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中中中文文文摘摘摘要要要

非非非同同同調調調單單單輸輸輸入入入多多多輸輸輸出出出

回回回授授授記記記憶憶憶性性性衰衰衰減減減通通通道道道之之之漸漸漸近近近通通通道道道容容容量量量

研究生：郭沅竹 指導教授：莫詩台方 博士

國立交通大學電信工程研究所碩士班

在本篇論文中，我們針對一個廣義非同調規律、單輸入多輸出、

且具有迴授系統的記憶性衰減通道，作漸近通道容量(asymptotic

channel capacity)的探討。我們假設通道的衰減過程可以是任意地

穩定態且均勻遍歷(ergodic)的隨機過程，同時此隨機過程的能量與

微分熵量比率(differential entropy rate)皆是有限的。而對於迴授系

統的通道部份，則假設其是無任何雜訊影響的，即有無限的通道容

量，但是具有因果關係的(causal)。

研究結果顯示，具有迴授系統的漸近通道容量依然隨著能量呈雙

對數(double-logarithmically) 的速度成長。此外，我們也證明，在漸

進通道容量展開式中的第二項，通稱為衰減數(fading number)，與

沒有迴授系統時，兩者的衰減數是一樣的。
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Abstract

The Asymptotic Capacity of

Noncoherent Single-Input Multiple-Output

Fading Channels with Memory and Feedback

Student: Guo Yuan-Zhu Advisor: Prof. Stefan M. Moser

Institute of Communication Engineering
National Chiao Tung University

In this thesis, the channel capacity of a general noncoherent regular single-input
multiple-output fading channel with memory and with feedback is investigated. The
fading process is assumed to be a general stationary and ergodic random process
of finite energy and finite differential entropy rate. The feedback is assumed to be
noisefree (i.e., it is of infinite capacity), but causal.

We show that the asymptotic capacity grows double-logarithmically in the power
and that the second term in the asymptotic expansion, the fading number, is un-
changed with respect to the same channel without feedback.
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Chapter 1

Introduction

Noncoherent multiple-antenna fading channel models have attracted a lot of attention

for quite some years because they realistically describe the omnipresent mobile wireless

communication channels. Here, noncoherent refers to the fundamental assumption that

transmitter and receiver only have knowledge about the distribution of the fading process,

but have no direct access to the current realization. Hence, the communication system

needs to provide some means of measuring the current channel state, thereby using part of

the available bandwidth, power, and computational efforts for the channel state estimation.

This is in stark contrast to the coherent fading models where it is assumed that the

receiver has free and noiseless access to the current fading realization [1]. It is partic-

ularly the latter assumption of perfect knowledge of the fading realization that leads to

overly optimistic capacity results for coherent channel models with respect to what can

be expected to be seen in practice.

The noncoherent channel models can be split into different families. For so-called

underspread fading channels, it is assumed that the fading process is wide-sense stationary

and uncorrelated in the delay, where the product of the delay and Doppler spread is small

(for more details, see [2] and references therein). The block-fading models assume that

for a certain time, the fading realization remains unchanged before a new (potentially

dependent) value is taken on [3], [4], [5]. In nonregular fading, the fading process is

assumed to be stationary with strong memory that permits a quite precise prediction of

the present fading values from the past [6], [7]. It might be even the case that one can

perfectly compute the current values from the infinite past with a zero prediction error.

Note, however, that due to the noncoherence assumption and due to the additive noise, the

receiver never has access to the exact past fading values, but only to a noisy observation

of them.

In this thesis we investigate the family of noncoherent regular fading channels. In

contrast to nonregular fading, here it is assumed that the stationary fading process has

a finite differential entropy rate. In [8] it has been shown that the capacity of multiple-

antenna regular fading channels only grows double-logarithmically in the available power

at high signal-to-noise ratios (SNR). This is much slower than the common logarithmic
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Chapter 1 Introduction

growth, e.g., of coherent fading channels, and it persists independently of the number of

antennas used at transmitter and receiver and independently of the memory in the fading

process.

For a more precise description of this phenomena, [8] defined the fading number χ as

the second term in the high-SNR asymptotic expansion of the channel capacity:

χ({Hk}) ! lim
E↑∞

{C(E)− log log E}. (1.1)

An analytic expression for its value for general multiple-input multiple-output fading chan-

nels with memory has been derived in [8], [9].

While the assumption of a noncoherent communication system is realistic, we also

should take into account that many practical communication systems are bidirectional

allowing to send feedback from the receiver back to the transmitter. Such a feedback link

will help to simplify the necessary coding scheme and it even has the potential to increase

the channel capacity. In this thesis, we investigate the impact of feedback in the situation

of a general regular single-input multiple-output (SIMO) fading channel with memory. We

do not restrict the exact distribution of the fading process, apart from it being stationary

and ergodic. Concerning the feedback, we assume the rather unrealistic situation of a

feedback link that has infinite capacity. This will lead to an upper bound on the capacity

in the presence of any practical type of feedback. The only constraint we make is causality,

i.e., the feedback will arrive at the transmitter delayed by one time-step.

The structure of this thesis is as follows: In the remainder of this chapter we will

shortly describe our notation. In Chapter 2 we will specify the channel model in detail.

In Chapter 3, we will show some mathematical tools that are related to our analysis. In

Chapter 4 summarizes the results for the channel model without feedback including some

required definitions and some explanations about the meaning of the fading number. The

main result, i.e., the exact asymptotic capacity of SIMO fading channels with noiseless

feedback, is then presented in Chapter 5. In Chapter 6 we give the detailed derivation of

our result, and Chapter 7 contains some concluding remarks.

In order to make this thesis easier to read, we attempt to use a consistent and precise

notation. For random quantities, we use upper-case letters such as X to denote scalar

random variables, and their realizations are written in lower-case, e.g., x. For random

vectors we use bold-face capitals, e.g., X and bold lower-case for their realization.

Some exceptions that are widely used in literature and therefore kept in their customary

shape are as follows:

• h(·) denotes the differential entropy of a continuous random variable.

• I(·; ·) denotes the mutual information.

The letter C denotes the channel capacity. The energy per symbol is denoted by E .

Also note that we use log(·) to denote the natural logarithmic function and all rates are

specified in nats.
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Chapter 2

Channel Model

We consider a communication system as shown in Figure 2.1. A message M is transmitted

over a SIMO fading channel with memory where the transmitter has one antenna and the

receiver has nR antennas. The channel output vector Yk ∈ CnR at time k is given by

Yk = Hkxk + Zk, (2.1)

where xk ∈ C denotes the time-k channel input; the random vector Hk ∈ CnR denotes

the time-k fading vector with nR components corresponding to the nR antennas at the

receiver; and the random vector Zk ∈ CnR models additive noise.

We assume that the additive noise process {Zk} is spatially and temporally indepen-

dent and identically distributed (IID), circularly-symmetric, and complex Gaussian with

zero mean and with variance σ2 > 0:

{Zk} IID ∼ NC

(

0,σ2InR

)

. (2.2)

Here, InR
denotes the nR × nR identity matrix.

The fading process {Hk} is statistically independent of {Zk} and is assumed to be

stationary, ergodic, of finite energy E
[

‖Hk‖2
]

< ∞, and of finite differential entropy rate

h({Hk}) > −∞. (2.3)

A random process satisfying this later condition (2.3) is usually called regular. Note that we

do not make any further assumptions about {Hk}, i.e., we do not assume a particular law

(like, e.g., a Gaussian distribution). In particular we do allow for arbitrary dependences

between the different components
{

H
(j)
k

}

corresponding to the different antennas (spatial

memory) and over time (temporal memory).

We assume noncoherent communication, i.e., neither transmitter nor receiver know the

realization of {Hk}, they only know its law.

From the receiver to the transmitter we have a noiseless feedback link (i.e., the link

has infinite capacity and allows the receiver to send everything it knows back to the

transmitter). However, to preserve causality of the system, we require the feedback to

3



Chapter 2 Channel Model

M M̂
Tx Rx

delay

Xk

Y
(1)
k

Y
(nR)
k

H
(1)
k

H
(nR)
k

Z
(1)
k

Z
(nR)
k

Fk

Fk−1

Figure 2.1: Regular SIMO fading channel with nR antennas and with noiseless causal

feedback.

be delayed by one discrete time-step. So the feedback vector Fk that is available at the

transmitter at time k consists of all past channel output vectors:

Fk = Yk−1
1 . (2.4)

The channel input xk at time k therefore is a deterministic function of the message M

and the feedback Yk−1
1 . Note that we assume M to be uniformly distributed.

We consider two types of power constraints: an average-power constraint and a peak-

power constraint. Under the former we require that for every message m

1

n

n
∑

k=1

E
[∣
∣Xk

(

m,Yk−1
1

)∣
∣
2
]

≤ E , (2.5)

where n denotes the blocklength. Under the peak-power constraint we replace (2.5) with

the almost-sure constraint that for every message m

∣
∣Xk

(

m,Yk−1
1

)∣
∣
2
≤ E , a.s., k = 1, . . . , n. (2.6)

To clarify notation we will use a subscript “FB” whenever feedback is available, while

the subscript “IID” refers to a situation without memory or feedback. RHS stands for

‘right-hand side’.
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Chapter 3

Mathematical Preliminaries

In this chapter, we show some mathematical tools that will be used in our proof.

3.1 Differential Entropy

3.1.1 h+(X)

The differntial entropy h(X) of an n-dimensional real random vector X is defined if the

density px(x) (with respect to the Lebesque measure on Rn) is defined and if at least one

of the integrals

h+(X) !

∫

{x∈Rn:0<px(x)<1}
px(x) log

1

px(x)
dx (3.1)

h−(X) !

∫

{x∈Rn:px(x)>1}
px(x) log px(x) dx (3.2)

is finite. In this case, h(X) is defined as the difference between the two nonnegative

integrals,

h(X) ! h+(X)− h−(X) (3.3)

where we use the rules +∞− a = +∞ and a−∞ = −∞ for all a ∈ R. This is written as

h(X) =

∫

Rn

px(x) log
1

px(x)
dx. (3.4)

The differential entropy of an n-dimensional complex random variable is defined as the

differential entropy of the 2n-dimensional real vector comprising of the real and imaginary

parts of each of its components. Finally, the differential entropy h(H) of a random matrix

H is the differential entropy of the vector comprising of its entries.

3.1.2 hλ(·)

Let X̂k denote the unit vector

X̂k !
Xk

‖Xk‖
. (3.5)

5



Chapter 3 Mathematical Preliminaries

Because the unit vectors X̂k only take value on the unit sphere in CnR and since the

surface of this unit sphere has zero measure over CnR , we define a differential entropy-like

quantity hλ(·) that only lives on the surface of the unit sphere in CnR : for V ∈ CnR and

V̂ ! V

‖V‖ , we define

hλ(V̂) ! E
[

−log pλ
V̂
(V̂)

]

= −

∫

pλ
V̂
(v̂) log pλ

V̂
(v̂)dv̂, (3.6)

if the expectation exists. Here pλ
V̂
(v̂) denotes the PDF of the random unit-vector V̂ with

respect to the CnR-surface measure λ. Note that pλ
V̂
(v̂) is implicitly defined by the PDF

of V, pλ
V
(v). For more details we refer to [9, Sec. II].

Lemma 3.1 Let V be a complex random vector taking value in Cm and of differntial

entropy h(V). Then

h(V) = h(‖V‖) + hλ(V̂|‖V‖) + (2m− 1)E[log ‖V‖] (3.7)

whenever all the quantities in (3.7) are defined. Here the first term on the right is the

differential entropy of ‖V‖ when viewed as a real (scalar) random variable.

Note that it is a conditional version of hλ.

3.1.3 Differential Entropy and Expectation of Logarithms

Lemma 3.2 Let X be an n-dimensional complex random vector of density pX(x). Then

the following relationship between differential entropy and the expected log-norm hold: If

h−(X) < ∞, then for any 0 < α < n there exists some finite number ∆(n,α) (not

depending on the law of X) such that

E[log ‖X‖] ≥ −
1

α
h−
(

X
)

−∆(n,α) (3.8)

Proof: See [10, Appendix. A.4.4].

3.2 Markov’s Inequality

Lemma 3.3 (Markov’s Inequality) For any non-negative random variable V and any

constant δ > 0,

Pr[V ≥ δ] ≤
E[V ]

δ
(3.9)

Proof: See for example [11].
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3.3 Causal Interpretation Chapter 3

3.3 Causal Interpretation

Massey [12], [13] shows a way of graphically determining independence of random variables

based on causal interpretations. A causal interpretation is an ordered list of random

variables. The idea behind a specific choice of order lies in the causality of the system.

Loosely speaking in an engineering way of thinking, we would like to think of some random

variables being generated ”first” and some ”later based on” the generation of the others.

Note that a priori every ordered list is a valid causal interpretation, but some choices will

be more useful keeping the engineering idea in mind.

As an example consider the vector

V = (M,Xk
1 ,Y

k
1 ,H

k
1,Z

k
1,F

k
1), (3.10)

where all components are random variables defined in Chapter 2.

For simplicity assume for the moment that all components take value in discrete al-

phabets1. We choose the following causal interpretation:

(M,H1, ...,Hk,Z1, ...,Zk,F1, X1,Y1,F2, X2,Y2, ...,Fk, Xk,Yk). (3.11)

If we consider now the entropy of V and write it as a sum using the chain rule

H(V) =
∑

j

H
(

V (j)
∣
∣V (1), ..., V (j−1)

)

, (3.12)

then we see that our choice of a causal interpretation for V simplifies the expression for

the entropy significantly:

H(V) = H(M) +H(H1) +H(H2|H1) + · · ·+H(Hk|H
k
1)

+H(Z1) + · · ·+H(Zk) +H(F1)

+H(X1|F1,M) +H(Y1|X1,H1,Z1) +H(F2|Y1)

+H(X2|F
2
1,M) +H(Y2|X2,H2,Z2) + · · ·+H(Fk|Y

k−1
1 )

+H(Xk|F
k
1,M) +H(Yk|Xk,Hk,Zk) (3.13)

Massey calls this a causal-order expansion of H(V). It can easily be depicted graphically

in a causality graph, which is a directed graph with an edge from vertex V(j1) to V(j2) if

and only if V(j1) is in the conditioning expression for H
(

V (j2)
∣
∣V (1), ..., V (j2−1)

)

. We shall

say that a vertex V(j1) is causally prior to vertex V(j2) if there is a directed path from

V(j1) to V(j2).

In our case the corresponding graph of (3.11) is shown in Figure 3.2.

Note that once we have established the graph, we do not consider the entropy anymore.

We only used the entropy in order to be able to invoke the chain rule in establishing the

”dependencies” between the different components.

1We will drop this assumption soon again, however, here it simplifies notation considerably because we

need not worry about differential entropy. In the end, we are not interested in the entropy at all, but in

the ”dependencies” between the components.
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Chapter 3 Mathematical Preliminaries

X1 X2 X3 Xk−1 XkF1 F2 F3 Fk−1 Fk

Z1 Z2 Z3 Zk−1 Zk

Y1 Y2 Y3 Yk−1 Yk

H1 H2 H3 Hk−1 Hk

M

Figure 3.2: The causality graph of our model.

A causality graph is very useful when determining the statistical dependence between

two groups of random variables possibly conditioned on a third group.

To state this property in more clarity let A,B, C ⊂ {1, ..., length(V)} be three index

sets. Let V(A) denote a vector containing as components of all components of V whose

indices are in A, similarly, define V(B) and V(C).

Any causality graph of V can now be used in order to investigate the independence of

V(A) and V(B) when conditioned on V(C). To that goal consider the following procedure:

• from the specify causality graph take the subgraph causally relevant2 to V(A∪B∪C);

• delete all edges leaving any component of V(C);

• drop all directions of the remaining edges;

• if now all components of V(A) are unconnected to the components of V(B), then

V(A) is statistically independent of V(B) when conditioned on V(C).

Note that using this procedure we only make statements about the independence, but not

about possible dependences, i.e., if the components of V(A) and V(B) are not disconnected,

then they might be statistically dependent or independent.

2A subgraph causally relevant to some Ṽ consists of all those vertices that are either components of Ṽ

or causally prior to Ṽ in the given causal interpretation, together with the edges connecting these vertices.
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Chapter 4

Capacity and Fading Number

without Feedback

It has been shown in [8] that the capacity of general regular SIMO fading channels under

either an average-power constraint or a peak-power constraint is

C(E) = log(1 + log(1 + E)) + χ({Hk}) + o(1), (4.1)

where o(1) denotes terms that tend to zero as E tends to infinity, and

lim
E↑∞

{C(E)− log log E} < 0. (4.2)

Therefore, we can define

χ({Hk}) ! lim
E↑∞

{C(E)− log log E} (4.3)

= hλ

(

Ĥ0e
iΘ0

∣
∣
∣

{

Ĥ"e
iΘ!
}−1
"=−∞

)

− log 2 + nRE
[

log ‖H0‖
2
]

− h
(

H0

∣
∣H−1

−∞

)

(4.4)

where the second equality is given by [8] and hλ(·) is defined in 3.1.2. Here, {Θk} is IID

∼ U((−π,π]) and independent of {Hk}.

From (4.1) it is obvious that the capacity of the fading channel (2.1) grows extremely

slowly at large power. Indeed, log(1 + log(1 + E)) grows so slowly that, for the smallest

values of E for which o(1) ≈ 0, the (constant!) fading number χ usually is much larger

than log(1 + log(1 + E)). Hence, the threshold between the low-power regime and the

capacity-inefficient high-power regime is strongly related to the fading number: the larger

the fading number is, the higher the rate can be chosen without operating the system in

the inefficient double-logarithmic regime.

Also note that even though the double-logarithmic term on the RHS of (4.1) does not

depend on {Hk} or, particularly, on the number of antennas nR, it is still beneficial to

have multiple antennas because the fading number χ does depend strongly on the fading

process and the number of antennas.

9



Chapter 4 Capacity and Fading Number without Feedback

From (4.4) one also sees that in the case of a memoryless SIMO fading channel, the

fading number is given by

χIID(H) = hλ
(

ĤeiΘ
)

− log 2 + nRE
[

log ‖H‖2
]

− h(H), (4.5)

and that therefore the fading number in (4.4) also can be written as

χ({Hk}) = χIID(H0) + I
(

H0;H
−1
−∞

)

− I
(

Ĥ0e
iΘ0 ;

{

Ĥ"e
iΘ!
}−1
"=−∞

)

. (4.6)

In [8], it has also been shown that for an arbitrary value of the power E , the channel

capacity can be bounded as follows:

C(E) ≤ CIID(E) + I
(

H0;H
−1
−∞

)

, E ≥ 0. (4.7)

From (4.6) we see that this upper bound may not be tight. In particular, asymptotically

for E → ∞ it is strictly loose.
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Chapter 5

Capacity and Fading Number with

Feedback

While it is well-known that feedback has no effect on the capacity of a memoryless channel,

in general feedback does increase capacity for channels with memory. The reason for this

is that the combination of feedback and memory allows the transmitter to predict the

current channel state and thereby adapt to it. Unfortunately, for regular fading channels

this increase in capacity due to the feedback turns out to be very limited.

Theorem 5.1 (Capacity Increase by Feedback is Bounded by a Constant) Let a

general SIMO fading channel with memory be defined as in (2.1) and consider a noiseless

causal feedback link as described in (2.4) (see Figure 2.1). Then the channel capacity under

either an average-power constraint (2.5) or a peak-power constraint (2.6) is upper-bounded

as follows:

CFB(E) ≤ CIID(E) + I
(

H0;H
−1
−∞

)

, E ≥ 0. (5.1)

Proof: When we defined channel capacity, we relied on a result by Dobrusin [14]

which shows that for information stable channels the capacity is given by

C = lim
n→∞

1

n
sup

Q∈P(Xn)
I(Xn

1 ;Y
n
1 ), (5.2)

where P(X n) is the set of all probability measures Q over X n satisfying the given input

constraints.

Here, however, we have feedback and can therefore not rely on the above result, but

have to derive a new converse to the coding theorem for the new situation.

Note that since the channel capacity under a peak-power constraint E cannot be larger

than the capacity under an average-power constraint E , all upper bounds that are based on

an average-power constraint are also valid for the situation with a peak-power constraint.

We will therefore in the following only consider an average-power constraint.

Hence, assume that there is a sequence of code schemes with ,enRFB- codewords of

blocklength n—i.e., for each n the rate of the code is not larger that RFB—such that the

11



Chapter 5 Capacity and Fading Number with Feedback

probability of error

P (n)
e ! Pr[M̂ .= M ] (5.3)

tends to zero as n tends to infinity. Then

H(M) = log,enRFB- ≥ log(enRFB − 1) = nRFB − εn, (5.4)

where εn → 0 as n → ∞. Therefore,

RFB ≤
1

n
H(M) +

εn
n

(5.5)

=
1

n
I(M ;Yn

1 ) +
1

n
H(M |Yn

1 ) +
εn
n

(5.6)

=
1

n
I(M ;Yn

1 ) +
log 2 + P

(n)
e log,enRFB-

n
+

εn
n

(5.7)

=
1

n
I(M ;Yn

1 ) +
log 2

n
+

P
(n)
e nRFB

n
+

εn
n

(5.8)

=
1

n
I(M ;Yn

1 ) +
log 2

n
+ P (n)

e RFB +
εn
n

(5.9)

Here (5.6) follows from that definition of mutual information, and the subsequent inequal-

ity from Fano’s inequality.

Therefore, for n → ∞ we must have

RFB ≤ lim
n→∞

1

n
I(M ;Yn

1 ). (5.10)

Hence, any upper bound on the RHS of (5.10) will yield an upper bound on channel

capacity in presence of feedback. We will therefore continue with bounding I(M ;Yn
1 ):

1

n
I(M ;Yn

1 ) =
1

n

n
∑

k=1

I(M ;Yk|Y
k−1
1 ) (5.11)

=
1

n

n
∑

k=1

(

I(M,Yk−1
1 ;Yk)− I(Yk−1

1 ;Yk)
)

(5.12)

≤
1

n

n
∑

k=1

I(M,Yk−1
1 ;Yk) (5.13)

≤
1

n

n
∑

k=1

I(M,Yk−1
1 ,Hk−1

1 ;Yk) (5.14)

=
1

n

n
∑

k=1

I(M,Yk−1
1 ,Hk−1

1 , Xk;Yk) (5.15)

=
1

n

n
∑

k=1

(

I(Hk−1
1 , Xk;Yk) + I(M,Yk−1

1 ;Yk|H
k−1
1 , Xk)

)

(5.16)

=
1

n

n
∑

k=1

I(Hk−1
1 , Xk;Yk) (5.17)

=
1

n

n
∑

k=1

(

I(Xk;Yk) + I(Hk−1
1 ,Yk|Xk)

)

. (5.18)

12



Chapter 5

Here the first two equalities follow from the chain rule; the subsequent inequality from the

non-negativity of mutual information; the following inequality from adding more terms;

the subsequent equality follows since Xk is a deterministic function of M and Yk−1
1 (and

hypothetically also Hk−1
1 ); then we have used the chain rule again; (5.17) follows since3

I(M,Yk−1
1 ;Yk|H

k−1
1 , Xk) = 0 (5.19)

and finally we have used the chain rule once more.

We have to take into account that Xk depends on past outputs via the feedback in the

next step.

I(Hk−1
1 ;Yk|Xk) ≤ I(Hk−1

1 ;Yk,Hk|Xk) (5.20)

= I(Hk−1
1 ;Hk|Xk) + I(Hk−1

1 ;Yk|Xk,Hk) (5.21)

= I(Hk−1
1 ;Hk|Xk) (5.22)

= h(Hk|Xk)− h(Hk|H
k−1
1 , Xk) (5.23)

≤ h(Hk)− h(Hk|H
k−1
1 , Xk) (5.24)

= h(Hk)− h(Hk|H
k−1
1 ) (5.25)

= I(Hk;H
k−1
1 ) (5.26)

Here the first inequality follows from adding one more term; the subsequent equality

follows from the chain rule; (5.22) follows since

I(Hk−1
1 ;Yk|Xk,Hk) = 0 (5.27)

which can be seen similarly to (5.19); (5.24) is due to conditioning that reduces entropy;

and the subsequent equality holds since conditional on Hk−1
1 , Xk and Hk are independent.

Together with (5.18) this yields

1

n
I(M ;Yn

1 ) ≤
1

n

n
∑

k=1

(

I(Xk;Yk) + I(Hk;H
k−1
1 )

)

(5.28)

≤
1

n

n
∑

k=1

(

I(Xk;Yk) + I(Hk;H
k−1
−∞)

)

(5.29)

≤
1

n

n
∑

k=1

CIID(Ek) + I(H0;H
−1
−∞) (5.30)

where in the last inequality we have used the stationarity of {Hk} and used CIID(Ek) to

denote the capacity without feedback or memory for a given power Ek. Note that the

3To see this keep in mind that Yk is fully determined by Zk, Hk, and Xk. The noise Zk is independent

of everything else and can therefore not be estimated from any other random variable; Xk is given; only

Hk is not known. However, it can be approximated using the past Hk−1

1 which again are given. Therefore,

conditional on H
k−1

1 and Xk, M and Y
k−1

1 are independent of Yk. This statement can also be proven

graphically using a technique based on causal interpretations, see Section 3.3.
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Chapter 5 Capacity and Fading Number with Feedback

power allocation depends on the feedback. However, due to (2.5) Ek must satisfy

1

n

n
∑

k=1

Ek ≤ E . (5.31)

Using this together with Jensen’s inequality relying on the concavity of channel capacity

in the power, we get

1

n
I(M ;Yn

1 ) ≤ CIID

(

1

n

n
∑

k=1

Ek

)

+ I(H0;H
−1
−∞) (5.32)

≤ CIID(E) + I(H0;H
−1
−∞) (5.33)

where in the second inequality we used the fact that CIID(·) is nondecreasing.

Therefore,

RFB(E) ≤ lim
n→∞

1

n
I(M ;Yn

1 ) ≤ CIID(E) + I(H0;H
−1
−∞) (5.34)

which proves (5.1).

We note that the RHS of (5.1) is identical to the RHS of (4.7). Hence the same (alas

potentially loose) bound holds both for the channel capacity with and without feedback.

Moreover, also note that C(E) trivially is a lower bound to CFB(E) since the transmitter

can simply ignore the feedback and achieve the same results as without feedback.

An immediate consequence of Theorem 5.1 is that CFB(E) only grows double-logarith-

mically in the power at high power and therefore there exists a fading number χFB({Hk})

with a definition as follows:

Corollary 5.2 Because

lim
E↑∞

{CFB(E)− log log E} < 0, (5.35)

we define

χFB({Hk}) ! lim
E↑∞

{CFB(E)− log log E} (5.36)

(5.37)

Theorem 5.1 can then be applied to χFB({Hk}).

Corollary 5.3 Using the same result as in Theorem 5.1, we learn

χFB({Hk}) ≤ χIID({Hk}) + I
(

H0;H
−1
−∞

)

. (5.38)

Next, we state a stronger statement.
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Theorem 5.4 (SIMO Fading Number with Feedback) Let a general SIMO

fading channel with memory be defined as in (2.1) and consider a noiseless causal

feedback link as described in (2.4) (see Figure 2.1). Then the asymptotic channel

capacity under either an average-power constraint (2.5) or a peak-power constraint

(2.6) is identical to the asymptotic channel capacity for the channel without feedback:

CFB(E) = log(1 + log(1 + E)) + χFB({Hk}) + o(1) (5.39)

where the fading number is

χFB({Hk}) = χ({Hk})

= hλ

(

Ĥ0e
iΘ0

∣
∣
∣

{

Ĥ"e
iΘ!
}−1
"=−∞

)

− log 2

+ nRE
[

log ‖H0‖
2
]

− h
(

H0

∣
∣H−1

−∞

)

. (5.40)

We would like to point out that this result even holds in the (hypothetical) case when

the feedback is improved in the sense that in addition to the past channel outputs the

transmitter also is informed about the past fading realizations Hk−1
1 . Note further that

since we have assumed the most optimistic form of causal feedback, any type of realistic

feedback will yield the same result.

We would like to give a hand-waving explanation of this behavior. Since the fading

process is assumed to be regular with a finite differential entropy rate, it is not possible

to perfectly predict the future realizations of the process even if one is presented with the

exact realizations of the infinite past. Nevertheless, the feedback allows the transmitter

to make an estimate of future realizations. Based on these estimates, the transmitter

can then perform elaborate schemes of optimal power allocation over time: if the channel

state is likely to be poor, it saves power and uses it once the channel state is likely to

be good again. Unfortunately, due to the double-logarithmic behavior of capacity, such

power allocation has no effect at all as can be seen as follows: for any constant β > 0 (β

can be chosen arbitrarily large!),

lim
E↑∞

{log log βE − log log E} = lim
E↑∞

{log(log β + log E)− log log E} (5.41)

= lim
E↑∞

{log(log E)− log log E} (5.42)

= 0. (5.43)

So not only the double-logarithmic growth is left untouched, but also the second term,

i.e., the fading number, remains unchanged.
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Proof of Theorem 5.4

6.1 Main Line Through the Proof

Since the channel capacity of the system without feedback trivially is a lower bound on the

channel capacity with feedback, and since the capacity under a peak-power constraint is a

lower bound on the capacity with an average-power constraint, it is sufficient to derive an

upper bound on χFB({Hk}) under the assumption of the average-power constraint (2.5)

and to show that it is identical to the fading number without feedback and under the

assumption of a peak-power constraint.

The proof is very lengthy and we therefore outline the main ideas in the beginning. The

basic structure follows the proof of the general fading number of MIMO fading channels

with memory given in [9]. However, there are many details that need to be adapted and

taken care of. Particularly, we have to consider the following challenges:

• Due to the feedback, the channel input, the fading, and the additive noise become

dependent.

• We cannot rely on the important auxiliary result given in [9, Th. 3] that shows that

the optimal input is stationary.

• We cannot rely on the important auxiliary result given in [15, Th. 8] that shows that

the capacity-achieving input distribution escapes to infinity.

To handle the first challenge, we often rely on the concept of causal interpretations, which

is introduced in Chapter 3.3, [12], [13]. This is a tool that allows to graphically proof the

independence of random variables when conditioned on certain other random variables.

The missing auxiliary result concerning the capacity-achieving input distribution es-

caping to infinity can be proven indirectly inside of the derivation.

The biggest difficulty is caused by the nonstationarity of the channel input that is

inherent to the given context because the transmitter continuously learns more about the

fading process through the feedback and thereby changes the optimal distribution of the

input.
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6.1 Main Line Through the Proof Chapter 6

The proof starts with Fano’s inequality (see (5.9)), which states that any given sequence

of communication systems with rate RFB and power E must satisfy

RFB(E) ≤
1

n
I
(

M ;Yn
1

)

+
log 2

n
+ P (n)

e RFB(E) +
εn
n

(6.1)

=
1

n

n
∑

k=1

I
(

M ;Yk

∣
∣Yk−1

1

)

+
log 2

n
+ P (n)

e RFB(E) +
εn
n

(6.2)

=
1

n

κ
∑

k=1

I
(

M ;Yk

∣
∣Yk−1

1

)

+
n− κ

n− κ

1

n

n
∑

k=κ+1

I
(

M ;Yk

∣
∣Yk−1

1

)

+
log 2

n
+ P (n)

e RFB(E) +
εn
n

(6.3)

≤
1

n

κ
∑

k=1

(

CIID(Ek) + I
(

H0;H
−1
−∞

)
)

+
n− κ

n

1

n− κ

n
∑

k=κ+1

I
(

M ;Yk

∣
∣Yk−1

1

)

+
log 2

n
+ P (n)

e RFB(E) +
εn
n

(6.4)

In (6.3), we separate the sum into two parts. The first part, 1 ≤ k ≤ κ, can be considered

as transient state. Since κ is a constant, it is bounded anyway and in (6.4) we bound the

mutual information term in the sum as in (5.30). Using Jensen’s inequality relying on the

concavity of channel capacity in the power, we get

RFB(E) ≤
κ

n
CIID

(

1

κ

κ
∑

k=1

Ek

)

+
κ

n
I
(

H0;H
−1
−∞

)

+
n− κ

n

1

n− κ

n
∑

k=κ+1

I
(

M ;Yk

∣
∣Yk−1

1

)

+
log 2

n
+ P (n)

e RFB(E) +
εn
n
. (6.5)

Next we focus on κ+ 1 ≤ k ≤ n and bound as follows:

I
(

M ;Yk

∣
∣Yk−1

1

)

≤ I
(

M ;Yk, Gk

∣
∣Yk−1

1

)

(6.6)

= I
(

M ;Gk

∣
∣Yk−1

1

)

+ I
(

M ;Yk

∣
∣Yk−1

1 , Gk

)

(6.7)

= H
(

Gk

∣
∣Y k−1

1

)

−H
(

Gk

∣
∣M,Y k−1

1

)

︸ ︷︷ ︸

≥ 0

+ γkI
(

M ;Yk

∣
∣Yk−1

1 , Gk = 1
)

+ (1− γk)I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

. (6.8)

Here in (6.6), we add the indicator random variable Gk that is defined as

Gk !

{

1 if ‖Hk‖2 ≥ t,

0 otherwise,
(6.9)

for some given t > 0. We will choose t large such that

E
[

‖H0‖2
]

t
≤ 0.5 (6.10)

Moreover, we define

γk ! Pr[Gk = 1] = Pr
[

‖Hk‖
2 ≥ t

]

, (6.11)
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Chapter 6 Proof of Theorem 5.4

and note that by the Markov inequality (Lemma 3.3),

γk = Pr
[

‖Hk‖
2 ≥ t

]

≤
E
[

‖Hk‖2
]

t
. (6.12)

Because

H
(

Gk

∣
∣Yk−1

1

)

≤ H(Gk) = Hb(γk) ≤ Hb

(

E
[

‖Hk‖2
]

t

)

(6.13)

where Hb(·) denoting the binary entropy function, with t large enough and by using (5.30)

again with conditioning on Gk = 1, we further bound (6.8) as follows:

I
(

M ;Yk

∣
∣Yk−1

1

)

≤ Hb(γk) + γkCIID(Ek
∣
∣Gk = 1) + γkI

(

H0;H
−1
−∞

∣
∣G0 = 1

)

+ (1− γk)
︸ ︷︷ ︸

≤1

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

(6.14)

≤ Hb

(

E
[

‖H0‖2
]

t

)

+
E
[

‖H0‖2
]

t
C̃IID(tEk) +

E
[

‖H0‖2
]

t
I
(

H0;H
−1
−∞

∣
∣G0 = 1

)

+ I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

. (6.15)

Here in (6.15), C̃IID(·) is the capacity of a channel

Ỹk =
Yk

t
=

Hk

t
xk +

Zk

t
! H̃kxk + Z̃k (6.16)

where we condition on the event that Gk = 1, i.e., ‖Hk‖2 > t. This is a different regular

fading channel, for which we know

lim
Ẽ→∞

{C̃IID(Ẽ)− log log Ẽ} ≤ ∞. (6.17)

Hence,

1

n

n
∑

k=κ+1

C̃IID(t · Ek) ≤
1

n

n
∑

k=1

C̃IID(t · Ek) ≤ C̃IID

(

t ·
1

n

n
∑

k=1

Ek

)

where the last inequality follows by Jensen’s inequality relying on the concavity of channel

capacity in the power again. Putting everything back into (6.5), we get

RFB(E) ≤
κ

n
CIID

(

1

κ

κ
∑

k=1

Ek

)

+
κ

n
I
(

H0;H
−1
−∞

)

+
n− κ

n

1

n− κ

n
∑

k=κ+1

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

+
n− κ

n
Hb

(

E
[

‖H0‖2
]

t

)

+
E
[

‖H0‖2
]

t
C̃IID

(

t ·
1

n

n
∑

k=1

Ek

)

+
n− κ

n

E
[

‖H0‖2
]

t
I
(

H0;H
−1
−∞

∣
∣G0 = 1

)

+
log 2

n
+ P (n)

e RFB(E) +
εn
n
. (6.18)
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6.1 Main Line Through the Proof Chapter 6

The third term in (6.18) is then bounded as follows:

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

= I
(

M,Yk−1
1 ;Yk

∣
∣Gk = 0

)

− I
(

Yk−1
1 ;Yk

∣
∣Gk = 0

)

(6.19)

≤ I
(

M,Yk−1
1 , Xk,H

k−1
1 ;Yk

∣
∣Gk = 0

)

− I
(

Yk−1
1 ;Yk

∣
∣Gk = 0

)

(6.20)

= I
(

Xk,H
k−1
1 ;Yk

∣
∣Gk = 0

)

+ I
(

M,Yk−1
1 ;Yk

∣
∣Xk,H

k−1
1 , Gk = 0

)

︸ ︷︷ ︸

= 0, see Appendix D

− I
(

Yk−1
1 ;Yk

∣
∣Gk = 0

)

(6.21)

≤ I
(

Ek, Xk,H
k−1
1 ;Yk

∣
∣Gk = 0

)

− I
(

Yk−1
1 ;Yk

∣
∣Gk = 0

)

(6.22)

= I(Ek;Yk

∣
∣Gk = 0) + I(Xk;Yk|Ek, Gk = 0)

+ I
(

Hk−1
1 ;Yk

∣
∣Xk, Ek, Gk = 0

)

− I
(

Yk−1
1 ;Yk

∣
∣Gk = 0

)

(6.23)

≤ Hb(βk) + βkI(Xk;Yk|Ek = 1, Gk = 0)

+ βkI
(

Hk−1
1 ;Yk

∣
∣Xk, Ek = 1, Gk = 0

)

− I
(

Yk−1
1 ;Yk, Gk = 0

)

+ (1− βk)I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

. (6.24)

Here in (6.20) the current input Xk and the past fading values Hk−1
1 are added. In (6.22)

we add the indicator random variable Ek that is defined as

Ek !

{

1 if |X"| ≥ ξmin, ∀ , = 1, . . . , k,

0 otherwise,
(6.25)

for some given ξmin ≥ 0. Moreover, βk ! Pr [Ek = 1|Gk = 0]. Finally, (6.24) follows

because we bound

I(Ek;Yk

∣
∣Gk = 0) = H(Ek

∣
∣Gk = 0)−H(Ek|Yk, Gk = 0)

︸ ︷︷ ︸

≥ 0

≤ H(Ek) = Hb(βk). (6.26)

Note that the three middle terms on the RHS of (6.24) correspond to a memoryless

term, a term with memory, and a correction term, respectively. We will show in Section 6.2

that the second term on the RHS of (6.24) can be bounded as follows:

I (Xk;Yk|Ek = 1, Gk = 0)

= hλ

(

Ĥke
iΘk

∣
∣
∣Ek = 1, Gk = 0

)

− h(Hk

∣
∣Xk, Ek = 1, Gk = 0)− log 2

+ nRE
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

+ µ
(

log η − E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

− E
[

log |Xk|
2
∣
∣Ek = 1, Gk = 0

]
)

+ logΓ

(

µ,
ν

η

)

+ εν,k +
1

η
E
[

‖H2
k‖|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+
ν

η
, (6.27)

the third term on the right hand side of (6.24) as

I
(

Hk−1
1 ;Yk

∣
∣Xk, Ek = 1, Gk = 0

)

≤ h(Hk

∣
∣Xk, Ek = 1, Gk = 0)− h

(

Hk

∣
∣Hk−1

1 , Gk = 0
)

, (6.28)
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and the fourth term on the right hand side of (6.24) as

I
(

Yk−1
1 ;Yk

∣
∣Gk = 0

)

≥ βkhλ
(

Ĥke
iΘk

∣
∣Ek = 1, Gk = 0

)

− hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Gk = 0

)

+ (1− βk)hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

k−κ
, Ek = 0, Gk = 0

)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin). (6.29)

Plugging (6.27), (6.28), and (6.29) back to (6.24), we get

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

≤ Hb(βk) + βkhλ
(

Ĥke
iΘk |Ek = 1, Gk = 0

)

− βkh(Hk|Xk, Ek = 1, Gk = 0)− βk log 2

+ βknRE
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

+ βkµ
(

log η − E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

− E
[

log |Xk|
2|Ek = 1, Gk = 0

]
)

+ βk logΓ

(

µ,
ν

η

)

+ βkεν,k + βk
1

η
E
[

‖H2
k‖|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+ βk
ν

η

+ βkh(Hk|Xk, Ek = 1, Gk = 0)− βkh
(

Hk

∣
∣Hk−1

1 , Gk = 0
)

− βkhλ
(

Ĥke
iΘk

∣
∣Ek = 1, Gk = 0

)

+ hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Gk = 0

)

− (1− βk)hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Ek = 0, Gk = 0

)

+ 3Hb(βk) + δ1(κ, ξmin) + δ2(κ, ξmin)

+ (1− βk)I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

. (6.30)

Note that the four underlining terms in (6.30) cancel each other, and that

βknRE
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

= nRE
[

log ‖Hk‖
2
∣
∣Gk = 0

]

− (1− βk)nRE
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

,

−µβkE
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

= −µE
[

log ‖Hk‖
2
∣
∣Gk = 0

]

+ µ(1− βk)E
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

.

Moreover,

E
[

log |Xk|
2|Ek = 1, Gk = 0

]

≥ log ξ2min,

and by (B.10) and (B.11)

βkεν,k = sup
γ≥ξmin

{

βkE
[

log(‖Hk‖
2γ2 + ν)

∣
∣Ek = 1, Gk = 0

]

− βkE
[

log(‖Hk‖
2γ2)

∣
∣Ek = 1, Gk = 0

]
}

(6.31)

≤ sup
γ≥ξmin

{

βkE
[

log(‖Hk‖
2γ2 + ν)

∣
∣Ek = 1, Gk = 0

]

− βkE
[

log(‖Hk‖
2γ2)

∣
∣Ek = 1, Gk = 0

]
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+ (1− βk)E
[

log(‖Hk‖
2γ2 + ν)

∣
∣Ek = 0, Gk = 0

]

− (1− βk)E
[

log(‖Hk‖
2γ2)

∣
∣Ek = 0, Gk = 0

]
}

= sup
γ≥ξmin

{

E
[

log(‖H0‖
2γ2 + ν)

∣
∣Gk = 0

]

− E
[

log(‖H0‖
2γ2)

∣
∣Gk = 0

]}

(6.32)

= εν (6.33)

where (6.32) follows because we add something positive (ν ≥ 0, chosen freely). Therefore,

(6.30) becomes

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

≤ Hb(βk)− βk log 2 + nRE
[

log ‖Hk‖
2
∣
∣Gk = 0

]

− (1− βk)nRE
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

+ βkµ log η − µE
[

log ‖Hk‖
2
∣
∣Gk = 0

]

+ µ(1− βk)E
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

− βkµ log ξ2min

+ βk logΓ

(

µ,
ν

η

)

+ εν + βk
1

η
E
[

‖H2
k‖|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+ βk
ν

η

− βkh
(

Hk

∣
∣Hk−1

1 , Gk = 0
)

+ hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Gk = 0

)

− (1− βk)hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Ek = 0, Gk = 0

)

+ 3Hb(βk) + δ1(κ, ξmin) + δ2(κ, ξmin)

+ (1− βk)I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

(6.34)

= 4Hb(βk) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+ hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Gk = 0

)

− βkh
(

Hk

∣
∣Hk−1

1 , Gk = 0
)

+ nRE
[

log ‖Hk‖
2
∣
∣Gk = 0

]

+ µ
(

βk log η − E
[

log ‖Hk‖
2
∣
∣Gk = 0

]

+ (1− βk)E
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

− βk log ξ
2
min

)

+ βk logΓ

(

µ,
ν

η

)

+
βk
η
E
[

‖Hk‖
2|Xk|

2|Ek = 1, Gk = 0
]

+ βk
ν

η
− βk log 2

+ (1− βk)

(

I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

− hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Ek = 0, Gk = 0

)

− nRE
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

)

. (6.35)

Here, in (6.35) we arithmetically rearrange the terms. We further bound the last term in

(6.35) as follows:

(1− βk)E
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

≤ (1− βk) log E
[

‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

(6.36)
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≤ (1− βk) log
E
[

‖Hk‖2
∣
∣Gk = 0

]

(1− βk)
(6.37)

= (1− βk) log E
[

‖H0‖
2
∣
∣G0 = 0

]

− (1− βk) log(1− βk) (6.38)

≤ (1− βk) log E
[

‖H0‖
2
∣
∣G0 = 0

]

− e−1 log e−1 (6.39)

= (1− βk) log E
[

‖H0‖
2
∣
∣G0 = 0

]

+
1

e
, (6.40)

where (6.36) follows from Jensen’s inequality; (6.37) follows because

E
[

‖Hk‖
2
∣
∣Gk = 0

]

= βkE
[

‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

+ (1− βk)E
[

‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

(6.41)

≥ (1− βk)E
[

‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

; (6.42)

(6.38) follows because {Hk} is a stationary process; and (6.39) follows because the function

x 0→ x log x has its minimum when x = e. Putting (6.40) back into (6.35) and using the

stationarity property of {Hk} again, we get

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

≤ 4Hb(βk) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− βkh
(

H0

∣
∣H−1

−k+1, G0 = 0
)

+ nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ µ
(

βk log η − E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ (1− βk) log E
[

‖H0‖
2
∣
∣G0 = 0

]

+
1

e
− βk log ξ

2
min

)

+ βk logΓ

(

µ,
ν

η

)

+
βk
η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+ βk
ν

η
− βk log 2

+ (1− βk)

(

I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

− hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Ek = 0, Gk = 0

)

− nRE
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

)

. (6.43)

Next note that

βk
η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 1, Gk = 0

]

=
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Gk = 0

]

−
1− βk

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 0, Gk = 0

]

(6.44)

≤
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Gk = 0

]

. (6.45)
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Moreover in Appendix A, we further bound the last part of (6.43) as follows:

I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

− hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Ek = 0, Gk = 0

)

−nRE
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

≤ CIID(ξmin

∣
∣Gk = 0)− (nR − 1)h(H0

∣
∣H−1

−∞, G0 = 0)

− hλ
(

Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0
)

− h(H0

∣
∣H−1

−k+1, G0 = 0)

+
nR(nR + 1)

e
+ n2

R log+
(

πe

nR

E
[

‖H0‖2|G0 = 0
]

1− βk

)

+ nR∆(nR, 1). (6.46)

where

log+(x) ! max{0, log(x)} (6.47)

and ∆(nR, 1) is some finite number. Therefore, we get

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

≤ 4Hb(βk) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− βkh
(

H0

∣
∣H−1

−k+1, G0 = 0
)

+ nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ µ
(

βk log η − E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ (1− βk) log E
[

‖H0‖
2
∣
∣G0 = 0

]

+
1

e
− βk log ξ

2
min

)

+ βk logΓ

(

µ,
ν

η

)

+
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Gk = 0

]

+ βk
ν

η
− βk log 2

+ (1− βk)

(

CIID(ξmin

∣
∣Gk = 0)− (nR − 1)h(H0

∣
∣H−1

−∞, G0 = 0)

− hλ
(

Ĥ0e
iΘ0

∣
∣H−1

−∞, Gk = 0
)

− h(H0

∣
∣H−1

−k+1, G0 = 0)

+
nR(nR + 1)

e
+ n2

R log+
(

πe

nR

E
[

‖H0‖2|G0 = 0
]

1− βk

)

+ nR∆(nR, 1)

)

(6.48)

≤ 4Hb(βk) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

+ nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ µ
(

βk log η − E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ (1− βk) log E
[

‖H0‖
2
∣
∣G0 = 0

]

+
1

e
− βk log ξ

2
min

)

+ βk logΓ

(

µ,
ν

η

)

+
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Gk = 0

]

+ βk
ν

η
− βk log 2

+ (1− βk)

(

CIID(ξmin

∣
∣Gk = 0)− (nR − 1)h(H0

∣
∣H−1

−∞, G0 = 0)
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− hλ
(

Ĥ0e
iΘ0

∣
∣H−1

−∞, Gk = 0
)

+
nR(nR + 1)

e
+ n2

R log+
(

πe

nR

E
[

‖H0‖2|G0 = 0
]

1− βk

)

+ nR∆(nR, 1)

)

,

(6.49)

where (6.49) follows because two underlining terms in (6.48) combine to

h
(

H0

∣
∣H−1

−k+1, G0 = 0).

Defining

β !
1

n− κ

n
∑

k=κ+1

βk, (6.50)

using Jensen’s inequality for the binary entropy function, adding the sum from (6.18) in

front of (6.49), we get

1

n− κ

n
∑

k=κ+1

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

≤ 4Hb(β) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν + hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

+ nRE
[

log ‖H0‖
2, G0 = 0

]

+ µ
(

β log η − E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ (1− β) log E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+
1

e
− β log ξ2min

)

+ β logΓ

(

µ,
ν

η

)

+
1

η

1

n− κ

n
∑

k=κ+1

E
[

‖Hk‖
2|Xk|

2
∣
∣Gk = 0

]

+ β
ν

η
− β log 2

+ (1− β)
(

CIID(ξmin

∣
∣G0 = 0

)

− (nR − 1)h
(

H0

∣
∣H−1

−∞, G0 = 0
)

− hλ(Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0) +
nR(nR + 1)

e
+ nR∆(nR, 1)

)

+
1

n− κ

n
∑

k=κ+1

(1− βk)n
2
R log+

(

πe

nR

E
[

‖H0‖2
∣
∣G0 = 0

]

1− βk

)

. (6.51)

Because for βk ≥ 1 −
πeE[‖H0‖2|G0=0]

nR
, (1 − βk) log

+

(

πe
nR

E

[

‖H0‖2
∣
∣G0=0

]

1−βk

)

is concave in βk,

the last term in (6.51) can be further bounded as

1

n− κ

n
∑

k=κ+1

(1− βk)n
2
R log+

(

πe

nR

E
[

‖H0‖2
∣
∣G0 = 0

]

1− βk

)

≤ (1− β)n2
R log+

(

πe

nR

E
[

‖H0‖2
∣
∣G0 = 0

]

1− β

)

. (6.52)

Moreover, in order to get rid of the dependence on the input, {Xk} (note that β depends
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on {Xk}), we add a supremum over β:

1

n− κ

n
∑

k=κ+1

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

≤ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

− log 2 + nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ sup
0≤β≤1

{

4Hb(β) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+ µ
(

β log η − E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ (1− β) log E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ e−1 − β log ξ2min

)

+ β logΓ

(

µ,
ν

η

)

+
1

η

1

n− κ

n
∑

k=κ+1

E
[

‖Hk‖
2|Xk|

2
∣
∣Gk = 0

]

+ β
ν

η

+ (1− β)
(

CIID(ξmin

∣
∣G0 = 0)− (nR − 1)h

(

H0

∣
∣H−1

−∞, Gk = 0
)

+ log 2

− hλ(Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0) +
nR(nR + 1)

e
+ nR∆(nR, 1)

)

+ (1− β)n2
R log+

(

πe

nR

E[‖H0‖2
∣
∣G0 = 0]

1− β

)}

. (6.53)

Because
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Gk = 0

]

≤
1

η
E
[

t · |Xk|
2
∣
∣Gk = 0

]

≤
t

η
Ek (6.54)

and
t

η

1

n− κ

n
∑

k=κ+1

Ek ≤
t

η

n

n− κ

1

n

n
∑

k=1

Ek

︸ ︷︷ ︸

≤ E

≤
t

η

n

n− κ
E , (6.55)

(6.53) becomes

1

n− κ

n
∑

k=κ+1

I
(

M ;Yk

∣
∣Yk−1

1 , Gk = 0
)

≤ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

− log 2 + nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ sup
0≤β≤1

{

4Hb(β) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+ µ
(

β log η − E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ (1− β) log E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ e−1 − β log ξ2min

)

+ β logΓ

(

µ,
ν

η

)

+
t

η

n

n− κ
E + β

ν

η

+ (1− β)
(

CIID(ξmin

∣
∣G0 = 0)− (nR − 1)h

(

H0

∣
∣H−1

−∞, Gk = 0
)

+ log 2

− hλ(Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0) +
nR(nR + 1)

e
+ nR∆(nR, 1)

)
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+ (1− β)n2
R log+

(

πe

nR

E
[

‖H0‖2
∣
∣G0 = 0

]

1− β

)}

. (6.56)

Let n → ∞ and choose

µ =
ν

log E
(6.57)

η =
E log E

ν
(6.58)

t = log E . (6.59)

Then the bound on the capacity with feedback in (6.18) becomes

RFB(E) ≤ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

− log 2 + nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ sup
0≤β≤1

{

4Hb(β) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+
ν

log E

(

β log
E log E

ν
− E

[

log ‖H0‖
2
∣
∣G0 = 0

]

+ (1− β) log E
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ e−1 − β log ξ2min

)

+ β logΓ

(
ν

log E
,

ν2

E log E

)

+ ν +
βν2

E log E

+ (1− β)

(

CIID(ξmin

∣
∣G0 = 0)− (nR − 1)h

(

H0

∣
∣H−1

−∞, G0 = 0
)

− hλ(Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0) +
nR(nR + 1)

e

+ nR∆(nR, 1)

)

+ (1− β)n2
R log+

(

πe

nR

E
[

‖H0‖2
∣
∣G0 = 0

]

1− β

)}

+Hb

(

E
[

‖H0‖2
]

log E

)

+
E
[

‖H0‖2
]

log E
C̃IID(E log E)

+
E
[

‖H0‖2
]

log E
I
(

H0;H
−1
−∞

∣
∣G0 = 1

)

(6.60)

= hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

− log 2 + nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ sup
0≤β≤1

{

4Hb(β) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+
νβ

log E
(log E + log log E − log ν)−

νE
[

log ‖H0‖2
∣
∣G0 = 0

]

log E

+
(1− β)ν log E

[

log ‖H0‖2
∣
∣G0 = 0

]

log E
+

ν

e log E
−

νβ log ξ2min

log E
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+ β logΓ

(
ν

log E
,

ν2

E log E

)

+ ν +
βν2

E log E

+ (1− β)
(

CIID(ξmin

∣
∣G0 = 0)− (nR − 1)h

(

H0

∣
∣H−1

−∞, G0 = 0
)

+ log 2

− hλ(Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0) +
nR(nR + 1)

e

+ nR∆(nR, 1)
)

+ (1− β)n2
R log+

(

πe

nR

E
[

‖H0‖2
∣
∣G0 = 0

]

1− β

)}

+Hb

(

E
[

‖H0‖2
]

log E

)

+
E
[

‖H0‖2
]

log E
C̃IID(E log E)

+
E
[

‖H0‖2
]

log E
I
(

H0;H
−1
−∞

∣
∣G0 = 1

)

. (6.61)

Note that this bound holds for any system, hence also for a capacity-achieving system.

Therefore we can use (6.61) to upper-bound CFB(E):

χFB({Hk}) = lim
E↑∞

{CFB(E)− log log E} (6.62)

≤ lim
E↑∞

{

hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

− log 2 + nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ sup
0≤β≤1

{

4Hb(β) + δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+
νβ

log E
(log E + log log E − log ν)−

νE
[

log ‖H0‖2
∣
∣G0 = 0

]

log E

+
(1− β)ν log E

[

log ‖H0‖2
∣
∣G0 = 0

]

log E
+

ν

e log E
−

νβ log ξ2min

log E

+ β logΓ

(
ν

log E
,

ν2

E log E

)

+ ν +
βν2

E log E

+ (1− β)
(

CIID(ξmin

∣
∣G0 = 0)− (nR − 1)h

(

H0

∣
∣H−1

−∞, G0 = 0
)

− hλ(Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0) +
nR(nR + 1)

e

+ nR∆(nR, 1) + log 2
)

+ (1− β)n2
R log+

(

πe

nR

E
[

‖H0‖2
∣
∣G0 = 0

]

1− β

)}

+Hb

(

E
[

‖H0‖2
]

log E

)

+
E
[

‖H0‖2
]

log E
C̃IID(E log E)

+
E
[

‖H0‖2
]

log E
I
(

H0;H
−1
−∞

∣
∣G0 = 1

)

− log log E

}

(6.63)
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≤ lim
E↑∞

{

hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ, G0 = 0

)

− h
(

H0

∣
∣H−1

−∞, G0 = 0
)

− log 2 + nRE
[

log ‖H0‖
2
∣
∣G0 = 0

]

+ δ1(κ, ξmin) + δ2(κ, ξmin) + εν

+
ν

log E
(log E + log log E − log ν)−

νE
[

log ‖H0‖2
∣
∣G0 = 0

]

log E

+
ν

e log E
−

ν log ξ2min

log E
+ logΓ

(
ν

log E
,

ν2

E log E

)

+ ν +
ν2

E log E

+Hb

(

E
[

‖H0‖2
]

log E

)

+
E
[

‖H0‖2
]

log E
C̃IID(E log E)

+
E
[

‖H0‖2
]

log E
I
(

H0;H
−1
−∞

∣
∣G0 = 1

)

− log log E

}

(6.64)

Here, in (6.64), we try to find the value of β that achieves the supremum: note that we

found that first, Hb(β) and those terms with 1−β are constant with respect to E ; second,

the remaining terms do not grow with E except logΓ
(

ν
log E ,

ν2

E log E

)

since

lim
E→∞

{

logΓ

(
ν

log E
,

ν2

E log E

)

− log log E
}

= log(1− e−ν)− log ν, (6.65)

which means logΓ(·) grows as fast as log log E . So logΓ(·) is the only term inside the sup

that grows with E . Therefore, the supremum is achieved if β = 1. Actually, this is related

to the property called “escaping to infinity” (see [10, Corollary 2.8]).

Next, note that

lim
E→∞

E
[

‖H0‖2
]

log E
C̃IID(E log E) = lim

E→∞

E
[

‖H0‖2
]

log E

(

log log(E log E) + const
)

(6.66)

= lim
E→∞

E
[

‖H0‖2
]

log E

(

log(log E + log log E) + const
)

= 0,

and

I
(

H0;H
−1
−∞

∣
∣G0 = 1

)

= h
(

H0

∣
∣G0 = 1

)

− h
(

H0

∣
∣H−1

−∞, G0 = 1
)

< ∞. (6.67)

Moreover, we drop G0 = 0 because as E → ∞ and t = log E , the conditioning on G0 = 0

is implicitly satisfied. As the result, (6.64) becomes

χFB({Hk}) = hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ

)

− h
(

H0

∣
∣H−1

−∞

)

− log 2 + nRE
[

log ‖H0‖
2
]

+ δ1(κ, ξmin) + δ2(κ, ξmin) + εν + ν + log(1− e−ν)− log ν + ν (6.68)

In a next step, we let ν go to zero. Note that εν → 0 as ν → 0 as can be seen from the

definition of εν in Appendix B. Note further that

lim
ν→0

{

log(1− e−ν)− log ν
}

= lim
ν→0

{

log
(1− e−ν)

ν

}

= log lim
ν→0

{
(1− e−ν)

ν

}

= 0 (6.69)
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Therefore, we get

χFB({Hk}) ≤ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−κ

)

− h
(

H0

∣
∣H−1

−∞

)

− log 2 + nRE
[

log ‖H0‖
2
]

+ δ1(κ, ξmin) + δ2(κ, ξmin). (6.70)

Next, we let ξmin tend to infinity, then it is shown in Appendix C that δ1(κ, ξmin) → 0 and

δ2(κ, ξmin) → 0. Finally, we let κ tend to infinity and the fading number without feedback

becomes

χFB({Hk}) ≤ hλ
(

Ĥ0e
iΘ0

∣
∣{Ĥle

iΘl}−1
l=−∞

)

− h
(

H0

∣
∣H−1

−∞

)

− log 2 + nRE
[

log ‖H0‖
2
]

. (6.71)

6.2 Detailed Derivations for Three Terms in (6.24)

6.2.1 First Term

The second term on the RHS of (6.24) is bounded as follows:

I(Xk;Yk

∣
∣Ek = 1, Gk = 0)

≤ I
(

Xk;Yk,HkXk

∣
∣Ek = 1, Gk = 0

)

(6.72)

= I
(

Xk;HkXk

∣
∣Ek = 1, Gk = 0)

+ I
(

Xk;HkXk + Zk

∣
∣HkXk, Ek = 1, Gk = 0

)

︸ ︷︷ ︸

= 0 see Appendix D

(6.73)

= I

(

Xk; ‖HkXk‖,
HkXk

‖HkXk‖

∣
∣
∣
∣
Ek = 1, Gk = 0

)

(6.74)

= I

(

Xk; ‖Hk‖|Xk|,
HkXk

‖Hk‖|Xk|

∣
∣
∣
∣
Ek = 1, Gk = 0

)

(6.75)

= I
(

Xk; ‖Hk‖|Xk|, Ĥke
iΦk

∣
∣
∣Ek = 1, Gk = 0

)

(6.76)

= I
(

Xk; ‖Hk‖|Xk|, Ĥke
iΦk , eiΘk

∣
∣
∣Ek = 1, Gk = 0

)

(6.77)

= I
(

Xk; ‖Hk‖|Xk|e
iΘk , Ĥke

i(Φk+Θk), eiΘk

∣
∣
∣Ek = 1, Gk = 0

)

(6.78)

= I
(

Xk; ‖Hk‖|Xk|e
iΘk , Ĥke

i(Φk+Θk)
∣
∣
∣Ek = 1, Gk = 0

)

(6.79)

= I
(

Xk; ‖Hk‖|Xk|e
iΘk

∣
∣Ek = 1, Gk = 0

)

+ I
(

Xk; Ĥke
i(Φk+Θk)

∣
∣
∣‖Hk‖|Xk|, e

iΘk , Ek = 1, Gk = 0
)

(6.80)

In (6.76), Ĥk ! Hk

‖Hk‖
, and Φk denotes the phase of Xk; in (6.77), {Θk} is IID ∼ U((−π,π])

and independent of {Hk} and {Xk}; (6.79) follows because we can get back Θk from

‖Hk‖|Xk|eiΘk ; (6.80) follows because of the chain rule.

We continue to bound (6.80) using a duality-based bound, for detail we refer to Ap-
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pendix B:

I
(

Xk; ‖Hk‖|Xk|e
iΘk

∣
∣Ek = 1, Gk = 0

)

+ I
(

Xk; Ĥke
i(Φk+Θk)

∣
∣
∣‖Hk‖|Xk|, e

iΘk , Ek = 1, Gk = 0
)

≤ − log 2− h(Hk

∣
∣Xk, Ek = 1, Gk = 0) + (2nR − 1)E[log ‖Hk‖|Ek = 1, Gk = 0]

− E[log ‖Hk‖|Ek = 1, Gk = 0] + µ log η + logΓ

(

µ,
ν

η

)

+ (1− µ)E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

− µE
[

log |Xk|
2
∣
∣Ek = 1, Gk = 0

]

+ εν,k

+
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+
ν

η
+ hλ

(

Ĥke
iΘk

∣
∣
∣Ek = 1, Gk = 0

)

(6.81)

Arithmetically rearranging the terms in (6.81), we have the second term on the RHS of

(6.24) be bounded as follows:

I(Xk;Yk

∣
∣Ek = 1, Gk = 0)

≤ hλ

(

Ĥke
iΘk

∣
∣
∣Ek = 1, Gk = 0

)

− h(Hk|Xk, Ek = 1, Gk = 0)− log 2

+ nRE
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

+ µ
(

log η − E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

− E
[

log |Xk|
2|Ek = 1, Gk = 0

])

+ logΓ

(

µ,
ν

η

)

+ εν,k +
1

η
E
[

‖H2
k‖|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+
ν

η
. (6.82)

6.2.2 Second Term

The third term on the RHS of (6.24) is bounded as follows:

I
(

Hk−1
1 ;Yk

∣
∣Xk, Ek = 1, Gk = 0

)

≤ I
(

Hk−1
1 ;Yk,Hk

∣
∣Xk, Ek = 1, Gk = 0

)

(6.83)

= I
(

Hk−1
1 ;Hk

∣
∣Xk, Ek = 1, Gk = 0

)

+ I
(

Hk−1
1 ;Yk

∣
∣Hk, Xk, Ek = 1, Gk = 0

)

︸ ︷︷ ︸

= 0 see Appendix D

(6.84)

= h(Hk|Xk, Ek = 1, Gk = 0)− h
(

Hk

∣
∣Hk−1

1 , Xk, Ek = 1, Gk = 0
)

(6.85)

= h(Hk|Xk, Ek = 1, Gk = 0)− h
(

Hk

∣
∣Hk−1

1 , Gk = 0
)

, (6.86)

where the last step follows because conditional on Gk = 0 and all the past values Hk−1
1 of

{Hk}, Hk is independent of Xk and Ek.

6.2.3 Third Term

Recalling the definition of Ek in (6.25), we lower-bound the fourth term on the RHS of

(6.24) as follows:

I
(

Yk−1
1 ;Yk

∣
∣Gk = 0

)

≥ I
(

Yk−1
k−κ;Yk

∣
∣Gk = 0

)

(6.87)
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= I
(

Yk;Y
k−1
k−κ, Ek

∣
∣Gk = 0

)

− I
(

Yk;Ek

∣
∣Yk−1

k−κ, Gk = 0
)

(6.88)

= I (Yk;Ek|Gk = 0)
︸ ︷︷ ︸

≥ 0

+ I
(

Yk;Y
k−1
k−κ

∣
∣Ek, Gk = 0

)

− H(Ek|Y
k−1
k−κ, Gk = 0)

︸ ︷︷ ︸

≤Hb(Ek)

+H(Ek|Y
k
k−κ, Gk = 0)

︸ ︷︷ ︸

≥ 0

(6.89)

≥ βkI
(

Yk;Y
k−1
k−κ

∣
∣Ek = 1, Gk = 0

)

+ (1− βk) I
(

Yk;Y
k−1
k−κ

∣
∣Ek = 0, Gk = 0

)

︸ ︷︷ ︸

≥ 0

−Hb(βk) (6.90)

≥ βkI
(

Yk;Y
k−1
k−κ

∣
∣Ek = 1, Gk = 0

)

−Hb(βk) (6.91)

= βkI
(

Yk, e
iΘk ;Yk−1

k−κ,
{

eiΘl
}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)

−Hb(βk) (6.92)

= βkI
(

HkXke
iΘk + Zk, e

iΘk ;
{

HlXle
iΘl + Zl

}k−1

l=k−κ
,
{

eiΘl
}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)

−Hb(βk) (6.93)

≥ βkI
(

Hke
iΘkXk + Zk;

{

HlXle
iΘl + Zl

}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)

−Hb(βk) (6.94)

= βkI
(

Hk|Xk|e
iΘk + Zk;

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)

−Hb(βk) (6.95)

= βkI
(

Hk|Xk|e
iΘk + Zk;

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ
,Zk−1

k−κ

∣
∣
∣Ek = 1, Gk = 0

)

−Hb(βk)

− βkI
(

Hk|Xk|e
iΘk + Zk;Z

k−1
k−κ

∣
∣
∣

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ
, Ek = 1, Gk = 0

)

. (6.96)

Here, (6.90) follows because the first term and last term in (6.89) are equal or greater than

zero and Hb(Ek|Y
k−1
k−κ, Gk = 0) ≤ Hb(Ek) = Hb(βk); in (6.92), we add {Θk}, which is IID

∼ U((−π,π]) and independent of Yk. Because {Θk} is uniformly distributed, it destroys

the phase of {Hk} and let {Hke
iΘk} becomes circularly symmetric. (6.94) follows because

we drop eΘk on both side of mutual information.

By Appendix C.1, we have

βkI
(

Hk|Xk|e
iΘk + Zk;Z

k−1
k−κ

∣
∣
∣

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ
, Ek = 1, Gk = 0

)

≤ δ1(κ, ξmin) +Hb(βk), (6.97)

so we further bound (6.96) as follows:

I
(

Yk−1
1 ;Yk

∣
∣
∣Gk = 0

)

≥ βkI
(

Hk|Xk|e
iΘk + Zk;

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ
,Zk−1

k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− 2Hb(βk)− δ1(κ, ξmin) (6.98)

= βkI
(

Hk|Xk|e
iΘk + Zk;

{

Hl|Xl|e
iΘl
}k−1

l=k−κ
,Zk−1

k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− 2Hb(βk)− δ1(κ, ξmin) (6.99)

≥ βkI
(

Hk|Xk|e
iΘk + Zk;

{

Hl|Xl|e
iΘl
}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− 2Hb(βk)− δ1(κ, ξmin) (6.100)

= βkI
(

Hk|Xk|e
iΘk + Zk,Zk;

{

Hl|Xl|e
iΘl
}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)
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− βkI
(

Zk;
{

Hl|Xl|e
iΘl
}k−1

l=k−κ

∣
∣
∣Hk|Xk|e

iΘk + Zk, Ek = 1, Gk = 0
)

− 2Hb(βk)− δ1(κ, ξmin). (6.101)

Here, in (6.100), we drop {Zk−1
k−κ}, so the mutual information becomes smaller.

By Appendix C.2, we have

βkI
(
{

Hl|Xl|e
iΘl
}k−1

k−κ
;Zk

∣
∣
∣Hk|Xk|e

iΘk + Zk, Ek = 1, Gk = 0
)

≤ δ2(κ, ξmin) +Hb(βk), (6.102)

and we further bound (6.101) as follows:

I
(

Yk−1
1 ;Yk

∣
∣
∣Gk = 0

)

≥ βkI
(

Hk|Xk|e
iΘk + Zk,Zk;

{

Hl|Xl|e
iΘl
}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.103)

≥ βkI
(

Hk|Xk|e
iΘk ;

{

Hl|Xl|e
iΘl
}k−1

l=k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.104)

= βkI

(

‖Hk‖|Xk|, Ĥke
iΘk ; {‖Hl‖|Xl|}

k−1
l=k−κ ,

{

Ĥle
iΘl

}k−1

l=k−κ

∣
∣
∣
∣
Ek = 1, Gk = 0

)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.105)

≥ βkI

(

Ĥke
iΘk ;

{

Ĥle
iΘl

}k−1

l=k−κ

∣
∣
∣
∣
Ek = 1, Gk = 0

)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.106)
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)
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∣
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)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.107)
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)
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∣
∣
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{

Ĥle
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}k−1

l=k−κ
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)

− (1− βk)hλ

(
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∣
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{

Ĥle
iΘl
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)
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)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.108)
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∣Ek = 1, Gk = 0

)
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∣
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− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.109)

≥ βkhλ

(

Ĥke
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∣
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)

− hλ

(

Ĥke
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∣
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Ĥle
iΘl
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+ (1− βk)hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
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)

− 3Hb(βk)− δ1(κ, ξmin)− δ2(κ, ξmin) (6.110)
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6.2 Detailed Derivations for Three Terms in (6.24) Chapter 6

Here, (6.105) follows from taking the magnitude from Hk|Xk|eiΘk ; (6.106) follows be-

cause we drop some terms in mutual information; (6.107) follows from the definition of

differential entropy for unit vectors (see Section 3.1.2); (6.110) follows because dropping

conditioning increases entropy.
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Chapter 7

Discussion and Conclusion

In this thesis, we have shown that the asymptotic capacity of general regular SIMO fading

channels with memory remains unchanged even if one allows causal noiseless feedback.

This once again shows the extremely unattractive behavior of regular fading channels at

high SNR: besides the double-logarithmic growth [8] and the very poor performance in a

multiple-user setup (where the maximum sum-rate only can be achieved if all users apart

from one always remain switched off [16]), we now see that any type of feedback does not

increase capacity in spite of memory in the channel.

Possible future works for the general regular fading channels with memory and feedback

might include the following:

• Considering the case with multiple-input single-output, i.e., having several mobile

phones (each having one antenna) communicating with one base station (having only

one antenna). The difficulties for this case lies in the fact that now we not only need

to optimize the phase and magnitude of the inputs, but also the direction of them.

• Considering the case with multiple-input multiple-output.

• The situation where both transmitter and receiver have access to causal partial side-

information Sk about the fading, where by partial we mean that

lim
n→∞

1

n
I
(

Sn
1 ;H

n
1

)

< ∞. (7.1)
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Appendix A

Upper Bound (6.46)

In this appendix, we derive the following upper bound:

I
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Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

− hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Ek = 0, Gk = 0

)

−nRE
[
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2
∣
∣Ek = 0, Gk = 0

]

≤ CIID(ξmin

∣
∣Gk = 0)− (nR − 1)h(H0

∣
∣H−1

−∞, G0 = 0)

− hλ
(

Ĥ0e
iΘ0

∣
∣H−1

−∞, G0 = 0
)

− h(H0

∣
∣H−1

−k+1, G0 = 0)

+
nR(nR + 1)

e
+ n2

R log+
(

πe

nR

E
[

‖H0‖2|G0 = 0
]

1− βk

)

+ nR∆(nR, 1). (A.1)

We bound the first term as follows:

I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

= I
(

Xk;Yk

∣
∣Ek = 0, Gk = 0

)

+ I
(

Hk−1
1 ;Yk

∣
∣Xk, Ek = 0, Gk = 0

)

(A.2)

≤ I
(

Xk;Yk

∣
∣Ek = 0, Gk = 0

)

+ I
(

Hk−1
1 ;Yk,Hk

∣
∣Xk, Ek = 0, Gk = 0

)

(A.3)

= I
(

Xk;Yk

∣
∣Ek = 0, Gk = 0

)

+ I
(

Hk−1
1 ;Hk

∣
∣Xk, Ek = 0, Gk = 0

)

+ I
(

Hk−1
1 ;Yk

∣
∣Hk, Xk, Ek = 0, Gk = 0

)

︸ ︷︷ ︸

= 0 see Appendix D

(A.4)

= I
(

Xk;Yk

∣
∣Ek = 0, Gk = 0

)

+ I
(

Hk−1
1 ;Hk

∣
∣Xk, Ek = 0, Gk = 0

)

(A.5)

= I
(

Xk;Yk

∣
∣Ek = 0, Gk = 0

)

+ h
(

Hk

∣
∣Xk, Ek = 0, Gk = 0

)

− h
(

Hk

∣
∣Hk−1

1 , Xk, Ek = 0, Gk = 0
)

(A.6)

≤ CIID(ξmin

∣
∣Gk = 0) + h

(

Hk

∣
∣Xk, Ek = 0, Gk = 0

)

− h
(

Hk

∣
∣Hk−1

1 , Gk = 0
)

, (A.7)

where in (A.7), CIID(·) denotes the capacity without feedback or memory for a given power.

Because CIID(·) is nondecreasing, and under the condition that Ek = 0, i.e., |Xk| ≤ ξmin,

CIID(ξmin

∣
∣Gk = 0) is the upper bound. Therefore, we get

I
(

Xk,H
k−1
1 ;Yk

∣
∣Ek = 0, Gk = 0

)

− hλ

(

Ĥke
iΘk

∣
∣
∣
∣

{

Ĥle
iΘl

}k−1

l=k−κ
, Ek = 0, Gk = 0

)
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−nRE
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

≤ CIID(ξmin
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∣Gk = 0) + h
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)
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∣
∣
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∣
∣
∣
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2
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]

− h
(
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1 , Gk = 0
)

. (A.10)

Here, (A.9) follows from conditioning that reduces entropy; and (A.10) follows because

conditional on Hk−1
1 , Hk is independent of

{

Ĥle
iΘl

}k−1

l=k−κ
and Ek.

Next we will bound the term E
[

log ‖Hk‖2
∣
∣Ek = 0, Gk = 0

]

. We first have the following

inequality:

E
[

log ‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

≥ −
1

ξ
h−
(

Hk

∣
∣Ek = 0, Gk = 0

)

−∆(nR, ξ) (A.11)

by Lemma 3.2 where h−(·), ξ, and ∆(nR, ξ) are defined in Section 3.1. Because

h
(
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∣Ek = 0, Gk = 0

)

= h+
(

Hk

∣
∣Ek = 0, Gk = 0

)

− h−
(

Hk

∣
∣Ek = 0, Gk = 0

)

, (A.12)

where both h+(·) and h−(·) are nonnegative (see Section 3.1.1), we further bound the first

term in (A.11) as follows:

−
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ξ
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=
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ξ
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−
1

ξ
h+
(

Hk

∣
∣Ek = 0, Gk = 0

)

(A.13)

≥
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≥
1

ξ
h
(
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∣
∣Ek = 0, Gk = 0

)

−
1

ξ
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e
−
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ξ
log+

(

πe
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E
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1− βk

)

. (A.15)

Here, (A.14) follows from Lemma A.12 in [10, Appendix A.4.2]; and (A.15) follows because

E
[

‖Hk‖
2
∣
∣Ek = 0, Gk = 0

]

=
1

1− βk
(E
[

‖Hk‖
2
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− βkE
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≤
1
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2
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]
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Choosing ξ = 1, we then get from (A.15) and (A.11)

E
[
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2
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]
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∣
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)

−∆(nR, 1)(A.18)

We put this back into (A.10), and get
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≤ CIID(ξmin

∣
∣G0 = 0)− (nR − 1)h(Hk

∣
∣Ek = 0, Gk = 0)− hλ

(
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R log+
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E
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where (A.20) follows because we shift the time index in hλ(·) by k using the stationarity

of {Hk}, and add more terms to it; we also shift Gk to G0 in CIID(·) since CIID(·) is IID.

(A.21) follows because {Hk} is a stationary process, h(Hk|H
k−1
1 ) is nonincreasing in k,

and therefore, we have

h(Hk|Ek = 0, Gk = 0) ≥ h(Hk|H
k−1
1 , Ek = 0, Gk = 0) (A.22)

= h(Hk|H
k−1
1 , Gk = 0) (A.23)

≥ h(Hk|H
k−1
−∞, Gk = 0) (A.24)

= h(H0|H
−1
−∞, G0 = 0). (A.25)
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Appendix B

Upper Bound (6.81)

In this appendix, we derive the following upper bound:
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, (B.2)

using a similar approach as in [9, Appendix D].

First, we apply Lemma 11 in [9] to the first term in (B.1), i.e., we choose S = Xk and

T = ‖Hk‖|Xk|eiΘk . Note that we need to condition everything on the events Ek = 1 and

Gk = 0.
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where µ, η > 0, and ν ≥ 0 can be chosen freely. Note that from a conditional version of

Lemma 2 in [9] with m = 1 follows that
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where we have used that Θk is independent of all other random quantities and uniformly

distributed on the unit circle. Taking the expectation over Xk conditional on Ek = 1, Gk =

0 and noting that by the law of total expectation

EXk
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where (B.8) follows from the scaling property of entropy with a real argument.

We choose 0 < µ < 1 (recall that µ is a free parameter!) such that 1 − µ > 0. Then
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Note that in (B.14) we use our knowledge Ek = 1, i.e., |Xk| ≥ ξmin. Plugging (B.9) and

(B.16) into (B.3) yields

I
(

Xk; ‖Hk‖|Xk|e
iΘk

∣
∣Ek = 1, Gk = 0

)

≤ − log 2− h(‖Hk‖
∣
∣Xk, Ek = 1, Gk = 0)− E

[

log |Xk|
2
∣
∣Ek = 1, Gk = 0

]

− E
[

log ‖Hk‖
∣
∣Ek = 1, Gk = 0

]

+ µ log η + logΓ

(

µ,
ν

η

)

+ (1− µ)E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

+ (1− µ)E
[

log |Xk|
2
∣
∣Ek = 1, Gk = 0

]

+ εν,k

+
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+
ν

η
(B.17)

= − log 2− h(‖Hk‖
∣
∣Xk, Ek = 1, Gk = 0)

− E
[

log ‖Hk‖
∣
∣Ek = 1, Gk = 0

]

+ µ log η + logΓ

(

µ,
ν

η

)

+ (1− µ)E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

− µE
[

log |Xk|
2
∣
∣Ek = 1, Gk = 0

]

+ εν,k

+
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+
ν

η
. (B.18)

Next, we continue with the second term in (B.1):

I
(

Xk; Ĥke
i(Φk+Θk)

∣
∣‖Hk‖|Xk|, e

iΘk , Ek = 1, Gk = 0
)

= hλ
(

Ĥke
i(Φk+Θk)

∣
∣‖Hk‖|Xk|, e

iΘk , Ek = 1, Gk = 0
)

− hλ
(

Ĥke
i(Φk+Θk)

∣
∣‖Hk‖|Xk|, e

iΘk , Xk, Ek = 1, Gk = 0
)

(B.19)

≤ hλ
(

Ĥke
i(Φk+Θk)

∣
∣Ek = 1, Gk = 0

)

− hλ
(

Ĥk

∣
∣‖Hk‖, Xk, Ek = 1, Gk = 0

)

(B.20)

= hλ
(

Ĥke
iΘk

∣
∣Ek = 1, Gk = 0

)

− hλ
(

Ĥk

∣
∣‖Hk‖, Xk, Ek = 1, Gk = 0

)

. (B.21)

Hence, using (B.21) and (B.18) we get the following upper bound for (B.1):

I
(

Xk; ‖Hk‖|Xk|e
iΘk

∣
∣Ek = 1, Gk = 0

)

+ I
(

Xk; Ĥke
i(Φk+Θk)

∣
∣‖Hk‖|Xk|, e

iΘk , Ek = 1, Gk = 0
)

≤ − log 2− h(‖Hk‖
∣
∣Xk, Ek = 1, Gk = 0)

− E
[

log ‖Hk‖
∣
∣Ek = 1, Gk = 0

]

+ µ log η + logΓ

(

µ,
ν

η

)

+ (1− µ)E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

− µE
[

log |Xk|
2
∣
∣Ek = 1, Gk = 0

]

+ εν,k

+
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 1, Gk = 0

]

+
ν

η

+ hλ
(

Ĥke
iΘk

∣
∣Ek = 1, Gk = 0

)

− hλ
(

Ĥk

∣
∣‖Hk‖, Xk, Ek = 1, Gk = 0

)

(B.22)

= − log 2− h(Hk

∣
∣Xk, Ek = 1, Gk = 0) + (2nR − 1)E

[

log ‖Hk‖
∣
∣Ek = 1, Gk = 0

]

− E
[

log ‖Hk‖
∣
∣Ek = 1, Gk = 0

]

+ µ log η + logΓ

(

µ,
ν

η

)
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+ (1− µ)E
[

log ‖Hk‖
2
∣
∣Ek = 1, Gk = 0

]

− µE
[

log |Xk|
2
∣
∣Ek = 1

]

+ εν,k

+
1

η
E
[

‖Hk‖
2|Xk|

2
∣
∣Ek = 1

]

+
ν

η
+ hλ

(

Ĥke
iΘk

∣
∣Ek = 1, Gk = 0

)

(B.23)

Here, (B.23) follows from a conditional version of Lemma 2 in [9] similar to (B.4)–(B.9)

which allows us to combine the second and the last term in (B.22).
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Appendix C

Upper Bounds (6.97) and (6.102)

In this appendix, we will find bounds (6.97) and (6.102).

C.1 δ1(κ, ξmin)

We first derive upper bound (6.97):

βkI
(

Hk|Xk|e
iΘk + Zk;Z

k−1
k−κ

∣
∣
∣

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ
, Ek = 1, Gk = 0

)

≤ δ1(κ, ξmin) +Hb(βk). (C.1)

We start as follows:

βkI
(

Hk|Xk|e
iΘk + Zk;Z

k−1
k−κ

∣
∣
∣

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ
, Ek = 1, Gk = 0

)

= βkh
(

Zk−1
k−κ

∣
∣
∣

{

Hl|Xl|e
iΘl + Zl

}k−1

l=k−κ
, Ek = 1, Gk = 0

)

− βkh
(

Zk−1
k−κ

∣
∣
∣

{

Hl|Xl|e
iΘl + Zl

}k

l=k−κ
, Ek = 1, Gk = 0

)

(C.2)

≤ βkh
(

Zk−1
k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− βkh
(

Zk−1
k−κ

∣
∣
∣

{

Hl|Xl|e
iΘl + Zl

}k

l=k−κ
, |Xl|

k
l=k−κ,Zk, Ek = 1, Gk = 0

)

(C.3)

= βkh
(

Zk−1
k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− βkh

(

Zk−1
k−κ

∣
∣
∣
∣
∣

{

Hle
iΘl +

Zl

|Xl|

}k−1

l=k−κ

,Hke
iΘk , |Xl|

k
l=k−κ, Ek = 1, Gk = 0

)

. (C.4)

Here (C.3) follows from conditioning that reduces entropy. The reason why we do not

drop Ek is because we have βk in front of the mutual information, if we drop Ek now, we

will not be able to get rid of βk later. In (C.4) we drop Zk since {Zk} are IID. In order to

get rid of the dependence on input, we take an infimum:

βkh
(

Zk−1
k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− βkh

(

Zk−1
k−κ

∣
∣
∣
∣
∣

{

Hle
iΘl +

Zl

|Xl|

}k−1

l=k−κ

,Hke
iΘk , |Xl|

k
l=k−κ, Ek = 1, Gk = 0

)
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≤ βkh
(

Zk−1
k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− βk inf
γl≥ξmin

h

(

Zk−1
k−κ

∣
∣
∣
∣
∣

{

Hle
iΘl +

Zl

γl

}k−1

l=k−κ

,Hke
iΘk , Ek = 1, Gk = 0

)

(C.5)

= βkh
(

Zk−1
k−κ

∣
∣
∣Ek = 1, Gk = 0

)

− βkh

(

Zk−1
k−κ

∣
∣
∣
∣
∣

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk , Ek = 1, Gk = 0

)

(C.6)

= βkI

(

Zk−1
k−κ;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk

∣
∣
∣
∣
∣
Ek = 1, Gk = 0

)

. (C.7)

Here (C.6) follows because the smaller γl is, the more Zk−1
k−κ can reflect in Hle

iΘl + Zl

γl
,

thus the smaller the entropy of Zk−1
k−κ would be. From this stage, the dependence on input

inside mutual information is gone (except Ek), but we still have βk in front of mutual

information, therefore we add 1− βk to get rid of βk as follows:

βkI

(

Zk−1
k−κ;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk

∣
∣
∣
∣
∣
Ek = 1, Gk = 0

)

≤ βkI

(
{

Zl

ξmin

}k−1

l=k−κ

;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk

∣
∣
∣
∣
∣
Ek = 1, Gk = 0

)

+ (1− βk)I

(
{

Zl

ξmin

}k−1

l=k−κ

;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk

∣
∣
∣
∣
∣
Ek = 0, Gk = 0

)

(C.8)

= I

(
{

Zl

ξmin

}k−1

l=k−κ

;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk

∣
∣
∣
∣
∣
Ek, Gk = 0

)

(C.9)

Now it is time to deal with Ek:

I

(
{

Zl

ξmin

}k−1

l=k−κ

;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk

∣
∣
∣
∣
∣
Ek, Gk = 0

)

≤ I

(
{

Zl

ξmin

}k−1

l=k−κ

;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk , Ek

∣
∣
∣
∣
∣
Gk = 0

)

(C.10)

= I

(
{

Zl

ξmin

}k−1

l=k−κ

;

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

∣
∣
∣
∣
∣
Gk = 0

)

+ I

(
{

Zl

ξmin

}k−1

l=k−κ

;Hke
iΘk

∣
∣
∣
∣
∣
Hl +

Zl

ξmin
, Gk = 0

)

+ I

(
{

Zl

ξmin

}k−1

l=k−κ

;Ek

∣
∣
∣
∣
∣

{

Hle
iΘl +

Zl

ξmin

}k−1

l=k−κ

,Hke
iΘk , Gk = 0

)

(C.11)

≤ h

(
{

Hle
iΘl +

Zl

ξmin

}−1

l=−κ

∣
∣
∣
∣
∣
G0 = 0

)

− h
(
{

Hle
iΘl
}−1

l=−κ

∣
∣
∣G0 = 0

)

43



Appendix C Upper Bounds (6.97) and (6.102)

+ h

(

H0e
iΘ0

∣
∣
∣
∣
∣

{

Hle
iΘl +

Zl

ξmin

}−1

l=−κ

, G0 = 0

)

− h
(

H0e
iΘ0

∣
∣
∣

{

Hle
iΘl
}−1

l=−κ
, G0 = 0

)

+Hb(βk) (C.12)

! δ1(κ, ξmin) +Hb(βk). (C.13)

Here, (C.12) follows because the last term in (C.11) is smaller than Hb(βk) and {Hk} and

{Zk} are stationary processes.

If ξmin goes to infinity, h

(
{

Hle
iΘl + Zl

ξmin

}−1

l=−κ

∣
∣
∣
∣
G0 = 0

)

converges to

h
(
{

Hle
iΘl

}−1

l=−κ

∣
∣
∣G0 = 0

)

and h
(

H0e
iΘ0

∣
∣
∣{Hle

iΘl + Zl

ξmin
}−1
l=−κ, G0 = 0

)

converges to

h
(

H0e
iΘ0

∣
∣
∣

{

Hle
iΘl

}−1

l=−κ
, G0 = 0

)

, therefore, δ1(κ, ξmin) → 0.

C.2 δ2(κ, ξmin)

Next, we derive upper bound (6.102):

βkI
(
{

Hl|Xl|e
iΘl
}k−1

l=k−κ
;Zk

∣
∣
∣Hk|Xk|e

iΘk + Zk, Ek = 1, Gk = 0
)

≤ δ2(κ, ξmin) +Hb(βk). (C.14)

The derivation is similar to (C.2)–(C.13).

βkI
(
{

Hl|Xl|e
iΘl
}k−1

l=k−κ
;Zk

∣
∣
∣Hk|Xk|e

iΘk + Zk, Ek = 1, Gk = 0
)

= βkh
(

Zk

∣
∣Hk|Xk|e

iΘk + Zk, Ek = 1, Gk = 0
)

− βkh
(

Zk

∣
∣
∣Hk|Xk|e

iΘk + Zk,
{

Hl|Xl|e
iΘl
}k−1

l=k−κ
, Ek = 1, Gk = 0

)

(C.15)

≤ βkh (Zk|Ek = 1, Gk = 0)

− βkh
(

Zk

∣
∣
∣Hk|Xk|e

iΘk + Zk,
{

Hl|Xl|e
iΘl
}k−1

l=k−κ
, |Xk

k−κ|, Ek = 1, Gk = 0
)

(C.16)

= βkh (Zk|Ek = 1, Gk = 0)

− βkh

(

Zk

∣
∣
∣
∣
Hke

iΘk +
Zk

|Xk|
,
{

Hle
iΘl
}k−1

l=k−κ
, |Xk

k−κ|, Ek = 1, Gk = 0

)

(C.17)

Here (C.16) follows from conditioning that reduces entropy and for the same reason as in

Section C.1, we keep Ek = 1. In order to get rid of the dependence on input, we take an

infimum:

βkh (Zk|Ek = 1, Gk = 0)− βkh

(

Zk

∣
∣
∣
∣
Hke

iΘk +
Zk

|Xk|
,
{

Hle
iΘl
}k−1

l=k−κ
, |Xk

k−κ|, Ek = 1, Gk = 0

)

≤ βkh (Zk|Ek = 1, Gk = 0)

− βk inf
γk≥ξmin

h

(

Zk

∣
∣
∣
∣
Hke

iΘk +
Zk

γk
,
{

Hle
iΘl
}k−1

l=k−κ
, Ek = 1, Gk = 0

)

(C.18)

= βkh (Zk|Ek = 1, Gk = 0)

− βkh

(

Zk

∣
∣
∣
∣
Hke

iΘk +
Zk

ξmin
,
{

Hle
iΘl
}k−1

l=k−κ
, Ek = 1, Gk = 0

)

(C.19)

= βkI

(

Zk;Hke
iΘk +

Zk

ξmin
,
{

Hle
iΘl
}k−1

l=k−κ

∣
∣
∣
∣
Ek = 1, Gk = 0

)

. (C.20)
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Here, (C.19) follows because the smaller γk is, the more Zk can reflect in Hke
iΘk + Zk

γk
,

thus the smaller the entropy of Zk would be. Next, we want to get rid of βk as follows:

βkI

(

Zk;Hke
iΘk +

Zk

ξmin
,
{

Hle
iΘl
}k−1

l=k−κ

∣
∣
∣
∣
Ek = 1, Gk = 0

)

≤ βkI

(
Zk

ξmin
;Hke

iΘk +
Zk

ξmin
,
{

Hle
iΘl
}k−1

l=k−κ

∣
∣
∣
∣
Ek = 1, Gk = 0

)

+ (1− βk)I

(
Zk

ξmin
;Hke

iΘk +
Zk
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,
{

Hle
iΘl
}k−1

l=k−κ

∣
∣
∣
∣
Ek = 0, Gk = 0
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(C.21)

= I
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Zk

ξmin
;Hke

iΘk +
Zk

ξmin
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iΘl
}k−1

l=k−κ

∣
∣
∣
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Ek, Gk = 0
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(C.22)

≤ I
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;Hke
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∣
∣
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(C.23)

= I

(
Zk

ξmin
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)

+ I
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;
{

Hle
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∣
∣
∣
∣
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)
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∣
∣
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(C.24)

≤ h
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Hke
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∣
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)

− h(Hke
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∣
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(
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∣
∣
∣
∣
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)

− h
(
{
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∣
∣
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)

+Hb(βk) (C.25)

= h

(

H0e
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)
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∣
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)

+ h

(
{
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iΘl
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∣
∣
∣
∣
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{
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∣
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+Hb(βk) (C.26)

! δ2(κ, ξmin) +Hb(βk). (C.27)

Here, (C.25) follows because the last term in (C.24) is smaller than Hb(βk) and {Hk} and

{Zk} are independent of each other; (C.26) follows because {Hk} and {Zk} are stationary

processes.

If ξmin goes to infinity, h
(

H0e
iΘ0 + Z0

ξmin

∣
∣
∣G0 = 0

)

converges to h(H0e
iΘ0

∣
∣G0 = 0)

and h
(
{

Hle
iΘl

}−1
−κ

∣
∣
∣H0e
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ξmin
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)

converges to h
(
{

Hle
iΘl

}−1
−κ

∣
∣
∣H0e

iΘ0 , G0 = 0
)

,

therefore, δ2(κ, ξmin) → 0.
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Causal Interpretations for

Independence

In Figures D.3–D.5 we prove the following independence claims used in (6.21), (6.73), and

(6.84).

• (M,Yk−1
1 ) ⊥⊥ Yk when conditioned on (Xk,H

k−1
1 );

• Xk ⊥⊥ Yk when conditioned on (HkXk);

• Hk−1
1 ⊥⊥ Yk when conditioned on (Xk,Hk).

X1 X2 X3 Xk−1 XkF1 F2 F3 Fk−1 Fk

Z1 Z2 Z3 Zk−1 Zk

Y1 Y2 Y3 Yk−1 Yk

H1 H2 H3 Hk−1 Hk

M

Figure D.3: The relevant subgraph of V showing the independence of (M,Yk−1
1 ) and Yk

when conditioned on (Xk,H
k−1
1 ).
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X1 X2 X3 Xk−1 XkF1 F2 F3 Fk−1 Fk

Z1 Z2 Z3 Zk−1 Zk

Y1 Y2 Y3 Yk−1 Yk

H1 H2 H3 Hk−1 Hk

M

Figure D.4: The relevant subgraph of V showing the independence of Xk and Yk when

conditioned on (HkXk).

X1 X2 X3 Xk−1 XkF1 F2 F3 Fk−1 Fk

Z1 Z2 Z3 Zk−1 Zk

Y1 Y2 Y3 Yk−1 Yk

H1 H2 H3 Hk−1 Hk

M

Figure D.5: The relevant subgraph of V showing the independence of Hk−1
1 and Yk when

conditioned on (Xk,Hk).

47



Bibliography
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