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ABSTRACT

A (k; g)-graph is a k-regular graph with girth g. Let f(k; g) be the smallest integer v such
there exists a (k; g)-graph with v vertices. A (k;g)-cage is a (k; g)-graph with f(k;g)
vertices. In this paper we prove that the cages are monotonic in that f(k; g1) < f(k; g2)
forall k > 3and 3 < g1 < g2. We use this to prove that (k; g)-cages are 2-connected,
and if k = 3 then their connectivity is k. © 1997 John Wiley & Sons, Inc.

1. INTRODUCTION

All graphs in this note are simple. The length of a shortest odd or even cycle in a graph G is called
the odd girth or the even girth of G, respectively. Throughout this paper let g = ¢g(G) denote
the smaller of the odd and even girths of G (so g is the girth of ), and let b = h(G) denote the
larger; then the girth pair of G is defined to be (g, h). A k-regular graph with girth pair (g, k) is
called a (k; g, h)-graph. For any k > 1 and any g #Z h (mod 2) with 3 < g < h, let f(k;g,h)
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denote the smallest integer v such that there exists a (k; g, h)-graph with v vertices. Similarly, a
k-regular graph with girth g is called a (k; g)-graph, and let f(k; g) denote the smallest integer v
such that there exists a (k; g)-graph with v vertices; a (k; g)-graph with f(k; g) vertices is called
a cage. Cages have been studied widely since introduced by Tutte in 1947 [3]; see [4] for a survey
referring to 70 publications.

Several interesting questions concerning girth pairs of graphs remain open. For example,
it is clear that f(k;g) < f(k;g,h), and this inequality may be strict; for example, the (k;4)-
cage is K [4], so contains no 5-cycles, so in this case f(k;4) < f(k;4,5). Related to this
observation is a conjecture of Harary and Kovacs [2] who believe that if g is odd then f(k; g) =
f(k; g,g+1). Butwhether f(k; g, h) < f(k; h) remains unknown. Harary and Kovacs proved [2]
that f(k; h — 1, h) < f(k;h). They also conjectured that all (k; g, h)-graphs of order f(k; g, h)
are 2-connected. In this paper we prove the related conjecture that cages are 2-connected. Our
proofs rely on knowing that cages are monotonic in the sense that f(k; g1) < f(k;g2) for all
g1 < g2. While this may be known to some, we can find no reference to the result, so a proof is
included here. For any undefined terminology, see [1].

2. MONOTONICITY AND CONNECTIVITY OF CAGES

There have been many papers that find bounds on f(k;g) (see [4] for a survey). We begin
by considering f(k; g), proving that cages are monotonic, a result that will also be of use in
considering the connectivity of cages.

Theorem 1. Forallk >3 and 3 < g1 < g2, f(k;91) < f(k; g2)-

Proof. 1t suffices to show that if k,g > 3 then f(k;g9) < f(k;g +1). Solet G be a
(k; g + 1)-graph with f(k; g + 1) vertices.

Suppose k is even. Let C be a cycle of length g+ 1 in G containing the edges uv; and uv,. Let
Ng(u) = {v1, ..., v} be the neighborhood of w in G, and let E' = {v1v2, V304, ..., U510k }.
Let G’ be the component of G — u + E’ that contains v;. Since g + 1 > 4, Ng(u) is an
independent set of G, so £’ N E(G) = (, and so G’ is a simple graph. Clearly G’ contains the
cycle (C' — u) + vivg of length g. Also, if C” is a cycle in G’ then: if E' N E(C’) = ( then
C"is acycle in G; and if E' N E(C") # () then let P be a (v;, v;)-path that is a subgraph of C”
with E(P) N E" = 0, so P + {uv;,uv;} is a cycle in G, so C” has length at least g (since C”
contains P and at least one edge in E’). So G’ has no cycles of length less than g, and is therefore
a (k; g)-graph with at most f(k; g + 1) — 1 vertices, so f(k;g) < f(k; g+ 1).

Suppose k is odd. Let C be a cycle of length g+ 1 in G containing uv; and uvs. Let Ng(u) =
{v1,...,vp—1,w}. Clearly w & V(C), for if C is the cycle (u,vs,...,21,w,Z,...,v1) then
(u,va,...,z1,w) is a cycle of length less than the girth of G. Let Ng(w) = {x1,...,Tr_1,u}.
Let G’ be the component of (G — {u,w}) + {vai—1v2, Toi—122;]1 < @ < (k — 1)/2} that
contains vy. Since g + 1 > 4, Ng(u) and Ng(w) are independent sets of G, so G’ is simple.
Clearly C' — u + v1vs is a cycle in G’ of length g, and (as in the previous case) no cycle in G’
has length less than g. Therefore G’ is a (k; g) graph with at most f(k; g + 1) — 2 vertices, so
f(k;g) < f(k;g+1). ]

We can now use Theorem 1 to prove the following result.

Theorem 2.  All (k; g)-cages are 2-connected.
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Proof. Supposethat G is aconnected (k, g)-graph that contains a cut vertex u. Let C1, ..., Cy,
be the components of G — w, with |V (C;)| < |V(C;)| for 1 <14 < j < w. Clearly

de, (v1,v9) > g — 2 for all vy, v2 € V(Cy) N Ng(u). (1)

Let C’ be a copy of C with V(C') N V(C1) = 0, and let f be an isomorphism between C; and
C'. Form a new graph from the union of C and C”’ by joining each v € V(C7) N Ng(u) to f(v)
with an edge.

Clearly H is k-regular, and has fewer vertices than G (since |V (C’)| < |V(C2)| and u &
V(H)). Also, by (1), any cycle in H containing an edge v f (v) has length at least 2(g — 2) + 2 =
2g—2,s0 H has girth atleast min{g, 29—2} = g. Therefore by Theorem 1, G'is not a (k; g)-cage,
and the result follows. 2

3. FURTHER RESULTS

While it is good to know that cages are 2-connected, we believe that their connectivity is much
higher. Indeed, we are bold enough to make the following conjecture.

Conjecture. All simple (k; g)-cages are k-connected.

In support of this conjecture, we now prove the following result.

Theorem 3.  All cubic cages are 3-connected.

Proof. Suppose G’ is a (3; g)-cage. By Theorem 2, G’ has connectivity at least 2. Suppose
G’ has connectivity 2. The following construction of a graph G is depicted in Figure 1.

Since G’ is a cubic graph, G’ has an edge-cut consisting of two edges, say e and f. Let
H' and W’ be the two components of G' — {e, f}, let e = zoyo and f = x1y;, where
{zo,z1} C H' and {yo,y1} € W'. Let dw(yo,y1) = d < dg/(x9,z1) = D. Let
P = (wy = yo, w1, ws,...,wqg = y1) be a shortest (yo,y1)-path in W', let Q' = (hy =
xo, h1,ha,...,hp = 1) be a shortest (xg, z1)-path in H' and let Q = (hg, h1,...,hq—1) be
the (zg, hq—1)-subpath of Q. For each i € {0, 1} let z; be the unique neighbor of y; in W’ that
is not in P. Let R be the path (29, zo, w1, h1,wa, ho, ..., wa—1,hq—1). Let H = H — E(Q)
andlet W = (W' — E(P)) — {yo,y1}- Let G = (HUW U R) + {z121} (see Fig. 1).

Clearly G is a cubic graph with |V(G’)| — 2 vertices. We now show that G has girth at least
g, so the result will then follow from Theorem 1 which will contradict G’ being a (3; g)-cage.

Any cycle in G that is also in G’ clearly has length at least g. Any cycle in G that is not in
G’ contains at least two edges in E(R) U {z121}; let C be a cycle containing exactly two such
edges, say e; and es. We consider several cases.

Case 1. Suppose e; = x9zp and e = h;_jw; or hyw; with1 <7 <d — 1.

Let P; be a shortest (zg, w;)-path in W. Then P; is a path in W’. Let P, be the (yo, w;)-
subpath of P; so P has length 7. Then clearly (P, U P2) + yozo contains a cycle of length at
most i + 1 + dw (20, w;). Since (P U Py) 4 yo2 is a subgraph of G’ i 4+ 1 + dw (20, w;) > g.
Foreach!l € {i—1,i},dg(zo, i) > du(xo, hy) =i — 1, so C has length at least d gy (2o, h;) +
dw(zo,w;) +2>i—1+g—(i+1)+2=g.

Case 2. Suppose e; = xpzp and ey = T12].

Let P; be a shortest (zg, z1)-path in W. Then (P; U P) + {yoz0, Y121} contains a cycle,
and this cycle has length at most d + 2 + dyw (20, 21). Since this cycle is also a subgraph of
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FIGURE 1. Dashed lines are edges in G’ not in G.

G',d+ 2+ dw(z0,21) > g. Clearly dg (2o, 21) > dp/(xg,21) = D. Therefore C has length
at least dH(J?Q,l‘l) + dw(ZO, Zl) +2>D+g— (d + 2) +2>g.

Case 3. Suppose e; = h;_jw; or h;w; and ez = h;_qw; or hyw;, with1 <7 < j <d— 1.

If i = j then we can assume e; = h;_jw; and ex = h;w;, s0 C' —{ey,ea} + h;_1h; isacycle
in G’, and so has length at least g. Therefore C' has length at least g + 1.

If i < j then let P, be a shortest (w;,w;)-path in W. Since P; + {wywi41]t < 1 < j}
contains a cycle in G’, P, has length at least g — (j — 4). Also, for each [y € {i — 1,4} and
each Iy € {j — 1,5}, du(hiy, i) > dur(hi,hj—1) = j — 1 — 4. So C has length at least
g— G-+ -1-9H+2=9g+1

Case 4. Suppose e; = h;_jw; or h;w; with1 <i < d—1and ey = z12;.

As in the previous case dw (w;,z) > g — (d+ 1 — 1), and foreach ! € {i — 1,i} dg(hy, 1)
> dp(hi,x1) = d — 1. Therefore C has length atleastg — (d+1—4) + (d —i) +2 =g+ 1.

Thus in every case, if C' contains exactly two edges in R then C' has length at least g. If C
contains more than two edges in R then it follows even more easily that C' has length at least g,
so the result is proved. n
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