familiar incompressible Navier-Stokes equations with a
singular force arising from the immersed boundary. Eq. (5.3) simply represents that
the immersed boundary moves along with the local fluid velocity (the interfacial veloc-
ity). Here, the interfacial velocity U is simply an interpolation of the fluid velocity at
the immersed boundary. The interaction between the fluid and the immersed bound-
ary is linked by the two-dimensional Dirac delta function δ(x) = δ(x)δ(y). In this
chapter, the elastic force mainly comes from the tension which satisfies the Hooke’s
law as

F(s, t) =
∂

∂s
(στ ), σ = σ0(|Xs| − r0), (5.4)

where σ0 is the elastic coefficient, and r0 is the rest length. Note that, the rate of
local stretching factor can be derived to satisfy the following equation [33]

∂

∂t
|Xs| = (∇s ·U) |Xs| = ∂U

∂s
· τ . (5.5)

5.2 Numerical algorithm

Let ∆t be the time step size and the superscript index be the time step level. At the
beginning of each time level n, the boundary configuration Xn

k , and the unit tangent
τ n

k−1/2 are all given. To simplify our notations, we define the discrete spreading
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operator acting on the tension and discrete surface divergence operator acting on the
velocity as follows.

Sm
h [σ](x) = Sm

h [σ0(|Xs|−r0)](x) =
M∑

k=1

Ds (σ0(|Xs| − r0)τ
m)k δh(x−Xm

k )∆s, (5.6)

T m
h [u](sk−1/2) =

Uk −Uk−1

∆s
· τm

k−1/2 Uk =
∑
x

u(x)δh(x−Xm
k )h2. (5.7)

The superscript m stands for the information of immersed boundary position adopted
at time level m∆t. Note that, the above discrete operators are skew-adjoint as
〈Sm

h [σ],u〉Ωh
= 〈σ,−T m

h [u]〉Γh
. It is also worthy mentioning that the skew-adjointness

property plays an important role in our energy stability analysis later.
In present chapter, our numerical discretization and energy stability analysis are

based on unsteady Stokes equations instead of Navier-Stokes. For the latter, the
nonlinear advection term can be treated explicitly during the time evolution with
moderate CFL condition. Alternatively, one can split the Navier-Stoke equations into
an advection part and unsteady Stokes part in which the advection equation is solved
by an alternating direction implicit (ADI) method to maintain the unconditionally
numerical stability [21].

Here we introduce two time-integration schemes; namely, the backward Euler (BE)
and Crank-Nicholson (CN) scheme in conjunction with the projection method [31] as
follows.

• Backward Euler (BE) scheme

ρ
u∗ − un

∆t
= µ∆hu

∗ + Sn
h [σ0(|Xs|n+1 − r0)] in Ωh (5.8)

∆hφ =
1

∆t
∇h · u∗ in Ωh;

∂φ

∂n

∣∣∣∣
∂Ωh

= 0, (5.9)

un+1 = u∗ −∆t∇hφ in Ωh (5.10)

∇hp
n+1 = ρ∇hφ− µ∇h(∇h · u∗) in Ωh (5.11)

|Xs|n+1 − |Xs|n
∆t

= T n
h [un+1] on Γh (5.12)

Un+1
k =

∑
x

u(x)n+1δh(x−Xn
k) h2 on Γh, (5.13)

Xn+1
k = Xn

k + ∆tUn+1
k on Γh. (5.14)
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• Crank-Nicholson (CN) scheme

ρ
u∗ − un

∆t
=

µ

2
∆h(u

∗+un)+Sn
h

[
σ0

(
|Xs|n+1 + |Xs|n

2
− r0

)]
in Ωh (5.15)

∆hφ =
1

∆t
∇h · u∗ in Ωh

∂φ

∂n

∣∣∣∣
∂Ωh

= 0, (5.16)

un+1 = u∗ −∆t∇hφ in Ωh (5.17)

∇hp
n+1/2 = ρ∇hφ− µ∇h(∇h · u∗) in Ωh (5.18)

|Xs|n+1 − |Xs|n
∆t

= T n
h [(un+1 + ûn)/2] on Γh (5.19)

Un+1
k =

∑
x

u(x)n+1δh(x−Xn
k) h2, Û

n

k =
∑
x

u(x)nδh(x−Xn
k) h2 on Γh,

(5.20)

Xn+1
k = Xn

k + ∆t(Un+1
k + Û

n

k)/2 on Γh. (5.21)

The spatial operators ∇h and ∆h are the standard second-order central difference
approximations to the gradient and Laplacian. Here, δh is a smoother version of
discrete delta function developed in [70]. Notice that, unlike the explicit scheme, both
backward Euler and Crank-Nicholson schemes treat the stretching factor |Xs|n+1 as
an unknown solution which is closed by the discretization of Eq. (6.14). Thus, in terms
of immersed boundary force computation, the above two schemes are semi-implicit.

5.3 Energy stability analysis

In this subsection, we perform the energy stability analysis for our present schemes.
We shall show that both methods are unconditionally stable in the sense that total
energy is decreasing. Here, we follow the similar energy analysis proposed in [44, 21].

To proceed, we define the kinetic energy K and potential energy P of the system
as follows.

K =
ρ

2
‖u‖2

Ωh
=

ρ

2
〈u,u〉Ωh

, P =
σ0

2
‖ |Xs|− r0‖2

Γh
=

σ0

2
〈|Xs|− r0, |Xs|− r0〉Γh

,

(5.22)

where the associated discrete inner products are defined as

〈u,v〉Ωh
=

∑
x

u(x) · v(x) h2, 〈φ, ψ〉Γh
=

M∑

k=1

φk−1/2 ψk−1/2 ∆s, (5.23)

respectively. Thus, the total energy is E = K + P .
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Theorem 1. The backward Euler (BE) scheme of Eqs. (5.8)-(5.14) is unconditionally
energy stable; that is, the scheme satisfies En+1 ≤ En for each time step n.

Proof : We first consider the stability analysis for BE scheme. For convenience,
let us denote the singular force term in Eq.(5.8) by Sn

h [σn+1]. We first substitute u∗

in Eq. (5.10) into Eq. (5.8) to get the equation for ρ(un+1 − un), and then take the
discrete inner product with un+1 + un to obtain

Kn+1 −Kn =
ρ

2
〈un+1,un+1〉Ωh

− ρ

2
〈un,un〉Ωh

=
ρ

2
〈un+1 + un,un+1 − un〉Ωh

=
ρ

2

(−〈un+1 − un,un+1 − un〉Ωh
+ 2〈un+1,un+1 − un〉Ωh

)

= −ρ

2
‖un+1 − un‖2

Ωh
+ 〈un+1, ρ

(
un+1 − un

)〉Ωh

= −ρ

2
‖un+1 − un‖2

Ωh
+ ∆t〈un+1,−ρ∇hφ + µ∆hu

n+1 + µ∆t∇h∆hφ + Sn
h [σn+1]〉Ωh

= −ρ

2
‖un+1 − un‖2

Ωh
−∆tρ〈un+1,∇hφ〉Ωh

+ µ∆t〈un+1, ∆hu
n+1〉Ωh

+ µ∆t2〈un+1,∇h∆hφ〉Ωh
+ ∆t〈un+1,Sn

h [σn+1]〉Ωh

The successive difference of potential energy can be obtained as

P n+1 − P n =
σ0

2

(〈|Xs|n+1 − r0, |Xs|n+1 − r0〉Γh
− 〈|Xs|n − r0, |Xs|n − r0〉Γh

)

=
σ0

2
〈|Xs|n+1 + |Xs|n − 2r0, |Xs|n+1 − |Xs|n〉Γh

=
σ0

2
〈2 |Xs|n+1 − 2r0 −∆tT n

h [un+1], ∆tT n
h [un+1]〉Γh

(
use |Xs|n = |Xs|n+1 −∆tT n

h [un+1]
)

= 〈σ0(|Xs|n+1 − r0)− σ0∆t

2
T n

h [un+1], ∆tT n
h [un+1]〉Γh

= ∆t〈σn+1, T n
h [un+1]〉Γh

− σ0∆t2

2
‖T n

h [un+1]‖2
Γh

.

Thus, the total energy between two successive time steps can be written as

En+1 − En

= −ρ

2
‖un+1 − un‖2

Ωh
−∆tρ〈un+1,∇hφ〉Ωh

+ µ∆t〈un+1, ∆hu
n+1〉Ωh

+ µ∆t2〈un+1,∇h∆hφ〉Ωh

+ ∆t〈Sn
h [σn+1],un+1〉Ωh

+ ∆t〈σn+1, T n
h [un+1]〉Γh

− σ0∆t2

2
‖T n

h [un+1]‖2
Γh

.

The second and fourth terms vanish due to the orthogonality of discrete divergence-
free velocity and the gradient, and the commutativity of ∇h and ∆h. The fifth
and sixth terms are cancelled out due to both discrete operators are skew-adjoint
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as 〈Sn
h [σ],u〉Ωh

= 〈σ,−T n
h [u]〉Γh

. The third term is always negative by the negative
definiteness of discrete Laplace operator. Therefore, we have

En+1 − En = −ρ

2
‖un+1 − un‖2

Ωh
− µ∆t‖∇hu

n+1‖2
Ωh
− σ0∆t2

2
‖T n

h [un+1]‖2
Γh

.

Thus, the total energy is decreasing which shows the present BE scheme is uncondi-
tionally energy stable.

Theorem 2. The Crank-Nicholson (CN) scheme of Eqs. (5.15)-(5.21) is uncondi-
tionally energy stable; that is, the scheme satisfies En+1 ≤ En for each time step
n.

Proof : For the CN scheme, one can also do similar stability analysis. Again, let
us denote the singular force term in Eq.(5.15) by Sn

h [(σn+1 + σn)/2]. By substituting
u∗ in Eq. (5.17) into Eq. (5.15) to get the term ρ(un+1 − un) and then taking the
discrete inner product with un+1 + un, we obtain the successive difference of kinetic
energy as

Kn+1 −Kn =
ρ

2
〈un+1,un+1〉Ωh

− ρ

2
〈un,un〉Ωh

=
ρ

2
〈un+1 + un,un+1 − un〉Ωh

=
∆t

2
〈un+1 + un,−ρ∇hφ +

µ

2
∆h(u

n+1 + un) +
µ∆t

2
∇h∆hφ + Sn

h [(σn+1 + σn)/2]〉Ωh
.

The successive difference of potential energy can be written as

P n+1 − P n =
σ0

2

(〈|Xs|n+1 − r0, |Xs|n+1 − r0〉Γh
− 〈|Xs|n − r0, |Xs|n − r0〉Γh

)

=
σ0

2
〈|Xs|n+1 + |Xs|n − 2r0, |Xs|n+1 − |Xs|n〉Γh

=
∆t

4
〈σ0(|Xs|n+1 − r0 + |Xs|n − r0), T n

h [un+1 + ûn]〉Γh
(using Eq. (5.19))

=
∆t

4
〈σn+1 + σn, T n

h [un+1 + ûn]〉Γh
.

Thus, the successive difference of total energy is

En+1 − En =
−ρ∆t

2
〈un+1 + un,∇hφ〉Ωh

+
µ∆t

4
〈un+1 + un, ∆h(u

n+1 + un)〉Ωh

+
µ∆t2

4
〈un+1 + un,∇h∆hφ〉Ωh

+
∆t

4
〈un+1 + un,Sn

h [σn+1 + σn]〉Ωh

+
∆t

4
〈σn+1 + σn, T n

h [un+1 + ûn]〉Γh
= −µ∆t

4
‖∇h(u

n+1 + un)‖2
Ωh

,

The first and third terms after the first equality vanish due to the orthogonality of
discrete divergence-free velocity and the gradient, and the commutativity of ∇h and
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∆h. The fourth and last terms are cancelled out due to both discrete operators are
skew-adjoint. The third term is always negative by the negative definiteness of discrete
Laplace operator. Thus, the total energy is decreasing which shows the scheme to be
unconditionally energy stable.

5.4 Modified projection method

To avoid solving a coupled linear system of equations in Eqs. (5.8)-(5.12) or Eqs. (5.15)-
(5.19), we can modify the above BE and CN schemes slightly in the following. The
key idea is to march the time integration of the stretching factor |Xs|n+1 by the in-
termediate velocity u∗ rather than un+1, and substitute it into the discrete spreading
operator Sn

h so that |Xs|n+1 is no long part of unknowns.

• Modified BE scheme

ρ
u∗ − un

∆t
= µ∆hu

∗ + Sn
h [σn] + σ0∆tSn

hT n
h [u∗] in Ωh, (5.24)

∆hφ =
1

∆t
∇h · u∗ in Ωh,

∂φ

∂n

∣∣∣∣
∂Ωh

= 0, (5.25)

un+1 = u∗ −∆t∇hφ in Ωh, (5.26)

∇hp
n+1 = ρ∇hφ− µ∇h(∇h · u∗)− σ0∆t2Sn

hT n
h [∇hφ] in Ωh, (5.27)

Un+1
k =

∑
x

u(x)n+1δh(x−Xn
k) h2 on Γh, (5.28)

Xn+1
k = Xn

k + ∆tUn+1
k on Γh. (5.29)

• Modified CN scheme

ρ
u∗ − un

∆t
=

µ

2
∆h(u

∗ + un) + Sn
h [σn]

+
σ0∆t

4
Sn

hT n
h [ûn] +

σ0∆t

4
Sn

hT n
h [u∗] in Ωh, (5.30)

∆hφ =
1

∆t
∇h · u∗ in Ωh

∂φ

∂n

∣∣∣∣
∂Ωh

= 0, (5.31)

un+1 = u∗ −∆t∇hφ in Ωh (5.32)

∇hp
n+1/2 = ρ∇hφ− µ

2
∇h(∇h · u∗)− σ0∆t2

4
Sn

hT n
h [∇hφ] in Ωh, (5.33)

Un+1
k =

∑
x

u(x)n+1δh(x−Xn
k) h2, Û

n

k =
∑
x

u(x)nδh(x−Xn
k) h2, on Γh,

(5.34)

Xn+1
k = Xn

k + ∆t(Un+1
k + Û

n

k)/2 on Γh. (5.35)
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Now, let us discuss the computational cost of the above numerical schemes. As men-
tioned before, the discrete operators Sn

h and T n
h are skew-adjoint in which the matrix

forms can be related by T n
h = − h2

∆s
(Sn

h )T . Thus, the resultant matrix equations for u∗

in Eq. (5.24) and Eq. (5.30) are both symmetric and positive definite. Thus, it can
be solved efficiently by the aggregation-based multigrid (AGMG) method recently
developed by Y. Notay [47]. In Eq. (5.25) and (5.31), Poisson equation for pres-
sure increment φ is solved by public software package FISHPACK [1]. One should
notice that, despite the fact that the modified BE and CN schemes are not exactly
unconditionally energy stable as the original schemes, the time step size ∆t can be
tremendously alleviated in practical computation as shown in our numerical results.

5.5 Applications to simulating vesicle dynamics

In [28], Kim and Lai developed a penalty IB method to study the dynamics of inex-
tensible vesicles by introducing a dual representation (denoted by X(s, t) and Y(s, t))
of the immersed boundary in which one of its representatives X(s, t) interacts with
the fluid directly as in traditional IB computation, and another one Y(s, t) follows
the equations of vesicle dynamics including the inextensibility constraint without a
direct interaction with the fluid dynamics. Both IB representatives are linked by stiff
springs. The advantage of this penalty idea is to decouple the solutions of fluid and
vesicle dynamics at each time step so that the traditional IB implementation can be
simply applied without much extra effort. However, the tension must be solved in
this approach and the penalty numbers must be chosen sufficiently large to keep those
two IB representations close enough. In practice, one should choose the time step
size sufficiently small because of the usage of explicit forcing computation. Recently,
we simplify the penalty approach by introducing a spring-like tension to keep the
vesicle boundary nearly inextensible. As a result, the tension (Lagrange’s multiplier
for inextensibility) is no longer to be solved as part of solutions. We apply this sim-
plified penalty approach to simulate the dynamics of three-dimensional axisymmetric
vesicles in Navier-Stokes flows [23]. However, one need to choose the time step size
sufficiently small because the IB force is computed at the beginning of each time
step. Here, unlike those above mentioned explicit schemes, we use the developed
semi-implicit schemes to simulate the vesicle dynamics in Navier-Stokes flows.

Vesicles are closed lipid membranes suspended in a viscous fluid. The membrane
force consists of the elastic and bending parts as

F(s, t) =
∂

∂s
(στ )− cb

∂4X

∂s4
, (5.36)

where cb is the bending rigidity. Here, the tension σ is introduced as an unknown
function to act as the Lagrange’s multiplier for enforcing the local inextensibility of
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the membrane as

∇s ·U =
∂U

∂τ
· τ = 0, on Γ. (5.37)

As in [5, 23], we replace the unknown tension σ by

σ = σ0

(|Xs| − |Xs|0
)
, (5.38)

where the elastic coefficient σ0 À 1 and |Xs|0 is the local stretching factor of initial
vesicle configuration. This spring-like tension intends to keep the stretching factor
|Xs| close to its initial counterpart |Xs|0. (Note that, the exact inextensibility means
|Xs| = |Xs|0 for all time.) The numerical schemes presented in Section 3 can be
straightforwardly extended to handle the tension computation by replacing the con-
stant rest length r0 with the initial stretching factor |Xs|0. We leave the computational
detail for the bending force in the Appendix C.

Throughout this section, we set the fluid density ρ = 1, viscosity µ = 1, and the
computational domain Ω = [−1, 1] × [−1, 1]; unless otherwise stated. The stopping
tolerance of the iterative method AGMG is 10−6.

5.6 Numerical results

5.6.1 Convergence study

We first conduct a convergency study for the present modified BE and CN schemes.
We put a vesicle with an elliptical shape X(s, 0) = (0.2 cos(s), 0.5 sin(s)) in quiescent
flow initially. The elastic coefficient is chosen as σ0 = 105 and the bending coeffi-
cient cb = 0.01. We use different mesh sizes as m = n = 64, 128, 256, 512 with the
corresponding mesh h = 2/m. We also set the Lagrangian mesh width as ∆s ≈ h/2
and the time step ∆t = h/4. Since the fluid is incompressible and the vesicle bound-
ary is inextensible, the enclosed area and the total perimeter of the vesicle should
be conserved theoretically as time evolves. For the fluid variables, we choose the
result obtained from the finest mesh m = 512 as our reference solution and compute
the maximal error between the reference solution and the numerical solution. All
numerical solutions are computed up to T = 0.125.

Table 5.1 shows the relative errors of the vesicle area and the perimeter, the
maximum errors of the vesicle boundary configuration, and the fluid velocity field.
Here, we list the results obtained by modified BE and CN schemes. Since the fluid
variables are defined at the staggered grid, when we refine the mesh, the numerical
solution on the refined mesh do not coincide with the one obtained from the coarser
mesh. In these runs, we simply use linear interpolation to compute the solutions
at the same grid locations. One can see from Table 5.1 that the present numerical
results show roughly first-order convergence for all solution variables.
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BE m = n = 64 m = n = 128 rate m = n = 256 rate

|Ah − A0|/A0 1.470e-3 1.252e-3 0.23 7.162e-4 0.81
|Lh − L0|/L0 7.444e-3 2.684e-3 1.47 1.154e-4 1.22
‖Xh −Xref‖∞ 4.209e-3 8.477e-4 2.31 4.762e-4 0.83
‖uh − uref‖∞ 5.453e-2 8.110e-3 2.75 1.578e-3 2.36
‖vh − vref‖∞ 5.628e-2 1.098e-2 2.36 3.203e-3 1.78

CN m = n = 64 m = n = 128 rate m = n = 256 rate

|Ah − A0|/A0 2.688e-3 2.082e-3 0.37 1.148e-4 0.86
|Lh − L0|/L0 6.899e-3 2.447e-3 1.50 1.052e-4 1.22
‖Xh −Xref‖∞ 3.296e-3 9.643e-4 1.77 6.821e-4 0.50
‖uh − uref‖∞ 7.318e-2 4.919e-2 0.57 2.744e-2 0.84
‖vh − vref‖∞ 7.561e-2 5.790e-2 0.39 1.935e-2 1.58

Table 5.1: The mesh refinement results for the vesicle area Ah, the vesicle perimeter
Lh, the boundary configuration Xh, and the velocity uh and vh.

5.6.2 Maximal time step comparison

Now, let us investigate the numerical stability of the present schemes by testing
the maximal time steps for the explicit scheme (EP), the modified BE, and CN
scheme. Here, we use three different elastic coefficients σ0 = 107, 108, 109 to study
the numerical stability by comparing the maximal time step that can be used in each
scheme. To determine the maximal time step, we make sure that the vesicle boundary
behaviors are reasonable in which the relative errors of area and perimeter are both
within 1% and no numerical instability occurs. The numerical parameters are chosen
as same as in previous convergence study except the initial vesicle configuration is
chosen as X(s) = (0.1 sin(s), 0.5 cos(s)). Table 5.2 shows the maximal time steps for
three different schemes. One can see that the time step for both modified BE and
CN schemes can be chosen as 3-4 order larger than the time step used in the explicit
scheme. For explicit scheme, as the grid becomes finer or the elastic coefficient σ0

becomes larger, the time step should become smaller accordingly in order to maintain
numerical stability. However, for both BE or CN schemes, we can always set ∆t =
O(h) to maintain the desired numerical stability.

Table 5.3 shows the average CPU time (in seconds) for each time step and total
CPU time for the computation up to T = 1. One can see that, the present modified
BE and CN schemes outperform the explicit scheme in terms of total CPU time.
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m,n
σ0 = 107 σ0 = 108 σ0 = 109

EP BE CN EP BE CN EP BE CN

128 2.22e-5 1.56e-2 1.56e-2 4.36e-6 1.56e-2 1.56e-2 1.02e-6 1.56e-2 1.56e-2
256 1.03e-5 7.81e-3 7.81e-3 1.74e-6 7.81e-3 7.81e-3 3.81e-7 7.81e-3 7.81e-3
512 4.74e-6 3.91e-3 3.91e-3 7.44e-7 3.91e-3 3.91e-3 1.53e-7 3.91e-3 3.91e-3

Table 5.2: Maximum time steps for the explicit(EP), modified BE and CN schemes
with different elastic coefficients σ0.

m,n
EP BE CN

∆t Average Total ∆t Average Total ∆t Average Total

128 1.02e-6 0.07 68627 1.56e-2 0.13 8 1.56e-2 0.13 8
256 3.81e-7 0.16 419947∗ 7.81e-3 0.39 50 7.81e-3 0.43 55
512 1.53e-7 0.45 2941176∗ 3.91e-3 1.25 320 3.91e-3 1.45 371

Table 5.3: The average CPU time (in seconds) of each time step for different schemes.
The total time with ”*” means the estimated value.

5.6.3 Tank-treading motion under shear flow

To be more physically realistic, we now consider the transient motion of a vesicle
with the initial configuration X(s) = (0.1 sin(s), 0.5 cos(s)) under shear flow u =
(γy, 0). The elastic coefficient is chosen as σ0 = 105 and the bending coefficient
cb = 0.01. It is well-known that the equilibrium dynamics of vesicle under a simple
shear flow undergoes tanking-treading motion if the viscosity contrast is under a
certain threshold [24]. Here, by tank-treading motion we mean that the configuration
of the vesicle remains stationary while there is a tangential motion along the vesicle
boundary. Figure 5.1 shows the evolutional motion of the vesicle at different times.
One can see that after some time, the vesicle shape does not change; however, the
Lagrangian point (marked by ∗) along the interface moves along with its tangential
velocity. This tank-treading motion is in good agreement with previous studies [71,
66, 28, 35].

As discussed in literature [71, 26, 25, 66, 28], the motion of a steady vesicle under
shear flow can be characterized by the inclination angle θ between the long axis of
vesicle and the flow direction, and the tank-treading frequency f = 2π

/ ∫
Γ

dl
uτ

, where
uτ is the tangential velocity component. The inclination angle has been found to
be strongly dependent on the reduced area ν. As the reduced area increases, the
inclination angle will increase too. However, the angle is independent of the shear
rate γ. This behavior has been verified in the left panel of Figure 5.2 which shows
the steady inclination angle (θ/π) versus the reduced area (ν) with different shear
rates γ = 1, 5, 10. Our numerical results are again in good agreement with those
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T = 0.125 T = 0.375 T = 0.625 T = 0.875

T = 13.5 T = 16.5 T = 19.5 T = 22.5

T = 25.5 T = 28.5 T = 31.5 T = 34.5

Figure 5.1: The tank-treading motion of a vesicle under shear flow.
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Figure 5.2: The inclination angles θ/π (left) and the tank-treading frequency f =

2π
/∫

Γ
dl

u · τ (right) versus reduced areas ν with different shear rates for the tank-
treading motion of an inextensible vesicle in a shear flow.

obtained in previous studies [66, 28]. The right panel of Figure 5.2 shows that the
tank-treading frequency f versus the reduced area ν for different shear rates. One
can see that as the shear rate increases, the tangential motion becomes stronger; thus,
the frequency becomes larger. Moreover, by fixing the shear rate, if the vesicle has
larger reduced area then it has larger frequency as well. Again, our numerical results
are in good agreement with those obtained in previous studies [66, 28].
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Chapter 6

Simulating three-dimensional
axisymmetric vesicles

There are two different approaches to enforce the local inextensibility constraint in
literature. The first one needs to discretize the whole equations first (regardless
of using boundary integral, finite element or finite difference method) and then to
solve the tension and fluid variables simultaneously. Based on different time stepping
schemes, this kind of approach can be explicit or semi-implicit depending on how
we treat the force computations. There usually exists a trade-off between the time-
step stability and efficiency in those algorithms. Some recent works using boundary
integral method [66, 67, 68, 4, 72], level set method [60, 36] et. al. fall into this
category, just to name a few. Recently, we have also introduced a linearly semi-
implicit scheme to solve a 2D Stokes flow with an inextensible interface enclosing a
solid particle [37]. The scheme solves the fluid variables, the tension and the particle
surface force altogether. There are two advantages of the method as follows: (1)
the scheme preserves some operators symmetrically so the resultant linear system is
symmetric; (2) the local inextensibility error can be estimated analytically. Although
one can increase the time step significantly, more improvements have to be done on
the iterative methods for solving such resultant linear system, especially finding good
pre-conditioners.

Another approach is called penalty method. In [28], the authors introduced a
dual Lagrangian immersed boundaries to represent the vesicle boundary. One vesicle
boundary interacts with the fluid dynamics directly and the other vesicle boundary
follows the equations of the vesicle dynamics, including the inextensibility constraint,
without a direct interaction with the fluid dynamics. The two boundaries are con-
nected by the penalty forces which act on both boundaries by Newton’s third law.
The tension must still be solved in above approach.

However, one can even simplify the above penalty approach by introducing a
spring-like force to replace the tension and to keep the surface area from dilating.
Thus, the tension or Lagrange’s multiplier for inextensibility is no need to be solved
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as part of the solution. Although the inextensibility constraint is not exactly satisfied,
we can get physically reasonable results as long as the penalty number (stiffness
number) is chosen large enough. This approach has been adopted successfully by
incorporating the level set method to study 2D or 3D [39, 41, 11] vesicle dynamics
in finite element framework. A partially implicit sharp interface method in [5] also
used the above approach to test a 2D case with an inextensible interface. In this
chapter, we use the above similar idea to study 3D axisymmetric vesicle dynamics
in immersed boundary framework. One should notice that all the calculations about
the spatial derivatives, geometrical quantities (mean and Gaussian curvatures), the
bending and elastic forces, and the Navier-Stokes solver have non-trivial differences
comparing with our previous 2D works.

The rest of the chapter are organized as follows. In Section 2, we will describe the
fluid-vesicle governing equations in axisymmetric form based on immersed boundary
formulation. Instead of introducing a Lagrange’s multiplier to enforce the vesicle
inextensibility constraint, we modify the model by adopting a spring-like tension to
make the vesicle boundary nearly inextensible so that solving the unknown tension
can be avoided. Since higher-order spatial derivatives are needed in computations of
interfacial geometrical quantities, we use Fourier spectral approximation to represent
the interface. A detailed numerical algorithm is described in Section 6.2. A series of
numerical tests to demonstrate the accuracy and reliability of the present scheme are
presented in Section 6.3.

6.1 Governing equations

We consider a single 3D axisymmetric inextensible vesicle Γ(t) suspended in a viscous
incompressible Navier-Stokes fluid domain Ω. Here, the vesicle is time-dependent and
is symmetry in the θ direction so that the vesicle surface has the parametric form as

X(s, θ, t) = (R(s, t) cos θ, R(s, t) sin θ, Z(s, t)), (6.1)

where the parameters (s, θ) are in [0, π] × [0, 2π]. One should also note that the
vesicle membrane force which is defined later has the same symmetric form as in
Eq. (6.1). Under such symmetry, one can regard the vesicle boundary as the surface
of revolution around the z-axis with the radius R(s, t) so that it can be simplified into
a two-dimensional immersed boundary X(s, t) = (R(s, t), Z(s, t)), s ∈ [0, π] in the 2D
meridian r − z domain.

Under the same assumption of axisymmetry, the 3D Navier-Stokes equations can
be simply written in a 2D manner using the axisymmetric cylindrical coordinates
x = (r, z). In the following, we denote u = (u,w) as the velocity field defined on
a 2D meridian domain Ω = {(r, z)|0 < r ≤ a, c ≤ z ≤ d}, where u and w are
the radial (r-coordinate) and axial (z-coordinate) velocity components, respectively.
We also denote U = (U,W ) as the corresponding velocity components on the vesicle
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boundary. The mathematical equations of motion consist of a viscous incompressible
fluid in a domain Ω containing an immersed, inextensible, massless vesicle boundary
(or interface) Γ which can be written in an immersed boundary formulation as

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + µ∆̃u +

∫ π

0

F(s, t)δ(x−X(s, t)) ds in Ω, (6.2)

∇ · u = 0 in Ω, (6.3)

∇s ·U = 0 on Γ, (6.4)

∂X

∂t
(s, t) = U(s, t) =

∫

Ω

u(x, t)δ(x−X(s, t)) dx on Γ. (6.5)

Here, we assume the fluid has the same viscosity and density inside and outside of
the vesicle boundary. For axisymmetry, the gradient and divergence operators are
defined as

∇ =

(
∂

∂r
,

∂

∂z

)
, ∇· =

(
1

r

∂

∂r
r,

∂

∂z

)
·, (6.6)

thus, the Laplace operator is

∆ = ∇ · ∇ =
1

r

∂

∂r

(
r

∂

∂r

)
+

∂2

∂z2
, (6.7)

and ∆̃u = (∆u− u
r2 , ∆w).

Eqs. (6.2)-(6.3) are the familiar incompressible Navier-Stokes equations with a
singular force term F arising from the vesicle membrane force. Eq. (6.4) represents
the inextensibility constraint of the vesicle surface which is equivalent to the zero sur-
face divergence of the velocity along the interface, see the explanation later. Eq. (6.5)
simply explains that the interface moves along with the local fluid velocity (the in-
terfacial velocity). Here, the interfacial velocity U is the interpolation of the fluid
velocity at the interface defined as in traditional IB formulation. The interaction be-
tween the fluid and the interface is linked by the two-dimensional Dirac delta function
δ(x) = δ(r)δ(z).

6.1.1 Vesicle boundary forces in axisymmetric coordinate

Vesicle membrane is known to be inextensible and exhibits a resistance against bend-
ing. Thus, the membrane energy can be modelled by two parts; namely, the Helfrich
type energy Eb [18] to resist the bending of the membrane, and the tension energy
Eσ to enforce the inextensibility constraint [71]. So the total energy is

E(t) = Eb(t) + Eσ(t) =

∫

Γ

(cb

2
H2 + σ

)
dS, (6.8)
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where cb is the bending rigidity, H is the surface mean curvature, and σ is the tension
which acts as a Lagrange multiplier to enforce the inextensibility constraint Eq. (6.4).
By taking the variational derivative from the above surface energy, one can derive
the vesicle boundary force FΓ = Fb + Fσ consisting of the bending force Fb and the
elastic force Fσ as

Fb = cb

(
∆sH + 2H(H2 −K)

)
n, Fσ = ∇sσ − 2Hσn, (6.9)

where K is the membrane Gaussian curvature, n is the unit outward normal vector,
∇s is the surface gradient operator, and ∆s is the surface Laplacian operator. The
detailed derivation of Eq. (6.9) can be found in [69].

Under axisymmetric assumption, one can further write down H, K, and ∆sH in
terms of R and Z explicitly (see the Appendix in detail) as

H =
1

2

(
Zs

R |Xs| +
RsZss −RssZs

|Xs|3
)

, K =
Zs(RsZss −RssZs)

R |Xs|4
, (6.10)

∆sH =
1

R |Xs|
∂

∂s

(
R

|Xs|
∂H

∂s

)
. (6.11)

The unit tangent τ and the unit outward normal vector n can be hereby defined as

τ (s, t) =
Xs

|Xs| =
(Rs, Zs)√
R2

s + Z2
s

, n(s, t) =
(Zs,−Rs)√

R2
s + Z2

s

. (6.12)

Thus, by substituting the above surface geometrical quantities into Eq. (6.9), an
explicit form for the bending force Fb can be derived easily. Similarly, the tension
force Fσ can also be explicitly written as

Fσ = ∇sσ − 2Hσn

=

(
1

|Xs|
∂σ

∂s

)
τ −

(
Zs

R |Xs| +
RsZss −RssZs

|Xs|3
)

σn

=

(
RssZs −RsZss

|Xs|3
σn +

1

|Xs|
∂σ

∂s
τ

)
− Zs

R |Xs|σn

=
1

|Xs|
(

σ
∂τ

∂s
+

∂σ

∂s
τ

)
− Zs

R |Xs|σn =
1

|Xs|
∂

∂s
(στ )− Zs

R |Xs|σn. (6.13)

The delta function in 3D Cartesian coordinates and axisymmetric cylindrical co-
ordinates can be related as δ3 = δ2/r where δ2 is the two-dimensional delta function
in r − z plane. Therefore, the singular force term can be written as

∫

Γ

FΓδ3(x−X) dS =

∫ π

0

FΓ
δ2(x−X)

R
R |Xs| ds =

∫ π

0

FΓ |Xs| δ2(x−X) ds.

We thus obtain the immersed boundary force F(s, t) = FΓ |Xs|.
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6.1.2 Nearly inextensible approach

As mentioned before, to avoid solving the extra unknown tension σ(s, t), we adopt
an idea that is simpler than our previous work [28] to study 2D vesicle dynamics.
Let us start with the derivation of inextensibility constraint (6.4) in axisymmetric
coordinates. The rate of change of the surface dilating factor R |Xs| can be derived
as follows [34].

∂

∂t
(R |Xs|) =

∂R

∂t
|Xs|+ R

∂ |Xs|
∂t

= U |Xs|+ R
Xs ·Xst

|Xs|
= U |Xs|+ R

Xs ·Us

|Xs| = U |Xs|+ R
∂U

∂s
· τ

=

(
U

R
+

∂U

∂τ
· τ

)
R |Xs| = (∇s ·U)R |Xs| . (6.14)

The above derivation shows the expression of the surface divergence ∇s ·U explicitly,
and also shows that if the surface is locally inextensible (the rate of change of surface
dilating factor equals to zero), then we obtain ∇s · U = 0 which is exactly the
constraint shown in Eq. (6.4). In order to relax the constraint a bit, one can replace
the unknown tension by a spring-like elastic force as

σ = σ0(R |Xs| −R0 |Xs|0) (6.15)

with a large stiffness constant σ0, where R0 |Xs|0 is the initial surface dilating factor.
Therefore, the interface now is nearly inextensible. Consequently, the elastic energy
Eσ is modified by

Eσ(t) =

∫ π

0

σ0

2

(
R |Xs| −R0 |Xs|0

)2
ds, (6.16)

and the total membrane energy becomes

E(t) =

∫ π

0

(σ0

2

(
R |Xs| −R0 |Xs|0

)2
+

cb

2
H2R |Xs|

)
ds. (6.17)

6.1.3 Elastic boundary force

Since the elastic energy is modified, the resultant tension force Fσ must be modified
as well. This can be done by taking the variational derivative of new energy Eσ as
follows. Let X̃(s) = (R̃(s), Z̃(s)) be a perturbation of the interface X, and ε be a
small number. Then the perturbed energy becomes

Eσ(X + εX̃) =

∫ π

0

σ0

2

[
(R + εR̃)|Xs + εX̃s| −R0 |Xs|0

]2

ds.
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Taking the derivative of above energy with respect to ε, we obtain

dEσ

dε

(
X + εX̃

)

=

∫ π

0

σ0

[
(R + εR̃)|Xs + εX̃s| −R0 |Xs|0

] [
R̃|Xs + εX̃s|+

(
R + εR̃

)] Xs + εX̃s

|Xs + εX̃s|
· X̃s ds.

Then we evaluate the above equation at ε = 0 to obtain

dEσ

dε

(
X + εX̃

) ∣∣∣∣∣
ε=0

=

∫ π

0

σ0

(
R |Xs| −R0 |Xs|0

) (
R̃ |Xs|+ Rτ · X̃s

)
ds

=

∫ π

0

σR̃ |Xs| ds +

∫ π

0

σRτ · X̃s ds
(
sinceσ = σ0

(
R |Xs| −R0 |Xs|0

))

=

∫ π

0

σR̃ |Xs| ds−
∫ π

0

∂

∂s
(Rστ ) · X̃ ds (integration by parts and R = 0 at end points)

=

∫ ( σ

R
e1

)
· X̃ dS −

∫ [
1

|Xs|
∂

∂s
(στ ) +

Rsστ

R |Xs|
]
· X̃ dS (using dS = R |Xs| ds)

=

∫ [
σ

R |Xs|2
(
R2

s + Z2
s , 0

)− σ

R |Xs|2
(
R2

s, RsZs

)− 1

|Xs|
∂

∂s
(στ )

]
· X̃ dS

=

∫ [
σZs

R |Xs|
(

Zs

|Xs| ,−
Rs

|Xs|
)
− 1

|Xs|
∂

∂s
(στ )

]
· X̃ dS

= −
∫ [

1

|Xs|
∂

∂s
(στ )− Zs

R |Xs|σn

]
· X̃ dS

= −
∫

Fσ · X̃ dS.

This leads to the corresponding elastic force

Fσ =
1

|Xs|
∂

∂s
(στ )− Zs

R |Xs|σn. (6.18)

It is very interesting to conclude that the above form is exactly same as the one in
Eq. (6.13) despite the fact that the definition of tension σ is different.

6.2 Numerical discretization

6.2.1 Fourier representation of the interface and computa-
tion of geometrical quantities

We adopt the spectral Fourier discretization to achieve higher order of accuracy as
in [67]. Since the interface is axisymmetric and is defined in 2D meridian domain
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(r − z plane with r > 0), one can extend the interface representation X(s) =
(R(s), Z(s)), s ∈ [0, π] to be in another half of meridian domain (r < 0). More
precisely, we perform the radial component R(s) by the odd extension and the ax-
ial component Z(s) by the even extension so that this extending interfacial repre-
sentation is periodic in [0, 2π] in the r − z plane. Under such extension, one can
choose an even number of grid points M such that the interface is discretized by
X(sk) = (R(sk), Z(sk)), sk = k∆s = 2kπ/M, k = 0, 1, . . . M . (Note that, the spectral
representation for the interface adopted in [67] used the sine and cosine expansions
for the radial and axial components, respectively.) Thus, the interface is represented
by the discrete Fourier series expansion as

R(s) =

M/2−1∑

k=−M/2

R̂ke
i k s, and Z(s) =

M/2−1∑

k=−M/2

Ẑke
i k s, (6.19)

where R̂k and Ẑk are the corresponding Fourier coefficients for R(s) and Z(s), respec-
tively. Those Fourier coefficients can be performed very efficiently by using the Fast
Fourier Transform (FFT).

As described in previous section, in order to obtain the interfacial bending force,
one need to compute the mean curvature H and its surface Laplacian ∆sH, and the
Gaussian curvature K. Those geometrical quantities are explicitly expressed before
as in Eqs. (6.10)-(6.11). One can see the computations of those geometrical quantities
need the calculations of up to fourth-order derivatives of interface components R(s)
and Z(s). However, these can be done quite easily by using the pseudospectral method
[63] in which the Fourier coefficients of p-th derivative of R(s) can be obtained as

(il)pR̂l so by taking one more inverse FFT, we can obtain the derivative in physical
space. (Similar procedures should be done for the derivatives of Z(s)). Notice that,
we should expand all the derivatives involving R(s) and Z(s) explicitly for those
geometrical quantities in Eq. (6.10)-(6.11) and compute them to enhance the accuracy.

Remark: It is important to mention that in the above spectral computations for
Eqs. (6.10)-(6.11), special care must be taken at the points of s = 0 and s = π where
the radial component R = 0. However, due to the odd extension of R(s) across at
s = 0, π, one can conclude that the second derivative Rss and the fourth derivative
Rssss are both zero at those two points. Similarly, due to the even extension of the
axial component Z(s), the first derivative Zs and the third derivative Zsss are both
zero at s = 0, π. By applying the the l’Hospital’s rule and using those conditions
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mentioned above, one can evaluate the geometrical quantities at s = 0, π as follows.

lim
s→0,π

H(s) =
Zss

|Rs|Rs

∣∣∣∣∣
s=0,π

, lim
s→0,π

Hs(s) = 0,

lim
s→0,π

Hss(s) =
2R2

sZssss − 6Zss(RsRsss + Z2
ss)− 2RsRsssZss

3Rs|Rs|3

∣∣∣∣∣
s=0,π

,

lim
s→0,π

K(s) =
Z2

ss

R4
s

∣∣∣∣∣
s=0,π

, lim
s→0,π

∆sH(s) =
2Hss

R2
s

∣∣∣∣∣
s=0,π

.

6.2.2 Time-stepping scheme

Let us denote the time step size by ∆t and the superscript of the variables as the time
step index. At the beginning of each time step n, the interface configuration Xn(s) =
X(s, n∆t) = (Rn(s), Zn(s)) is given so the unit tangent vector τ n(s) = Xn

s / |Xs|n
can be evaluated accordingly. Here and the following, the subscript s-index denotes
the spectral derivative with respect to s as described in previous subsection. The
unit outward normal nn(s) can be obtained easily from τ n(s). The steps of numerical
time integration are as follows.

1. Compute the interfacial tension and bending force.

σn = σ0

(
Rn |Xs|n −R0 |Xs|0

)
, Fn

σ = σn
s τ n + σnτ n

s −
Zn

s

Rn
σnnn,

Fn
b = cb(∆sH

n + 2Hn((Hn)2 −Kn)) |Xs|n nn,

Fn = Fn
σ + Fn

b

where the mean curvature H and its surface Laplacian ∆sH, and the Gaussian
curvature K are all computed in the way described in previous subsection. One
should also notice that the term Zn

s /Rn in Fσ at the collocation points s = 0, π
must be modified to Zn

ss/R
n
s due to the fact of R = 0 at those two points.

2. Distribute the interfacial force from the interface to the fluids.

fn(x) =
∑

s

Fn(s) δ2
h (x−Xn(s)) ∆s.

Note that, when a marker Xn is close to the z-axis (r = 0), the spreading region
will cover some grid points in another half of meridian domain (r < 0) due to
the support of discrete delta function. In that case, we should make the same
supplement to the symmetric grid points in the right half domain.
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3. Solve the Navier-Stokes equations. This can be done by the following semi-
implicit second-order projection method, where the nonlinear term is approxi-
mated by the Adams-Bashforth scheme.

ρ
3u∗ − 4un + un−1

2∆t
+

(
2(un · ∇h)u

n − (un−1 · ∇h)u
n−1

)
= −∇hp

n+µ∆̃hu
∗+fn,

∆hφ =
3

2∆t
∇h · u∗, ∂φ

∂n
= 0 on ∂Ω,

un+1 = u∗ − 2

3
∆t∇hφ,

∇hp
n+1 = ρ∇hφ +∇hp

n − 2

3
∆tµ∆̃h(∇hφ).

The spatial operators ∇h and ∇h· are the standard second-order central dif-
ference approximations to the gradient and divergence operators in Eq. (6.6).
Also, the spatial operator ∆h is the standard second-order central difference
approximation to the Laplace operator in Eq. (6.7).

Notice that, due to the axisymmetric property, the boundary conditions for
velocity and pressure at r = 0 are u = 0, ∂w/∂r = 0 and ∂p/∂r = 0. One
can see that the above Navier-Stokes solver involves solving two Helmholtz-
type equations for the velocity u∗ and one Poisson equation for the pressure
increment φ. Those elliptic equations can be solved efficiently by the public
software FISHPACK [1].

4. Interpolate the new velocity from the fluid lattice points to the Lagrangian
markers and then advance the markers to new positions as

Xn+1(s) = Xn
k + ∆t

∑
x

un+1δ2
h(x−Xn(s))h2.

6.3 Numerical results

In this section, we perform a series of numerical tests for the present scheme de-
veloped in the previous section. We first verify the spectral accuracy for the spatial
discretization of the interfaces by calculating their geometrical quantities such as mean
curvature, Gaussian curvature and the surface Laplacian of mean curvature. Then
we will choose different stiffness numbers to study the effect on the resulting flows.
The mesh refinement study will be performed to check the accuracy of the scheme
and an equilibrium biconcave shape of vesicle in quiescent flow will be demonstrated.
We also study the vesicle deformations under the gravitational force and conclude
that even with the same reduced volume but different initial shapes can cause very
different final stationary shapes. The above results are consistent with those used
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either 3D axisymmetric [67] or 3D simulations [4, 68]. We conclude our numerical
tests by simulating the vesicles in Poiseuille flows and study the equilibrium shapes
under the effects of different reduced volume, the confinement, and the mean flow
velocity.

6.3.1 Accuracy check for the interfacial geometrical quanti-
ties

In the following, we check the accuracy of the spectral scheme for the computations of
the geometrical quantities of the interface under the Fourier spatial representations.
Here, we test four different axisymmetric surfaces depicted in Figure 6.1 in which
(R(s), Z(s)) are listed as follows.

• Spherical surface: (0.5 cos s, 0.5 sin s)

• Prolate surface: (0.1 cos s, 0.5 sin s)

• Oscillatory surface: ( 3
20

r(s) cos s, 3
40

r(s) sin s), where r(s) =
√

sin2 s + 9 cos2 s + cos2 4s

• Peanut-like surface: ((0.0414 + 0.4006 sin2 s− 0.2246 sin4 s) cos s, 0.5 sin s)

Figure 6.1: Four different surfaces: Spherical, Prolate, Oscillatory and Peanut-like
surface (from left to right).

Table 6.1 show the maximum absolute errors (not relative errors) between the nu-
merical results obtained by present spectral method and the analytical results which
can be computed easily from their parametric forms. Here, we show the errors for
mean curvature H, Gaussian curvature K and the surface Laplacian of mean cur-
vature ∆sH as well. One can see that for smooth surface such as spherical, prolate
or peanut-like surface, using the grid number M = 32 to compute H and K has
already achieved the accuracy close to the machine error. As the mesh is refined, one
can see the absolute errors slightly increase due to the round-off error effect which
is quite common in practical spectral computations. This effect becomes even more
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prominent when we compute ∆sH since higher derivatives cause larger conditioned
numbers. The spectral method used in [67] shows the same error behaviors.

For the oscillatory surface, as expected, using a little finer grid point M = 256
can achieve better accuracy as previously mentioned cases. Meanwhile, in this case,
one can see the error decreases exponentially which shows the spectral accuracy of
the method. We also show the errors obtained from the second-order finite differ-
ence scheme for the oscillatory surface case in Table 6.2. It is apparently to see that
the spectral method outperforms the finite difference method for the computations
of those geometrical quantities in terms of the magnitude of absolute errors. Nev-
ertheless, the finite difference method still shows the convergence in a lower order
way.

M
Spherical surface Prolate surface

H K ∆sH H K ∆sH

32 1.643E−14 6.528E−14 1.284E−11 3.339E−13 3.365E−11 1.909E−08
64 6.662E−13 2.646E−13 1.787E−10 7.176E−13 6.207E−11 8.812E−08
128 3.586E−13 1.434E−12 6.741E−09 8.647E−12 8.649E−10 3.949E−06

M
Oscillatory surface Peanut-like surface

H K ∆sH H K ∆sH

32 4.600E−02 1.440E+00 1.907E+03 7.993E−14 1.705E−12 5.575E−10
64 3.336E−04 5.181E−03 2.799E+01 2.398E−13 4.874E−12 4.561E−09
128 3.572E−09 5.304E−08 9.222E−04 1.877E−12 3.969E−11 1.823E−07
256 6.068E−12 1.511E−10 1.475E−06

Table 6.1: The mesh refinement study for the computations of H, K and ∆sH by
the spectral method. The maximum absolute error is defined as ‖H −He‖∞, where
He is exact value of mean curvature. Similar notations for other quantities.

6.3.2 Study on different stiffness number σ0

As mentioned before, the stiffness parameter σ0 in Eq. (6.15) must be chosen large
enough to keep the nearly inextensible property. In this subsection, we test three
different numbers to see how the vesicle behaves on those choices. We put a vesicle
with elliptical shape X0(s) = (0.5 cos s, 0.1 sin s) in quiescent flow. Three different
stiffness parameters 2 × 103, 2 × 104 and 2 × 105 are chosen, and the time steps
are chosen as ∆t = h/16, h/32, h/256, respectively. We set the bending coefficient
cb = 2×10−2 and run the simulations up to time T = 2. As shown in Figure 6.2(a), all
vesicles coincide with each others (better view from cross-section) at different times
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M H K ∆sH

32 6.359E+00 1.703E+02 1.956E+05
64 3.061E+00 2.529E+02 1.197E+05
128 1.787E+00 4.163E+01 7.090E+04
256 5.464E−01 1.145E+01 3.499E+04

Table 6.2: The mesh refinement study for the computations of H, K and ∆sH by
the second-order finite difference method. Only the results of the oscillatory surface
are listed.

and they all reach the bi-concave shape eventually. We also plot the time evolution of
total energy computed by Eq. (6.17) in Figure 6.2(b), once again, the total energies
are also coincided. This consistence indicates that as long as the parameter σ0 is
large enough, the flow remains the same. Table 6.3 shows the maximum errors of
area dilating factor, the relative errors of the total surface area and the volume of the
vesicle at T = 2. Notice that, the total surface area and the volume are calculated in
the axisymmetric way. It is interesting to see that as the stiffness increases an order
of magnitude, the maximum error of area dilation will be reduced, which results the
surface area error is reduced by the same order of magnitude. This kind of error
behavior is quite physically reasonable since the larger σ0 is, the stronger spring force
is provided to keep Rn |Xs|n closer to the initial one. Although the volume relative
error does not show the same asymptotic behavior as the surface error, both relative
errors are within 0.03% when σ0 is equal to or greater than 2 × 104. We also test
the case of a vesicle under shear flow and obtain almost the same error behaviors so
we omit here. Based on this test, we choose σ0 = 2 × 104 in the remainder of this
chapter.

σ0 ∆t ‖R |Xs| −R0 |Xs|0 ‖∞ |Ah − A0|/A0 |Vh − V0|/V0

2× 103 h/16 2.988E−04 2.431E−03 9.391E−04
2× 104 h/32 6.551E−05 2.060E−04 2.865E−04
2× 105 h/256 2.903E−05 2.105E−05 2.657E−04

Table 6.3: The errors of the area dilating factor, the total surface area, and the
volume.
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Figure 6.2: (a) A freely suspended vesicle with different stiffness numbers σ0. σ0 =
2×103: ’-’; σ0 = 2×104: ’×’; σ0 = 2×105: ’·’. (b) The corresponding time evolutions
of total energy.

6.3.3 Convergence test

In this subsection, we perform the convergence study for the present numerical algo-
rithm. Again, we put a vesicle with elliptical shape X0(s) = (0.5 cos s, 0.15 sin s) in
quiescent flow initially. The computational domain is chosen as [0, 1] × [−0.5, 0.5].
We choose the different mesh sizes as m = 64, 128, 256 and 512 so the corresponding
mesh is ∆r = ∆z = h = 1/m. Since the analytical solution is not available in this
test, we choose the result obtained from the finest mesh m = 512 as our reference
solution, and compute the maximum error between the reference solution and the
numerical solution. The bending coefficient is chosen as cb = 2× 10−2 as before, and
all the numerical solutions are computed up to time T = 0.5. Table 6.4 shows the
relative errors of the vesicle surface area and the vesicle volume, the maximum error
of the vesicle interface configuration, and the fluid velocity field. Note that, the fluid
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variables are defined at the staggered grid so when we refine the mesh, the numerical
solutions will not coincide with the same grid locations. In these runs, we simply use
a cubic spline interpolation to compute the solutions at the desired locations. Due to
the fact that the immersed boundary formulation has the singular forcing term in the
equations, regularizing the singular term by smoothing discrete delta function causes
the method to be first-order accurate. The numerical results shown in Table 6.4 are
consistent with what we expect from theory.

m = 64 m = 128 rate m = 256 rate

|Ah − A0|/A0 4.032E−04 2.024E−04 0.99 1.009E−04 1.00
|Vh − V0|/V0 6.434E−04 1.505E−04 2.10 3.170E−05 2.25
‖Xh −Xref‖∞ 1.689E−03 4.625E−04 1.87 9.937E−05 2.22
‖uh − uref‖∞ 2.363E−03 1.162E−03 1.02 5.321E−04 1.13
‖wh − wref‖∞ 1.876E−03 7.652E−04 1.29 7.069E−04 0.11

Table 6.4: The mesh refinement results for the surface area Ah, the enclosed volume
Vh, the configuration Xh, and the velocity field uh and wh.

6.3.4 A suspended vesicle in quiescent flow

In this test, we put a freely suspended vesicle with an oscillatory initial configuration
as described in subsection 6.3.1 in a quiescent flow. The computational domain is the
same as previous test and bending coefficient is chosen as cb = 5 × 10−2. Figure 6.3
shows the snapshots of the vesicle shapes in both cross-sectional and three-dimensional
visualizations. One can see that the initially oscillatory interface reaches a stationary
bi-concave shape which is consistent with those results in literature [4, 67]. The
evolutional plot of the corresponding energy described in Eq. (6.17) is shown in Figure
6.4 so one can see that the total membrane energy is decreasing and tends to a constant
indicating that the vesicle is in equilibrium shape eventually.

6.3.5 Vesicles under the gravity

As in [4, 67], we also study the gravitational effect on the shapes of the vesicle by
considering different density across the interface. To simulate this problem, we simply
add an extra interfacial force Fg as

Fg =
(
ρi − ρo

)
(g ·X) |Xs|n,

into the vesicle boundary force [49]. Here, ρi and ρo represent the fluid density inside
and outside of the membrane, respectively, and g is the gravitational field . With
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Figure 6.3: (a) Snapshots of a freely suspended vesicle in quiescent flow. (b) The
corresponding plots result in 3D view.
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Figure 6.4: The membrane energy evolution of the freely suspended vesicle.

presence of the gravitation, a vesicle drops (since ρi > ρo) and reaches a terminal
velocity with an equilibrium shape. Figure 6.5 shows the snapshots of two different
initial shapes; namely, an oblate vesicle X0(s) = (0.25 cos s, 0.125 sin s) and prolate
vesicle X0(s) = (0.1531 cos s, 0.3333 sin s). Notice that, both vesicles have the same
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Figure 6.5: Snapshots for the vesicles under the gravity. The gravitational force is
pointing into negative z direction. Top: initial oblate shape; bottom: initial prolate
shape

volume and surface area. The oblate one (top) converges toward to a ”parachute-like”
shape while the prolate vesicle (bottom) will converge toward to a ”pear-like” shape.
Those results are qualitatively consistent with those results obtained in [4, 67].

6.3.6 Vesicles in Poiseuille flow

As mentioned before, vesicles have the similar mechanical properties that mimic RBCs
in flows. There have been widely investigated in the rheology of red blood cells
passing through capillaries in Poiseuille flows numerically such as [56, 52, 61] and the
references therein. Therefore, it will be quite natural to study the vesicle dynamics in
Poiseuille flows. Recently, Coupier et. al. [8] study the problem through experiments,
numerical, and theoretical computations to characterize the shape diagram of vesicles
in Poiseuille flow. In the following, we shall also investigate the problem and compare
our axisymmetric results with the ones shown in [8].

In this subsection, we set up the Poiseuille flow as illustrated in Figure 6.6 by

w = Wm

(
1− r2

L2

)
, u = 0,

where L is the capillary radius, and Wm is mean flow velocity indicating the centerline
velocity. Throughout this subsection, as in Figure 6.6, we draw the z-axis along the
horizontal direction (different from those in previous subsections) since the flow is
along the axial direction.

It is known that, in Poiseuille flow, a vesicle reaches its equilibrium shape and then
moves with a constant velocity. As discussed in literature [8], the reduced volume ν
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Figure 6.6: The velocity profile of Poiseuille flow.

measured the deflation of the vesicle plays a significant role in vesicle dynamics which
is defined as

ν =
V0

4
3
π(A0/4π)3/2

,

where V0 and A0 represent the volume and the surface area, respectively. This di-
mensionless number is nothing but the volume ratio of the vesicle to a sphere with
the same surface area. Thus, for a sphere, the reduced volume equals to one. In ad-
dition, we define a characteristic non-dimensional parameter R̂ to indicate the vesicle
confinement in the flow by

R̂ =
R0

L
,

where the effect radius can be computed by R0 = (3V0/4π)1/3. Thus, a larger R̂
means a stronger confinement. In this subsection, we shall investigate three different
effects by varying the reduced volume ν, the confinement R̂, and the mean velocity
Wm individually. The computational r−z domain is chosen as Ω = [0, L]× [−5L, 5L].
Unless otherwise stated, we all use oblate vesicles as our initial shapes in the flows.

• Effect of the reduced volume. In this test, we choose an oblate vesicle with three
different reduced volumes ν = 0.48, 0.75, 0.9 but the same volume in a Poiseuille
flow with a weaker confinement R̂ = 0.3 and Wm = 1. We run the simulations
until the equilibrium shapes are obtained. Figure 6.7(a) shows the snapshots
toward to equilibrium shapes for those different reduced volumes. One can
see the parachute-like shapes are observed in all three cases while the smaller
reduced volume deforms significantly more since it is thinner. This behavior is

69



(a)

(b)

Figure 6.7: (a) Snapshots of the vesicle in Poiseuille flow with different reduced volume
ν = 0.48 (top), ν = 0.75 (middle), and ν = 0.9 (bottom). The flow comes from left
to right. (b) A vesicle with initial prolate shape with reduced volume ν = 0.9 results
in the bullet-like shape eventually.

consistent with the results obtained in [8]. On the other hand, it is interesting
to see that if we choose the prolate vesicle initially (with same surface area and
volume as the oblate one with ν = 0.9), we can obtain the bullet-like shape as
shown in Figure 6.7(b). Notice that, the parachute-like shape has a concave
rear part while the bullet-like shape has a convex one instead.
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• Effect of the confinement. To study the confinement effect, we keep the mean
velocity Wm = 1 and reduced volume ν = 0.95 fixed but vary the confinement as
R̂ = 0.3, 0.375, 0.5, respectively. Figure 6.8 shows the cross-sectional view of the
equilibrium shapes with different confinements in which the confinement gets
stronger from left to right. One can see that the equilibrium shape turns from a
parachute-like shape into bullet-like one as the confinement gets stronger. This
is a physically interesting result which can be explained as the confinement is
sufficiently large, its effect will dominate the other flow effects. This is also in
a good agreement with the result obtained in [8].
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r−
ax
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Figure 6.8: Cross-sectional view of the equilibrium shapes with different confinements
Left: R̂ = 0.3; middle: R̂ = 0.375 and right: R̂ = 0.5. As the confinement increases
from left to right, the shape turns from parachute-like to bullet-like.

• Effect of the mean velocity. In the final test, we keep the reduced volume
ν = 0.95 and the weaker confinement R̂ = 0.3 fixed but vary the mean velocity
as Wm = 1, 10, 100. Notice that, varying the mean velocity alone (but keep-

ing other parameters fixed) means to vary the capillary number Ca =
µR4

0Wm

cbL2 .
Thus, the effect can be regarded as the effect of capillary number. Figure 6.9
shows the cross-sectional view of the equilibrium shapes with different mean
velocity. By increasing the mean flow velocity, the equilibrium vesicle will turn
from parachute-like to an unexpected bullet-like shape. This interesting result
has been obtained from the experimental observations [8] (the authors used ν
between 0.95 and 0.97) and our result in Figure 6.9 is qualitatively consistent
with theirs.
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Figure 6.9: Cross-sectional view of the equilibrium shapes with different mean ve-
locity. Left: Wm = 1; middle: Wm = 10 and right: Wm = 100. As the mean flow
velocity increases, the shape turns from parachute-like to bullet-like.
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Chapter 7

Conclusions and future works

In this thesis, we developed three kinds of numerical methods to simulate vesicle
dynamics. The governing equations are formulated based on immersed boundary
framework where a mixture of Eulerian fluid variables and Lagrangian interfacial
variables is used, with the linkage of these two kinds of variable is by smoothed Dirac
delta function. Firstly, We state the model of an inextensible interface (vesicle with-
out bending effect) suspended in Stokes flow. By taking advantage of the property of
skew-adjointness between spreading operator and surface divergence operator, the re-
sultant linear system can be solved efficiently by iterative conjugate gradient method.
Secondly, we turn our direction to employ the nearly inextensible approach to mimic
vesicle dynamics. We proposed an unconditionally energy stable scheme so that the
time restriction can be released substantially. This scheme involves solving a positive
definite linear system which can be done efficiently by multigrid method. Lastly, we
consider the realistic case of three-dimensional vesicle. The vesicle model is approx-
imated by penalized nearly inextensible approach. Moreover, differ to our previous
work, the derivative of interfacial variables are evaluated by high accuracy spectral
method which outperforms finite difference method. The fluid equation is discretized
by projection method and then fast Poisson solver can be used. We investigated
vesicle dynamics numerically, such as relaxation to equilibrium state, tank-treading
motion under shear flow, with presence of gravity field and shape rheology under
Poiseuille flow.

As a next step, we will generalized the present model to with consideration of
viscosity contrast which is close to the realistic world. In particular, we plan to
extend our work to real three-dimensional space, while the presentation of vesicle
shall be treated carefully when it deforms.
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Appendix A

Geometrical operators and
quantities on a surface

In this appendix, we provide computation process of mean curvature H and Gaussian
curvature K which can be obtained by first and second fundamental forms [51] and
geometrical differential operators on surface.

A three dimensional surface can be presented by parametric form as X(α, β) =
(X(α, β), Y (α, β), Z(α, β)), 0 ≤ α ≤ Lα and 0 ≤ β ≤ Lβ, where α and β are two
Lagrangian parameters. From first fundamental form, we have

E = Xα ·Xα, F = Xα ·Xβ, G = Xβ ·Xβ, W =
√

EG− F 2;

by second fundamental form, we have

L = Xαα · n, M = Xαβ · n, N = Xββ · n,

where unit normal vector can be obtained by n = Xα×Xβ/W . With these elementary
geometrical quantities, the mean curvature H and Gaussian curvature K is computed
by

H = −1

2

EN − 2FM + GL

W 2
, K =

LN −M2

W 2
.

Suppose φ is a scalar function and f is a vector function, then we have surface gradient
∇s, surface divergence ∇s· and surface Laplace operator ∆s (or Laplace-Beltrami
operator) as follows.

∇sφ =
GXα − FXβ

W 2
φα +

EXβ − FXα

W 2
φβ,

∇s · f =
Gfα − F fβ

W 2
·Xα +

Efβ − F fα
W 2

·Xβ,

∆sφ =
1

W

[(
Gφα − Fφβ

W

)

α

+

(
Eφβ − Fφα

W

)

β

]
.
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Appendix B

Discrete skew-adjoint operators

In this appendix, we give a direct derivation to the matrix obtained from the discrete
spreading operator Sh of σh and the matrix obtained from discrete surface divergence
operator ∇sh

of fU are transpose with each other. First, let us rewrite the operator
Sh(σh) by

Sh(σh) =
M−1∑

k=0

Ds (στ )k δh(x−Xk) ∆s

=
M−1∑

k=0

σk+1/2 τ k+1/2 − σk−1/2 τ k−1/2

∆s
δh(x−Xk)∆s

=
M∑

k=1

σk−1/2 τ k−1/2 δh(x−Xk−1)−
M∑

k=1

σk−1/2τ k−1/2δh(x−Xk)

− σ−1/2τ−1/2δh(x−X0) + σM−1/2τM−1/2δh(x−XM)

=
M∑

k=1

(δh(x−Xk−1)− δh(x−Xk)) τ k−1/2 σk−1/2.

Note that, the last two terms are cancelled out due to the periodicity of the interface.
Now we can write down the discrete operator ∇sh

as

∇sh
·Uk =

Uk −Uk−1

∆s
· τ k−1/2/ |DsX|k−1/2

= − h2

∆s |DsX|k−1/2

∑
x

(δh(x−Xk−1)− δh(x−Xk)) τ k−1/2 · ui,j.

Since the discrete surface divergence operator of the velocity is zero as described in
Eq. (4.11), we can scale out the coefficient − h2

∆s |DsX|k−1/2
so that the resultant matrices

obtained from Sh and ∇sh
· are transpose to each other.
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Appendix C

Unconditionally stable IB method

In this appendix, we provide the numerical detail on how we compute the bending
force in Eq. (5.36). To proceed, we first define the discrete force spreading operator
Fn

h , and the velocity interpolating operator In
h by

Fn
h [F](x) =

M∑

k=1

F(sk)δh(x−Xn
k)∆s, In

h [u](sk) =
∑
x

u(x)δh(x−Xn
k) h2, (C.1)

respectively. It is well-known [50, 44] that the above both operators are adjoint with
each other as

〈Fn
h [F],u〉Ωh

=
∑
x

(
M∑

k=1

F(sk)δh(x−Xn
k)∆s

)
· u(x) h2

=
M∑

k=1

F(sk) ·
(∑

x

u(x)δh(x−Xn
k) h2

)
∆s = 〈F, In

h [u]〉Γh
.

The singular immersed boundary force arising from the bending is written as

fb(x) = −cb

∫

Γ

∂4X

∂s4
δ(x−X(s, t)) ds. (C.2)

To simplify our notations, we define the discrete fourth-order centered difference oper-
ator Ah as an approximation to the fourth-order derivative. Thus, the discretization
for Eqs. (C.2) can be written as

fn+1
b (x) = −cbFn

h [AhX
n+1](x).

By substituting Xn+1 = Xn + ∆tIn
h [un+1] into the above equation, we have

fn+1
b (x) = −cbFn

h [AhX
n + ∆tAhIn

h [un+1]](x)

= −cbFn
h [AhX

n](x)− cb∆tFn
hAhIn

h [un+1](x). (C.3)

82



Since the discrete operators Fn
h and In

h are both adjoint to each other and the discrete
fourth differential operator Ah is symmetric positive definite, we can conclude that
the above composite operator Fn

hAhIn
h is also symmetric positive definite. So in our

modified BE scheme, we only need to add the additional singular force f∗b(x) as

f∗b(x) = −cbFn
h [AhX

n](x)− cb∆tFn
hAhIn

h [u∗](x). (C.4)

One should note that, the symmetric positive definite matrix structure for u∗ in
Eq. (5.24) does not change at all even we add this extra bending force term. The
bending term for modified CN scheme can be similarly derived so we omit the detail
here.
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Appendix D

Geometrical differential operators
in axisymmetric coordinate

In this Appendix, we derive the mean curvature H, Gaussian curvature K, and the
surface Laplacian of mean curvature ∆sH in axisymmetric coordinates as shown in
Eq. (6.10). The mean curvature H and Gaussian curvature K can be computed
by the the first and second fundamental forms [51]. As before, under axisymmetric
assumption, the interface can be parameterized as

X(s, θ) = (R(s) cos θ,R(s) sin θ, Z(s)).

Here, we omit the dependence of time t for simplicity. The coefficients E, F , G of
the first fundamental form for the above surface, and the surface area dilating factor
W can be obtained as

E = Xs ·Xs = |Xs|2 ,

F = Xs ·Xθ = 0,

G = Xθ ·Xθ = R2,

W =
√

EG− F 2 = R |Xs| .
The unit outward normal vector is

n =
Xθ ×Xs

W
=

1

|Xs|(Zs cos θ, Zs sin θ,−Rs).

The coefficients of the second fundamental form L, M and N can be obtained as

L = Xss · n =
1

|Xs|(RssZs −RsZss),

M = Xsθ · n = 0,

N = Xθθ · n =
−RZs

|Xs| .
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Therefore, the mean curvature H and Gaussian curvature K can be computed ex-
plicitly as

H = −1

2

EN − 2FM + GL

W 2
=

1

2

(
Zs

R |Xs| +
RsZss −RssZs

|Xs|3
)

, (D.1)

K =
LN −M2

W 2
=

Zs(RsZss −RssZs)

R |Xs|4
. (D.2)

It is interesting to note that there is another way to derive the above curvatures H
and K. Using the formula of the surface divergence operator derived in Eq. (6.14)
and substituting the normal vector into the definition of 2H = ∇s · n, we obtain the
mean curvature H by

2H = ∇s · n =
Zs

R |Xs| +

(
∂n

∂s

1

|Xs|
)
· τ =

Zs

R |Xs| +
RsZss −RssZs

|Xs|3
. (D.3)

One can immediately see that those two terms in above equation comprise two prin-
cipal curvatures, thus their product leads to the Gaussian curvature as shown in
(D.2).

Note that, the surface gradient operator in axisymmetric coordinates is defined as

∇s H =
∂H

∂τ
τ =

(
1

|Xs|
∂H

∂s

)
τ ,

where the tangent vector is defined in Eq. (6.12). By applying the surface divergence
operator (as defined in Eq. (6.14)) to the above equation, one can obtain

∆sH = ∇s · (∇sH) =
1

R |Xs|
∂

∂s

(
R

|Xs|
∂H

∂s

)
. (D.4)
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