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We report repetitive phase-change memory �PCM� activity via the high- to low-resistance state
transition in gallium-doped indium oxide �Ga:InO� induced by nanosecond electric pulses. The
amorphous-to-crystalline phase transition of Ga:InO is found to occur at a crystallization
temperature of �250 °C with an activation energy of 1.27�0.07 eV. At the phase transition, we
observe a change in two orders of magnitude in the PCM-device resistance, which can be correlated
with the formation of �211� and �222� crystallites of bixbyite cubic In2O3. We ascribe the
phase-change mechanism to the Joule heating effect in Ga:InO. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3089238�

Tellurium-based phase-change memory �PCM� materials
composed of germanium antimony tellurium �GST� com-
pounds have long been considered for applications in optical
data storage. Phase-change random access memory is known
to offer a switching speed that is 100 times faster than that of
flash memory and it is likely to replace flash memory beyond
the 45 nm technology nodes.1–5 The underlying physics in-
volves the reflectivity or resistance of a PCM device, which
can be set/reset between two high/low levels due to a revers-
ible change between the crystalline and the amorphous states
by external stimuli. Earlier investigations suggested that
through nitrogen doping, one can reduce the switching cur-
rent due to an increase in GST film resistivity.6 The activa-
tion energy for amorphous to face-centered cubic crystalliza-
tion for a GST film can also be increased by mixing with
silicon suboxide �SiOx�, thus leading to a reduction in the
programming current and an increase in film stability.7 More
recently, there has been increasing interest in using suboxide
films as the optical recording medium for blue-ray disk ap-
plications. Write-once disks based on tungsten oxide �WO2�
and antimony oxide �SbOx� have been demonstrated.8–10 It is
of interest to explore whether oxide-based PCM devices
could be made to offer repetitive set/reset activity due to the
reversible structure change.

Crystalline indium oxide �In2O3� is known to have a
cubic structural symmetry and it acts as an n-type material
due to the oxygen-vacancy effect.11 Although optical record-
ing based on the metal-insulator transition12 or metallic
percolation13 was reported earlier for tin-doped indium oxide
and metal / InOx composites, the memory activity that causes
reversible structural change has not been identified in this
system. In this work, we report nonvolatile PCM activity
based on a reversible change between the amorphous and the
cubic �bixbyite� phases of gallium-doped indium oxide
�Ga:InO�. Device switching between the low- and high-
resistance states for over 300 cycles has been verified in a
Ga-doped In2O3 PCM cell with a Ga / �In+Ga� ratio=0.2%.

With high resolution transmission electron microscopy
�HRTEM� analysis, we determined that the lattice images
confirm that reversible changes can be made between the
crystalline and amorphous phases of the Ga:InO material. We
ascribe the phase-change mechanism to Joule heating by
pulsed electrical current in Ga:InO.

The Ga:InO PCM devices used in this work were pre-
pared by cosputtering indium oxide and gallium oxide into a
cell structure that was bottom-contacted with a rodlike tung-
sten �W� heater with a diameter of 1.6 �m on a �111� silicon
substrate. The Ga composition in Ga:InO films can be varied
by controlling the rf power and the oxygen flow rate. For
example, at an oxygen flow rate of 5 SCCM �SCCM denotes
standard cubic centimeter per minute at STP� and rf power of
35 W, the as-grown Ga:InO film appeared to be amorphous
and had an atomic ratio of Ga: �In+Ga�=1:10, as deter-
mined by energy-dispersive x-ray analysis. We applied a cir-
cular transmission line method and x-ray diffraction �XRD�
to examine the change in film resistivity and crystallinity
with annealing temperature. This procedure facilitates the de-
termination of the crystallization temperature of the Ga:InO
film. This information, along with data taken by differential
scanning calorimetry �DSC�, allowed us to determine the
phase-change activation energy in Ga:InO.

Electrical characterization of Ga:InO devices was per-
formed by using an Agilent 4155C semiconductor analyzer
for dc and an Agilent 81110A programmable pulse generator
for pulsed I-V analysis, respectively. For the latter, a load
resistance RL of 1 k� was put in series with the PCM device
and the current that flowed through the device was deter-
mined from the voltage drop across RL, which was measured
using a digital oscilloscope.4 The cell resistance R of the
PCM device was then measured at a low current level
�1 �A. This procedure allowed us to characterize the resis-
tance change after the device was subjected to an electrical
pulse.

Figures 1�a� and 1�b� show the dc characteristics for two
Ga:InO devices with Ga-doping compositions of �0.2% and
5%, respectively. These devices were constructed to have a
cell area of 2 �m2 and a 20 nm film thickness. Beginning ata�Electronic mail: peng@cc.ee.ntu.edu.tw.
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the as-grown high-resistance �reset� state, the I-V plots dis-
play an S-shaped negative differential resistance followed by
a sudden drop in voltage once the threshold-switching point
is reached. We observe from the I-V plots a drastic change in
the threshold current and voltage �Ith ,Vth� from �0.2 mA,
2.84 V� for the 0.2% Ga-doping concentration to �0.065 mA,
4.78 V� for the 5% Ga-doping concentration. Beyond this
threshold point, we encountered a low-resistance �set� state
of Ga:InO, which exhibits a linear slope on the I-V plot.

Indeed, the aforementioned dc-conductivity behavior of
the Ga:InO device resembles that of GST devices where a
similar characteristic change in the I-V plot has been associ-
ated with a change from the amorphous to the crystalline
phase.4 A change in resistance of two orders of magnitude
due to switching between the reset/set states of the Ga:InO
devices justifies the potential use of this material system for
PCM applications. Indeed, the resistance window of Ga:InO
devices, which was extracted from the pulsed R-V data, was
found to change with Ga concentration. The resistance win-
dow of the �reset, set� state shifts from ��4�104 � , �6
�102 �� in Fig. 1�c� for a 0.2% Ga:InO device to ��1.3
�105 � , �6�103 �� in Fig. 1�d� for a 5% Ga:InO device.
A corresponding change in the threshold value of the set/
reset electric pulse was also found: �5.4 V, 0.24 mA� at 80 ns
in width and �3.9 V, 6.5 mA� at 20 ns in width for the 0.2%
Ga:InO device to �7 V, 0.08 mA� at 80 ns and �5.4 V, 0.91
mA� at 20 ns for the 5% Ga:InO device. The reported voltage
is the voltage drop across the cell. Note that the discrepancy
between the dc and the pulse set/reset I-V data shown in Fig.
1 may reflect the device parasitic capacitance effect in the
programming electric pulses.14

It is noted that data of the resistance window for the
Ga:InO PCM devices shown in Figs. 1�c� and 1�d�were mea-
sured at a fixed device size with a bottom electrode area of
2 �m2 and film thickness of 20 nm. In a separate experi-
ment, we measured the resistivity of 3 and 60 � cm, respec-
tively, for the 0.2% and 5% Ga:InO film which was prepared
into the crystalline state, whereas over two orders of magni-

tude increase in the film resistivity can be observed when the
film was prepared into the amorphous state. This analysis
indicates that the resistivity of the Ga:InO film not only
changes with the amorphous/crystalline state but also de-
pends on the Ga composition of the Ga:InO film. The obser-
vation of resistance window change and shift in the Ga:InO
PCM devices reflects the difficulty in pursuing phase
changes in the Ga2O3 material.15 The detailed mechanism of
the resistivity shift in the high Ga-doped InO film is under
investigation and will be presented in a forthcoming publi-
cation

It nevertheless points to the promising PCM application
of this material system, as shown in the inset of Fig. 1�c�,
where electric cycling over 300 times has been conducted
between the set/reset states of a 0.2% Ga:InO device. The
electric cycling data for the 5% Ga:InO PCM device were
included in the inset of Fig. 1�d� and showed that a cycling
endurance of 15 times can be achieved. However, this num-
ber is less than that of 300 times cycling endurance measured
on the 0.2% Ga:InO device and may be due to a nonopti-
mized electric pulse condition. The detail of failure mecha-
nism is still under investigation.

Indeed, the I-V characteristics shown in Fig. 1 for the
Ga:InO device resemble those earlier reported for the GST-
based PCM device.1–5 To understand the effect of crystallin-
ity on the phase transition behavior, we applied cross-
sectional HRTEM analysis to another set of two 0.2%
Ga:InO devices, devices A and B that were prepared sepa-
rately in the low and high-resistance states by repetitive elec-
tric pulses. Large-angle grain boundaries that split the lattice
fringes with spacings of d=4.17 and 2.91 Å, corresponding
to the �211� and �222� crystalline plane of bixbyite cubic
phase In2O3, respectively, were observed by HRTEM �Fig.
2�a�� in the low-resistance device A.16 A close examination
of zones II and III in Fig. 2�a� reveals Moiré fringe patterns
which signify interference due to the overlap of two or more
grains of different orientations.17 Subtleties such as this can
be resolved by taking a Fourier transform of the lattice image
to project the reciprocal space structures.18 By doing so, we
mapped out in Fig. 2�b� the reciprocal space geometries and
identified the constituents as �i� single grains of �211� In2O3

FIG. 1. �Color online� ��a� and �b�� I-V and ��c� and �d�� pulsed R-V plots
for 0.2% and 5% Ga:InO devices. The device dimension is �2 �m2 in area
and 20 nm in film thickness. Inset: cycling data from the 0.2% and 5%
Ga:InO PCM device.

FIG. 2. �Color online� ��a� and �c�� Cross-sectional HRTEM lattice images
of 0.2% Ga:InO devices A and B prepared in the low and high-resistance
states, respectively, �b� reciprocal space structure mapping by Fourier trans-
form of the lattice image of device A and �d� the SAED data for device B.
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crystallites in zone I and �ii� mixed grains in zones II and
III, each containing an overlap of �211� and �222� In2O3
crystallites.19 This result shows the formation of crystallite
grains in an amorphous matrix background; instead of a crys-
talline rim surrounding the amorphous region and this sug-
gests a nucleation-dominated mechanism2 for the crystalliza-
tion of the Ga:InO material system. In comparison, for
device B prepared in a high-resistance state, the selected area
electron diffraction �SAED� data in Fig. 2�d� exhibits a scat-
tered ringlike pattern, characteristic of an amorphous state
that results from a rapid quenching of the melt.20

These observations suggest that the origin of electrically
driven memory activity in Ga:InO cells, as in the case of the
GST-based PCM cells reported earlier is related to the Joule
heating effect.21 To verify this proposed mechanism, we ex-
amined the effect of thermal heating on the resistivity and
XRD spectra of a Ga:InO film and compared the results with
the exothermic reaction data obtained by DSC analysis.
Samples were subjected to vacuum annealing at a heating
rate of 12 K/min. We found a threshold behavior in the 0.2%
Ga:InO film where the resistivity changed from 1.3�103 to
3 � cm, as shown in Fig. 3�a�. From the inflection point in
the resistivity curve,7 we determined a crystallization tem-
perature of Tc�252 °C. Around this transition temperature,
we observed the onset of an XRD signal at 2�=30.7°, cor-
responding to diffraction from the �222� plane of the cubic
phase In2O3,22 as shown in the inset of Fig. 3�a�. Unlike the
GST film, which undergoes a structural change first from an
amorphous phase to a rock salt structure at 140 °C; then to a
hexagonal structure at 310 °C,23 the amorphous Ga:InO film
underwent only one crystalline transition to cubic In2O3. Fa-
cilitated by the DSC analysis taken at a heating rate dT /dt of
12 K/min, we identified an exothermic peak at 248 °C, close
to the crystallization temperature �Tc�252 °C� of the
Ga:InO film. These observations, together with the HRTEM
analysis, suggest that the Joule heating effect is responsible
for the amorphous-to-crystalline structural change in the
Ga:InO PCM system. Indeed, from the Kissinger’s plot24 �as
shown in Fig. 3�b��, by semilogarithmic fitting of the heating

rate ln��dT /dt� /TC
2 � versus 1 /TC curve, we can derive an

activation energy of Ea=1.27�0.07 eV for the Ga:InO
PCM film. Detailed analyses of the retention time of the
Ga:InO PCM device will be presented in a forthcoming
publication.

In summary, we report the repetitive switching behavior
between the high-resistance �amorphous� and low-resistance
�crystalline� states in PCM devices made of Ga:InO. Electri-
cal pulses at 5.4 V with a duration of 80 ns and 3.9 V with a
duration of 20 ns were shown to enable the phase transition
process in 0.2% Ga:InO cells with an area of 2 �m2 and a
thickness of 20 nm. The amorphous to bixbyite cubic In2O3
phase transition was found to take place at a crystallization
temperature of 252 °C and an activation energy of
1.27�0.07 eV. We ascribe the phase-change mechanism to
the Joule heating effect in Ga:InO.

This research was supported by the National Science
Council Contract No. 97–2221-E-002–045 and TSMC-NTU
Grant No. 94-FS-B05, B15 and Aim for Top University
Project from the Ministry of Education, Republic of China

1A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, J. Appl. Phys.
103, 111101 �2008�.

2W. Wełnic and M. Wuttig, Mater. Today 11, 20 �2008�.
3A. V. Kolobov, Nature Mater. 7, 351 �2008�.
4M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters,
Nature Mater. 4, 347 �2005�.

5S. Lai, Tech. Dig. - Int. Electron Devices Meet. 2003, 10.1.1.
6H. Horii, J. H. Park, J. H. Yi, B. J. Kuh, and Y. H. Ha, IEICE Trans.
Electron. E87-C, 1673 �2004�.

7T. Y. Lee, S. S. Yim, D. Lee, M. H. Lee, D. H. Ahn, and K. B. Kim, Appl.
Phys. Lett. 89, 163503 �2006�.

8T. Ohta, M. Takenaga, N. Akahira, and T. Yamashita, J. Appl. Phys. 53,
8497 �1982�.

9T. Aoki, M. Tatsuhiko, A. Suzuki, T. Kenji, and M. Okuda, Thin Solid
Films 509, 107 �2006�.

10Y. Zhou, Y. Y. Geng, D. H. Gu, Q. Zhu, and Z. Jiang, Appl. Surf. Sci. 254,
1369 �2007�.

11A. N. H. Al-Ajili and S. C. Bayliss, Thin Solid Films 305, 116 �1997�.
12M. C. de Andrade and S. Moehlecke, Appl. Phys. A: Solids Surf. 58, 503

�1994�.
13A. F. Hebard, G. E. Blonder, and S. Y. Suh, Appl. Phys. Lett. 44, 1023

�1984�.
14D. Ielmini, D. Mantegazza, A. L. Lacaita, A. Pirovano, and F. Pellizzer,

IEEE Electron Device Lett. 26, 799 �2005�.
15L. Nagarajan, R. A. De Souza, D. Samuelis, I. Valov, A. Borger, J. Janek,

K. D. Becker, P. C. Schmidt, and M. Martin, Nature Mater. 7, 391 �2008�.
16S.-L. Wang, C.-Y. Chen, M.-K. Hsieh, W.-C. Lee, A.-H. Kung, and L.-H.

Peng, Technical Digest 23rd IEEE Non-Volatile Semiconductor Memory
Workshop, 2008 �unpublished�, p. 33.

17S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P.
M. Rice, and D. C. Miller, J. Appl. Phys. 102, 094305 �2007�.

18Digital Micrograph V. 3.6.4, GATAN software, 1999.
19CaRIne Crystallography V. 3.1, CARINE software, 1998.
20P. Haasen, Physical Metallurgy �Cambridge University Press, Cambridge,

1986�, p. 79.
21S. B. Kim and H.-S. P. Wong, IEEE Electron Device Lett. 28, 697 �2007�.
22JCPDS Card No. 44–1087.
23I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, J. Appl.

Phys. 87, 4130 �2000�.
24H. E. Kissinger, Anal. Chem. 29, 1702 �1957�.

FIG. 3. �Color online� �a� Temperature-dependent resistivity of the 0.2%
Ga:InO film overlaid with data measured by DSC analysis. Inset: XRD
spectra near the crystallization temperature. �b� Kissinger’s plot of the 0.2%
Ga:InO film to facilitate the extraction of the activation energy.
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