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Abs t rac t - -Based  on a two dimensional linear water wave theory, the boundary element method 
(BEM) is developed and applied to study the heave and the sway problem of  a floating rectangular 
structure in water to finite depth with one side of the boundary is a vertical sidewall and the 
other boundary is an open boundary. Numerical results for the added mass and radiation damping 
coefficients are presented. These coefficients are not only depend on the submergence and the 
width of  the structure, but also depend on the clearance between structure and sidewall. Negative 
added mass and sharp peaks in the damping and added mass coefficients have been found when 
the clearance with a value close to integral times of  half wave length of wave generated by 
oscillation structure. The important effect of  the clearance on the added mass and radiation damping 
coefficients are discussed in detail. An analytical solution method is also presented. The BEM 
solution is compared with the analytical solution, and the comparison shows good agreement. 

Copyright © 1996 Elsevier Science Ltd 

1. INTRODUCTION 

A variety of analytical and numerical methods has been developed over the past four 
decades for the treatment of a rectangular structure oscillating in periodic motion at the 
water surface. The problem can provide fundamental information of hydrodynamic proper- 
ties of added mass and damping of the structure, which can also be used as the basis to 
study the problems of wave and structure interactions and the stability of floating struc- 
tures. 

Kim (1965) was the first to study the heave problem for a floating hemispheroid using 
an integral method to obtain numerical results. Lebreton et al. (1966) studied the heave 
problem for a floating rectangle also using the same method. Black et al. (1971) calculated 
the radiation problem of a rectangular block due to small oscillation by exploiting the 
variational formulation of Schwinger. Bai et al. (1974) studied the heave problem for a 
floating circular cylinder using the variational formulation and the simple source function 
to obtain numerical results. Yeung (1975, 1982) analyzed the radiation and scattering 
problems for floating circular and rectangular cylinders by using the hybrid integral-equ- 
ation method. Havelock (1955) studied waves generated by periodic heaving oscillations 
of a floating hemisphere, and Hulme (1982) presented a modified solution which advances 
the analytical formulation by using deep-water multipole expansion involving a wave 
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source (dipole) and wave-free potentials. Nestegard and Sclavounos (1984) studied the 
heave and sway motion problem for a circle, a rectangle and a triangle also using the 
same method. Vantorre (1986) calculated hydrodynamic forces up to the third order, acting 
on axisymmetric bodies in an oscillatory heaving motion, by using the integral-equation 
method. Lee (1995) analyzed the heave problem of a rectangular structure oscillating in 
periodic motion in water of finite depth, by using the analytical method and the constant 
element of boundary element method (BEM). 

From the researches of the scholars as above, we find that most of them focus attention 
on floating structures oscillation with periodic motion on water surface of deep water with 
unbounded domain, and almost no people attempt to study the problem of floating struc- 
tures oscillation on water surface of finite deep water and one side of the boundary with 
vertical sidewall. 

When a ship is parked in the dock, the waves are reflected due to a vertical sidewall. 
So, it is different to the problems of structures oscillation on water surface with unbounded 
domain. To analyze the problem of hydrodynamic forces on structures with a vertical 
sidewall. In this paper, a boundary element method is used to solve the heave and sway 
motion problem of floating rectangular structure oscillating in periodic motion at the water 
surface with the left hand side (LHS) sidewall and the right hand side (RHS) open bound- 
ary. Numerical results are represented by using the added mass and the damping coef- 
ficients. To increase the accuracy of the numerical solution, the linear element will be 
used to perform computation. To justify the accuracy of the numerical solution, the numeri- 
cal results will be compared to the analytical solution. 

2. THEORETICAL FORMULATION OF THE PROBLEM 

The problem of a rectangular structure oscillating in periodic motion at the water sur- 
face, as depicted in Fig. 1, will be studied. The width of the structure is b, and the submerg- 
ence depth d. The water depth is h. An inertial, Cartesian coordinate system is chosen 
such that the origin of the x-axis is at the center of symmetry of the structure. The positive 
x points to the right, and the positive z points upwardly. The sidewall is D distance away 
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Fig. 1. Definition sketch for theoretical analysis, with sidewall. 
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from the structure. A numerical boundary is located at R H S ,  distance (V away from the 
structure, so that the semi-infinite domain becomes confined domain. 

By making the usually assumptions of classical hydrodynamics, i.e., the fluid is inviscid 
and incompressible and the flow is irrotational, the fluid motion can be described by a 
velocity potential function. The velocity potential • can be expressed as 

= Real[  ¢b(x,z)e -i~q (1) 

i = ~-Z-~, and the velocity potential tb(x,z) must satisfy the Laplace equation 

V2~b = 0 (2) 

the velocity V can be expressed as 

= - w ,  (3) 

where V is the gradient operator. The displacement function of the structure motion can 
be expressed as 

= ise -i'~' (4) 

where s is the amplitude, to is the oscillating frequency. The frequency to must satisfy the 
dispersion relation 

to2 = gktanh(kh ) (5) 

where g is the gravity acceleration, k is the wave number. The velocity potential must 
also satisfy the following boundary conditions (Dean and Dalrymple, 1984): 

1. The free surface boundary conditions: on F2,/'6 

b6 to2 
- -  = - -  dp on z = 0 ( 6 )  
0z g 

2. The boundary condition at the water bottom: on/ '8 

O~b = 0 on z = - h  (7) 
On 

i.e., the normal velocity is zero on the solid boundary. Where n is the unit normal 
vector pointing out of the fluid domain. 

3. The boundary conditions on the structure surface: on F4,/-'3 and F5 

O~b _ -~,, on So (8) 
On 

where V. is the velocity vector in normal direction on the structure surface, So is the 
submerged surface of the oscillating body. 

4. The boundary condition at the sidewall: on/ ' l ;  which is the same as Equation (7), the 
normal velocity is zero on the solid boundary 
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~n~b O°nx  ( b ) -  = -  ~ + D  (9) 

5. The radiation condition: on /7 ;  this condition expresses that the behavior of an outgoing 
wave at ~'  distance away from the structure. 

The free surface elevation ~ can be calculated by using the linearized Bemoulli's equ- 
ation: 

1 ~dp - i w  
- - • ( 1 0 )  

g ~t g 

The dynamic pressure can be expressed as 

P = Pfftt = -io~p~ (11) 

The vertical wave force acting on the structure can be calculated by integrating the 
wave pressure along the submerged surface of structure, and is written as 

f f f F = PdA = p ~ -  dA = -i~op dPdA = -io~pe -i°~t 4~4 (12) 
SO 

So so So 

where p is the density of fluid. The wave force, F, can be reformulated to obtain the added 
mass coefficient/~, and the damping coefficient, ~. The solving process for/x and ,~ can 
be written as follows: (Sarpkaya and Isaacson, 1981) 

f a2~ 0~: F = - i t o o e  - i ' ' t  ~/A =/x  ~ + ) t ~  (13) 

So 

where 

a~ 
~t 

is the velocity of the structure, 

a2~ 
Ot 2 

is the acceleration of the structure. Let 

qb(x,z) = Re(49) + ilm( qb) 

where R e and I,,, denote real and imaginary parts respectively. Then 

= - - i o ) p e  -i , , , '  ([Re(~) + ilm(dp)]dA F 

SO 

(14) 

(15) 
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and 

and 

f _p 
= /~.,(6)dA (19) 

S J 
So 

Note that in accordance with Equation (18) and Equation (19)/z and A are indeed real. 
The nondimensional added mass coefficient Ca, and the nondimensional damping coef- 
ficient Ca will be defined as 

/x 1 (Re(th)dA 
C a  - p V  - tosV (20) 

2 
So 

if c~ - - 1m(4,)d4 (21) 
p(oV (osV 

So 

V = bd 

is the submerged volume of the oscillating structure. 

3. BEM FORMULATION 

The boundary element method (BEM) has been used to solve a variety of problems in 
theoretical hydrodynamics and elasticity theory (Brebbia and Dominguez, 1989). For a 
boundary value problem in which the free space Green's function, i.e. fundamental sol- 
ution, is known, the BEM can be used to perform computations only on the boundary of 
the domain. The effective dimensionality of the problem is reduced by one. Avoiding 
detailed computations inside the domain makes the BEM method more efficient than the 
domain type methods. 

To utilize the BEM, we must first convert the boundary value problems into an integral 
equation representation. Using Green's second identity 

fr(6Oq-q~ (22) 

From Equation (4) it can be seen that 

0~ 
- -  ~ -  o ) s e  - i t o t  (16)  
Ot 
02~ 
Ot 2 _ ito2se-iO,, (17) 

From Equation (13) to Equation (15), the added mass and damping coefficients may 
be defined explicitly as 

of i x = - -  Re(qb)dA (18) 
COS 

So 
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where q is fundamental solution of the goyerning equation, F is the boundary of the 
solution domain, fZ is the solution domain, ~b is the velocity potential at a selected point 
of the boundary. 

Because the governing equation of the fluid domain is Laplace equation, the fundamental 
solution is (Greenberg, 1971) 

q = ~-~. In (23) 

in which r is the distance from the source point to the field point. From Equation (22) 
any velocity potential 4~j of the boundary is given by 

f = - -  - q -  dF (24) 
2"n- v ~n bn 

in which j is the source point, 13 is the internal angle of the source point j. 
The numerical procedure of the BEM involves dividing the boundary into N segments 

or elements. To increase the accuracy of the numerical results, the linear element, as shown 
in Fig. 2, will [ge used to perform computation on the boundary of the domain. Therefore 
the values of ~b and 

3n 

at any point on the element can be defined in terms of their nodal values and two linear 
interpolation functions u~ and u2, which are given in terms of the local coordinates ~, i.e. 

+(0 = u ,4 , '  + u262  = [u,  u21 2 

(25) ^ 

L62j 

in which, 

ul 
1 1 

= ~ ( 1  - O, u 2 = ~ ( 1  + 0  

....... ~?J~ ........ " ...... J l  
7 "  . . . .  

I c y  ¢~ 

Fig. 2. Definition of linear elements. 
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, ~ varies from - 1  to +1. 
For a well-posed boundary value problem, either ~b or tO. or a relation between them 

is known at all points of the boundaries. Since both th and th. at the radiation boundary are 
unknowns, the relation between ~b and thn may be built by using the matching conditions of 
velocity and pressure, at 

X----- 4-  

, i.e., (Wu, 1987): 

c¢ 

¢h = Ao ig coshk(h + z) ei ~ 
to cosh(kh) + ~ Amcoskm(h + z)e -k.~ 

m = l  

oo 

_Aogk coshk(h + z) eik~ _ ~ k,.A,.coskm(h + z)e -k.~ (26) 
~b x = ~bn = to cosh(kh) 

m = l  

the RHS is an analytical solution for wave in channel with fiat bottom (Dean and Dalrym- 
pie, 1984). Since cosh k(h + z) and cos k,. (h + z) (m =1,2 ..... ~) are orthogonal functions, 
one can obtain 

0 

tocosh(kh) e_ik~f v ÷ b f c~ncoShkm(h + z)dz (27) 
Ao - gkQo 

--h 

0 

1 - b f  Am - -  kmam e km~w + ~ ~bncosk,n(h + z)dz (28) 

- h  

where 

0 

Qo = f cosh2k( h + z)dz 
- - h  

(29) 

0 

a m  = f c°s2km(h + z)dz 
--h 

(30) 

in which k., is the wave number of evanescent mode and must satisfy the dispersion 
relation (Dean and Dalrymple, 1984) 

to2 = -gkmtan(kmh) m = 1,2 ..... ~ (31) 

in which m is the number of evanescent mode and the calculation requires truncation at 
some finite value m = M, wherein M is equal to forty in this paper. 

Substitution of Equation (27) and Equation (28) into Equation (26), one can establish 
the relation between t~ and ~bn on the radiation boundary. 
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0 

icoshk(h + zF) f ~b.coshk(h + z)dz - 
cb(zp) - kQo 

--h 

0 

f qb~coskm(h + z)dz 
h 

~ coskm(h + Zp) 
m = J kmQ., (32) 

Discretizing the above equation by linear element, the equation can be written as 

-49i(z,,) + ~ PJckJn = 0 on F7 (33) 
J 

where 

and )0, fS, 

icoshk(h + zp) f~l, j = 1 
kQo 

icoshk(h + Zp)_p2 , + icoshk(h + zp)~, j=/: 1,N 
FU = kQo kQo 

icoshk(h + Zp)3~ -~, j = N 
kQo 

icoshk(h + " coskm(h + Zp) • 
J~ - kQo zp) f~ + ~ k,.Q., g)ml 

m = l  

coskm(h + icoshk(h + zp)_f~ + ~ Zp)gjm 2 
f~; - kOo kma,o 

m =  l 

g~..~ and gJm2 a r e  defined by the following two equations 

() 

J L#~ *~ 

0 

~bncosk,.(h + z)dz = - 2  [gJ~l g/m2 

- h  J 

So the boundary value problem can be described completely. Rearranging in such a 
way that all unknowns are taken to the left hand side and all the knowns are move to the 
right hand side, then 

[A][X] = [B] (34) 

where [X] is the vector of unknown ~b and ~bn, [B] is the known vector, [A] is the matrix 
of coefficients. Equation (34) can be solved by using the Gauss elimination method. 
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At comers the flux at both sides may not be unique (so called comer point). To take 
into account the possibility that the flux at a point before a comer (not necessarily a comer 
point) may be different from the flux at a point after a comer, two nodes are taken at 
every comer in the present model. That is replacing the comer node by two different 
nodes inside each of the two adjacent elements. 

4. ANALYTIC SOLUTIONS 

4.1. Construction of  the mathematical model 

To solve the problem analytically, the problem domain can be divided into three regions 
as depicted in Fig. 1. (Lee, 1995) 

1. Region 1: 

-___x_< + - h < z < 0  

2. Region 2: 

b 
[x l -<~ , -h - - - z - -<  - d  

3. Region 3: 

- + D  < - - x  < - -  2 '  h < - z < - O  

The boundary-value problems describing the three regions can be written as: 

1. Region 1 

724,~(x,z)  = 0 

34,1 (DE b 
_ 4,1 o n z = O ;  - < - x  < - 

g 2 

) 
bz 2 -  

34,1 34, 2 b 
3x - 3x on x = 

and radiation condition (4, is outgoing wave). 
2. Region 2 

V2 4, 2(x,z) = 0 

34, 2 b 
3z  - o~s on  z = - d ,  Ixl --< 

34 ,  2 
- 0  o n z = - h  

3z 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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C#$=+ ; onx=- (42) 

4’ = r#$ 
b 

onx=-- 
2 

3. Region 3 

v2+3(x,Z) = 0 

(43) 

(44) 

(45) 

agJ3 a+2 b 

ax ax 
onx=-- 

2 

ax=0 onx=_ 

ax 
;-_hszsO 

(47) 

(48) 

where +‘, v, C#I’ represent the velocity potential of the three regions. 

Note that the velocity and pressure matching boundary conditions for the two neighbor- 
ing regions has been separated intentionally as shown in Equation (38), Equation (42), 
Equation (43) and Equation (47). The difficulty of solving the above boundary-value prob- 
lems is mainly on the region 2 due to the nonhomogeneous boundary conditions (Equation 
(40) and Equation (43)). Lee’s method (Lee, 1995) will be introduced to solve the non- 
homogeneous boundary value problem. The nonhomogeneous boundary-value problem 
(Equation (39) to Equation (43)), will be separated into two nonhomogeneous problems, 
one horizontal problem for 

and the other vertical problem for 

4; 

which can be solved analytically. 

1. Horizontal homogeneous problem for c#+,* 

V2C#&x,z) = 0 (4% 

(50) 
a44 
-=ws onz= -d; aZ 
a+:, 
p-0 onz= -h 
aZ 

(51) 

-hszs -d (52) 
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b 
qb~=O o n x =  - ~ ;  - h  <- z <- - d  (53) 

2. Vertical homogeneous problem for ~bv 2 

V2dp~x,z) = 0 (54) 

bck~' 0 on z - d ;  b az - = I x l ~  (55) 

a4,~  
- 0  o n  z = - h  (56) 

bz 

b 
~b~.=ck 1 o n x = ~ ;  - h < - z  < - - d  (57) 

b 
ck 2 = ck 3 on x = - 7 ;  - h  <- z <- - d  (58) 

Therefore, the solution to Equation (39) to Equation (43) is equivalent to the sum of 
the solutions of Equation (49) to Equation (53) and Equation (54) to Equation (58). 

4.2. Analytic solutions 

By using the method of separation of variables, analytic solutions for the three regions 
can be obtained. 

1. Region 1 

b 

~1 ~_ Alocosh[k(h + z)]e ik<x- 5 ) + ~] A2.cos[k.(h + z)]e-~.~*-~ ) 
n = l  

(59) 

. 

where k and k. must satisfy the dispersion relation 

co 2 = gktanh( kh ) = - gk.tan( knh ), n = 1,2 ..... oo 
Region 2 

4' 2 = 4'~, + 4'~ 

4~  = ~'..42,sin )t, x - cosh[1,(h + z)] 
n = l  

in which 

and 

2cosb[cos(n~r)- 1] nlr 
/]z. = (A.b)Zsinh[A.(h_d)], h.  = ~ - ,  n = 1,2 ..... 

o¢ 
b 

q~2 = AzoX + B20 + E [A2n ek"~x + b) + B2ne_~.(x_~)]cos[k.( h + Z)] 
n = l  

(60) 

(61) 

(62) 

(63) 

(64) 
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n7T 

kn = i-2 
n = 1,2,...,z (65) 

3. Region 3 

4’ = A,,, cask (2 1 ’ ,,(;+D+x)cosk.(h+z) li + D + x coshk(h + z) + 2 A,,coshk 
I, = I 

(66) 

The unknown coefficients A,,,, A,,, A_<,, and Ban can be determined by using the matching 
conditions at 

(Equation (38), Equation (42)) and at 

h 
x=-~- 

2 

(Equation (43), Equation (47)), i.e. 

1. 

a+2 a+! b 
---== onx=m~ 
ax ax 2 

z i 

2 &zh,cosh[h,(h + z)] + Am + c k,,(A2,,eknh - B,,2)cos[k,(h + z)] 
II = I fl=I 

x 

(67) 

= ikA,,cosh[k(h + z)] + z A,,(-k,)cos[k,(h + z>l 
II = I 

4J2=#j’ ; onx=- 

$20 + B20 + i (A 2nekrjh + B,,}cos[~,(~ + z>I = A,ocosh[k(h + dl (68) 
II = I 

+ 5 A,“COS k,(h + z)l 
,I = I 

3. 

a+2 a+' b 
---==-- onx= - - 
ax ax 2 

5 &&os(h,b)cosh[A,(h + z)] + A,, 
n=l 
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oo 

+ ~ k.{A2.-Bz.ek.b}cos[k.(h + z)] = A3o(-k)sin[k(D)] 
n = l  

oo 

cosh[k(h + z)] + ~ A3.(k~)sinh[k~(D)]cos[k.(h + z)] 
n = l  

(69) 

. 

b 
4,  2 = 4,  3 o n  x = - 5  

b ~ 
- ~ Azo + B2o + ~'~ {A~ + B2ne".b}cos[Kn(h + z)] (70) 

n = l  

= A3ocos[k(D)]cosh[k(h + z)] + ~'~ A3.cosh[k~(D)]cos[kn(h + z)] 
n = l  

Equation (67) to Equation (70) can now be multiplied by the orthogonal function in 
their belonging regions, and integrated along the corresponding matching boundary. The 
algebraic equations thus obtained can be written as 

{Mo(1)}A2o + ~2 [A2,.(r,,,e '"b) + B2m(-Km)]{Ml(1,m)} (71) 
m = l  

+ a~o(-ik){No(1)} = - ZA2yAj{N1(1j)} 
j = l  

oo 

{Mo(n)}A2o + ~ [Azm(Km eKmb) + Bzm(-Km)]{Ml(n,m)} (72) 
m = l  

o~ 

+ Al(.-,)k,,-llNo(n)} = - ~AzjAjlN,(nj)} n = 2,3 ..... 
j = l  

A2o (h-d)  + B2o(h-d) +A~o(-1){Mo(1)} + ~ Al(m_tl(-1){Mo(m)} = 0 
m = 2  

1 

oo 

+ ~Al~m-l)(-1){Ml(m,n)} = 0  n =  1,2 ..... oo 
m = 2  

[A2o(- ~) + B2o](h- d) + a3o(-1) { Mo(1) }cos[k(D)] 
c~ 

+ Z A3(m - 1)( -- 1 ) { Mo(m)  } c o s h [ k m  _ 1 (D)] = 0 
m = 2  

(73) 

(74) 

(75) 
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KbF1 ] 
[A2. + B2,,e. ] [ ~ ( h - d ) J  + A3o(-1){M,(1,n)} cos[k(D)] (76) 

+ Z A3(m-1)(- l){Ml(m,n)}cosh[k,,,-l(D)] = 0 n = 1,2 ..... 
m = 2  

A2o{Mo(1)} + ~ ]  [A2,.Km + Bz.,(-K.,)e""b]{M~(1,m)} + A3o(k)sin[k(D)] (77) 
m = l  

- ~ftzjXjcos(Xib){N,(Ij)} 
j = l  

a2o{Mo(n)} + ~ [a2,.Km + Bz..(-K,.)eKmb]{Ml(n,m)} 
m = l  

+ a3( . -  1)( - k._ l) { No(n) } sinh[k._ ~ (D)] (78) 
~e 

= - ~AzjA~cos(Ajb){N,(nd)} n = 2,3 ..... oo 
j = l  

where the symbolic  expressions Mo(1), Ml(1,  m), No(l ) ,  N~ (1 , j ) ,  M1 (n, m), No(n), N~(nd) 
and Mo(n) can be written as follows: 

d 

)14o(1) = f cosh[k(h + z)]dz (79) 

--h 

d 

Mo(n ) = f cos[kn_l(h + z)]dz ( n  = 2 , 3  . . . . .  00) ( 8 0 )  

- h  

- d  

Ml(1,m) = fcosh[k(h + z)lcostK,.(h + z)ldz (81) 
--h 

- d  

Ml(n,m) = f cos[k ,_ l (h  + z)]cos[K.,(h + z)]dz (n = 2,3 ..... oo) (82) 

- h  

0 

No(I)  = f cosh~[k(h + z)]dz (83) 

h 

0 

No(n) = f cos/[kn-t(h + z)]dz (n = 2,3 ..... oo) (84) 

- h  
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- d  

N~(1 j )  = f cosh[k(h + z)]cosh[Aj(h + z)]dz (85) 

--h 

- d  /* 

Nl(nd) = [ cos[k~_~(h + z)]cosh[Aj(h + z)]dz (n = 2,3 ..... ~) (86) 

- h  

Equation (71) to Equation (78) can now be used to solve for the coefficients Al~, A2", 
B2~ and A3n; n =0, 1, 2 ..... oo. The vertical wave force acting on the structure can be 
calculated by th 2 and ~b~, of the region 2, i.e. 

t ~  2 = ¢ ~ 2 e - i ' ~ t  = [ t ~  2 + ~b2le -'°" (87) 

3~  2 
P = ~ = -itopdpZe -i'°' = - i top[6  2 + ~b2]e -;°" (88) 

Fl~  = ~ = faoPdA = -itope-'~fao[th 2 + th2v]dA = fe - '~  (89) 

where 

f = -pro{ ~, ,42~cosh[An(h-d)] c°s[Anb]- 1 : 1 X~ ( 9 0 )  

ekn b -  1 
+ B2ob + ~ (a2~ + B2~) ~ c o s [ k ~ ( h - d ) ] ~  

n = l  

The wave force (F) expression shown in Equation (89) can be reformulated to obtain 
the nondimensional added mass coefficient Ca, and the nondimensional damping coef- 
ficient Ca, 

R , { f }  
C a - - -  (91) 

pstobd 

l m { f }  
Ca - pstobd (92) 

where R, and Im denote real and imaginary parts respectively. 

5. NUMERICAL RESULTS AND DISCUSSION 

In this paper, we study the heave and the sway problem of a floating rectangular struc- 
ture in water of finite depth with one side of the boundary is a vertical sidewall and the 
other boundary is an open boundary. This problem has not been solved by analytical or 
numerical method and no experimental data in the literature. To prove the accuracy of 
the present linear element BEM solution and analytical solution, the two side open bound- 
ary problem of Lee (1995) has been recomputed and compared to the present results. The 
geometry parameters of Lee's two examples are (h/b =3.0, d/h =0.4), (blh =0.4, hid =3.0), 
and the water depth h =1.0 m. The computed dimensionless added mass, Ca, and damping 
coefficients, Ca, are presented as function of relative water depth h/L, L is the wave length 
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of wave generated by oscillating rectangle, and are plotted in Fig. 3 and Fig. 4. The 
comparisons indicate that the present numerical results of linear BEM agree very well 
with Lee's analytical solution (Lee, 1995). 

The effect of sidewall on Ca and Cd will be examined. The problems we consider has 
the same scale as Lee's (Lee, 1995), but the open LHS boundary is changed to a vertical 
sidewall, as shown in Fig. 1. Assuming that the clearance between sidewall and rectangle 
is D =0.2h, numerical results based on linear BEM and analytical method are presented 
as function of relative water depth and are plotted in Fig. 3 and Fig. 4 again. Both added 
mass and damping coefficients change rapidly when h/L close to 0.25. This is the typical 
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Fig. 3. Dimensionless added mass and damping coefficients for a rectangular structure heaving in calm water. 
(h lb  =3.0, d/h --0.4, D I h  =0.2) 
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Fig. 4. Dimensionless added mass and damping coefficients for a rectangular structure heaving in calm water. 
(hid =3.0, blh =0.4, DIh =0.2) 

resonant behavior. The present results indicate the important effect of sidewall on the 
hydrodynamic coefficients. 

In the following, the important effect of clearance on the hydrodynamic coefficients 
will be examined in detail. Define the relative clearance as DIL. Numerical results of linear 
BEM and analytical method are plotted in Fig. 5a and b for Ca and Ca respectively. In 
Fig. 5 the added mass and damping coefficients are shown as function of relative clearance, 
D/L, for h/L ---0.5. We fined that both Ca and Ca values have great change when DIL is 
equal to 0.5, 1.0 and 1.5. This phenomenon is called resonance, the same as harbor seich- 
ing. Due to the reflection of vertical sidewall, wave energy is accumulated in the region 
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Fig. 5. Dimensionless added mass and damping coefficients for a rectangular structure heaving in calm water. 
(h/d =3.0, b/h =0.4, h/L =0.5) 

between sidewall and structure. To further prove this resonant behavior, the dimensionless 
added mass and damping coefficients have been computed and plotted in Fig. 6a and b 
for tdL =0.3. The resonance phenomena appear at the same relative clearance as before, 
i.e., D/L =0.5, 1.0 and 1.5. We conclude that if  the clearance D is integral timms o f  half 
wave length, L/2, the resonant behavior will appear, and the hydrodynamic coefficients 
will change rapidly. 

In addition to the heave motion, we also examine the added mass and damping coef- 
ficients for a rectangular structure oscillating in a sway motion in calm water with finite 
depth. At first, the numerical results o f  Ca and Ca are presented as function of  relative 



Hydrodynamic coefficients for an oscillating rectangular structure 195 

(a) 
t . 6 0  

1.20 

0 . 8 0  

0.40 
e~ 

- 0 . 00  - 

- 0 , 40"  

- 0 . 8 0  

-1 .20  
0.00 

(b) 
2. OO 

)/ / / 
- -  BEM 

. . . . . .  A N A L Y T I C  

o.ko 1.bo 1.6o 2,bo z.5o 
D / L  

1.60 

1.20 

0.80 

- -  B E M  
. . . . . .  IdCI.tI ,] 'TIC 

o.,o )y,/) 

0.00 , , 

0.00 0.50 1.00 1.50 2.00 2.50 

D/L 
Fig. 6. Dimensionless added mass and damping coefficients for a rectangular structure heaving in calm water. 

(h/d =3.0, b/h =0.4, h/L =0.3) 

depth h/L and are plotted in Fig. 7 and Fig. 8. Both Ca and Ca change rapidly when h/L 
close to 0.25. These results indicate the important effect of sidewall. The important effects 
of clearance on C= and Ca are shown in Fig. 9 and Fig. 10 for h/L =0.5 and h/L =0.3 
respectively. Again the resonance phenomena appear as the clearance is integral times of 
half wave length, and the hydrodynamic eoefticients change rapidly. 

6. CONCLUSIONS 

The BEM with linear element has been established to study the hydrodynamic properties 
of rectangular structure oscillating on water of finite depth. The accuracy of the BEM is 
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Fig. 7. Dimensionless added mass and damping coefficients for a rectangular structure swaying in calm water. 

(h lb  =3.0, d lh  ---0.4, D I h  ----0.2) 

proved by comparing numerical results of BEM and analytical method. Negative added 
mass and sharp peaks in the added mass and damping coefficients have been found when 
one side of the open boundary is replaced by sidewall. Resonant behavior will appear 
when the clearance between sidewall and structure is integral times of half wave length 
of wave generated by oscillating structure. The hydrodynamic coefficients of any shape 
structure oscillating on water can be examined by using the present numerical technique. 

This work is supported by the National Science Council, Republic of China, under grant 
No. NSC-84-2611-E-009-002. 



Hydrodynamic coefficients for an oscillating rectangular structure 

(a) 
20. O0 

197 

10.00 

Y 

0.00 *--"'~ ""'~'-°--~--, ..... ~ ...... = 

-10.00 

-20.00 
o.oo ' o.~o ' o . ; o  ' o.~o ' o.~o ' ,.oo' ' , . ~o  ' 1.,~o 

h/L 
(b) 

30. O0 

E,~ I0.00 

20. O0 
_ _  WITH SIDEWALL 

~.~._*.*_.* OPEN BOUNDARY 

I 

/__ 

ooo ...................... 

-10.00 
o.oo 'o.~o ' o.~o ' o.~o 'o.~o ' 1.bo ' 1.~o ' ,.40 

h/L 
Fig. 8. Dimensionless added mass and damping coefficients for a rectangular structure swaying in calm water. 

(hid =3.0, blh =0.4, DIh =0.2) 

R E F E R E N C E S  
Bai, K. J. and Yeung, R. W. 1974. Numerical solutions to free-surface flow problems. Tenth Symposium on 

Naval Hydrodynamics, Cambridge, Mass., pp. 609--633. 
Brebbia, C.A. and Dominguez, J. 1989. Boundary Elements: An Introductory Course. McGraw-Hill. 
Black, J.L., Mei, C.C. and Bray, M.C.G. 1971. Radiation and scattering of water waves by rigid bodies. J. Fluid 

Mech, 46, 151-164. 
Dean, R.G. and Dalrymple, R.A. 1984. Water Wave Mechanics for Engineers and Scientists. 
Greenberg, M.D. 1971. Application of Green's Function in Science and Engineering. Prentice-Hall. 
Havelock, T. H. 1955. Waves due to floating sphere making periodic heaving oscillations. Proc. Royal Soc. 

Lond. A231, pp. 1-7. 
Hulme, A. 1982. The wave forces on a floating hemisphere undergoing forced periodic oscillations. J. Fluid 

Mech. 121, 443--463. 



198 Hu-Hsiao Hsu and Yung-Chao Wu 

"0 
rO 

1.00 

0,80 

(a) 
2 0 .  O0  

15.00 - 

10.00 / 

5.00 / 
o.oo - f 

- 5 . 0 0  - 

- I 0 , 0 0 -  

- 1 5 . 0 0 -  

-20.00 
0.00 0.50 

(b) 

0 . 6 0  

0.40 

0.,80 

0.00 

-0.20 

-0.40 
0.00 

rO 

1.00 1.5d 2,00 
z /L 

,?,.50 

o.ho l.bo ,.ho e.bo e so 
D J L  

Fig. 9. Dimensionless added mass and damping coefficients for a rectangular structure swaying in calm water. 
(h/d =3.0, blh --0.4, tdL ---0.5) 

Kim, W.D. 1965. On the harmonic oscillations of a rigid body on a free surface. J. Fluid Mech. 21, 427-451. 
Lebreton et al., 1966: Author: please supply full ref. or delete in text. 
Lee, J.F. 1995. On the heave radiation of a rectangular structure. Ocean Engng. 22, 19-34. 
Nestegard, N. and Sclavounos, P.D. 1984. A numerical solution of two-dimensional deep water wave-body 

problems. J. Ship Res. 28, 48-54. 
Sarpkaya, T. and Isaaeson, M. 1981. Mechanics of Wave Forces on Offshore Structures. Van Nostrand-Reinhold, 

New York. 



199 

1.50 

(a) 
24. O0 

20.00 

16.00 

12.00 

8.00 

¢) 
4.00 

o . o o  - 

- 4 .  O0 - 

-8 .00  - 

- 1 2 . 0 0  - 

- 1 6 . 0 0  
0.00 

(b) 
2.00 

/ 

1.00 

0 . 5 0  

0.00 

- 0 . 5 0  
0.00 

/ 

Hydrodynamic coefficients for an oscillating rectangular structure 

,.bo ~.~0 2.bo 2.50 i 
0.50 

D/z, 

o.~o l.bo 1.5o 2.00 2.50 
D/Z` 

Fig. 10. Dimensionless added mass and damping coefficients for a rectangular structure swaying in calm water. 
(h/d =3.0, b/h =0.4, hlL =0.3) 

Vantorre, M. 1986, Third-order theory for determing the hydrodynamic forces on axisymmetric floating or sub- 
merged bodies in oscillatory heaving motion. Ocean Engineer/rig 13, 339-371. 

Wu, Y.C. 1987. Constant Wave Form Generated by A Hinged Wavemaker of Finite Draft in Water of Constant 
Depth. Proc. of 9th Conf. on Coastal Engineering, Taiwan, R.O.C., pp. 552-569. 

Yeung, R.W. 1975. A Hybrid Intesral-Equation Method for Time Harmonic Free-Surface Flows, 1st International 
Conference on the Ship Hy&odyrmmics, Gaithevsburg, Md., pp. 581-607. 

Yeung, R.W. 1982. Numerical methods in free-surface flows. Ann. Rev. Fluid Mech.  14, 395-442. 


