Connectivity of Cages

H. L. Fu,¹,²

1DEPARTMENT OF APPLIED MATHEMATICS NATIONAL CHIAO-TUNG UNIVERSITY HSIN-CHU, TAIWAN REPUBLIC OF CHINA

K. C. Huang,³

3DEPARTMENT OF APPLIED MATHEMATICS PROVIDENCE UNIVERSITY, SHALU, TAICHUNG HSIEN, TAIWAN REPUBLIC OF CHINA

C. A. Rodger²,*****

2DEPARTMENT OF DISCRETE AND STATISTICAL SCIENCES 120 MATH ANNEX AUBURN UNIVERSITY, ALABAMA USA 36849-5307

ABSTRACT

A $(k; g)$ -graph is a k-regular graph with girth g. Let $f(k; g)$ be the smallest integer ν such there exists a $(k; g)$ -graph with ν vertices. A $(k; g)$ -cage is a $(k; g)$ -graph with $f(k; g)$ vertices. In this paper we prove that the cages are monotonic in that $f(k; g_1) < f(k; g_2)$ for all $k \geq 3$ and $3 \leq g_1 < g_2$. We use this to prove that $(k; g)$ -cages are 2-connected, and if $k = 3$ then their connectivity is k. \odot 1997 John Wiley & Sons, Inc.

1. INTRODUCTION

All graphs in this note are simple. The length of a shortest odd or even cycle in a graph G is called the *odd girth* or the *even girth* of G, respectively. Throughout this paper let $g = g(G)$ denote the smaller of the odd and even girths of G (so q is the girth of G), and let $h = h(G)$ denote the larger; then the *girth pair* of G is defined to be (g, h) . A k-regular graph with girth pair (g, h) is called a $(k; g, h)$ -graph. For any $k \ge 1$ and any $g \not\equiv h \pmod{2}$ with $3 \le g \le h$, let $f(k; g, h)$

^{*}This research is supported by ONR Grant N000014-95-0769.

Journal of Graph Theory Vol. 24, No. 2, 187-191 (1997) c 1997 John Wiley & Sons, Inc. CCC 0364-9024/97/020187-05

denote the smallest integer ν such that there exists a $(k; g, h)$ -graph with ν vertices. Similarly, a k-regular graph with girth g is called a $(k; g)$ -graph, and let $f(k; g)$ denote the smallest integer ν such that there exists a $(k; g)$ -graph with ν vertices; a $(k; g)$ -graph with $f(k; g)$ vertices is called a cage. Cages have been studied widely since introduced by Tutte in 1947 [3]; see [4] for a survey referring to 70 publications.

Several interesting questions concerning girth pairs of graphs remain open. For example, it is clear that $f(k; g) \leq f(k; g, h)$, and this inequality may be strict; for example, the $(k; 4)$ cage is $K_{k,k}$ [4], so contains no 5-cycles, so in this case $f(k; 4) < f(k; 4, 5)$. Related to this observation is a conjecture of Harary and Kovacs [2] who believe that if g is odd then $f(k; g)$ = $f(k; g, g+1)$. But whether $f(k; g, h) \leq f(k; h)$ remains unknown. Harary and Kovacs proved [2] that $f(k; h-1, h) \le f(k; h)$. They also conjectured that all $(k; g, h)$ -graphs of order $f(k; g, h)$ are 2-connected. In this paper we prove the related conjecture that cages are 2-connected. Our proofs rely on knowing that cages are monotonic in the sense that $f(k; g_1) < f(k; g_2)$ for all $g_1 < g_2$. While this may be known to some, we can find no reference to the result, so a proof is included here. For any undefined terminology, see [1].

2. MONOTONICITY AND CONNECTIVITY OF CAGES

There have been many papers that find bounds on $f(k; g)$ (see [4] for a survey). We begin by considering $f(k; g)$, proving that cages are monotonic, a result that will also be of use in considering the connectivity of cages.

Theorem 1. For all $k \ge 3$ and $3 \le g_1 < g_2$, $f(k; g_1) < f(k; g_2)$.

Proof. It suffices to show that if $k, g \geq 3$ then $f(k; g) < f(k; g + 1)$. So let G be a $(k; g + 1)$ -graph with $f(k; g + 1)$ vertices.

Suppose k is even. Let C be a cycle of length $g+1$ in G containing the edges uv_1 and uv_2 . Let $N_G(u) = \{v_1, \ldots, v_k\}$ be the neighborhood of u in G, and let $E' = \{v_1v_2, v_3v_4, \ldots, v_{k-1}v_k\}.$ Let G' be the component of $G - u + E'$ that contains v_1 . Since $g + 1 \geq 4$, $N_G(u)$ is an independent set of G, so $E' \cap E(G) = \emptyset$, and so G' is a simple graph. Clearly G' contains the cycle $(C - u) + v_1v_2$ of length g. Also, if C' is a cycle in G' then: if $E' \cap E(C') = \emptyset$ then C' is a cycle in G; and if $E' \cap E(C') \neq \emptyset$ then let P be a (v_i, v_j) -path that is a subgraph of C' with $E(P) \cap E' = \emptyset$, so $P + \{uv_i, uv_j\}$ is a cycle in G, so C' has length at least g (since C' contains P and at least one edge in E'). So G' has no cycles of length less than g, and is therefore a $(k; g)$ -graph with at most $f(k; g + 1) - 1$ vertices, so $f(k; g) < f(k; g + 1)$.

Suppose k is odd. Let C be a cycle of length $g + 1$ in G containing uv₁ and uv₂. Let $N_G(u) =$ $\{v_1,\ldots,v_{k-1},w\}$. Clearly $w \notin V(C)$, for if C is the cycle $(u,v_2,\ldots,x_1,w,x_2,\ldots,v_1)$ then (u, v_2, \ldots, x_1, w) is a cycle of length less than the girth of G. Let $N_G(w) = \{x_1, \ldots, x_{k-1}, u\}.$ Let G' be the component of $(G - \{u, w\}) + \{v_{2i-1}v_{2i}, x_{2i-1}x_{2i}|1 \le i \le (k-1)/2\}$ that contains v_1 . Since $g + 1 \ge 4$, $N_G(u)$ and $N_G(w)$ are independent sets of G, so G' is simple. Clearly $C - u + v_1v_2$ is a cycle in G' of length g, and (as in the previous case) no cycle in G' has length less than g. Therefore G' is a $(k; g)$ graph with at most $f(k; g + 1) - 2$ vertices, so $f(k; g) < f(k; g + 1).$

We can now use Theorem 1 to prove the following result.

Theorem 2. All $(k; g)$ -cages are 2-connected.

Proof. Suppose that G is a connected (k, g) -graph that contains a cut vertex u. Let C_1, \ldots, C_w be the components of $G - u$, with $|V(C_i)| \leq |V(C_i)|$ for $1 \leq i < j \leq w$. Clearly

$$
d_{C_1}(v_1, v_2) \ge g - 2 \qquad \text{for all } v_1, v_2 \in V(C_1) \cap N_G(u). \tag{1}
$$

Let C' be a copy of C_1 with $V(C') \cap V(C_1) = \emptyset$, and let f be an isomorphism between C_1 and C'. Form a new graph from the union of C₁ and C' by joining each $v \in V(C_1) \cap N_G(u)$ to $f(v)$ with an edge.

Clearly H is k-regular, and has fewer vertices than G (since $|V(C')| \leq |V(C_2)|$ and $u \notin$ $V(H)$). Also, by (1), any cycle in H containing an edge $v f(v)$ has length at least $2(q-2)+2=$ $2g-2$, so H has girth at least $\min\{g, 2g-2\} = g$. Therefore by Theorem 1, G is not a $(k; g)$ -cage, and the result follows.

3. FURTHER RESULTS

While it is good to know that cages are 2-connected, we believe that their connectivity is much higher. Indeed, we are bold enough to make the following conjecture.

Conjecture. All simple (k; g)-cages are k-connected.

In support of this conjecture, we now prove the following result.

Theorem 3. All cubic cages are 3-connected.

Proof. Suppose G' is a $(3; g)$ -cage. By Theorem 2, G' has connectivity at least 2. Suppose G' has connectivity 2. The following construction of a graph G is depicted in Figure 1.

Since G' is a cubic graph, G' has an edge-cut consisting of two edges, say e and f. Let H' and W' be the two components of $G' - \{e, f\}$, let $e = x_0y_0$ and $f = x_1y_1$, where $\{x_0, x_1\} \subseteq H'$ and $\{y_0, y_1\} \subseteq W'$. Let $d_{W'}(y_0, y_1) = d \le d_{H'}(x_0, x_1) = D$. Let $P = (w_0 = y_0, w_1, w_2, \dots, w_d = y_1)$ be a shortest (y_0, y_1) -path in W', let $Q' = (h_0 =$ $x_0, h_1, h_2,...,h_D = x_1$) be a shortest (x_0, x_1) -path in H' and let $Q = (h_0, h_1,...,h_{d-1})$ be the (x_0, h_{d-1}) -subpath of Q' . For each $i \in \{0, 1\}$ let z_i be the unique neighbor of y_i in W' that is not in P. Let R be the path $(z_0, x_0, w_1, h_1, w_2, h_2, \ldots, w_{d-1}, h_{d-1})$. Let $H = H' - E(Q)$ and let $W = (W' - E(P)) - \{y_0, y_1\}$. Let $G = (H \cup W \cup R) + \{x_1 z_1\}$ (see Fig. 1).

Clearly G is a cubic graph with $|V(G')| - 2$ vertices. We now show that G has girth at least g, so the result will then follow from Theorem 1 which will contradict G' being a $(3; g)$ -cage.

Any cycle in G that is also in G' clearly has length at least g . Any cycle in G that is not in G' contains at least two edges in $E(R) \cup \{x_1z_1\}$; let C be a cycle containing exactly two such edges, say e_1 and e_2 . We consider several cases.

Case 1. Suppose $e_1 = x_0z_0$ and $e_2 = h_{i-1}w_i$ or h_iw_i with $1 \le i \le d-1$.

Let P_1 be a shortest (z_0, w_i) -path in W. Then P_1 is a path in W'. Let P_2 be the (y_0, w_i) subpath of P; so P_2 has length i. Then clearly $(P_1 \cup P_2) + y_0 z_0$ contains a cycle of length at most $i + 1 + d_W(z_0, w_i)$. Since $(P_1 \cup P_2) + y_0 z_0$ is a subgraph of $G', i + 1 + d_W(z_0, w_i) \ge g$. For each $l \in \{i-1, i\}, d_H(x_0, h_l) \ge d_{H'}(x_0, h_l) = i-1$, so C has length at least $d_H(x_0, h_l)$ + $d_W(z_0, w_i)+2 \geq i-1+g-(i+1)+2=g.$

Case 2. Suppose $e_1 = x_0z_0$ and $e_2 = x_1z_1$.

Let P_1 be a shortest (z_0, z_1) -path in W. Then $(P_1 \cup P) + \{y_0z_0, y_1z_1\}$ contains a cycle, and this cycle has length at most $d + 2 + d_W(z₀, z₁)$. Since this cycle is also a subgraph of

FIGURE 1. Dashed lines are edges in G' not in G .

 $G', d + 2 + d_W(z_0, z_1) \ge g$. Clearly $d_H(x_0, x_1) \ge d_{H'}(x_0, x_1) = D$. Therefore C has length at least $d_H(x_0, x_1) + d_W(z_0, z_1) + 2 \ge D + g - (d + 2) + 2 \ge g$.

Case 3. Suppose $e_1 = h_{i-1}w_i$ or h_iw_i and $e_2 = h_{j-1}w_j$ or h_jw_j , with $1 \le i \le j \le d-1$. If $i = j$ then we can assume $e_1 = h_{i-1}w_i$ and $e_2 = h_iw_i$, so $C - \{e_1, e_2\} + h_{i-1}h_i$ is a cycle in G' , and so has length at least g. Therefore C has length at least $g + 1$.

If $i < j$ then let P_1 be a shortest (w_i, w_j) -path in W. Since $P_1 + \{w_lw_{l+1}|i \leq l < j\}$ contains a cycle in G', P_1 has length at least $g - (j - i)$. Also, for each $l_1 \in \{i - 1, i\}$ and each $l_2 \in \{j-1, j\}, d_H(h_{l_1}, h_{l_2}) \ge d_{H'}(h_i, h_{j-1}) = j - 1 - i$. So C has length at least $g - (j - i) + (j - 1 - i) + 2 = g + 1.$

Case 4. Suppose $e_1 = h_{i-1}w_i$ or h_iw_i with $1 \le i \le d-1$ and $e_2 = x_1z_1$.

As in the previous case $d_W(w_i, z) \geq g - (d + 1 - i)$, and for each $l \in \{i - 1, i\}$ $d_H(h_l, x_1)$ $\geq d_{H}(h_i, x_1) = d - i$. Therefore C has length at least $g - (d + 1 - i) + (d - i) + 2 = g + 1$.

Thus in every case, if C contains exactly two edges in R then C has length at least g. If C contains more than two edges in R then it follows even more easily that C has length at least g, so the result is proved.

ACKNOWLEDGMENTS

The authors wish to thank a referee for the shorter proof of Theorem 2 that appears in this paper.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, North Holland, Amsterdam (1976).
- [2] F. Harary and P. Kovacs, Regular graphs with given girth pair, J. Graph Theory **7** (1983), 209–218.
- [3] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Phil. Soc., d (1947), 459-474.
- [4] P-K. Wong, Cages–-a survey, J. Graph Theory, **6** (1982), 1–22.

Received October 18, 1995