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國立交通大學電信工程研究所碩士班 

摘 要       

 
    在這篇論文中我們探討多輸入多輸出雙使用者干擾通道在傳送端沒有通道資訊

下的自由度區域。我們延用 Huang, Jafar和 Shamai的研究，從不同的傳送端和接收

端天線數分成三個類別。我們使用功率劃分方法以及接續干擾消除解碼器來得到自由

度區域。同時我們也讓 Huang等三人的研究中其中一個類別的外界變得更好。我們並

延伸討論到多輸入多輸出雙使用者干擾通道在傳送端沒有通道資訊下有完美接收端

合作的自由度區域，比較和多輸入多輸出雙使用者干擾通道在傳送端沒有通道資訊下

沒有合作的自由度範圍的差異。 
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Degrees of freedom for MIMO interference channel 

using power split with no channel state information at 

transmitters 

 
Student：Chieh Lo Supervisor：Dr. Hsiao-Feng Lu 

Institute of Communications Engineering 

National Chiao Tung University 

Abstract 

In this thesis we investigate the degree-of-freedom (DoF) region of a 

two-user MIMO interference channel without channel state information at the 

transmitters. Following the work of Huang, Jafar, and Shamai, we distinguish 

three types of channels based on the numbers of transmit and receive antennas. 

We derive the DoF region for a power-split scheme followed by a SIC decoder. 

We also improve an outer bound by Huang et. al. on the DoF region for a 

specific type of MIMO interference channels. We extend our discussion to 

two-user MIMO interference channels with perfect receiver cooperation and 

compare the result to two-user interference without cooperation. 
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Chapter 1

Introduction

1.1 MIMO Systems and Degrees of Freedom (DoF)

In wireless communication, multiple-input-multiple-output (MIMO) systems have

the ability to provide remarkable increase of capacity compared to single-input-single-

output (SISO) systems. One of the key benefit from MIMO systems is multiplexing

signal in space. For a MIMO system, the ability of multiplexing signals is measured

by the spatial multiplexing gain [1], also known as degrees of freedom (DoF).

Let us consider a point-to-point MIMO system, the transmitter has nt antennas,

and the receiver has nr antennas. The transmitter can transmit at most nt indepen-

dent streams simultaneously, and the receiver can receiver at most nr independent

streams simultaneously. Thus, it is easy to see that the maximal DoF of a point-to-

point MIMO system is min(nt, nr). The standard definition of maximal DoF is

dmax := lim
SNR→∞

C(SNR)

log SNR
, (1.1)

where C(SNR) is the capacity of the point-to-point MIMO system given by

C(SNR) = E
[
log det

(
Inr +

SNR

nt
HH†

)]
, (1.2)

and the SNR is the signal-to-noise power ratio. The elements of H and N are circu-

larly symmetric complex Gaussian random variables with zero mean and unit vari-
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1.2. Two-User MIMO Interference Channel

ance. The equation (1.2) can be written as

C(SNR) = E

[
nmin∑
i=1

log

(
1 +

SNR

nt
λ2i

)]
, (1.3)

where λ1 ≤ λ2 . . . < λnmin are the ordered singular values of H, and nmin = min(nt, nr).

By Jensen’s inequality, we have that

E

[
nmin∑
i=1

log

(
1 +

SNR

nt
λ2i

)]
≤ nmin log

(
1 +

SNR

nt

[
1

nmin

nmin∑
i=1

λ2i

])
. (1.4)

At high SNR, the capacity approximates

C(SNR) ≈ nmin log
SNR

nt
+

nmin∑
i=1

E
[
log λ2i

]
. (1.5)

So we have the maximal DoF is

dmax = lim
SNR→∞

C(SNR)

log SNR
= nmin. (1.6)

Thus we can know that the maximal DoF of a point-to-point MIMO system is

min(nt, nr).

In [2], it has been shown that for the point-to-point MIMO communication, the

absence of channel state information at transmitters, i.e., CSIT, does not reduce the

DoF. But in a MIMO network with distributed processing units, [3] shows that in the

absence of CSIT, the DoF may be lost.

1.2 Two-User MIMO Interference Channel

In this section, we consider the two-user MIMO interference channel. We have two

transmitters and two receivers. Transmitter 1 and 2 are equipped with nt1, nt2 anten-

nas, respectively. Receiver 1 and 2 are equipped with nr1, nr2 antennas, respectively.

The channel is described as

Y1[n] = H11[n]X1[n] + H12[n]X2[n] + Z1[n] (1.7)

Y2[n] = H21[n]X1[n] + H22[n]X2[n] + Z2[n], (1.8)

2



1.2. Two-User MIMO Interference Channel

Tx1

Tx2 Rx2

Rx1

Figure 1.1: Two-user MIMO interference channel

where at the n-th channel use, Yj[n] and Zj[n] are the nrj×1 vectors representing the

channel output and additive white Gaussian noise at receiver j, Hji[n] is the nrj×nti
channel matrix corresponding to receiver j and transmitter i, and Xi[n] is the nti×1,

i, j ∈ 1, 2. The elements of Hji[n] and Zj[n] are i,i.d. circularly symmetric complex

Gaussian random variables with zero mean and unit variance. The transmit power

constraint is

E[X2
i ] ≤ SNR, i = 1, 2 (1.9)

Fig. 1.1 is an example of two-user MIMO interference channel.

The capacity region C(SNR) for the two-user MIMO interference channel is the

set of all rate pairs (R1, R2) for which the probability of error can be driven arbitrarily

close to zero by using suitable long codewords. Thus, the DoF region for two-user

MIMO interference channel is defined as

D :=

{
(d1, d2) ∈ R+

2 : ∃(R1(SNR), R2(SNR)) ∈ C(SNR) s.t.

di = lim
SNR→∞

Ri(SNR)

log(SNR)
, i = 1, 2.

}
(1.10)

Except in [4], in [5] and [6] also had considered the DoF region of two-user MIMO

interference channel with no CSIT. In[7] and [8], the DoF region of two-user MIMO

3



1.3. Motivation

interference channel with perfect CSIT and CSIR had been analyzed.

1.3 Motivation

The DoF region of a two-user MIMO interference channel is determined by the

values of nt1, nt2, nr1 and nr2. In [4], Huang and Jafar distinguish the values of

nt1, nt2, nr1 and nr2 as several types and analyze the DoF region of each type based

on an information theoretic approach by introducing an auxiliary random variable.

Yet, there is one type of the two-user MIMO interference channel whose DoF region

remains unknown in [4], except for an outer bound.

In this thesis, we follow [4] to distinguish the types of the two-user MIMO in-

terference channel by the associated values of nt1, nt2, nr1 and nr2 and determine the

DoF region of each type based on a power-split transmission scheme followed by a

successive-interference-cancellation (SIC) decoder. We will also try to reduce the

outer bound of the unknown DoF region to tighten the bound.

1.4 Thesis Outline

In this thesis, we will consider the DoF region of two-user MIMO interference

channel with no CSIT and perfect CSIR, we will use the power-split scheme and

apply SIC decoder to characterize the DoF region. Our technique is closely related

to the characterization of the DoF for a general two-user multiple-access channel

(MAC), by which we mean the case when the two users can have different number

of transmit antennas and different power constraint. The corresponding result will

be given in Chapter 2. In Chapter 3, we will apply the results in Chapter 2 to the

two-user MIMO interference channel, and investigate the DoF region for two-user

MIMO interference channel. Also we will provide an outer bound for a specific two-

user MIMO interference channel. In Chapter 4, we will consider two-user MIMO

interference channel with perfect receiver cooperation. The results provide an outer

bound for DoF region derived in Chapter 3. Chapter 5 is the conclusion.

4



Chapter 2

General Two-User MAC Sum Rate

In this chapter, we consider a two-user multiple access channel (MAC). The two

transmitters have nt1, nt2 antennas, respectively. The receiver has nr antennas. We

assume that the transmitters do not have the channel state information, i.e., no

CSIT. We develope the theorem of general MAC sum rate, which will be applied to

the two-user MIMO interference channel.

2.1 Sum Rate for General Two-User MAC

In this section, we consider a two-user MAC channel, the channel model is de-

scribed as

Y[n] = H1[n]X1[n] + H2[n]X2[n] + Z[n] (2.1)

Assuming the power constraints for the two users are given by

E ‖Xi[n]‖2 ≤ SNRαi , i = 1, 2

the MAC sum rate at high SNR regime is

C(SNR) = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.2)

Here we give the theorem of general two-user MAC sum rate.

5



2.2. Proof of Theorem 2.1

Theorem 2.1 For α1 ≥ α2 ≥ 0,

C(SNR) = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)]

=


α1nr log SNR +O(1), if nr ≤ nt1

(α1nt1 + α2(nr − nt1)) log SNR +O(1), if nt1 < nr < nt1 + nt2

(α1nt1 + α2nt2) log SNR +O(1), if nt1 + nt2 ≤ nr

The proof of Theorem 2.1 is given in the next section. From Theorem 2.1, we can

simply extend it to the DoF.

Corollary 2.2 For α1 ≥ α2 ≥ 0, the maximum DoF dmax for nonzero diversity gain

is given by

dmax =


α1nr, if nr ≤ nt1

α1nt1 + α2(nr − nt1), if nt1 < nr < nt1 + nt2

α1nt1 + α2nt2, if nt1 + nt2 ≤ nr

(2.3)

2.2 Proof of Theorem 2.1

We consider a two-user MAC channel, the transmitter 1 and 2 have nt1 and nt2

antennas, respectively. The receiver has nr antennas. The channel model is described

as

Y[n] = H1[n]X1[n] + H2[n]X2[n] + Z[n], (2.4)

where the channel matrices H1 and H2 are complex Gaussian random matrices with

CN (0, 1). The sum rate at high SNR regime is

C = E [log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.5)

Let we consider two lemmas first.

Lemma 2.3 Let A,B ∈Mm,n(C), then

log det(Im + AA† +BB†) ≤ log det(Im + AA†) + log det(Im +BB†) (2.6)

and

log det(Im + AA† +BB†) ≥ max{log det(Im + AA†), log det(Im +BB†)} (2.7)

6



2.2. Proof of Theorem 2.1

Proof: The upper bound follows from

log det(Im + AA† +BB†) = log det

 In + A†A A†B

B†A In +B†B

 (2.8)

≤ log[det(In + A†A) det(In +B†B)] (2.9)

= log det(In + A†A) + log det(In +B†B), (2.10)

where the inequality is due to Fischer’s inequality on positive definite matrices. The

lower bound simply follows from

det(Im + AA† +BB†) ≥ det(Im + AA†), (2.11)

and

det(Im + AA† +BB†) ≥ det(Im +BB†), (2.12)

since AA† and BB† are nonnegative definite matrices.

Lemma 2.4

E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] ≤ (α1K1 + (α2)

+K2) log(SNR) +O(1),

(2.13)

where K1 = min(nt1, nr) and K2 = min(nt2, nr).

Proof: It follows from previous lemma that

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.14)

≤ E[log det(Int1 + SNRα1H1H
†
1)] + E[log det(Int2 + SNRα2H2H

†
2)] (2.15)

= (α1K1 + (α2)
+K2) log(SNR) +O(1). (2.16)

Now we start with the proof of the Theorem 2.1.

Proof:

1. Case nr ≤ nt1: By Lemma 1, we observe that for any combination of nt1, nt2, nr >

0 that

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.17)

≥ max(α1K1, α2K2) log SNR. (2.18)

7



2.2. Proof of Theorem 2.1

If nt1 ≥ nt2, then K1 ≥ K2 and hence max(α1K1, α2K2) = α1K1 = α1nr. On

the othre hand, if nt1 < nt2, we have K2 = K1 = nr. Thus, it follows that

max(α1K1, α2K2) = α1nr. To show the converse, note that log det(.) is strictly

convex, so we have

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.19)

≤ log det(E[Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2]) (2.20)

= log det(Inr + nt1SNRα1Inr + nt2SNRα2Inr) (2.21)

.
= α1nr log SNR. (2.22)

The case of nr ≤ nt1 is proved.

2. Case nt1 < nr < nt1 + nt2 Define

G =
[ √

SNRα1H1

√
SNRα2H2

]
=
[
GL GR

]
(2.23)

GL =
[
H1 H2L

] √SNR
α1
Int1

√
SNR

α2
Inr−nt1

 = HL

√
Λ, (2.24)

where GL is a submatrix of G of size nr×nr and GR is of size nr×(nt1+nt2−nr).

Note that rank(GL) = nr with probability one. It then follows that

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.25)

= E[log det(I +GG†)] (2.26)

= E[log det(I +GLG
†
L +GRG

†
R)] (2.27)

≥ E[log det(I +GLG
†
L)] (2.28)

= E[log det(I + HLλH
†
L)] (2.29)

≥ E[log(1 + det(λ) det(HLH
†
L))], (2.30)

where the last inequality follows from det(I + AA†) ≥ 1 + det(AA†). Now let

us take expectation of both sides show

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.31)

> log det(λ) + E[log det(HLH
†
L)] (2.32)

= (α1nt1 + α2(nr − nt2)) log SNR +O(1). (2.33)

8



2.2. Proof of Theorem 2.1

For the converse, we have the following inequalities

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.34)

= E[log det(Inr +GLG
†
L +GRG

†
R)] (2.35)

(a)
= EGL [EGR [log det(Inr +GLG

†
L +GRG

†
R)]] (2.36)

(b)
< EGL [log det(EGR [Inr +GLG

†
L +GRG

†
R])] (2.37)

(c).
= EGL [log det(Inr +GLG

†
L + SNRα2Inr)] (2.38)

= nr log SNR + EGL [log det(Inr + (1 + SNRα2)−1GLG
†
L)] (2.39)

= α2nr log SNR + EGL [log det(Inr +
SNRα1

1 + SNRα2

H1H
†
1 (2.40)

+
SNRα2

1 + SNRα2

H2LH
†
2L)] (2.41)

(d)
= α2nr log SNR + (α1 − α2)nt1 log SNR +O(1). (2.42)

(a) follows from conditional expectation.

(b) follows from that log det(.) is strictly concave on positive definite matrices.

(c) follows from EGR [GRG
†
R] = SNRα2(2nt2 − nr)Inr and (2nt2 − nr)

.
= 1.

(d) follows from SNRα2

1+SNRα2
.
= 1 for α2 > 0 and from Lemma 2.

3. Case nr ≥ nt1 + nt2 Define

G =
[ √

SNRα1H1

√
SNRα2H2

]
=

 GU

GD

 , (2.43)

where GU is of size ns × ns and GD is of size (nr − ns)× ns. Then note that

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.44)

= E[log det(Ins +G†G)] (2.45)

= E[log det(Ins +G†UGU +G†DGD)] (2.46)

≥ E[log det(Ins +G†UGU)]. (2.47)

Now note that GU is of size ns × ns and the result follows from the previous

9



2.2. Proof of Theorem 2.1

case with nr = ns. So we have

C = E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)] (2.48)

≥ (α1nt1 + α2nt2) log SNR. (2.49)

The converse follows from lemma 2.

Hence, the proof is complete.
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Chapter 3

DoF region of Two-User MIMO

Interference Channels

In this chapter, we will investigate the DoF region of two-user MIMO interference

channel with no CSIT.

3.1 From two-user MAC Sum Rate to Two-User

MIMO Interference Channel

In this section, we discuss how to extend Theorem 1 in Chapter 2 to the two-user

MIMO interference channel with the following channel model

Y1[n] = H11[n]X1[n] + H12[n]X2[n] + Z1[n] (3.1)

Y2[n] = H21[n]X1[n] + H22[n]X2[n] + Z2[n] (3.2)

We can view the above interference channel as two two-user MACs. The receivers

of the two MACs are nr1 and nr2, respectively. For simplicity, let us denote the

number of receive antennas at the receiver by nr. Also, we will consider the use of

successive-interference-cancellation (SIC) scheme for decoding. Intuitively, we decode

the message with stronger power and treat the message with weaker power as noise

first. After we decode the message with stronger power successfully, we can subtract

11



3.1. From two-user MAC Sum Rate to Two-User MIMO Interference
Channel

it out and then decode the message with weaker power. Assume the power constraints

for the two users are given by

E ‖Xi[n]‖2 ≤ SNRαi , i = 1, 2

For the case of α1 ≥ α2, we shall decode X1 first. Thus the resulting rate R1 for the

first user is given by

R1 ≤ E[log det(Inr + SNRα1H1H
†
1 + SNRα2H2H

†
2)]− E[log det(Inr + SNRα1H1H

†
1]

Hence by Theorem 1 in Chapter 2 the corresponding DoF is

d1 ≤


α1nr − α2 min(nt2, nr), if nr ≤ nt1

α1nt1 + α2(nr − nt1)− α2 min(nt2, nr), if nt1 < nr < nt1 + nt2

α1nt1 + α2nt2 − α2 min(nt2, nr), if nt1 + nt2 ≤ nr

(3.3)

and then we subtract X1 off and decode X2. We have

d2 ≤ α2 min(nt2, nr). (3.4)

it should be noted that (3.3) and (3.4) are the DoF constraint of two-user MAC when

we apply SIC at receiver.

3.1.1 Types of Two-User MIMO Interference Channel

We divide the analysis of DoF region into three different types, depending on the

values of nt1, nt2, nr1 and nr2. The condition nr1 ≤ nr2 is assumed, and the result can

be easily extended to nr1 > nr2. In the following, we distinguish three types:

1. nt2 ≤ nr1:

In this type, it is known [4] that the absence of CSIT does not reduce the DoF

region. To simplify the analysis, we divide this type into three sub-types. From

the result of Theorem 1, we can divide type 1 into three sub-types naturally:

(a) nr1 ≤ nt1.

(b) nt1 < nr1 < nt1 + nt2.

12



3.2. DoF region when nt2 ≤ nr1

(c) nt1 + nt2 ≤ nr1.

2. nr1 < nt2 and nr1 ≤ nt1:

In this type, the DoF region shrinks due to the absence of CSIT. We will use

power-split scheme and apply SIC to characterize the DoF region.

3. nt1 < nr1 ≤ nt2:

In this type, the absence of CSIT will also reduce the DoF region. But unfor-

tunately, we still do not know the exact DoF region of this type. There is an

outer bound given in [4]. We will use a power-split transmission scheme and

apply SIC to get a DoF region, and compare it to the outer bound to see the

gap between them. Finally, we use a genie-aided two-user interference channel

to obtain an outer bound that is tighter than the one in [4].

We discuss the DoF region of each type in the following three sections.

3.2 DoF region when nt2 ≤ nr1

In this section, we discuss the DoF region of the type 1, where the antenna dis-

tribution satisfies nt2 ≤ nr1. The transmit power can be expressed as SNRα1 and

SNRα2 , where 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1, for transmitter 1 and transmitter 2,

respectively. Intuitively, the receiver decodes the message with stronger power first

and treat the other as noise, i.e., if α2 ≤ α1, we decode the X1 first, both at the

receiver 1 and receiver 2, else we reverse the decoding order. After we decode the

message with stronger power at both receivers successfully, we can subtract it off from

the received signal, hence, the remaining is the message with weaker power and we

can easily decode it at its intended receiver. We discuss the three sub-types of type

1 in the following three subsections.

3.2.1 DoF region when nr1 ≤ nt1

We have two cases in the following:

13



3.2. DoF region when nt2 ≤ nr1

1. α1 ≥ α2.

2. α2 ≥ α1.

We start with the case α1 ≥ α2. At the receiver 1, we just treat the X2 as noise and

decode thew X1. We have the following DoF constraint of d1:

d1 ≤ α1nr1 − α2 min(nt2, nr1) (3.5)

= α1nr1 − α2nt2. (3.6)

At receiver 2, we also treat the X2 as noise and decode X1, then we subtract X1 off

and decode X2 at receiver 2. Since we do two decoding operations at receiver 2, we

have two constraints on DoF, one for d1 and one for d2. We have three sub-cases for

this type depending the the values of nr1 and nt2.

1. nr2 ≤ nt1:

d1 ≤ α1nr2 − α2 min(nt2, nr2) (3.7)

= α1nr2 − α2nt2. (3.8)

2. nt1 ≤ nr2 ≤ nt1 + nt2:

d1 ≤ α1nt1 + α2(nr2 − nt1)− α2 min(nt2, nr2) (3.9)

= α1nt1 + α2(nr2 − nt1 − nt2). (3.10)

3. nt1 + nt2 ≤ nr2:

d1 ≤ α1nt1 + α2nt2 − α2 min(nt2, nr2) (3.11)

= α1nt1. (3.12)

After we decode X1 at receiver 2 successfully, we can remove it and decode X2, the

constraint of d2 is

d2 ≤ α2 min(nt2, nr2) (3.13)

= α2nt2. (3.14)
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3.2. DoF region when nt2 ≤ nr1

The above gives the DoF region of type 1.(a) when α1 ≥ α2.

Now we consider the case when α2 ≥ α1. We treat X1 as noise, decode X2 first,

then subtract X2 off and decode X1 at receiver 1. At receiver 1, since nt2 ≤ nr1 ≤

nt1 + nt2, we have that

d2 ≤ α2nt2 + α1(nr1 − nt2)− α1 min(nt1, nr1) (3.15)

= (α2 − α1)nt2 (3.16)

d1 ≤ α1 min(nt1, nr1) (3.17)

= α1nr1. (3.18)

At receiver 2, we just treat X1 as noise and decode X2 directly, since nt2 ≤ nr2 ≤

nt1 + nt2 and nt1 + nt2 ≤ nr2 are both possible, we need to consider two conditions of

DoF constraint.

1. nt2 ≤ nr2 ≤ nt1 + nt2:

d2 ≤ α2nt2 + α1(nr2 + nt2)− α1 min(nt1, nr2). (3.19)

2. nt1 + nt2 ≤ nr2:

d2 ≤ α2nt2 + α1nt1 − α1 min(nt1, nr2) (3.20)

= α2nt2. (3.21)

These give the DoF region of type 1.(a) when α2 ≥ α1. Now we have the complete

constraints of the DoF region of type 1.(a), but how to use these constraints to

characterize the exact DoF region? Here we provide a simple way to get an insight

into the DoF region. First, we consider the case of α1 ≥ α2. We try to find the

corner points on the DoF region, so we consider the extreme values of (α1, α2), that

is, (α1, α2) = (1, 0) and (α1, α2) = (1, 1), respectively. (α1, α2) = (1, 0) means that we

give almost all power to transmitter 1 only when SNR is very high. We start with the

case when α1 ≥ α2, and replace the (α1, α2) = (1, 0) to equation (3.5)-(3.14), then,

at receiver 1, the DoF constraint becomes

d1 ≤ nr1. (3.22)
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3.2. DoF region when nt2 ≤ nr1

At receiver 2, we need to decode the X1 reliably and then decode X2, the DoF

constraints of d1 is following:

1. nr2 ≤ nt1:

d1 ≤ nr2. (3.23)

2. nt1 ≤ nr2 ≤ nt1 + nt2:

d1 ≤ nt1. (3.24)

3. nt1 + nt2 ≤ nr2

d1 ≤ nt1. (3.25)

And since α2 = 0, d2 ≤ 0. From equation (3.15)-(3.21), we have 4 constraints on

d1, and we know that nr1 ≤ nt1 and nr1 ≤ nt2. We can only choose the lower rate in

order to have reliable communication for both two streams, so here we need

d1 ≤ nr1 (3.26)

The above shows that (d1, d2) = (nr1, 0) is a corner point in the DoF region. Then

we substitute (α1, α2) = (1, 1) into equation (3.5)-(3.14). At receiver 1, we have

d1 ≤ nr1 − nt2. (3.27)

At receiver 2, we have

1. nr2 ≤ nt1:

d1 ≤ nr2 − nt2. (3.28)

2. nt1 ≤ nr2 ≤ nt1 + nt2:

d1 ≤ nr2 − nt2. (3.29)

3. nt1 + nt2 ≤ nr2

d1 ≤ nt1. (3.30)
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3.2. DoF region when nt2 ≤ nr1

From (3.23)-(3.26), we can see that d1 ≤ nr1 − nt2 can yield reliable communication

for both streams. After we decode X1 successfully, we can subtract it off at receiver

2 then decode X2. The DoF constraint is:

d2 ≤ nt2. (3.31)

Thus we can achieve (d1, d2) = (nr1 − nt2, nt2). This is also one of the corner point.

Now we consider the case when α2 ≥ α1. If we replace (α1, α2) = (0, 1) in (3.15)-

(3.21), at receiver 1 we have that

d2 ≤ nt2. (3.32)

Then we can decode X1 by subtracting the component X2 off at receiver 1, but here

the power of X1 is vanishingly small compared to SNR, so the DoF constraint of d1

is

d1 ≤ 0. (3.33)

At receiver 2, we treat the X1 as noise and decode the X2 directly, then we have

1. nt2 ≤ nr2 ≤ nt1 + nt2:

d2 ≤ nt2 (3.34)

2. nt1 + nt2 ≤ nr2:

d2 ≤ nt2 (3.35)

Hence, now we have third corner point, which is (d1, d2) = (0, nt2). Finally, we

consider (α1, α2) = (1, 1). We follow the same procedure before. We replace (α1, α2) =

(1, 1) in (3.15)-(3.21). For receiver 1, we have

d2 ≤ 0. (3.36)

This is a surprising fact. It means that if we want to decode the X2 at receiver 1 when

the powers of both X1 and X2 are almost the same, the reliable communication rate

will approach 0. With this condition, we can get d1 ≤ nr1. But since the constraint of

d2 ≤ 0, we cannot have a better rate for X2 at receiver 2. The DoF we can achieve in

this situation is only (d1, d2) = (nr1, 0), which coincides with one of the three corner
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3.2. DoF region when nt2 ≤ nr1

Figure 3.1: The DoF region of type 1.(a)

points before. We then use a time-sharing scheme to connect the 3 corner points, and

see that this is the exact DoF region, which corresponds to the result of [4] as shown

In Fig. 3.1.

Furthermore, in Fig. 3.2 we consider the case nt1 = 3, nt2 = 1, nr1 = 2 and

nr2 = 4. For a given d1, we vary the value of α1 and α2 to compute the greatest d2,

where 0 ≤ d1 ≤ min(nt1, nr1), in this example min(nt1, nr1) = 2. The DoF region is

given in Fig. 3.2.

3.2.2 DoF region when nt1 < nr1 < nt1 + nt2

In this subsection we discuss the DoF region of type 1.(b). We follow the similar

way in the previous subsection. We can use Theorem 1 and power-split scheme to

calculate the DoF constraints. Again we start with the case of α1 ≥ α2. So we treat

X2 as noise and decode X1. After we extract X1 at receiver 2, we can apply SIC to

decode X2. At receiver 1, we have

d1 ≤ α1nt1 + α2(nr1 − nt1)− α2 min(nt2, nr1) (3.37)

= α1nt1 + α2(nr1 − nt1 − nt2). (3.38)
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3.2. DoF region when nt2 ≤ nr1

Figure 3.2: The DoF region of type 1.(a) with nt1 = 3, nt2 = 1, nr1 = 2 and nr2 = 4

At receiver 2, we have to consider the distribution of antenna being whether nt1 <

nr2 < nt1 + nt2 and nt1 + nt2 ≤ nr2. We decode X1 and treat X2 as noise. Then we

have

1. nt1 < nr2 < nt1 + nt2:

d1 ≤ α1nt1 + α2(nr2 − nt1)− α2 min(nt2, nr2) (3.39)

= α1nt1 + α2(nr2 − nt1 − nt2) (3.40)

2. nt1 + nt2 ≤ nr2:

d1 ≤ (α1nt1 + α2nt2)− α2 min(nt2, nr1) (3.41)

= α1nt1. (3.42)

After we decode X1 at receiver 2 successfully, we can apply SIC to decode the X2.

The DoF constraint of d2 is simply

d2 ≤ α2 min(nt2, nr2) (3.43)

= α2nt2. (3.44)
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3.2. DoF region when nt2 ≤ nr1

Now let us consider the case when α2 ≥ α1. In this case we decode the X2 first,

both at receiver 1 and receiver 2. At receiver 1, we have

d2 ≤ α2nt2 + α1(nr1 − nt2)− α1 min(nt1, nr1) (3.45)

= α2nt2 + α1(nr1 − nt1 − nt2). (3.46)

Then we use SIC to decode X1 and have

d1 ≤ α1 min(nt1, nr1) = α1nt1. (3.47)

At receiver 2, we deocode X2 directly, but there are two possible different antenna

distributions.

1. nt2 < nr2 < nt1 + nt2:

d2 ≤ α2nt2 + α1(nr2 − nt2)− α1 min(nt1, nr2) (3.48)

= α2nt2 + α1(nr2 − nt1 − nt2). (3.49)

2. nt1 + nt2 ≤ nr2:

d2 ≤ (α2nt2 + α1nt1)− α1 min(nt1, nr2) = α2nt2. (3.50)

Now, we have the full DoF constraints of the type1.(b), then we can follow the same

step in last subsection. We use the extreme values of α1 and α2 to find the corner

point in the DoF region. The results are given below. When α1 ≥ α2, we have

1. (α1, α2) = (1, 0):

d1 ≤ nt1 (3.51)

d2 ≤ 0. (3.52)

2. (α1, α2) = (1, 1):

d1 ≤ nr1 − nt2 (3.53)

d2 ≤ nt2. (3.54)

20



3.2. DoF region when nt2 ≤ nr1

When α2 ≥ α1, we have

1. (α1, α2) = (0, 1):

d1 ≤ 0 (3.55)

d2 ≤ nt2. (3.56)

2. (α1, α2) = (1, 1):

d1 ≤ nt1 (3.57)

d2 ≤ nr1 − nt1. (3.58)

From (3.51)-(3.58), we have the four corner points of the DoF region for type 1.(b).

Then we can apply the time-sharing scheme to connect the four corner points to get

the entire DoF region for type 1.(b). This DoF region is the same as in [4]. Fig. 3.3

shows the DoF region of type 1.(b)

We also consider an example of type 1.(b)by setting nt1 = 3, nt2 = 2, nr1 = 4 and

nr2 = 4. Fig. 3.4 shows the DoF region of type 1.(b) by the computer calculation.

3.2.3 DoF region when nt1 + nt2 ≤ nr1

In this subsection, we discuss the DoF region of type 1.(c). We use the similar

way as in the previous two subsections. We start with the case α1 ≥ α2, and then

the case α2 ≥ α1. Type 1.(c) is relatively simple since we have both nt1 + nt2 ≤ nr1

and nt1 + nt2 ≤ nr2.

When α1 ≥ α2, we decode X1 first and then apply SIC to cancel out the component

of X1 and decode X2. At receiver 1, we have

d1 ≤ α1nt1 + α2nt2 − α2 min(nt2, nr1) (3.59)

= α1nt1. (3.60)

At receiver 2, we also decode X1 first, and then use SIC to remove the component of
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3.2. DoF region when nt2 ≤ nr1

Figure 3.3: The DoF region of type 1.(b)

Figure 3.4: The DoF region result of type 1.(b) with nt1 = 3, nt2 = 2, nr1 = 4 and

nr2 = 4
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3.2. DoF region when nt2 ≤ nr1

X1, then we can decode X2, the DoF constraint at receiver 2 is below.

d1 ≤ α1nt1 + α2nt2 − α2 min(nt2, nr2) (3.61)

= α1nt1. (3.62)

After we decode X1 successfully and then apply SIC, we have

d2 ≤ α2 min(nt2, nr2) = α2nt2. (3.63)

Now we consider the case when α2 ≥ α1. We decode X2 first and apply SIC at

receiver 1. At receiver 1, we have

d2 ≤ α2nt2 + α1nt1 − α2 min(nt1, nr1) (3.64)

= α1nt2. (3.65)

Then we apply SIC to decode X2. The result is simply

d1 ≤ α1 min(nt1, nr1) (3.66)

= α1nt1. (3.67)

At receiver 2, we have

d2 ≤ α2nt2 + α1nt1 − α2 min(nt1, nr2) (3.68)

= α1nt2. (3.69)

Now we have the entire DoF constraint of type 1.(c). We then use the extreme

values of α1 and α2 to find the corner points of DoF region. Both the case α1 ≥ α2

and α2 ≥ α1 have the same corner points. The result is below. When α1 ≥ α2, we

have

1. (α1, α2) = (1, 0):

d1 ≤ nt1 (3.70)

d2 ≤ 0. (3.71)
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3.3. DoF region when nr1 < nt2 and nr1 ≤ nt1

2. (α1, α2) = (1, 1):

d1 ≤ nt1 (3.72)

d2 ≤ nt2. (3.73)

When α2 ≥ α1, we have

1. (α1, α2) = (0, 1):

d1 ≤ 0 (3.74)

d2 ≤ nt2. (3.75)

2. (α1, α2) = (1, 1):

d1 ≤ nt1 (3.76)

d2 ≤ nt2. (3.77)

From the above result, we can clearly see that (d1, d2) = (nt1, 0), (0, nt2) and (nt1, nt2)

are the three corner points on the DoF region. Thus, the DoF region is a rectangle.

This is the same as in [4]. Fig. 3.5 shows the DoF of type 1.(c).

An example of type 1.(c) is a two-user MIMO interference channel with nt1 =

2, nt2 = 2, nr1 = 4 and nr2 = 5. Fig. 3.6 shows the DoF region of type 1.(c) by the

computer calculation.

3.3 DoF region when nr1 < nt2 and nr1 ≤ nt1

In this section, we discuss the type 2, in this type, we still have the exact DoF

region when the CSIT is not available. Also, we consider two cases, α1 ≥ α2 and

α2 ≥ α1, respectively. If α1 ≥ α2, we decode X1 first at both and then apply SIC at

receiver 2 to decode X2. At receiver 1, we have nr1 ≤ nt1, so the DoF constraint of

d1 is

d1 ≤ α1nr1 − α2 min(nt2, nr1) (3.78)

= α1nr1 − α2nr1. (3.79)
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3.3. DoF region when nr1 < nt2 and nr1 ≤ nt1

Figure 3.5: The DoF region of type 1.(c)

Figure 3.6: The DoF region of type 1.(c) with nt1 = 2, nt2 = 2, nr1 = 4 and nr2 = 5
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3.3. DoF region when nr1 < nt2 and nr1 ≤ nt1

At receiver 2, unfortunately, nr2 ≤ nt1, nt1 < nr2 < nt1 + nt2 and nt1 + nt2 ≤ nr2 are

all possible in type 2, so we need to give DoF constraint for three different antenna

distributions.

1. nr2 ≤ nt1:

d1 ≤ α1nr2 − α2 min(nt2, nr2). (3.80)

2. nt1 < nr2 < nt1 + nt2:

d1 ≤ α1nt1 + α2(nr2 − nt1)− α2 min(nt2, nr2). (3.81)

3. nt1 + nt2 ≤ nr2:

d1 ≤ α1nt1 + α2nt2 − α2 min(nt2, nr2) (3.82)

= α1nt1. (3.83)

After we decode X1 successfully at receiver 2, we apply SIC and decode X2. The

DoF constraint is

d2 ≤ α2 min(nt2, nr2). (3.84)

Note that we have nt2 ≤ nr2 only when nt1 + nt2 ≤ nr2. Then we consider the case

when α2 ≥ α1. We decode X2 first at both receivers. At receiver 1, we have

d2 ≤ α2nr1 − α1 min(nt1, nr1) (3.85)

= α2nr1 − α1nr1. (3.86)

After we decode X2 successfully at receiver 1, we can apply SIC and decode X1. The

DoF constraint is

d1 ≤ α1 min(nt1, nr1) (3.87)

= α1nr1. (3.88)

At receiver 2, we have

1. nr2 ≤ nt2:

d2 ≤ α2nr2 − α1 min(nt1, nr2). (3.89)
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3.3. DoF region when nr1 < nt2 and nr1 ≤ nt1

2. nt2 < nr2 < nt1 + nt2:

d2 ≤ α2nt2 + α1(nr2 − nt2)− α1 min(nt1, nr2). (3.90)

3. nt1 + nt2 ≤ nr2:

d2 ≤ α1nt2 + α1nt1 − α1 min(nt1, nr2) (3.91)

= α2nt2. (3.92)

Note that again we have nt1 ≤ nr2 only when nt1 + nt2 ≤ nr2, otherwise we do not

know whether nt1 ≤ nr2 or nr2 ≤ nt1. So far, we have all DoF constraints of the type

2, then we can replace the extreme values to above DoF constraints to get the corner

points in the DoF region. We skip the calculations and show the results directly.

When α1 ≥ α2, we have

1. (α1, α2) = (1, 0):

d1 ≤ nr1 (3.93)

d2 ≤ 0. (3.94)

2. (α1, α2) = (1, 1):

d1 ≤ 0 (3.95)

d2 ≤ min(nt2, nr2). (3.96)

When α2 ≥ α1, we have

1. (α1, α2) = (0, 1):

d1 ≤ 0 (3.97)

d2 ≤ nr1. (3.98)

2. (α1, α2) = (1, 1):

d1 ≤ nr1 (3.99)

d2 ≤ 0. (3.100)
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3.3. DoF region when nr1 < nt2 and nr1 ≤ nt1

Figure 3.7: The DoF region of type 2

We see that (3.96) and (3.98) give different DoF constraints for d2 when d1 ≤ 0. Since

we always try to maximize the rate, we should choose (3.96) as our rate constraint for

d2, because min(nt2, nr2) ≥ nr1. Thus we have two corner points in DoF region here,

(d1, d2) = (nr1, 0) and (0,min(nt2, nr2)). We can use time-sharing scheme to connect

these two corner points to get the exact DoF region, which corresponds to the result

in [4]

In type 2, we can see that if we want to achieve the maximum value of d1, we

need d2 to be zero, and vice versa. The entirely DoF region is given by time sharing

scheme between the maximum of d1 and d2. The shape of DoF region is a triangle.

Fig. 3.7 shows the DoF region of type 2.

An example of type 2 is a two-user MIMO interference channel with nt1 = 3, nt2 =

4, nr1 = 2 and nr2 = 4. Fig. 3.8 shows the DoF region of type 2 by the computer

calculation.
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3.4. DoF region when nr1 < nt2 and nt1 < nr1

Figure 3.8: The DoF region of type 2 with nt1 = 3, nt2 = 4, nr1 = 2 and nr2 = 4

3.4 DoF region when nr1 < nt2 and nt1 < nr1

In this section, we consider the DoF region of type 3, note that type 2 and type 3

are only differ by nr1 ≤ nt1 or nr1 > nt1. From [4], there is only an outer bound for

this type.

In type 3, we no longer decode the stream with higher power first. Instead, we

will consider two decoding strategies at both receivers, regardless of the power of the

two streams. For user 1, we want to transmit X1 to receiver 1 reliably, so we have

that at receiver 1:

1. Treating X2 as noise and decoding X1 directly.

2. First treating X1 as noise and decoding X2, then applying SIC to decode X1.

For user 2, the concept is same and at receiver 2 we have

1. Treating X1 as noise and decoding X2 directly.

2. First treating X2 as noise and decoding X1, then applying SIC to decode X2.

Each receiver should choose the best decoding strategy for a given power allocation

and antenna distribution. At receiver 1, if we decode the X1 directly, we have
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1. nt1 < nr1 < nt1 + nt2:

d1 ≤ α1nt1 + α2(nr1 − nt1)− α2 min(nt2, nr1). (3.101)

2. nt1 + nt2 ≤ nr1:

d1 ≤ α1nt1 + α2nt2 − α2 min(nt2, nr1). (3.102)

If we decode the X2 first and then apply SIC to decode X1, the DoF constraint

of d2 is

d2 ≤ α2nr1 − α1 min(nt1, nr1) (3.103)

and d1 is simply

d1 ≤ α1 min(nt1, nr1). (3.104)

At receiver 2, we also have two decoding strategies, but the situation becomes

more complicated since we do not know nr2 ≤ nt2 or nt2 < nr2, thus we need to list

all the possible conditions. We consider the strategy of decoding X2 directly first:

1. nr2 ≤ nt2:

d2 ≤ α2nr2 − α1 min(nt1, nr2). (3.105)

2. nt2 < nr2 < nt1 + nt2:

d2 ≤ α2nt2 + α2(nr2 − nt2)− α1 min(nt1, nr2). (3.106)

3. nt1 + nt2 < nr2:

d2 ≤ α2nt2 + α1nt1 − α1 min(nt1, nr2). (3.107)

The above are the three conditions when we decode X2 directly at receiver 2. Now

we consider the strategy of decoding the X1 first and then applying SIC to decode

X2. The DoF constraint of d1 is:

1. nt1 < nr2 < nt1 + nt2:

d1 ≤ α1nt1 + α2(nr2 − nt1)− α2 min(nt2, nr2). (3.108)
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3.4. DoF region when nr1 < nt2 and nt1 < nr1

Figure 3.9: The DoF region of type 3

2. nt1 + nt2 ≤ nr2:

d1 ≤ α1nt1 + α2nt2 − α2 min(nt2, nr2) (3.109)

and d2 is simply

d2 ≤ α2 min(nt2, nr2). (3.110)

The above (3.101)-(3.110) is the whole DoF constraints of the type 3. From the work

in [4], we have an outer bound of DoF region, denoted as Dout,

Dout =

{
(d1, d2) ∈ R+

2 :
d1
nr1

+
d2

min(nt2, nr2)

}
. (3.111)

But this outer bound seems loose. Consider a genie-aided two-user MIMO interference

channel, by which we mean there is a genie at both receivers, informing the receiver

the interference from the unintended user completely. The point (d1, d2) = (nr1, 0)

is still not achievable. We can achieve only (d1, d2) = (nt1, 0) since nt1 < nr1. The

DoF region of the two-user MIMO interference channel must be bounded by the one

of the genie-aided two-user MIMO interference channel, so we can make the outer

bound tighter by the genie-aided 2-user MIMO interference channel. This is a new

outer bound for type 3. Fig. 3.9 shows the DoF region of type 3.
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3.4. DoF region when nr1 < nt2 and nt1 < nr1

Figure 3.10: The DoF region of type 3 with nt1 = 1, nt2 = 3, nr1 = 2 and nr2 = 4

compared to the new outer bound

An example of type 3 is nt1 = 1, nt2 = 3, nr1 = 2 and nr2 = 4. Fig. 3.10 shows

the gap between our DoF region and the new outer bound.

Although we do not know that for a two-user Rayleigh fading channel, the gap

between the DoF region and new outer bound is achievable or not, the work in

[9] had already shown that for a two-user isotropic and independent (or block-wise

independent) fading channel, the exact DoF region of this type is just the same as

the DoF region in our work, which implies that the gap between the DoF region

and the new outer bound may not be achievable, no matter whether beamforming or

interference alignment is used.
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Chapter 4

DoF region of Two-User MIMO

Interference Channels with Perfect

Receiver Cooperation

In this chapter, we investigate the DoF region of two-user MIMO interference chan-

nel with perfect receiver cooperation and no CSIT. Here, perfect receiver cooperation

means that two receivers have a noiseless and interference-free link to communicate

with each other. For example, if we decode X1 successfully at receiver 1, then we can

send it to receiver 2, so receiver 2 can know X1 completely and remove the component

of X1 perfectly. The remaining signal is only X2 plus noise, as the interference from

X1 has been removed. We can also use Theorem 1 in Chapter 2 for the general MAC

sum rate to analyze the DoF region in this chapter. We then compare the results in

the previous chapter, where we do not have any cooperation. We use the same way

to divide the antenna distributions into three types. The three types are listed below.

1. nt2 ≤ nr1

(a) nr1 ≤ nt1

(b) nt1 < nr1 < nt1 + nt2

(c) nt1 + nt2 ≤ nr1
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4.1. DoF region with perfect receiver cooperation when nt2 ≤ nr1

2. nr1 < nt2 and nr1 ≤ nt1

3. nr1 < nt2 and nt1 ≤ nr2

The condition nr1 ≤ nr2 is assumed, and the result can be easily extended to nr1 > nr2.

We discuss the DoF region of each type in the following three sections.

4.1 DoF region with perfect receiver cooperation

when nt2 ≤ nr1

In this section, we consider the DoF region of type 1. The transmit power of

transmitter 1 and transmitter 2 are SNRα1 and SNRα2 , respectively. Note that 0 ≤

α1 ≤ 1 and 0 ≤ α2 ≤ 1. We decode the message with stronger power at its intended

receiver first. Since the two receivers have perfect cooperation, we can transmit

the decoded message(the stronger power message) to the other receivers. Thus the

interference can be remove easily. We discuss the three sub-types of type 1 in the

following three subsections

4.1.1 DoF region with perfect receiver cooperation when nr1 ≤

nt1

We have two cases in the following

1. α1 ≥ α2.

2. α2 ≥ α1.

We start with the case α1 ≥ α2. At receiver 1, we treat X2 as noise and decode X1

directly. The constraint of d1 is

d1 ≤ α1nr1 − α2 min(nt2, nr1) (4.1)

= α1nr1 − α2nt2. (4.2)
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4.1. DoF region with perfect receiver cooperation when nt2 ≤ nr1

If d1 satisfies the above constraint, we can decode X1 reliably at receiver 1. Since we

assume that the two receivers have perfect cooperation, the receiver 2 can know X1.

Thus receive 2 can subtract it off, then we can decode X2 at receiver 2. The DoF

constraint of X2 is

d2 ≤ α2 min(nt2, nr2) (4.3)

= α2nt2. (4.4)

Let us consider the case α2 ≥ α1 now. We decode X2 at receiver 2 first. Here,

since nt2 < nr2 < nt1 + nt2 and nt1 + nt2 ≤ nr2 are both possible, we have to consider

both of them. If nt2 < nr2 < nt1 + nt2, at receiver 2, we have the constraint of d2 is

d2 ≤ α2nt2 + α1(nr2 − nt2)− α1 min(nt2, nr2). (4.5)

If nt1 + nt2 ≤ nr2, the constraint of d2 is:

d2 ≤ α2nt2 + α1nt1 − α1 min(nt1, nr2) (4.6)

= α2nt2. (4.7)

By the receiver cooperation, receiver 1 can easily subtract the component of X2. The

DoF constraint of d1 is

d1 ≤ α1 min(nt1, nr1) (4.8)

= α1nr1. (4.9)

We see that if nt1 + nt2 ≤ nr2, we can achieve d1 = nr1 and d2 = nt2 simultaneously.

This DoF pair is the maximum of the two-user MIMO interference channel. If nt2 <

nr2 < nt1 + nt2, we can achieve (d1, d2) = (nr1, nr2 − min(nt1, nr2)). This result is

better than no cooperation in section 3.1.1. Fig. 4.1 shows the DoF region of type

1.(a), both no cooperation and perfect receiver cooperation are considered.

An example of type 1.(a) is a two-user MIMO interference channel with nt1 =

3, nt2 = 1, nr1 = 2 and nr2 = 4. Fig. 4.2 shows the DoF region of type 1.(a) with

perfect receiver cooperation by computer calculation.
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4.1. DoF region with perfect receiver cooperation when nt2 ≤ nr1

Figure 4.1: The DoF region of the DoF region of type 1.(a) with perfect receiver

cooperation compared to the DoF region with no cooperation.
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4.1. DoF region with perfect receiver cooperation when nt2 ≤ nr1

Figure 4.2: The DoF region of type 1.(a) with nt1 = 3, nt2 = 1, nr1 = 2 and nr2 = 4
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4.1. DoF region with perfect receiver cooperation when nt2 ≤ nr1

4.1.2 DoF region with perfect receiver cooperation when nt1 <

nr1 < nt1 + nt2

In this subsection, we discuss the DoF region of type 1.(b). The method is just

the same as previous subsection. Again we start with the case α1 ≥ α2. At receiver

1, we have the constraint of d1 is

d1 ≤ α1nt1 + α2(nr1 − nt1)− α2 min(nt2, nr1) (4.10)

= α1nt1 + α2(nr1 − nt1 − nt2). (4.11)

After we decode X1 at receiver 1 successfully, the receiver 2 can know X1 by the

perfect receiver cooperation. Thus we can subtract X1 off at receiver 2 and then

decode X2, the constraint of d2 is

d2 ≤ α2 min(nt2, nr2) (4.12)

= α2nt2. (4.13)

Now we consider the case α2 ≥ α1. In this case we simply decode X2 at receiver

2 first. But here nt2 < nr2 < nt1 + nt2 and nt1 + nt2 ≤ nr2 are both possible, we need

to consider the two possibilities, respectively. If nt2 < nr2 < nt1 + nt2, the constraint

of d2 is

d2 ≤ α2nt2 + α1(nr2 − nt2)− α1 min(nt1, nr2) (4.14)

= α2nt2 + α1(nr2 − nt1 − nt2). (4.15)

If nt1 + nt2 ≤ nr2, the constraint of d2 is

d2 ≤ α2nt2 + α1nt1 − α1 min(nt1, nr2) (4.16)

= α2nt2. (4.17)

After we decode X2 at receiver 2 successfully, receiver 1 can know X2 by the perfect

receiver cooperation. Thus the constraint of d1 is

d1 ≤ α1 min(nt1, nr1) (4.18)

= α1nt1. (4.19)
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4.1. DoF region with perfect receiver cooperation when nt2 ≤ nr1

Figure 4.3: The DoF region of the DoF region of type 1.(b) with perfect receiver

cooperation compared to the DoF region with no cooperation.

We can see that the result is almost the same as type 1.(a). The only difference is

that when nt2 < nr2 < nt1+nt2. We know min(nt1, nr2) = nt1 in type 1.(b) but do not

know in type 1.(a). If nt2 < nr2 < nt1 +nt2, we can achieve (d1, d2) = (nt1, nr2−nt1).

This is better than (d1, d2) = (nt1, nr1−nt1), the result of no cooperation. If nt1+nt2 ≤

nr2, we can achieve (d1, d2) = (nt1, nt2), and both the two stream can achieve their

maximum DoF. Fig. 4.3 shows the DoF region of type 1.(b), with and without receiver

cooperation.

An example of type 1.(b) is a two-user MIMO interference channel with nt1 =
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4.1. DoF region with perfect receiver cooperation when nt2 ≤ nr1

Figure 4.4: The DoF region of type 1.(b)

3, nt2 = 2, nr1 = 4 and nr2 = 4. Fig. 4.4 shows the DoF region of type 1.(b) with

perfect receiver cooperation by computer calculation. In this example, we can see

that the DoF regions of no cooperation and with perfect receiver cooperation are the

same, since nr1 = nr2 = 4.

4.1.3 DoF region with perfect receiver cooperation when nt1+

nt2 ≤ nr1

In this subsection, we discuss the DoF region of type 1.(c). Again we start with

the case α1 ≤ α2. At receiver 1, we treat X2 as noise and decode X1 directly. Thus

we have the constraint of d1 is

d1 ≤ α1nt1 + α2nt2 − α2 min(nt2, nr1) (4.20)

= α1nt1. (4.21)

40



4.2. DoF region with perfect receiver cooperation when nr1 < nt2 and
nr1 ≤ nt1

After we decode X1 at receiver 1 successfully, the receiver 2 knows X1 by the perfect

receiver cooperation. Then we have the constraint of d2 is

d2 ≤ α2 min(nt2, nr2) (4.22)

= α2nt2. (4.23)

Now, let us consider the case α2 ≥ α1. In this case, we decode X2 at receiver 2

first, so we have the constraint of d2 is

d2 ≤ α2nt2 + α1nt1 − α1 min(nt1, nr2) (4.24)

= α2nt2. (4.25)

After we decode X2 at receiver 2 successfully, the receiver 1 knows X2 by the perfect

receiver cooperation. So the constraint of d1 is simply

d1 ≤ α1 min(nt1, nr1) (4.26)

= α1nt1. (4.27)

From the above constraints of DoF, the corner points of the DoF region are (d1, d2) =

(nt1, 0), (0, nt2) and (nt1, nt2). The DoF region with perfect receiver cooperation is

the same as the DoF region with no cooperation in section 3.1.3. Fig. 4.5 shows the

DoF region of type 1.(c), with and without receiver cooperation.

An example of type 1.(c) is two-user MIMO interference channel with nt1 =

2, nt2 = 2, nr1 = 4 and nr2 = 5. Fig. 4.6 shows the DoF region of type 1.(c)

with perfect receiver cooperation by computer calculation.

4.2 DoF region with perfect receiver cooperation

when nr1 < nt2 and nr1 ≤ nt1

In this section, we consider the DoF region of type 2. The decoding strategy is

the same as previous section. We start with the case α1 ≥ α2.
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4.2. DoF region with perfect receiver cooperation when nr1 < nt2 and
nr1 ≤ nt1

Figure 4.5: The DoF region of the DoF region of type 1.(c) with perfect receiver

cooperation compared to the DoF region with no cooperation.
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4.2. DoF region with perfect receiver cooperation when nr1 < nt2 and
nr1 ≤ nt1

Figure 4.6: The DoF region of type 1.(c)
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4.2. DoF region with perfect receiver cooperation when nr1 < nt2 and
nr1 ≤ nt1

When α1 ≥ α2, we treat X2 as noise and decode X1 at receiver 1. Thus we have

the constraint of d1 is

d1 ≤ α1nr1 − α2 min(nt2, nr1) (4.28)

= (α1 − α2)nr1. (4.29)

After we decode X1 at receiver 1 successfully, the receiver 2 knows X1 by the perfect

receiver cooperation. The constraint of d2 is simply

d2 ≤ α2 min(nt2, nr2) (4.30)

Note that we do not know min(nt2, nr2) = nt2 or nr2 here.

Now let us consider the case α2 ≥ α1. In this case, we treat X1 as noise and

decode X2 at receiver 2 directly. But in type 2, nr2 ≤ nt2, nt2 < nr2 < nt1 + nt2 are

all possible. So we need to consider these three conditions separately.

1. nr2 ≤ nt2

d2 ≤ α2nr2 − α1 min(nt1, nr2). (4.31)

2. nt2 < nr2 < nt1 + nt2

d2 ≤ α2nt2 + α1(nr2 − nt2)− α1 min(nt1, nr2). (4.32)

3. nt1 + nt2 ≤ nr2

d2 ≤ α2nt2 + α1nt2 − α1 min(nt1, nr2) (4.33)

= α2nt2. (4.34)

After we decode X2 successfully at receiver 2, the receiver 1 can subtract the compo-

nent of X2 by the perfect receiver cooperation. Thus, we can decode X1 at receiver

1 without the interference from X2 . The constraint of d1 is

d1 ≤ α1 min(nt1, nr1) (4.35)

= α1nr1 (4.36)
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4.2. DoF region with perfect receiver cooperation when nr1 < nt2 and
nr1 ≤ nt1

Figure 4.7: The DoF region of the DoF region of type 2 with perfect receiver cooper-

ation compared to the DoF region with no cooperation.

These are all DoF constraints of type 2 with perfect receiver cooperation. We can

see that if we want to achieve the maximum of d2, i.e. min(nt2, nr2), d1 must be zero.

But if we want to achieve the maximum of d1, i.e. nr1, d2 can still be positive. This is

the improvement given by the perfect receiver cooperation. Fig. 4.7 shows the DoF

region of type 2, with and without receiver cooperation.

An example of type 2 is a two-user MIMO interference channel with nt1 = 3, nt2 =

4, nr1 = 2 and nr2 = 4. Fig. 4.8 shows the DoF region of type 2 with perfect receiver

cooperation by computer calculation.
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4.2. DoF region with perfect receiver cooperation when nr1 < nt2 and
nr1 ≤ nt1

Figure 4.8: The DoF region of type 2
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4.3. DoF region with perfect receiver cooperation when nr1 < nt2 and
nt1 < nr1

4.3 DoF region with perfect receiver cooperation

when nr1 < nt2 and nt1 < nr1

In this section, we consider the DoF region of type 3. The decoding strategy is

the same as previous two sections. Let us start with the case α1 ≥ α2.

When α1 ≥ α2, we treat X2 as noise and decode X1 at receiver 1. The constraint

of d1 is

d1 ≤ α1nt1 + α2(nr1 − nt1)− α2 min(nt2, nr1) (4.37)

= (α1 − α2)nt1. (4.38)

The receiver 2 knows X1 by the perfect receiver cooperation and can then subtract

it off. Thus the constraint of d2 is simply

d2 ≤ α2 min(nt2, nr2). (4.39)

Note that we do not know min(nt2, nr2) = nt2 or nr2 here.

Now let us consider the case α2 ≥ α1. In this case, we treat X1 as noise and decode

X2 at receiver 2. But in type 3, nr2 ≤ nt2, nt2 < nr2 < nt1 + nt2 and nt1 + nt2 ≤ nr2

are all possible. So we need to consider these three conditions separately.

1. nr2 ≤ nt2

d2 ≤ α2nr2 − α1 min(nt1, nr2) (4.40)

= α2nr2 − α1nt1. (4.41)

2. nt2 < nr2 < nt1 + nt2

d2 ≤ α2nt2 + α1(nr2 − nt2)− α1 min(nt1, nr2) (4.42)

= α2nt2 + α1(nr2 − nt1 − nt2). (4.43)

3. nt1 + nt2 ≤ nr2

d2 ≤ α2nt2 + α1nt2 − α1 min(nt1, nr2) (4.44)

= α2nt2 (4.45)

47



4.3. DoF region with perfect receiver cooperation when nr1 < nt2 and
nt1 < nr1

Figure 4.9: The DoF region of the DoF region of type 3 with perfect receiver cooper-

ation compared to the DoF region with no cooperation.

The above characterize the DoF region of type 3 with perfect receiver cooperation.

In type 3, we cannot have nonzero d1 when we achieve the maximum of d2. If we have

perfect receiver cooperation, we can have better d2 when we achieve the maximum of

d1, compared with no cooperation in Section 2.3. Fig. 4.9 shows the DoF region of

type 3, with and without receiver cooperation.

An example of type 3 is a two-user MIMO interference channel with nt1 = 1, nt2 =

3, nr1 = 2 and nr2 = 4. Fig. 4.10 shows the DoF region of type 3 with perfect receiver

cooperation by computer calculaton. We can see that if we have perfect receiver

cooperation, the DoF region might be larger than the new outer bound of type 3 that

we stated in Section 3.3.
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4.3. DoF region with perfect receiver cooperation when nr1 < nt2 and
nt1 < nr1

Figure 4.10: The DoF region of type 3
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Chapter 5

Conclusion

In this thesis, we study the DoF region of the two-user MIMO interference channel

without CSIT. By considering the power-split transmission scheme at the transmit-

ters, we first view the interference channel as two two-user MAC and develop the DoF

for the general two-user MAC. Following [4], we distinguish the two-user MIMO in-

terference channel by the values of transmit and receive antennas and consider three

types. For type 1 and type 2, we show that the power-split scheme with SIC can

achieve the same DoF region as in [4]. For type 3, we reduce the outer bound in

[4] by a two-user genie-aided MIMO interference channel. It is seen that for this

type the gap between the power-split scheme with SIC and the outer bound is small.

Also, from [9] it is seen that the exact DoF region of type 3 in the case of isotropic

and independent fading is the same as our power-split scheme with SIC. Finally,

we consider the DoF region of two-user MIMO interference channel with perfect re-

ceiver cooperation, and compare to the two-user MIMO interference channel without

cooperation.
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