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ABSTRACT

A (k; g)-graph is a k-regular graph with girth g. Let f(k; g) be the smallest integer ν such
there exists a (k; g)-graph with ν vertices. A (k; g)-cage is a (k; g)-graph with f(k; g)
vertices. In this paper we prove that the cages are monotonic in that f(k; g1) < f(k; g2)
for all k ≥ 3 and 3 ≤ g1 < g2. We use this to prove that (k; g)-cages are 2-connected,
and if k = 3 then their connectivity is k. c© 1997 John Wiley & Sons, Inc.

1. INTRODUCTION

All graphs in this note are simple. The length of a shortest odd or even cycle in a graph G is called
the odd girth or the even girth of G, respectively. Throughout this paper let g = g(G) denote
the smaller of the odd and even girths of G (so g is the girth of G), and let h = h(G) denote the
larger; then the girth pair of G is defined to be (g, h). A k-regular graph with girth pair (g, h) is
called a (k; g, h)-graph. For any k ≥ 1 and any g 6≡ h (mod 2) with 3 ≤ g < h, let f(k; g, h)
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denote the smallest integer ν such that there exists a (k; g, h)-graph with ν vertices. Similarly, a
k-regular graph with girth g is called a (k; g)-graph, and let f(k; g) denote the smallest integer ν
such that there exists a (k; g)-graph with ν vertices; a (k; g)-graph with f(k; g) vertices is called
a cage. Cages have been studied widely since introduced by Tutte in 1947 [3]; see [4] for a survey
referring to 70 publications.

Several interesting questions concerning girth pairs of graphs remain open. For example,
it is clear that f(k; g) ≤ f(k; g, h), and this inequality may be strict; for example, the (k; 4)-
cage is Kk,k [4], so contains no 5-cycles, so in this case f(k; 4) < f(k; 4, 5). Related to this
observation is a conjecture of Harary and Kovacs [2] who believe that if g is odd then f(k; g) =
f(k; g, g+1). But whether f(k; g, h) ≤ f(k;h) remains unknown. Harary and Kovacs proved [2]
that f(k;h − 1, h) ≤ f(k;h). They also conjectured that all (k; g, h)-graphs of order f(k; g, h)
are 2-connected. In this paper we prove the related conjecture that cages are 2-connected. Our
proofs rely on knowing that cages are monotonic in the sense that f(k; g1) < f(k; g2) for all
g1 < g2. While this may be known to some, we can find no reference to the result, so a proof is
included here. For any undefined terminology, see [1].

2. MONOTONICITY AND CONNECTIVITY OF CAGES

There have been many papers that find bounds on f(k; g) (see [4] for a survey). We begin
by considering f(k; g), proving that cages are monotonic, a result that will also be of use in
considering the connectivity of cages.

Theorem 1. For all k ≥ 3 and 3 ≤ g1 < g2, f(k; g1) < f(k; g2).

Proof. It suffices to show that if k, g ≥ 3 then f(k; g) < f(k; g + 1). So let G be a
(k; g + 1)-graph with f(k; g + 1) vertices.

Suppose k is even. Let C be a cycle of length g+1 in G containing the edges uv1 and uv2. Let
NG(u) = {v1, . . . , vk} be the neighborhood of u in G, and let E′ = {v1v2, v3v4, . . . , vk−1vk}.
Let G′ be the component of G − u + E′ that contains v1. Since g + 1 ≥ 4, NG(u) is an
independent set of G, so E′ ∩ E(G) = ∅, and so G′ is a simple graph. Clearly G′ contains the
cycle (C − u) + v1v2 of length g. Also, if C ′ is a cycle in G′ then: if E′ ∩ E(C ′) = ∅ then
C ′ is a cycle in G; and if E′ ∩ E(C ′) 6= ∅ then let P be a (vi, vj)-path that is a subgraph of C ′

with E(P ) ∩ E′ = ∅, so P + {uvi, uvj} is a cycle in G, so C ′ has length at least g (since C ′

contains P and at least one edge in E′). So G′ has no cycles of length less than g, and is therefore
a (k; g)-graph with at most f(k; g + 1) − 1 vertices, so f(k; g) < f(k; g + 1).

Suppose k is odd. Let C be a cycle of length g+1 in G containing uv1 and uv2. Let NG(u) =
{v1, . . . , vk−1, w}. Clearly w 6∈ V (C), for if C is the cycle (u, v2, . . . , x1, w, x2, . . . , v1) then
(u, v2, . . . , x1, w) is a cycle of length less than the girth of G. Let NG(w) = {x1, . . . , xk−1, u}.
Let G′ be the component of (G − {u, w}) + {v2i−1v2i, x2i−1x2i|1 ≤ i ≤ (k − 1)/2} that
contains v1. Since g + 1 ≥ 4, NG(u) and NG(w) are independent sets of G, so G′ is simple.
Clearly C − u + v1v2 is a cycle in G′ of length g, and (as in the previous case) no cycle in G′

has length less than g. Therefore G′ is a (k; g) graph with at most f(k; g + 1) − 2 vertices, so
f(k; g) < f(k; g + 1).

We can now use Theorem 1 to prove the following result.

Theorem 2. All (k; g)-cages are 2-connected.
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Proof. Suppose thatG is a connected (k, g)-graph that contains a cut vertexu. Let C1, . . . , Cw

be the components of G − u, with |V (Ci)| ≤ |V (Cj)| for 1 ≤ i < j ≤ w. Clearly

dC1(v1, v2) ≥ g − 2 for all v1, v2 ∈ V (C1) ∩ NG(u). (1)

Let C ′ be a copy of C1 with V (C ′) ∩ V (C1) = ∅, and let f be an isomorphism between C1 and
C ′. Form a new graph from the union of C1 and C ′ by joining each v ∈ V (C1) ∩ NG(u) to f(v)
with an edge.

Clearly H is k-regular, and has fewer vertices than G (since |V (C ′)| ≤ |V (C2)| and u 6∈
V (H)). Also, by (1), any cycle in H containing an edge vf(v) has length at least 2(g − 2)+2 =
2g−2, so H has girth at least min{g, 2g−2} = g. Therefore by Theorem 1, G is not a (k; g)-cage,
and the result follows.

3. FURTHER RESULTS

While it is good to know that cages are 2-connected, we believe that their connectivity is much
higher. Indeed, we are bold enough to make the following conjecture.

Conjecture. All simple (k; g)-cages are k-connected.

In support of this conjecture, we now prove the following result.

Theorem 3. All cubic cages are 3-connected.

Proof. Suppose G′ is a (3; g)-cage. By Theorem 2, G′ has connectivity at least 2. Suppose
G′ has connectivity 2. The following construction of a graph G is depicted in Figure 1.

Since G′ is a cubic graph, G′ has an edge-cut consisting of two edges, say e and f . Let
H ′ and W ′ be the two components of G′ − {e, f}, let e = x0y0 and f = x1y1, where
{x0, x1} ⊆ H ′ and {y0, y1} ⊆ W ′. Let dW ′(y0, y1) = d ≤ dH′(x0, x1) = D. Let
P = (w0 = y0, w1, w2, . . . , wd = y1) be a shortest (y0, y1)-path in W ′, let Q′ = (h0 =
x0, h1, h2, . . . , hD = x1) be a shortest (x0, x1)-path in H ′ and let Q = (h0, h1, . . . , hd−1) be
the (x0, hd−1)-subpath of Q′. For each i ∈ {0, 1} let zi be the unique neighbor of yi in W ′ that
is not in P . Let R be the path (z0, x0, w1, h1, w2, h2, . . . , wd−1, hd−1). Let H = H ′ − E(Q)
and let W = (W ′ − E(P )) − {y0, y1}. Let G = (H ∪ W ∪ R) + {x1z1} (see Fig. 1).

Clearly G is a cubic graph with |V (G′)| − 2 vertices. We now show that G has girth at least
g, so the result will then follow from Theorem 1 which will contradict G′ being a (3; g)-cage.

Any cycle in G that is also in G′ clearly has length at least g. Any cycle in G that is not in
G′ contains at least two edges in E(R) ∪ {x1z1}; let C be a cycle containing exactly two such
edges, say e1 and e2. We consider several cases.

Case 1. Suppose e1 = x0z0 and e2 = hi−1wi or hiwi with 1 ≤ i ≤ d − 1.
Let P1 be a shortest (z0, wi)-path in W . Then P1 is a path in W ′. Let P2 be the (y0, wi)-

subpath of P ; so P2 has length i. Then clearly (P1 ∪ P2) + y0z0 contains a cycle of length at
most i + 1 + dW (z0, wi). Since (P1 ∪ P2) + y0z0 is a subgraph of G′, i + 1 + dW (z0, wi) ≥ g.
For each l ∈ {i − 1, i}, dH(x0, hl) ≥ dH′(x0, hl) = i − 1, so C has length at least dH(x0, hl) +
dW (z0, wi) + 2 ≥ i − 1 + g − (i + 1) + 2 = g.

Case 2. Suppose e1 = x0z0 and e2 = x1z1.
Let P1 be a shortest (z0, z1)-path in W . Then (P1 ∪ P ) + {y0z0, y1z1} contains a cycle,

and this cycle has length at most d + 2 + dW (z0, z1). Since this cycle is also a subgraph of
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FIGURE 1. Dashed lines are edges in G′ not in G.

G′, d + 2 + dW (z0, z1) ≥ g. Clearly dH(x0, x1) ≥ dH′(x0, x1) = D. Therefore C has length
at least dH(x0, x1) + dW (z0, z1) + 2 ≥ D + g − (d + 2) + 2 ≥ g.

Case 3. Suppose e1 = hi−1wi or hiwi and e2 = hj−1wj or hjwj , with 1 ≤ i ≤ j ≤ d − 1.
If i = j then we can assume e1 = hi−1wi and e2 = hiwi, so C −{e1, e2}+hi−1hi is a cycle

in G′, and so has length at least g. Therefore C has length at least g + 1.
If i < j then let P1 be a shortest (wi, wj)-path in W . Since P1 + {wlwl+1|i ≤ l < j}

contains a cycle in G′, P1 has length at least g − (j − i). Also, for each l1 ∈ {i − 1, i} and
each l2 ∈ {j − 1, j}, dH(hl1 , hl2) ≥ dH′(hi, hj−1) = j − 1 − i. So C has length at least
g − (j − i) + (j − 1 − i) + 2 = g + 1.

Case 4. Suppose e1 = hi−1wi or hiwi with 1 ≤ i ≤ d − 1 and e2 = x1z1.
As in the previous case dW (wi, z) ≥ g − (d + 1 − i), and for each l ∈ {i − 1, i} dH(hl, x1)

≥ dH′(hi, x1) = d − i. Therefore C has length at least g − (d + 1 − i) + (d − i) + 2 = g + 1.
Thus in every case, if C contains exactly two edges in R then C has length at least g. If C

contains more than two edges in R then it follows even more easily that C has length at least g,
so the result is proved.
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