## Content

| Abstract (Chinese)                                    | Ι    |
|-------------------------------------------------------|------|
| Abstract (English)                                    | III  |
| Acknowledgment                                        | V    |
| Content                                               | VI   |
| Table Captions                                        | VIII |
| Figure Captions                                       | IX   |
| Chapter 1 Introduction                                | 1    |
| 1.1 Research Motivation                               | 1    |
| 1.2 Chapter Outlines                                  | 2    |
| Chapter 2 Literature Review                           | 4    |
| 2.1 Development of Electronic Packaging               | 4    |
| 2.2 Millimeter Wave Packaging                         | 6    |
| Chapter 3 Dry Film Photo-resist                       | 20   |
| 3.1 Development and Characteristics of the Dry Film   | 20   |
| 3.2 Structure and Composition                         | 21   |
| 3.3 Reaction Mechanism                                | 22   |
| 3.3.1 Reaction Mechanism of Exposure                  | 22   |
| 3.3.2 Reaction Mechanism of Developing and Stripping  | 23   |
| 3.4 Process Procedure                                 | 24   |
| 3.5 Experiments and Results                           | 27   |
| Chapter 4 High Frequency Flip-Chip Experiments        | 45   |
| 4.1 Basic Theory and Structure of Coplanar Wave Guide | 45   |
| 4.2 Theory and Process Procedure of Electroplating    | 52   |
| 4.3 Flip-Chip Bonding Process                         | 57   |
| 4.4 Experiments                                       | 60   |
| 4.4.1 Chip Fabrication                                | 60   |
| 4.4.2 Substrate Fabrication                           | 64   |
| 4.4.3 Flip-Chip Bonding                               | 66   |
| 4.4.4 S-Parameter Simulation and Measurement          | 66   |
| Chapter 5 Results and Discussions                     | 82   |
| 5.1 Process Results                                   |      |
| 5.1.1 Uniformity of Electroplating                    | 82   |
| 5.1.2 Double Layer Dry Film Electroplating            | 83   |

| 5.1.3 Chip fabrication results            | 83  |
|-------------------------------------------|-----|
| 5.1.4 Substrate fabrication results       | 84  |
| 5.1.5 Flip chip bonding results           | 84  |
| 5.1.6 Cladding Layers Fabrication Results | 85  |
| 5.1.7 Shear Strength Results              | 87  |
| 5.2 RF and Microwave Measurement Results  | 87  |
| Chapter 6 Conclusions                     | 114 |
| Reference                                 | 116 |



## **Table Captions**

| Table 2.1 | Comparison of the wire bonding, TAB, and flip-chip characteristics. | 19  |
|-----------|---------------------------------------------------------------------|-----|
| Table 2.2 | Three approaches for obtaining S-parameter.                         | 19  |
| Table 3.1 | Development history of the dry film photo-resist                    | 43  |
| Table 3.2 | Various pattern sizes on a test mask.                               | 44  |
| Table 3.3 | Hard baking conditions with various baking times and temperatures.  | 44  |
| Table 4.1 | Properties of gold.                                                 | 78  |
| Table 4.2 | Properties of copper.                                               | 79  |
| Table 4.3 | Characteristics of the binary solders.                              | 80  |
| Table 4.4 | Properties of various substrate materials                           | 81  |
| Table 5.1 | Uniformity of the plated gold and copper bumps.                     | 113 |
|           |                                                                     |     |



## **Figure Captions**

| Fig. 2.1  | Five levels of electronic packaging.                                                       | 12 |
|-----------|--------------------------------------------------------------------------------------------|----|
| Fig. 2.2  | Several approaches of flip-chip assembly.                                                  | 12 |
| Fig 2.3   | Measured insertion loss $S_{21}$ of the flip-chip and the wire bond test assemblies.       | 13 |
| Fig. 2.4  | Electric field distribution of microstrip line and coplanar waveguide.                     | 13 |
| Fig. 2.5  | S-parameter comparison of the microsrip and CPW line with the same physical                |    |
|           | dimension.                                                                                 | 14 |
| Fig. 2.6  | Flip-chip configuration in CPW technology.                                                 | 14 |
| Fig. 2.7  | Schematic drawing of the flip-chip equivalent circuit model.                               | 15 |
| Fig. 2.8  | Simplified version of the flip-chip equivalent circuit model.                              | 15 |
| Fig. 2.9  | Measurement and FDTD simulation data for the cases with and without the metal              |    |
|           | lid.                                                                                       | 16 |
| Fig. 2.10 | Equivalent circuit model of the flip-chip transition.                                      | 16 |
| Fig. 2.11 | Effect of the dielectric substrate and underfill material on the elements of the           |    |
|           | equivalent circuit model.                                                                  | 17 |
| Fig. 2.12 | Flip-chip CPW-CPW with staggered bumps (plan view of CPW-chip and                          |    |
|           | CPW-substrate).                                                                            | 17 |
| Fig. 2.13 | Optimized interconnect design. (a) Without any compensation. (b) Staggered                 |    |
|           | bumps. (c) High and high-low impedance compensation.                                       | 18 |
| Fig. 3.1  | Structure of the dry film photo-resist.                                                    | 31 |
| Fig. 3.2  | Dry film reaction mechanism for exposure                                                   | 32 |
| Fig. 3.3  | Dry film reaction mechanism for developing and stripping.                                  | 32 |
| Fig. 3.4  | Structure of a dry film laminator.                                                         | 33 |
| Fig. 3.5  | 1X and 50X optical microscopy of dry film surface laminated by a roller.                   | 34 |
| Fig. 3.6  | 1X and 50X optical microscopy of the dry film surface laminated by a laminator.            | 34 |
| Fig. 3.7  | AFM image of as laminated dry film photo-resist.                                           | 35 |
| Fig 3.8   | 50X optical microscopy results for the 50µm test pattern with various exposure             |    |
|           | doses and developing times.                                                                | 36 |
| Fig 3.9   | 50X optical microscopy results for the 30µm test pattern with various exposure             |    |
|           | doses and developing times.                                                                | 37 |
| Fig. 3.10 | Optimized developing time for various pattern diameters.                                   | 38 |
| Fig. 3.11 | SEM pictures of the as developed dry film with various pattern sizes                       | 39 |
| Fig. 3.12 | Patterns with underplating for the dry film with hard bake condition of $190^{\circ}$ C, 2 |    |
|           | minutes.                                                                                   | 40 |

| Fig. 3.13 | Patterns without underplating for the dry film hard baked at the conditions | of (a)   |
|-----------|-----------------------------------------------------------------------------|----------|
|           | $110^{\circ}$ C, 6 minutes (b) 90°C, 6 minutes.                             | 40       |
| Fig. 3.14 | AFM image of hard baked dry film photo-resist with optimized baking con     | ndition. |
|           |                                                                             | 41       |
| Fig. 3.15 | Double layer dry film after developing.                                     | 42       |
| Fig. 4.1  | Concept figure of a transmission line.                                      | 68       |
| Fig. 4.2  | Equivalent circuit model of a transmission line.                            | 68       |
| Fig. 4.3  | Cross section structures of the coplanar waveguide (a) CPW (b) GCPW.        | 69       |
| Fig. 4.4  | Coplanar waveguide with infinite substrate and zero conductor thickness     | 70       |
| Fig. 4.5  | Simplified coplanar waveguide for calculating impedance                     | 70       |
| Fig. 4.6  | Coplanar waveguide with finite substrate and conductor thickness            | 71       |
| Fig. 4.7  | Main components for a plating facility.                                     | 72       |
| Fig. 4.8  | Photograph of the Flip chip bonder.                                         | 73       |
| Fig. 4.9  | Schematic drawing of a flip chip bonder alignment system.                   | 74       |
| Fig.4.10  | The flip chip process flowchart.                                            | 75       |
| Fig.4.11  | Reference HEMT device.                                                      | 76       |
| Fig. 4.12 | Different kinds of pattern layout.                                          | 77       |
| Fig. 5.1  | The pattern for plating uniformity test.                                    | 90       |
| Fig. 5.2  | SEM picture of a double layer plated copper bump.                           | 91       |
| Fig. 5.3  | SEM pictures of the fabricated passive chips.                               | 92       |
| Fig. 5.4  | SEM pictures of the fabricated substrates with bumps.                       | 93       |
| Fig. 5.5  | Alpha stepper result of the metal thickness of the substrate circuit.       | 94       |
| Fig. 5.6  | SEM picture of the substrate with gold bumps.                               | 95       |
| Fig. 5.7  | SEM picture of a single gold bump.                                          | 95       |
| Fig. 5.8  | SEM picture of the substrate with copper bumps.                             | 96       |
| Fig. 5.9  | SEM picture of a single copper bump.                                        | 96       |
| Fig. 5.10 | SEM picture of the substrate with SnCu bumps.                               | 97       |
| Fig. 5.11 | SEM picture of a single SnCu bump.                                          | 97       |
| Fig. 5.12 | SEM picture of the substrate with SnAg bumps.                               | 98       |
| Fig. 5.13 | SEM picture of a single SnAg bump.                                          | 98       |
| Fig. 5.14 | SEM picture of the substrate with bumps after bonding.                      | 99       |
| Fig. 5.15 | SEM picture of a single bump after bonding.                                 | 99       |
| Fig. 5.16 | Structure of a copper bump with cladding metals.                            | 100      |
| Fig. 5.17 | Top view of the developed dry film with cladding metals.                    | 101      |
| Fig.5.28  | Detailed top view of the developed dry film with cladding metals.           | 101      |
| Fig. 5.19 | Cross section of the developed dry film w/o cladding metals.                | 102      |
| Fig. 5.20 | SEM picture of a copper bump with cladding metals.                          | 103      |
| Fig. 5.21 | EDX analysis of the cladding metals.                                        | 103      |
| Fig. 5.22 | The cross section of a $60\mu m$ copper bump with cladding metals.          | 104      |

| Fig. 5.23 | The cross section of a 50µm copper bump with cladding metals.    | 104 |
|-----------|------------------------------------------------------------------|-----|
| Fig. 5.24 | Schematic diagram of the shear strength measurement              | 105 |
| Fig. 5.25 | Shear strength test results of eight gold bumps.                 | 106 |
| Fig. 5.26 | Shear strength test results of eight copper bumps.               | 106 |
| Fig. 5.27 | Shear strength rtest esults of eight SnCu bumps.                 | 107 |
| Fig. 5.28 | Shear strength test results of eight SnAg bumps.                 | 107 |
| Fig. 5.29 | Measured S-parameter of the bonding structure with gold bumps.   | 108 |
| Fig. 5.30 | Measured S-parameter of the bonding structure with copper bumps. | 108 |
| Fig. 5.31 | Simulation S-parameter of the bonding structure.                 | 109 |
| Fig. 5.32 | Simulation S-parameter of the first bonding structure.           | 110 |
| Fig. 5.33 | Measured S-parameter of the first bonding structure.             | 110 |
| Fig. 5.34 | Simulation S-parameter of the second bonding structure.          | 111 |
| Fig. 5.35 | Measured S-parameter of the second bonding structure.            | 111 |
| Fig. 5.36 | Simulation S-parameter of the third bonding structure.           | 112 |
| Fig. 5.37 | Measured S-parameter of the third bonding structure.             | 112 |

