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Abstract

In this thesis we investigate the degree-of-freedom (DoF) region of a
two-user MIMO interference channel without channel state information at the
transmitters. Following the work of Huang, Jafar, and Shamai, we distinguish
three types of channels based on the numbers of transmit and receive antennas.
We derive the DoF region for a power-split scheme followed by a SIC decoder.
We also improve an outer bound by Huang et. al. on the DoF region for a
specific type of MIMO interference channels. We extend our discussion to
two-user MIMO interference channels with perfect receiver cooperation and

compare the result to two-user interference without cooperation.



B
T\
3

Lk @l s f @@ BRHS A o §ARR Il E R

e
BELIT LD AT ERFI AR E R 22 B R KT 220

S

4 oL

AEIFSENOREEE LI BAEE LS BT BL R PR kAR
BT REE A A IS R S e EMRREOP AP 2
FEFHiE) s mF T ¥ 2 F oEm g L ol o R R i franky b P
Wenc AR aRE S R F 2 A S e BRE PR ot 4
A FFLHMIR o B SR AN A P P SRR R E AL R R R
T AR L hp A




Contents

Chinese Abstract 1
English Abstract ii
Acknowledgement iii
Contents 1ii
List of Figures vi
1 Introduction 1
1.1 MIMO Systems and Degrees'of Freedom (DoF) . .. . ... ... .. 1
1.2 Two-User MIMO Interference Channel . . . . . . . .. .. ... ... 2
1.3 Motivation . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . L, 4

2 General Two-User MAC Sum Rate 5
2.1 Sum Rate for General Two-User MAC . . . . . . . ... ... .... 5
2.2 Proof of Theorem 2.1 . . . . . . . . . . . . 6

3 DoF region of Two-User MIMO Interference Channels 11
3.1 From two-user MAC Sum Rate to Two-User MIMO Interference Channel 11
3.1.1 Types of Two-User MIMO Interference Channel . . . . . . .. 12

3.2 DoF region when ngo <mn,q . . . . . ..o 13
3.2.1 DoF region when n,.y <mng; . . . . ... ... L. 13

v



CONTENTS

3.2.2 DoF region when nyy <npp <y +ng2 - o o oo oL 18
3.2.3 DoF region when nyy +np <mnpp o o oo Lo 21
3.3 DoF region when n,y <ngpand n.0 <Ny . . . . . . . .o 24
3.4 DoF region when n,y <ngand ng <mnp1 . . . . . ... 29

4 DoF region of Two-User MIMO Interference Channels with Perfect

Receiver Cooperation 33
4.1 DoF region with perfect receiver cooperation when ny <n,; . . . . . 34
4.1.1 DoF region with perfect receiver cooperation when n,; < n, . 34

4.1.2 DoF region with perfect receiver cooperation when ny < n,q <
Y T i £ T 38
4.1.3 DoF region with perfect receiver cooperation when n; +n4 < n,.; 40

4.2  DoF region with perfect receiver cooperation when n,; < n; and n,; <

4.3 DoF region with perfect receiver cooperation whenn,; < ns and ny; <

(2SR \ Y\ T U R/ 47
5 Conclusion 50
Bibliography 51



List of Figures

1.1

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10

4.1

4.2
4.3

4.4
4.5

Two-user MIMO interference channel . . . . . . . . . . .. ... ...

The DoF region of type 1.(a).0. Db e oo oo oo oL
The DoF region of type 1.(a) with ny =3,1m9=1,n,1 =2 and n,, =4
The DoF region of type 1.(b)- . . ..« o o o
The DoF region resultvof type 1.(b) with ng = 3,74 = 2,n,1 = 4 and

The DoF region of type 1.(¢)« v oo o i oo
The DoF region of type 1.(c) with ny = 2,n49.= 2,1,y =4 and n,e =5
The DoF region of type 20 /v cos s 00 L o L oL
The DoF region of type 2 with ny = 3,n4p =4,n,y =2 and n,o =4
The DoF region of type 3 . . . . . . . . .. ...
The DoF region of type 3 with ny = 1,14 = 3,n,y = 2 and n,.o, = 4

compared to the new outer bound . . . . . . . ... ... .. ... ..

The DoF region of the DoF region of type 1.(a) with perfect receiver
cooperation compared to the DoF region with no cooperation.

The DoF region of type 1.(a) with n;; = 3,ni = 1,n,1 = 2 and n,o = 4
The DoF region of the DoF region of type 1.(b) with perfect receiver
cooperation compared to the DoF region with no cooperation.

The DoF region of type 1.(b) . . . . . . .. ... ... ... ...
The DoF region of the DoF region of type 1.(c) with perfect receiver

cooperation compared to the DoF region with no cooperation.

vi

22
25
25
28
29
31

32

36

39
40

42



LIST OF FIGURES

4.6
4.7

4.8
4.9

4.10

The DoF region of type 1.(¢) . . . . . . . ... ... ... ... 43
The DoF region of the DoF region of type 2 with perfect receiver
cooperation compared to the DoF region with no cooperation. . . . . 45
The DoF region of type 2 . . . . . . . . ... ... L. 46
The DoF region of the DoF region of type 3 with perfect receiver
cooperation compared to the DoF region with no cooperation. . . . . 48

The DoF region of type 3 . . . . . . . . ... ... L. 49

vil



Chapter 1

Introduction

1.1 MIMO Systems and Degreesof Freedom (DoF)

In wireless communication, multiple-input-multiple-output (MIMO) systems have
the ability to provide remarkable increase of capacity compared to single-input-single-
output (SISO) systems. One of the key benefit: from MIMO systems is multiplexing
signal in space. For a MIMO system, the ability of multiplexing signals is measured
by the spatial multiplexing gain [1],/also known as degrees of freedom (DoF).

Let us consider a point-to-point MIMO system, the transmitter has n; antennas,
and the receiver has n, antennas. The transmitter can transmit at most n; indepen-
dent streams simultaneously, and the receiver can receiver at most n, independent
streams simultaneously. Thus, it is easy to see that the maximal DoF of a point-to-
point MIMO system is min(n¢, n,). The standard definition of maximal DoF is

- C(SNR)

~ SNhseo log SNR (1.1)

where C'(SNR) is the capacity of the point-to-point MIMO system given by

N
C(SNR) = E {log det (Inr + 5 RHHT)] : (1.2)

Uz
and the SNR is the signal-to-noise power ratio. The elements of H and N are circu-

larly symmetric complex Gaussian random variables with zero mean and unit vari-



1.2. Two-User MIMO Interference Channel

ance. The equation (1.2) can be written as

‘&L N
Z log ( + S—R)\2>

are the ordered singular values of H, and n,,;, = min(n, n,.).

1 Nmin
— z:: A?D . (1.4)

1

C(SNR) = (1.3)

where A\; < Ag... < A

Nmin

By Jensen’s inequality, we have that

iy NR SNR
t

At high SNR, the capacity approximates

SNR» . &<
C(SNR) ~ nminlo + E |lo )\? ) 1.5
(SNR) 4D B [los ] (15)
So we have the maximal DoF:is
C(SNR)

dma:p -

SNRsoo Iog SNR logSNR

Thus we can know that the maximal DoF:- of a point-to-point MIMO system is
min(ng, n,.).

In [2], it has been shown that for the point-to-point MIMO communication, the
absence of channel state information at transmitters, i.e., CSIT, does not reduce the
DoF'. But in a MIMO network with distributed processing units, [3] shows that in the
absence of CSIT, the DoF may be lost.

1.2 Two-User MIMO Interference Channel

In this section, we consider the two-user MIMO interference channel. We have two
transmitters and two receivers. Transmitter 1 and 2 are equipped with n;;, n;, anten-
nas, respectively. Receiver 1 and 2 are equipped with n,;, n,o antennas, respectively.

The channel is described as

Y,[n] = Huln]X,[n] + Hi[n]X,[n] + Z,[n] (1.7)

Y,[n] = Haln]X,[n] + Has[n]X,[n] + Zy[n], (1.8)



1.2. Two-User MIMO Interference Channel
TXl\: Hu > \‘ T Rx1
Hl2
H21
Txz He > Rxz

Figure 1.1: Two-user MIMO interference channel

where at the n-th channel use, ¥ ;[n] and Z;[n] are the n,; x1 vectors representing the
channel output and additive white Gaussian noise at receiver j, Hj;[n| is the n,; X ny
channel matrix corresponding to receiver j and transmitter ¢, and X, [n] is the ny; x 1,
i,j € 1,2. The elements of Hj;[n] and Z;[n] are iji.d. circularly symmetric complex
Gaussian random variables with zero mean and unit variance. The transmit power
constraint is

E[X?] <SNR,i = 1,2 (1.9)

Fig. 1.1 is an example of two-user MIMO interference channel.

The capacity region C'(SNR) for the two-user MIMO interference channel is the
set of all rate pairs (R, Rz) for which the probability of error can be driven arbitrarily
close to zero by using suitable long codewords. Thus, the DoF region for two-user

MIMO interference channel is defined as
D= {(dl,dg) € Ry : (R1(SNR), Ry(SNR)) € C(SNR) s.t.

_ Ri(SNR) |
d = 1 — =12 1.1
"~ SNRbeo log(SNR) | } (1.10)

Except in [4], in [5] and [6] also had considered the DoF region of two-user MIMO
interference channel with no CSIT. In[7] and [8], the DoF region of two-user MIMO

3



1.3. Motivation

interference channel with perfect CSIT and CSIR had been analyzed.

1.3 Motivation

The DoF region of a two-user MIMO interference channel is determined by the
values of ny,np,n1 and nge. In [4], Huang and Jafar distinguish the values of
ng1, Ny, Ny and n,o as several types and analyze the DoF region of each type based
on an information theoretic approach by introducing an auxiliary random variable.
Yet, there is one type of the two-user MIMO interference channel whose DoF region
remains unknown in [4], except for an outer bound.

In this thesis, we follow [4]«to distinguish the types of the two-user MIMO in-
terference channel by the associated values of 1y, 1,14 and n,o and determine the
DoF region of each type hased on a power-split- transmission scheme followed by a
successive-interference-cancellation (SIC) decoder. We will also try to reduce the

outer bound of the unknown DoF region to tighten the bound.

1.4 Thesis Outline

In this thesis, we will consider the DoF region of two-user MIMO interference
channel with no CSIT and perfect CSIR, we will use the power-split scheme and
apply SIC decoder to characterize the DoF region. Our technique is closely related
to the characterization of the DoF for a general two-user multiple-access channel
(MAC), by which we mean the case when the two users can have different number
of transmit antennas and different power constraint. The corresponding result will
be given in Chapter 2. In Chapter 3, we will apply the results in Chapter 2 to the
two-user MIMO interference channel, and investigate the DoF region for two-user
MIMO interference channel. Also we will provide an outer bound for a specific two-
user MIMO interference channel. In Chapter 4, we will consider two-user MIMO
interference channel with perfect receiver cooperation. The results provide an outer

bound for DoF region derived in Chapter 3. Chapter 5 is the conclusion.



Chapter 2

General Two-User MAC Sum Rate

In this chapter, we consider & two-user multiple aceess channel (MAC). The two
transmitters have n;, n;, antennas, respectively. The receiver has n, antennas. We
assume that the transmitters ‘do not have the channel state information, i.e., no
CSIT. We develope the theorem of general MAC sum rate; which will be applied to

the two-user MIMO interference channel.

2.1 Sum Rate for General Two-User MAC

In this section, we consider a two-user MAC channel, the channel model is de-

scribed as

Y[n] = Hi[n]X,[n] + Hs[n]X,[n] + Z[n] (2.1)

Assuming the power constraints for the two users are given by
E |X;[n]]> < SNR%, i=1,2
the MAC sum rate at high SNR regime is
C(SNR) = E[log det(I,,, + SNR*H,;H! + SNR**H,H})] (2.2)

Here we give the theorem of general two-user MAC sum rate.



2.2. Proof of Theorem 2.1

Theorem 2.1 For oy > ag > 0,

C(SNR) = E[logdet([,, + SNR™ Hlﬂi + SNRO‘QHQH;)]
ain, log SNR + O(1), if n, < ny
= (cqngg + az(n, —ny1))log SNR + O(1), if nyg < n,. < ng + nge
(cinyy + agnge) log SNR + O(1), it ny +np < n,
The proof of Theorem 2.1 is given in the next section. From Theorem 2.1, we can

simply extend it to the DoF.

Corollary 2.2 For a; > ag > 0, the maximum DoF d,,.. for nonzero diversity gain

15 given by
a1y, if n <
Anae = arrgt Qa(le="y1), 3 w1 < n < gy + 1o (2.3)
Q1M1+ et if gy +as <n,

2.2 Proof of Theorem 2.1

We consider a two-user MAC channel, the transmitter 1 and 2 have n;; and ng
antennas, respectively. The receiverhas n, antennas. The channel model is described

as

Y[n] = Hi[n]X,[n] + Hy[n]X,[n] + Z[n], (2.4)

where the channel matrices H; and Hy are complex Gaussian random matrices with

CN(0,1). The sum rate at high SNR regime is
C = E [logdet(I, + SNR*H,H| + SNR*2H,H})] (2.5)
Let we consider two lemmas first.
Lemma 2.3 Let A, B € M,,,(C), then
log det(1,,, + AA" + BB'") < log det(I,, + AA") + log det(I,, + BB") (2.6)
and

log det(I,, + AA" + BB") > max{log det(I,, + AA"),logdet(I,, + BB")}  (2.7)



2.2. Proof of Theorem 2.1

Proof: The upper bound follows from

I, +A'A  A'B
log det(1,, + AAT + BBY) = logdet (2.8)
BTA I,+ B'B

< log[det(I,, + ATA)det(I, + B'B)] (2.9)

= logdet(I, + ATA) +logdet(l, + B'B), (2.10)

where the inequality is due to Fischer’s inequality on positive definite matrices. The

lower bound simply follows from
det(I,, + AA" + BB") > det(I,, + AAY), (2.11)

and

det(I,, 4 AA" + BBY)-> det(I,, +BB"), (2.12)

since AAT and BB' are nonnegative definite matrices.
Lemma 2.4

E[log det(,, 4+ SNR™ Hy H! 4 SNR®2.H, H})| < (aq K{ “+(a2)* K>3) log(SNR) + O(1),

(2.13)
where K1 = min(ny,n,) and Ky = min(ngg, n,).
Proof: 1t follows from previous lemma that
C' = E[logdet(I,, + SNR*H,H! + SNR**H,H})] (2.14)

< E[logdet(I,, + SNR*H,H!)] + E[log det(I,,, + SNR**H,H})] (2.15)
= (1K} + ()T K3)log(SNR) + O(1). (2.16)

Now we start with the proof of the Theorem 2.1.
Proof:

1. Casen, < ny: By Lemma 1, we observe that for any combination of n;y, ns, n, >

0 that

C' = E[logdet(I,, + SNR*H,H! + SNR*H,H})] (2.17)

Z max(olel, OéQKg) lOg SNR. (218)

7



2.2. Proof of Theorem 2.1

If ny > ny, then K7 > Ky and hence max(a; K7, e Ky) = a1 K7 = ajn,. On
the othre hand, if n;; < nye, we have Ky = K7 = n,. Thus, it follows that
max (o K1, s Ks) = ajn,.. To show the converse, note that logdet(.) is strictly

convex, so we have

C = E[logdet(I, +SNR*H,;H! + SNR**H,H))] (2.19)
< logdet(E[l,, + SNR*H,H| + SNR*2H,H})) (2.20)
= logdet(I,, +nySNR™I, + nSNR*I, ) (2.21)
= ajn, log SNR. (2.22)
The case of n, < ny is proved.
2. Case ny; < n, < ng + ngo Define
— | W/SNRTH, WENRTH | <L G, Gr | (2.23)

VSNR™ 1,

Gp = [ H, H,; ] = H VA, (2.24)

VSNR Iy,

where (i, is a submatrix of G of size n, x n, and G is of size n, X (ny +npo—n,).

Note that rank(G) = n, with prebability one. It then follows that

C' = E[logdet(I,, + SNR*HH! + SNR**H,H})] (2.25)
= E[logdet(I + GG (2.26)
= Ellogdet(I + GGl + GrGY)] (2.27)
> E[logdet(I +GLGH)] (2.28)
= E[logdet(I + H,AHY)] (2.29)
> Eflog(1 + det()\) det(H H}))], (2.30)

where the last inequality follows from det(/ + AAT) > 1 + det(AAT). Now let

us take expectation of both sides show

C' = E[logdet(I,, + SNR*H,H! + SNR**H,HJ)] (2.31)
> logdet(\) + E[log det(H, H} )] (2.32)
= (oqnﬂ + ag(m — ntz)) IOg SNR + O(].) (233)

8



2.2. Proof of Theorem 2.1

For the converse, we have the following inequalities

C = E[logdet(l, +SNR*H,H!| + SNR*2H,H)})] (2.34)
= E[logdet(I,, + GLG} + GrGH)] (2.35)
@ g, [Eg,[log det(l,, + GGl + GrGh)]] (2.36)
b
¢ Eg, [log det(Eg,[I,, + GLGT + GrGHL])] (2.37)
(c)
= Eg,[logdet(I,, +GLGY +SNR2], )] (2.38)
— n,1ogSNR + Eg, [log det(I,,, + (1 +SNR*)"'G,G1)]  (2.39)

SNR,,
= QN IOg SNR + EGL [log det(]nr H—S—MQQH H (240)
SNR
e Yo HY 2.41
+ 1 + SNRaZ H2L 2L)] ( )
@ aon, log SNR=+(c; = ag)ng log SNR + O(1). (2.42)

(a) follows from conditional expectation:
(b) follows from that logdet(.) is strictly concave on positive definite matrices.

(c) follows from B, [GrGHl'= SNR®?(2n4 — @)1, and (21 — n,) = 1.

SNR*2

Trengez — 1 for az > 0'and from Lemma 2.

(d) follows from

3. Case n, > ny + ngp Define

G
:[\/SNRO“H1 VSNREH, | = | |, (2.43)

Gp

where Gy is of size ng X ngy and Gp is of size (n, — ngs) X ng. Then note that

C = E[logdet(I,, + SNR*H,;H| + SNR*H,H})] (2.44)
= E[logdet(I,, + G'G)] (2.45)
= Ellogdet(I,, + G},Gy + GLGp)] (2.46)
> E[logdet(I,, + GI,Gp)]. (2.47)

Now note that Gy is of size ngy X n, and the result follows from the previous



2.2. Proof of Theorem 2.1

case with n, = n,. So we have

C = E[logdet(I,, + SNR*H,H! + SNR**H,H})] (2.48)
> (agny + asng) log SNR. (2.49)

The converse follows from lemma 2.

Hence, the proof is complete.

10



Chapter 3

DoF region of Two-User MIMO

Interference Channels

In this chapter, we will investigate the DoF region of two-user MIMO interference

channel with no CSIT.

3.1 From two-user MAC Sum Rate to Two-User
MIMO Interference Channel

In this section, we discuss how to extend Theorem 1 in Chapter 2 to the two-user

MIMO interference channel with the following channel model

Y, [n] = Hu[n]X,[n] + His[n]X,[n] + Z, [n] (3.1)

Y,[n] = Ha[n]X,[n] + Haa[n] X, [n] + Zy[n] (3-2)

We can view the above interference channel as two two-user MACs. The receivers
of the two MACs are n,; and n,s, respectively. For simplicity, let us denote the
number of receive antennas at the receiver by n,. Also, we will consider the use of
successive-interference-cancellation (SIC) scheme for decoding. Intuitively, we decode
the message with stronger power and treat the message with weaker power as noise

first. After we decode the message with stronger power successfully, we can subtract

11



3.1. From two-user MAC Sum Rate to Two-User MIMO Interference
Channel

it out and then decode the message with weaker power. Assume the power constraints

for the two users are given by
E |X;[n]]° < SNR™, i=1,2

For the case of a1 > ay, we shall decode X, first. Thus the resulting rate R; for the

first user is given by
Ry, < E[logdet(I, +SNR*H,H! + SNR**H,H})] — E[log det(I,,, + SNR* H, H!]

Hence by Theorem 1 in Chapter 2 the corresponding DoF' is

a1n, — e min(nge, Ny )y if n, < ngy
di < ang + as(n, — ma) = o min(ng, ne),if nyg < n. < ng A+ g (3.3)
a1y + aong = as min(ngs, ny), if g + np < n,

and then we subtract X, off and decode X,."We have
dy < agmin(ngg, n,.). (3.4)

it should be noted that (3.3) and (3.4).are the DoF ¢onstraint of two-user MAC when

we apply SIC at receiver.

3.1.1 Types of Two-User MIMO Interference Channel

We divide the analysis of DoF region into three different types, depending on the
values of ns, N4, N1 and n,.o. The condition n,; < n,o is assumed, and the result can

be easily extended to n,; > n,o. In the following, we distinguish three types:

L. ng < nype
In this type, it is known [4] that the absence of CSIT does not reduce the DoF
region. To simplify the analysis, we divide this type into three sub-types. From
the result of Theorem 1, we can divide type 1 into three sub-types naturally:
(a) np1 < g

(b) N < Npp < Ny + Nya.

12



3.2. DoF region when ny < n,q

(€) nu + 1w < Ny

2. Ny < Ny and npqp < Ny
In this type, the DoF region shrinks due to the absence of CSIT. We will use

power-split scheme and apply SIC to characterize the DoF region.

3. < npp < gt
In this type, the absence of CSIT will also reduce the DoF region. But unfor-
tunately, we still do not know the exact DoF region of this type. There is an
outer bound given in [4]. We will use a power-split transmission scheme and
apply SIC to get a DoF region, and compare it to the outer bound to see the
gap between them. Finally, wetse a genie-aided two-user interference channel

to obtain an outer bound that-istighter than the one in [4].

We discuss the DoF region-of each type in the following three sections.

3.2 DoF region when n;, < nq

In this section, we discuss the DoF region of the type 1, where the antenna dis-
tribution satisfies nys < n,;. The transmit power can be expressed as SNR* and
SNR*?, where 0 < a3 < 1 and 0 < «ay < 1, for transmitter 1 and transmitter 2,
respectively. Intuitively, the receiver decodes the message with stronger power first
and treat the other as noise, i.e., if ay < a3, we decode the X, first, both at the
receiver 1 and receiver 2, else we reverse the decoding order. After we decode the
message with stronger power at both receivers successfully, we can subtract it off from
the received signal, hence, the remaining is the message with weaker power and we
can easily decode it at its intended receiver. We discuss the three sub-types of type

1 in the following three subsections.

3.2.1 DoF region when n,; < ngn

We have two cases in the following:

13



3.2. DoF region when ny < n,q

1. (0%} > Q.
2. (6] Z aq.

We start with the case ay > aw. At the receiver 1, we just treat the X, as noise and

decode thew X,. We have the following DoF constraint of d;:

di < aing — azmin(ng, n.) (3.5)

= O1MNyp1 — CQN2. (36)

At receiver 2, we also treat the X, as noise and decode X, then we subtract X, off
and decode X, at receiver 2. Since wedo two decoding operations at receiver 2, we

have two constraints on DoF, one for'd; and onefor d,. We have three sub-cases for

this type depending the the walues-ofn;; and ngs.

L. npp < ny:

dy < 0yle— omin(ns, Myo) (3.7)
= 1Ny — A2T3. (38)

2. ny < npo < gy o+ Nga:
di < oqng + as(nee — ) — g min(ngg, ne2) (3.9)
= Ny + Oég(nrg — Ny — ntg). (310)

3. N1 + N2 S Nypo:

di < aing + agngg — ap min(ngg, nr2) (3.11)
= O1Ny1. (312)

After we decode X, at receiver 2 successfully, we can remove it and decode X,, the

constraint of dy is

dy < agmin(ng, n.e) (3.13)

=  9MN2. (314)

14



3.2. DoF region when ny < n,q

The above gives the DoF region of type 1.(a) when ag > as.
Now we consider the case when as > ay. We treat X, as noise, decode X, first,
then subtract X, off and decode X, at receiver 1. At receiver 1, since ny < n,q <

ng1 + N2, we have that

dy < agngg + a1(ny — nt2) — ap min(ngg, npp) (3.15)
= (ag — ay)ng (3.16)
di < oymin(ng,ne) (3.17)
= Ny (3.18)

At receiver 2, we just treat X, as noise and decode X, directly, since n;, < npo <
ng1 + Ny and nyp + ngo < nyo are both possible, weneed to consider two conditions of

DoF constraint.

1. ng <o < ngp + nygt

dy < asngs + Qu(Npg 1) —0q min(ni, ny2). (3.19)

2. N1 + N2 S Nypo:
dy < agngg + aqny — o min(ng, n,o) (3.20)
=  (92N3. (321)

These give the DoF region of type 1.(a) when as > a;. Now we have the complete
constraints of the DoF region of type 1.(a), but how to use these constraints to
characterize the exact DoF region? Here we provide a simple way to get an insight
into the DoF region. First, we consider the case of a; > as. We try to find the
corner points on the DoF region, so we consider the extreme values of (aq,as), that
is, (a1, a2) = (1,0) and (aq, a2) = (1,1), respectively. (a1, az) = (1,0) means that we
give almost all power to transmitter 1 only when SNR is very high. We start with the
case when oy > am, and replace the (aq,az) = (1,0) to equation (3.5)-(3.14), then,

at receiver 1, the DoF constraint becomes
d1 S Tt (322)
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3.2. DoF region when ny < n,q

At receiver 2, we need to decode the X, reliably and then decode X,, the DoF

constraints of d; is following:

L. npo <y

d1 S Tro. (323)
2. g < npp <My + Ny

dl S T (324)
3. ng + g < nyo

di < ngy. (3.25)

And since ap = 0, dy < 0. From-equation (3.15)-(3.21), we have 4 constraints on
dy, and we know that n,; <'my and n,; < ns. We can only choose the lower rate in

order to have reliable communication for both two streams, so here we need
dl S Ny (326)

The above shows that (dy, ds).= (n,1,0) is a corner point in the DoF region. Then
we substitute (aq, a2) = (1,1) into equation (3:5)=(3.14). At receiver 1, we have

d1 S Nyl — Nyga. (327)
At receiver 2, we have
L npp < g
d1 S Nyo — Nyga. (328)
2. ngg < npp <My + Ny
dl S Npo — Nya. (329)
3. g+ i < Ny
d1 S T (330)

16



3.2. DoF region when ny < n,q

From (3.23)-(3.26), we can see that d; < n,; — ngs can yield reliable communication
for both streams. After we decode X, successfully, we can subtract it off at receiver

2 then decode X,. The DoF constraint is:
dy < myo. (3.31)

Thus we can achieve (dy, ds) = (n,1 — ns, ny2). This is also one of the corner point.
Now we consider the case when as > «;. If we replace (aq, as) = (0,1) in (3.15)-
(3.21), at receiver 1 we have that

dg S T2 (332)

Then we can decode X, by subtracting the component X, off at receiver 1, but here
the power of X, is vanishingly'small compared to SNR, so the DoF constraint of d;
is

dy < 0. (3.33)

At receiver 2, we treat therX; as noise‘and decode the X, directly, then we have

1. ng < o < gy + nya:

d2 S T (334)

2. ngg + ng < npot
dy < ngy (3.35)
Hence, now we have third corner point, which is (di,ds) = (0,7m4). Finally, we

consider (ay, a) = (1,1). We follow the same procedure before. We replace (o, o) =

(1,1) in (3.15)-(3.21). For receiver 1, we have
dy < 0. (3.36)

This is a surprising fact. It means that if we want to decode the X, at receiver 1 when
the powers of both X, and X, are almost the same, the reliable communication rate
will approach 0. With this condition, we can get d; < n,;. But since the constraint of
dy < 0, we cannot have a better rate for X, at receiver 2. The DoF we can achieve in

this situation is only (dy,ds) = (n,1,0), which coincides with one of the three corner

17



3.2. DoF region when ny < n,q

2

a

Nri-Ne2 Nr1

Figure 3.1:The DoF region of type 1.(a)

points before. We then use-a time-sharing scheme to conneet the 3 corner points, and
see that this is the exact DoF region,which corresponds to the result of [4] as shown
In Fig. 3.1.

Furthermore, in Fig. 3.2 we consider. thecase n;; = 3,np = 1,n,qy = 2 and
n.o = 4. For a given d;, we vary the value of a; and a5 to compute the greatest ds,
where 0 < d; < min(ny,n,1), in this example min(ny, n.;) = 2. The DoF region is

given in Fig. 3.2.

3.2.2 DoF region when n;; < n, < ng + nge

In this subsection we discuss the DoF region of type 1.(b). We follow the similar
way in the previous subsection. We can use Theorem 1 and power-split scheme to
calculate the DoF constraints. Again we start with the case of a; > as. So we treat
X, as noise and decode X;. After we extract X, at receiver 2, we can apply SIC to

decode X,. At receiver 1, we have

di < agng + aa(ng — ny) — agmin(ngg, nyq) (3.37)

= oy + OéQ(”rl — Ny — ntg). (338)
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3.2. DoF region when ny < n,q
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Figure 3.2: The DoF region of type1.(a) with ny = 3,70 = 1,n,1 =2 and n,.o = 4

At receiver 2, we have to eonsider the distribution of antenna being whether n;; <
Nyo < Ny + nyg and ny + ngg < nyo. We decode X and treat X, as noise. Then we

have

1. ny < ngo < Ny + nygas

di < oqng + as(nee — ) — e min(ngg, o) (3.39)
= aqny + Oéz(n,,«g — Ny — TLtQ) (340)
2. g+ ngg < Ny
di < (cqng + agng) — as min(ngg, 1) (3.41)
= O1Ny1. (342)

After we decode X, at receiver 2 successfully, we can apply SIC to decode the X,.
The DoF constraint of ds is simply

dy < agmin(ng, n.e) (3.43)

=  9MN2. (344)
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3.2. DoF region when ny < n,q

Now let us consider the case when ap > ay. In this case we decode the X, first,

both at receiver 1 and receiver 2. At receiver 1, we have

dy < onyg + ag(ng — ngg) — ag min(ngg, nyq) (3.45)

= oy + a1(ny — Ny — Ny2). (3.46)
Then we use SIC to decode X, and have
d; < apmin(ng, ) = aqng. (3.47)

At receiver 2, we deocode X, directly, but there are two possible different antenna

distributions.

L. npp < npp < ngg + nga:

dy < oimip F a(nes = 1iz) —on min(ngg, n,o) (3.48)
= oo + ag(ngm — Ny — Ni2). (3.49)

2. Ny + o < Npal
dg S (0627%2 + Ozlnﬂ) — 0" min(nﬂ, nrg) = QN2. (350)

Now, we have the full DoF constraints of the typel.(b), then we can follow the same
step in last subsection. We use the extreme values of oy and s to find the corner

point in the DoF region. The results are given below. When oy > as, we have

1. (Ckl,Oéz) = (170)

di < nn (3.51)
dy < 0 (3.52)
2. (a1, a0) = (1,1):
dl S Npr1 — N2 (353)
dy < mnyo. (3.54)
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3.2. DoF region when ny < n,q

When ay > a4, we have

L. (ag,a2) =(0,1):

d < 0 (3.55)
d2 S N¢a. (356)
2. (o, 02) = (1,1):
di < np (3.57)
dQ S TNy — Ny (358)

From (3.51)-(3.58), we have the four corner points of the DoF region for type 1.(b).
Then we can apply the time-sharing scheme to connect the four corner points to get
the entire DoF region for type 1.(b). This DoF region is the same as in [4]. Fig. 3.3
shows the DoF region of type 1.(b)

We also consider an example of type 1.(b)by setting n;; = 3,n4 = 2,n,; = 4 and

nyo = 4. Fig. 3.4 shows the DoF region of type 1.(b) by the computer calculation.

3.2.3 DoF region when n;; + ngp < npq

In this subsection, we discuss the DoF region of type 1.(c). We use the similar
way as in the previous two subsections. We start with the case a; > as, and then
the case ay > ;. Type 1.(c) is relatively simple since we have both ny; + ng < n.q
and 1y + N < Nya.

When a; > ay, we decode X, first and then apply SIC to cancel out the component

of X, and decode X,. At receiver 1, we have

di < agng + aenge — asmin(ng, 1) (3.59)

= O1My1. (360)

At receiver 2, we also decode X, first, and then use SIC to remove the component of
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3.2. DoF region when ny < n,q
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Figure3.3: TheDoF region-of type-l.(b)
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Figure 3.4: The DoF region result of type 1.(b) with nyg = 3,9 = 2,n,1 = 4 and

Nypo = 4
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3.2. DoF region when ny < n,q

X, then we can decode X,, the DoF' constraint at receiver 2 is below.

d1 S Q1N + QoNgg — Qg min(ntQ, ’n,rg) (361)

= 1Ny1. (362)
After we decode X, successfully and then apply SIC, we have
dy < o min(nyg, Nya) = QaNya. (3.63)

Now we consider the case when ay; > «;. We decode X, first and apply SIC at

receiver 1. At receiver 1, we have

dy < oagngg F qny — Qemin(ngg, n,) (3.64)

= 1N, (365)

Then we apply SIC to decode X,. The result is simply

dy < coqmin(ng,n,q) (3.66)
= O1Ny1. (367)
At receiver 2, we have
dy < agngg + aqny — asmin(ng, n,o) (3.68)
= 1Ny92. (369)

Now we have the entire DoF constraint of type 1.(c). We then use the extreme
values of a1 and as to find the corner points of DoF region. Both the case a; > ay
and as > a1 have the same corner points. The result is below. When a; > as, we

have
1. (@1,0&2) = (1,0)

dy

IN

na (3.70)
do

IN
o

(3.71)
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3.3. DoF region when n,; < ng and n,; < ng

2. (o, a9) = (1,1):

dl S N1 (372)
d2 S N¢a. (373)
When ay > a4, we have
1. (aq,a9) = (0,1):
d <0 (3.74)
d2 S N¢a. (375)
2. (a1, a9) = (1,1):
dl S N (376)
d2 S Nty (377)

From the above result, we ean clearly see-that (dy,ds) = (171, 0), (0, n42) and (n, ny)
are the three corner points on the DoF region. Thus, the DoF region is a rectangle.
This is the same as in [4]. Fig. 3.5 shows the DoF of type 1.(c).

An example of type 1.(c) is a two-user MIMO interference channel with ny =
2,04 = 2,n,1 =4 and n,.s = 5. Fig. 3.6 shows the DoF region of type 1.(c) by the

computer calculation.

3.3 DoF region when n,; < np and n,; < ngy

In this section, we discuss the type 2, in this type, we still have the exact DoF
region when the CSIT is not available. Also, we consider two cases, a; > as and
ay > o, respectively. If a3 > ay, we decode X, first at both and then apply SIC at
receiver 2 to decode X,. At receiver 1, we have n,; < ny, so the DoF constraint of
dy is

di < agng — aemin(ngg, npe) (3.78)

= 1Ny — A2y . (379)
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3.3. DoF region when n,; < ng and n,; < ng
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Figure 3.5: The DoF region of type 1.(c)
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Figure 3.6: The DoF region of type 1.(c) with nyg = 2,14 =2,n,1 =4 and n,e =5
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3.3. DoF region when n,; < ng and n,; < ng

At receiver 2, unfortunately, n,.o < nyp, Ny < Npo < Ny + Nyo and nyy + Ny < nyo are
all possible in type 2, so we need to give DoF constraint for three different antenna

distributions.

L. npo < nyg:

dy < aynge — aymin(ng, n,.9). (3.80)
2. Ny < Npo < Nyp + Mot
dy < agng + ag(ngg — ng ) — ag min(ng, ny2). (3.81)
3. g+ ngo < Nyt
di <o aing +aeng —asmin(ng, n.g) (3.82)
= Qi (3.83)

After we decode X, successfully at receiver 2, we apply SIC and decode X,. The
DoF constraint is

dy < ap min(nyg, nyg)- (3.84)

Note that we have n,y < n,.o only when ny + 14 < n.o. Then we consider the case

when as > a1. We decode X, first at both receivers. At receiver 1, we have

dy < agng — agmin(ng,n.g) (3.85)

= 0Nyp1 — ANy (386)

After we decode X, successfully at receiver 1, we can apply SIC and decode X,. The

DoF constraint is

di < oymin(ng,n.) (3.87)
= 1Ny1. (388)
At receiver 2, we have
L. npo < nygo:
dy < agngo — g min(ng, ny2). (3.89)

26



3.3. DoF region when n,; < ng and n,; < ng

2. myg < Ny < Nyp + Myt

dy < agnys + ag(nge — nyg) — gy min(ng, ny2). (3.90)

3. N1 + N¢o S Nypo:
dy < g + agng — ap min(ng, o) (3.91)
=  (9N3. (392)

Note that again we have n;; < n,o only when ny;; + ng < n,o, otherwise we do not
know whether ns < n,o or n,.s < ng. So far, we have all DoF constraints of the type
2, then we can replace the extreme values to above DoF' constraints to get the corner
points in the DoF region. We skip the calculations and show the results directly.

When a4 > as, we have

1. (ag,a2) = (1,0):

dl S T (393)
dy < 0 (3.94)

2. (061,052) = (1, 1)
d < 0 (3.95)
dy < min(ng, nm). (3.96)

When ay > a4, we have

L (a1, a2) = (0,1):
d < 0 (3.97)
dg S Nyt (398)

2. (a1, 02) = (1,1):
d1 S Nyp1 (399)
dy < 0 (3.100)
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3.3. DoF region when n,; < ng and n,; < ng
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ch
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Figure 3.7: The DoF region of type 2

We see that (3.96) and (3.98) give different DoF constraints for ds when d; < 0. Since
we always try to maximize the rate, we should choose(3.96) as our rate constraint for
ds, because min(ny, nyo) > n,.1. Thus we have two corner points in DoF region here,
(dy,ds) = (n,1,0) and (0, min(ns, ny2)). We can use time-sharing scheme to connect
these two corner points to get the exact DoF region, which corresponds to the result
in [4]

In type 2, we can see that if we want to achieve the maximum value of d;, we
need dy to be zero, and vice versa. The entirely DoF region is given by time sharing
scheme between the maximum of d; and ds. The shape of DoF region is a triangle.
Fig. 3.7 shows the DoF region of type 2.

An example of type 2 is a two-user MIMO interference channel with n;; = 3,14 =
4,n,1 = 2 and n,.o = 4. Fig. 3.8 shows the DoF region of type 2 by the computer

calculation.
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3.4. DoF region when n,; < ns and ng < n,q

Figure 3.8: The DoF region of type 2 with ny; = 3,n.=4,n,1 =2 and n,, =4

3.4 DoF region when n,; <n; and ny < npq

In this section, we consider the DoF region of type 3, note that type 2 and type 3
are only differ by n,1 < nyy ordng > nyy. From [4)y there is only an outer bound for
this type.

In type 3, we no longer decode the stream with higher power first. Instead, we
will consider two decoding strategies at both receivers, regardless of the power of the
two streams. For user 1, we want to transmit X, to receiver 1 reliably, so we have

that at receiver 1:

1. Treating X, as noise and decoding X, directly.

2. First treating X, as noise and decoding X,, then applying SIC to decode X;.
For user 2, the concept is same and at receiver 2 we have

1. Treating X, as noise and decoding X, directly.

2. First treating X, as noise and decoding X, then applying SIC to decode X,.

Each receiver should choose the best decoding strategy for a given power allocation

and antenna distribution. At receiver 1, if we decode the X, directly, we have
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3.4. DoF region when n,; < ns and ng < n,q

L. ng < npp < ng 4 nge:

d1 S Q1N + Oég(nrl - nﬂ) — Q9 min(ntg, n,«l). (3101)

2. Mgl + N2 < Ny
di < agng + aang — e min(ngg, ny). (3.102)
If we decode the X, first and then apply SIC to decode X, the DoF constraint
of dy is
d2 S oMy — 1 min(nﬂ, nT1> (3103)

and d; is simply

dy< aq min(mgp, 14 ). (3.104)

At receiver 2, we also have two-decoding strategies, but the situation becomes
more complicated since werdo not know n,, < ng or nys < n,o, thus we need to list

all the possible conditions..We consider the strategy of decoding X, directly first:

L. npg < nga:

dy' < apiye—-cymin (11, ). (3.105)
2. Ny < Npo < Nyp + Nya:
dy < aanyg + g(Npg — Nyg) — iy min(nyy, Nya). (3.106)
3. Ny + Ngo < Nypat
dy < omye + ayng — oy min(nyg, nyo). (3.107)

The above are the three conditions when we decode X, directly at receiver 2. Now
we consider the strategy of decoding the X, first and then applying SIC to decode
X,. The DoF constraint of d; is:

1. nyg < npe < ngg + ngo:

d1 S aing + Oég(nrg — nﬂ) — Q9 min(ntg, TLTQ). (3108)

30



3.4. DoF region when n,; < ns and ng < n,q

d:

min{Nez, Nr2)

(M, Ne1-new)

a

N

Figure.3.9: The Dok region of type 3

2. Ny + N2 S Nypo:

dy < o+ aongs — s min(ngg, n.o) (3.109)
and dy is simply
dy < @ main (g, 1,2). (3.110)

The above (3.101)-(3.110) is the whole DoF constraints of the type 3. From the work

in [4], we have an outer bound of DoF region, denoted as Dy,

d d
Dy = {(dl,dQ) eRS: — +—2}. (3.111)

Ny min(ngg, npg)

But this outer bound seems loose. Consider a genie-aided two-user MIMO interference
channel, by which we mean there is a genie at both receivers, informing the receiver
the interference from the unintended user completely. The point (d;,ds) = (n,1,0)
is still not achievable. We can achieve only (dy,ds) = (n41,0) since ny < n,;. The
DoF region of the two-user MIMO interference channel must be bounded by the one
of the genie-aided two-user MIMO interference channel, so we can make the outer
bound tighter by the genie-aided 2-user MIMO interference channel. This is a new
outer bound for type 3. Fig. 3.9 shows the DoF region of type 3.
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3.4. DoF region when n,; < ns and ng < n,q
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Figure 3.10: The DoF region of type 3 with ny = 1,np. = 3,1, = 2 and n.o = 4

compared to the new outer-bound

An example of type 3 ismy = 1,n0 = 3;n,1 = 2 and n,» = 4. Fig. 3.10 shows
the gap between our DoF region and the new outer bound.

Although we do not know that for a two-user Rayleigh fading channel, the gap
between the DoF region and new outer bound is achievable or not, the work in
[9] had already shown that for a two-user isotropic and independent (or block-wise
independent) fading channel, the exact DoF region of this type is just the same as
the DoF region in our work, which implies that the gap between the DoF region
and the new outer bound may not be achievable, no matter whether beamforming or

interference alignment is used.
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Chapter 4

DoF region of Two-User MIMO
Interference Channels with Perfect

Receiver Cooperation

In this chapter, we investigate the DoF region of two-user MIMO interference chan-
nel with perfect receiver cooperation and no CSIT.-Here, perfect receiver cooperation
means that two receivers have a noiseless and interference-free link to communicate
with each other. For example, if we decode X, successfully at receiver 1, then we can
send it to receiver 2, so receiver 2 can know X, completely and remove the component
of X, perfectly. The remaining signal is only X, plus noise, as the interference from
X, has been removed. We can also use Theorem 1 in Chapter 2 for the general MAC
sum rate to analyze the DoF region in this chapter. We then compare the results in
the previous chapter, where we do not have any cooperation. We use the same way

to divide the antenna distributions into three types. The three types are listed below.
L. g <y

(a) ny < np
(b) ny < npp < g+ Ny

(c) ng + g < npq
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4.1. DoF region with perfect receiver cooperation when ng < n,q

2. Ny < Ny and npqp < Ny
3. np1 <y and nyy < nyo

The condition n,; < n,s is assumed, and the result can be easily extended to n,; > n,.s.

We discuss the DoF region of each type in the following three sections.

4.1 DoF region with perfect receiver cooperation
when ny < n,q

In this section, we consider thetDoF region of type 1. The transmit power of
transmitter 1 and transmitter 2 are SNR* and SNR*?, respectively. Note that 0 <
a; <1 and 0 < ay < 1. Wedecode the message with stronger power at its intended
receiver first. Since the two receivers have perfect cooperation, we can transmit
the decoded message(the stronger power message) to the other receivers. Thus the
interference can be removereasily: We discuss the three sub-types of type 1 in the

following three subsections

4.1.1 DoF region with perfect receiver cooperation when n,; <
N
We have two cases in the following
1. a1 > ao.
2. a9 > 0.

We start with the case a; > ay. At receiver 1, we treat X, as noise and decode X,

directly. The constraint of d; is

di < agng — aemin(ngg, npe) (4.1)

= O1MNyp1 — OQN2. (42)
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4.1. DoF region with perfect receiver cooperation when ng < n,q

If d; satisfies the above constraint, we can decode X, reliably at receiver 1. Since we
assume that the two receivers have perfect cooperation, the receiver 2 can know X, .
Thus receive 2 can subtract it off, then we can decode X, at receiver 2. The DoF

constraint of X, is

dy < agmin(ng,n.s) (4.3)

=  (9N2. (44)

Let us consider the case as > oy now. We decode X, at receiver 2 first. Here,
since Ny < Npo < Ny + Ny and nyy + Ny < Ny are both possible, we have to consider

both of them. If n; < n,9 < ny + ngo, at receiver 2, we have the constraint of ds is
dy < agnug H (g — Nyg) = g min(n40, nrg). (4.5)
If ny + nye < nyo, the constraint of ds is:

d2 S oMy + QN — Qi min(ntl, ’I”LTQ) (46)

= T AN2. (47)

By the receiver cooperation, receiver 1 can easily subtract the component of X,. The

DoF constraint of d; is

di < oymin(ng,n.) (4.8)

= 1Ny. (49)

We see that if ny 4+ ngp < n,9, we can achieve d; = n,; and dy = nyy simultaneously.
This DoF pair is the maximum of the two-user MIMO interference channel. If n, <
Npo < My + N2, we can achieve (di,ds) = (n,1,n.2 — min(ny, n.9)). This result is
better than no cooperation in section 3.1.1. Fig. 4.1 shows the DoF region of type
1.(a), both no cooperation and perfect receiver cooperation are considered.

An example of type 1.(a) is a two-user MIMO interference channel with ny; =
3,2 = 1,n,y = 2 and n,e = 4. Fig. 4.2 shows the DoF region of type 1.(a) with

perfect receiver cooperation by computer calculation.
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4.1. DoF region with perfect receiver cooperation when ng < n,q

= DoF region with perfect receiver cooperation
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Figure 4.1: The DoF region of the DoF region of type 1.(a) with perfect receiver

cooperation compared to the DoF region with no cooperation.
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4.1. DoF region with perfect receiver cooperation when ng < n,q
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Figure 4.2: The DoF region of type 1.(a) with nyy = 3,n40 = 1,n,1 =2 and n,o = 4
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4.1. DoF region with perfect receiver cooperation when ng < n,q

4.1.2 DoF region with perfect receiver cooperation when n; <
Ny < N1+ T2

In this subsection, we discuss the DoF region of type 1.(b). The method is just

the same as previous subsection. Again we start with the case a; > as. At receiver
1, we have the constraint of d; is

di < oqng + ag(ng — ngy) — agmin(ngg, 1nyq) (4.10)

= o ny + OjQ(?’Lrl — N1 — ntg). (411)

After we decode X, at receiver 1 successfully, the receiver 2 can know X, by the

perfect receiver cooperation. Thus we can-subtract X, off at receiver 2 and then
decode X,, the constraint of dy is

dy < min(ngs, ) (4.12)

=  ON9- (413)

Now we consider the case as > a;. In this case we simply decode X, at receiver

2 first. But here ny < n,o < ngy+ g and nyy +n < n,.o are both possible, we need

to consider the two possibilities, respectively. If ny, < n,.9 < ny + Ny, the constraint

of dy is
do < onyg + ag(nge — nyo) — ag min(ngy, nyo) (4.14)

= Ny + ag (e — Ny — Ny2). (4.15)
If ny + nyo < nyo, the constraint of dy is

dg S QoMo + Ny — min(nﬂ, nrz) (416)

= aMya. (417)

After we decode X, at receiver 2 successfully, receiver 1 can know X, by the perfect

receiver cooperation. Thus the constraint of d; is

di < aqmin(ng,n.g) (4.18)

= O1Ny1. (419)
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4.1. DoF region with perfect receiver cooperation when ng < n,q
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Figure 4.3: The DoF region of the DoF region of type 1.(b) with perfect receiver

cooperation compared to the DoF region with no cooperation.

We can see that the result is almost the same as type 1.(a). The only difference is
that when 1y < nye < ny +mn. We know min(ny, ny.9) = ny in type 1.(b) but do not
know in type 1.(a). If nyo < nyo < ny + ng, we can achieve (dy, ds) = (ng, N — ny1).
This is better than (dy, dy) = (n41, 7,1 —"n41), the result of no cooperation. If ny+mng <
Ny, we can achieve (dy,dy) = (n41,m42), and both the two stream can achieve their
maximum DoF. Fig. 4.3 shows the DoF region of type 1.(b), with and without receiver
cooperation.

An example of type 1.(b) is a two-user MIMO interference channel with ny, =
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4.1. DoF region with perfect receiver cooperation when ng < n,q
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Figure 4.4: The Dol region-of type 1.(b)

3,ni = 2,n,1 = 4 and n.o = 4. Fig. 44 shows the DoF region of type 1.(b) with
perfect receiver cooperation by computer calculation. In this example, we can see
that the DoF regions of no cooperation and with perfect receiver cooperation are the

same, since n,; = n,o = 4.

4.1.3 DoF region with perfect receiver cooperation when n;;+
g < Ny

In this subsection, we discuss the DoF region of type 1.(c). Again we start with
the case a1 < ap. At receiver 1, we treat X, as noise and decode X, directly. Thus

we have the constraint of d; is

di < aqng + agngg — asmin(ngg, 1) (4.20)

= 1 Ny. (4.21)
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4.2. DoF region with perfect receiver cooperation when n,; < ns; and
Nnep < Ny

After we decode X, at receiver 1 successfully, the receiver 2 knows X; by the perfect

receiver cooperation. Then we have the constraint of ds is

dy < agmin(ng,n.e) (4.22)

=  0Ny9o. (423)

Now, let us consider the case as > ;. In this case, we decode X, at receiver 2

first, so we have the constraint of ds is

dy < aongg + aqny — ap min(ng, 1) (4.24)

= aM2. (425)

After we decode X, at receiver 2 successfully, the receiver 1 knows X, by the perfect

receiver cooperation. So the constraint of .d;-is simply

di < oymin(ng,n.) (4.26)

=  1Ny. (427)

From the above constraints of DoF'; the.corner.points.of the DoF region are (d;, ds) =
(n41,0), (0,n42) and (n4,n42). The DoF region with perfect receiver cooperation is
the same as the DoF region with no cooperation in section 3.1.3. Fig. 4.5 shows the
DoF region of type 1.(c), with and without receiver cooperation.

An example of type 1.(c) is two-user MIMO interference channel with n; =
2,np = 2,n,1 = 4 and n.o = 5. Fig. 4.6 shows the DoF region of type 1.(c)

with perfect receiver cooperation by computer calculation.

4.2 DoF region with perfect receiver cooperation
when n,; < np and n,q < ngy

In this section, we consider the DoF region of type 2. The decoding strategy is

the same as previous section. We start with the case a; > as.
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4.2. DoF region with perfect receiver cooperation when n,; < ns; and
Nnep < Ny

mmmm  [oF region with perfect receiver cooperation
mmmm  CoF region with no cooperation

N

o}

N1

Figure 4.5: The DoF region of the DoF region of type 1.(c) with perfect receiver

cooperation compared to the DoF region with no cooperation.
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4.2. DoF region with perfect receiver cooperation when n,; < ns; and
Nnep < Ny
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Figure 4.6: The DoF region of type 1.(c)
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4.2. DoF region with perfect receiver cooperation when n,; < ns; and
Nnep < Ny

When a1 > a9, we treat X, as noise and decode X, at receiver 1. Thus we have

the constraint of d; is

di < agng — aemin(ngg, npe) (4.28)

= (a1 —a2)ny. (4.29)

After we decode X, at receiver 1 successfully, the receiver 2 knows X, by the perfect

receiver cooperation. The constraint of ds is simply
dy < agmin(ng,n.e) (4.30)

Note that we do not know min(ns9, 7,2) = ny or o here.
Now let us consider the case &; > 3. In this case, we treat X; as noise and
decode X, at receiver 2 direetly. But-in type 2, n,9 < g, nwp < ny.o < ny + ngy are

all possible. So we need to.consider these three conditions separately.

L. npo < ngp

dy < a@an,s — ap min(ngsno). (4.31)
2. g < MNyg <Nyt + N2
dy < gy + ag(npe — ny2) — oip min(nyg, ny2). (4.32)
3. g+ Ny < Ny
dy < aonge + ainge — apmin(ng, ny2) (4.33)
= QoNyo. (4.34)

After we decode X, successfully at receiver 2, the receiver 1 can subtract the compo-
nent of X, by the perfect receiver cooperation. Thus, we can decode X, at receiver

1 without the interference from X, . The constraint of d; is

di < oymin(ng,n.) (4.35)

= 1Ny (436)
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4.2. DoF region with perfect receiver cooperation when n,; < ns; and
Nnep < Ny

=== DoF region with perfect receiver cooperation
mmmm  DoF region with no cooperation
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o
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Figure 4.7: The DoF region-of the DoF region of type 2 with perfect receiver cooper-

ation compared to the DoF region with no cooperation.

These are all DoF constraints of type 2'with perfect receiver cooperation. We can
see that if we want to achieve the maximum of dy, i.e. min(ny, n.2), d; must be zero.
But if we want to achieve the maximum of d;, i.e. n,1, dy can still be positive. This is
the improvement given by the perfect receiver cooperation. Fig. 4.7 shows the DoF
region of type 2, with and without receiver cooperation.

An example of type 2 is a two-user MIMO interference channel with n;, = 3, =
4,n,1 =2 and n,o = 4. Fig. 4.8 shows the DoF region of type 2 with perfect receiver

cooperation by computer calculation.
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4.2. DoF region with perfect receiver cooperation when n,; < ns; and
Nnep < Ny
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Figure 4.8: The DoF region of type 2
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4.3. DoF region with perfect receiver cooperation when n,; < ns; and
Ny < Ny

4.3 DoF region with perfect receiver cooperation
when n,; < np and ny < npq

In this section, we consider the DoF region of type 3. The decoding strategy is
the same as previous two sections. Let us start with the case a; > as.
When a; > ay, we treat X, as noise and decode X, at receiver 1. The constraint

of d; is
d1 S AT + Oég(nrl — nﬂ) — Q9 min(ntg, nrl) (437)
= (a1 — ag)ny. (4.38)

The receiver 2 knows X; by the perfect receiver-cooperation and can then subtract

it off. Thus the constraint of'dy is/simply
dy < cymin(nyg, nyg). (4.39)

Note that we do not know min(ns;nss) = 1 Or n.o here.
Now let us consider the case ao >-ar1. In thiscase, we treat X, as noise and decode
X, at receiver 2. But in type 3, f,0 Sotigg, Na<< Mo < N1 + Ny and nygy + Nyo < Ny

are all possible. So we need to consider these three conditions separately.

L. npg < ng

dy < ongg — aq min(ng, nys) (4.40)
= QNypg — 1Ny (441)

2. Mg < MNypg < Nyt + N2
dg S QoNyg + Oél(n',«g — ntg) — 1 min(nﬂ, TLT2> (442)
= Q9N + CYl(nrg — Ny — ntg). (443)

3. ng + ngg < Ny

dy < omyg + agngg — g min(ng, nypg) (4.44)
= QN (4.45)
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4.3. DoF region with perfect receiver cooperation when n,; < ns; and
Ny < Ny

mmmm  DoF region with perfect receiver cooperation
mmmm  DoF region with no cooperation
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Figure 4.9: The DoF region-of the DoF region of type 3 with perfect receiver cooper-

ation compared to the DoF region with no cooperation.

The above characterize the DoF region of type 3 with perfect receiver cooperation.
In type 3, we cannot have nonzero d; when we achieve the maximum of dy. If we have
perfect receiver cooperation, we can have better d, when we achieve the maximum of
dy, compared with no cooperation in Section 2.3. Fig. 4.9 shows the DoF region of
type 3, with and without receiver cooperation.

An example of type 3 is a two-user MIMO interference channel with ny = 1,4 =
3,n.1 = 2 and n,o = 4. Fig. 4.10 shows the DoF region of type 3 with perfect receiver
cooperation by computer calculaton. We can see that if we have perfect receiver
cooperation, the DoF region might be larger than the new outer bound of type 3 that

we stated in Section 3.3.
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4.3. DoF region with perfect receiver cooperation when n,; < ns; and
Ny < Ny
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Figure 4.10: The DoF region of type 3
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Chapter 5

Conclusion

In this thesis, we study the DoF region of the two-user MIMO interference channel
without CSIT. By considering the power-split transmission scheme at the transmit-
ters, we first view the interference channel as two two-user MAC and develop the DoF
for the general two-user MAC. Following [4], we distinguish the two-user MIMO in-
terference channel by the values of transmit and receive antennas and consider three
types. For type 1 and type 2; we show that the power-split scheme with SIC can
achieve the same DoF region as in/[4]:For type 3, we reduce the outer bound in
[4] by a two-user genie-aided MIMO interference channel. It is seen that for this
type the gap between the power-split scheme with SIC and the outer bound is small.
Also, from [9] it is seen that the exact DoF region of type 3 in the case of isotropic
and independent fading is the same as our power-split scheme with SIC. Finally,
we consider the DoF region of two-user MIMO interference channel with perfect re-
ceiver cooperation, and compare to the two-user MIMO interference channel without

cooperation.
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