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Asian options are popular path-dependent options and it has been a long-standing problem
to price them efficiently and accurately. Since there is no known exact pricing formula for
Asian options, numerical pricing formulas like lattice models must be employed. A lattice
divides a certain time interval into n time steps and the pricing results generated by the
lattice (called desired option values for convenience) converge to the theoretical option
value as n!1. Since a brute-force lattice pricing algorithm runs in subexponential time
in n, some heuristics, like interpolation method, are used to strike the balance between
the efficiency and the accuracy. But the pricing results might not converge due to the accu-
mulation of interpolation errors. For pricing European-style Asian options, the evaluation
on the major part of the lattice can be done by a simple formula, and the interpolation
method is only required on the minor part of the lattice. Thus polynomial time algorithms
with convergence guarantee for European-style Asian options can be derived. However,
such a simple formula does not exist for American-style Asian options. This paper suggests
an efficient range-bound algorithm that bracket the desired option value. By taking
advantages of the early exercise property of American-style options, we show that part
of the lattice can be evaluated by a simple formula. The interpolation method is required
on the remaining part of the lattice and the upper and the lower bounds option values
produced by the proposed algorithm are essentially numerically identical. Thus the theo-
retical option value is said to be obtained practically when the range bound algorithm runs
on a lattice with large number of time steps.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Options are financial derivatives that give their buyers the right but not the obligation to buy or sell the underlying asset
for a contractual price (called the exercise price) at a certain date (called the maturity date). The underlying asset is assumed
to be stock for convenience. Take a European-style call option for example. An option holder will exercise the option (i.e. the
right to buy a stock) at the maturity date if the stock price S exceeds the exercise price X. Thus he can realize a payoff of S� X.
On the other hand, if S is below X at the maturity date, he can simply junk the call option. To meet different requirements of
financial markets, various options are developed. For example, an American-style option allows an option holder to exercise
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the option prior to maturity date. A path-dependent option is the option whose payoff depends nontrivially on the stock
price history. Asian options are path-dependent options since their payoffs depend on the average stock prices. They play
important rules in financial markets because their prices are less subject to price manipulation. However, it has been a
long-standing problem to price them efficiently and accurately [1].

There is no exact analytical pricing formula for Asian options. Approximate closed-form solutions are suggested in [2–8].
But most approximate analytical formulas lack the accuracy guarantees and even produce large pricing errors under certain
cases [9–11]. Some papers use Monte Carlo and related quasi-Monte Carlo methods [12–15]. But they produce probabilistic
results and are usually inefficient. Besides, the aforementioned approaches are hard to handle the American-style Asian
options.

Lattice methods and the related discretized partial-differential-equation approaches are more general than the aforemen-
tioned schemes because they can handle American-style options more easily. A lattice divides the time horizon of the option
into n discrete time steps and specifies the stock prices discretely at each time step. Take a 2-time-step CRR lattice [16] in
Fig. 1 as an example. (The details of the CRR lattice will be described later.) The time interval is evenly divided into 2 time
steps. The stock price at time step 0 is S0 (at node Nð0;0Þ). The stock price can either move up to S0u (at node Nð1; 0Þ) with
probability p or down to S0d (at node Nð1;1Þ) with probability 1� p at the first time step. Similarly, each stock price can
either move up or move down in subsequent time steps. The pricing results generated by the lattice (called the desired op-
tion values) converge to the theoretical option value as n!1 [17].

The difficulty to price Asian options with the lattice lies in its exponential nature: Consider the binomial random walk of
the stock price illustrated in Fig. 1. After n time steps, the history contains 2n possible price paths, each with its own average
stock price. As the payoff of the Asian option depends on the average stock price, there are 2n possible payoffs at time step n.
Up to now, the best algorithm to price an Asian option on a lattice exactly runs in subexponential time [18]. Its superpoly-
nomial nature forbids the use of very large n to approximate the theoretical option value.

To strike a balance between efficiency and accuracy, Hull and White limit the number of possible average stock prices at
each node of the lattice to be some manageable magnitude k [19]. These average stock prices are called representative aver-
ages for convenience. The option value for a missing average stock price at an arbitrary node is then estimated by interpo-
lation. This popular method is widely accepted [20–22]. However, Forsyth et al. show that the pricing results might not
converge due to accumulations of interpolation errors [23]. Roughly speaking, this is because the range of average stock
prices, defined as the range between the maximum and the minimum average stock prices, grows subexponentially in n.
To keep the pricing algorithm runs in polynomial time, the number of representative averages at each node must be a poly-
nomial function in n. Therefore, the distance between two representative averages and the interpolation errors grows explo-
sively. Aingworth et al. prove that a simple, exact pricing formula for European-style Asian options exists at a node of the
lattice if the average stock price exceeds a certain numerical bound [24]. (Their analysis of American-style Asian options
seems mistaken.) Their formula is useful in deriving polynomial-time algorithms with rigorous convergent proofs since
the interpolation method is now required in a small portion (that grows only polynomially in n) of the range of average stock
prices. Thus the interpolation error introduced at each node can be decreased with n by putting polynomially many repre-
sentative averages at that node. Aingworth et al. derive a Oðkn2Þ algorithm with a error bound of Oðn=kÞ, where k now de-
notes the average number of representative averages allocated at a node. Note that k can be varied for any desired trade-off
between time and accuracy. Dai et al. determine the number of representative average stock prices allocated at each node by
Lagrange multipliers so the accumulated interpolation error is minimized [25]. Their algorithm runs in Oðkn2Þ with an error
bound of Oð1=k2Þ. Thus they claim their algorithm runs in Oðn2:5Þ with a convergence rate Oðn�1Þ.

Unfortunately, Aingworth’s formula does not work for pricing American-style Asian options because of the need to
estimate the exercise boundary – a threshold of average stock price that determines whether the option is exercised imme-
diately – at each node. Dai and Kwok analyze the optimal exercise regions for both American Asian options and lookback
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Fig. 1. The binomial lattice model: (a) the stock price is placed above the node, where u and d denote the upward and the downward multiplication factors.
(b) The node name is above the node. The probability of reaching each node from the root is listed under the node.
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Fig. 2. Range bound and uncertainty e about the desired but unknown option value.
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options and find the nesting relations between the exercise regions of these options [26]. Then they analyze the asymptotic
behaviors of the exercise region surface and show whether the exercise region expands (or shrinks) with respect to the inter-
est rate, the dividend yield, and the time to maturity. But there is no rigorous error analysis in their paper. Up to now, rig-
orous error analysis for pricing American-style Asian options is even scarcer than that for European-style Asian options. To
address this problem, this paper proposes approximation algorithms that produce provable upper and lower bounds (called
range bounds) that bracket the desired option value. The range bound idea is previously adopted by [24,27,28] for pricing
European-style Asian options. The hope is that the desired option value becomes practically available when the upper bound
and the lower bound are essentially identical. Furthermore, the difference between the upper bound and the lower bound,
call it e, gives an upper limit on the uncertainty surrounding the desired option value (see Fig. 2). This paper modifies Dai’s
algorithm in [25] to serve the upper bound algorithm and proposes a lower bound algorithm by taking advantages of Jensen’s
inequality. The error e of the proposed range bound algorithm converges to 0 for European-style Asian options if Aingworth’s
formula is applied. To obtain accurate pricing algorithm for American-style Asian options, we first prove that there exists a
exercise boundary that separates the exercise and the non-exercise regions in a lattice model in Theorem 3.2. This boundary
plays a similar role as the surface of the exercise region in Dai and Kwok’s paper. Then the error e is reduced by using the
exercise boundary (estimated by the upper bound pricing algorithm) to play a similar role as Aingworth’s formula. Average
stock prices above the estimated exercise boundary will force the option to be exercised immediately, whose contribution to
the option value is known exactly and trivially computable. We circumvent the difficulty of finding the exact exercise bound-
ary with a way to estimate it while respecting the desired range bounds. It gives rise to a two-phase computational frame-
work in which phase one calculates the estimated exercise boundary and phase two apply the range-bound algorithm to a
portion of the range of average stock price. Thus phase two is expected to offer substantially more accurate results than if
phase one is not in place. The numerical results suggest that this two-phase range bound algorithm provides tight upper and
lower bounds that the desired option value is practically available.

This paper is organized as follows. Section 2 reviews required background knowledge for pricing Asian options on the
lattice. Section 3 proposes accurate and efficient two-phase range-bound algorithms for pricing both European-style and
American-style Asian options. Rigorous proofs for the proposed range-bound algorithms are given in Section 4. Numerical
results in Section 5 verify the accuracy of our algorithms. Section 6 concludes the paper.
2. Basic terms

Assume that an Asian option initiates at time 0 (in year) and matures at time T (in years). Define SðtÞ as the stock price at
year t. SðtÞ follows the continuous-time stock price dynamics
Sðt þ dtÞ ¼ SðtÞ exp½ðr � 0:5r2Þdt þ rdWt �; ð1Þ
where r, r, and Wt denote the risk-free interest rate, the volatility of the stock price, and the standard Wiener process,
respectively.

The payoff to exercise an Asian option at time s (s 6 T) depends on the average stock price from time 0 to time s defined

as As �
R s

0
SðtÞdt

s . Let X be the exercise price. The payoff to exercise an Asian call option at time s is
ðAs � XÞþ; ð2Þ
where ðaÞþ denotes maxða;0Þ. The theoretical option value is equal to expected discounted payoffs [29]. Thus the value of a
European-style Asian call option is
E½e�rTðAT � XÞþ� ð3Þ
since a European-style option can only be exercised at the maturity date. On the other hand, the value of an American-style
Asian call option is
max
s6T

E½e�rsðAs � XÞþ�; ð4Þ
where s is a random stopping time for exercising the option. This paper focuses on Asian call options; the extension to Asian
put options is straightforward.

The above problem can be numerically solved by discrete-time models like lattice models. A lattice partitions the time
between time 0 and time T into n equal-length time steps. The length of a time step Dt is therefore T=n. Let Si denote the
stock price at time step i, which corresponds to SðiDtÞ in the continuous-time model. Define a prefix sum of a price path from
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time step 0 to time step j as
Pj

i¼0Si. The average stock price is then AðjÞ �
Pj

i¼0
Si

jþ1 : The desired option values of European-style
and American-style Asian options evaluated by lattice are
E½e�rTðAðnÞ � XÞþ� ð5Þ
and
max
j6n

E½e�jrDtðAðjÞ � XÞþ�; ð6Þ
respectively. Note that Eqs. (5) and (6) converge to Eqs. (3) and (4), respectively, as n!1 [17].
This paper adopts the CRR lattice model suggested in [16]. A 2-time-step CRR lattice is depicted in Fig. 1a. In the CRR lat-

tice model, Siþ1 equals Siu with probability p and Sid with probability 1� p, where d ¼ 1=u. The probability p for an up move

is set to ðerDt � dÞ=ðu� dÞ, where u ¼ er
ffiffiffiffi
Dt
p

. The stock price at time step i that results from j down moves and i� j up moves
therefore equals S0ui�jdj. For convenience, the lattice nodes are labelled in Fig. 1b. Let node Nði; jÞ stand for the node at time
step i reachable from the root with j cumulative down moves. Its associated stock price is S0ui�jdj. The stock price can move
from Nði; jÞ to Nðiþ 1; jÞ with probability p and to Nðiþ 1; jþ 1Þ with probability 1� p. Node Nði; jÞ can therefore be reached

from the root node with probability i
j

� �
pi�jð1� pÞj.

Evaluating Eqs. (5) and (6) can be done by backward induction as follows. The option value at the maturity date is
ðAT � XÞþ. Let ði; j;AÞ denote the bucket with an average stock price A (from time step 0 to time step i) at node Nði; jÞ and
vði; j;AÞ denote the corresponding option value. If this stock price moves up to node Nðiþ 1; jÞ at time step iþ 1, the average

stock price becomes A0 � ðiþ1ÞAþSuiþ1�jdj

iþ2 . If the stock price moves down to node Nðiþ 1; jþ 1Þ, the average stock price becomes

A00 � ðiþ1ÞAþSui�jdjþ1

iþ2 . For pricing European-style options, the desired option value vði; j;AÞ then equals
vði; j;AÞ ¼ e�rDt½p� vðiþ 1; j;A0Þ þ ð1� pÞ � vðiþ 1; jþ 1;A00Þ�: ð7Þ
On the other hand, an American-style option holder maximizes his profit by choosing whether to hold the option (with the
value in Eq. (7)) or to exercise the option (with the payoff ðA� XÞþ). Thus the desired option value vði; j;AÞ for American-style
options at ði; j;AÞ is
vði; j;AÞ ¼ e�rDt max ðA� XÞþ; p� vðiþ 1; j;A0Þ þ ð1� pÞ � vðiþ 1; jþ 1;A00Þ
� �� �

: ð8Þ
The above formula can be applied inductively from time step n� 1 back to time step 0 with vð0;0; S0Þ at the root node giving
the desired price under the lattice model.

The aforementioned algorithm is computationally intractable since there are i
j

� �
price paths that reach node Nði; jÞ and

each such path gives rise to a distinct average price (bucket). The sum of number of buckets of the nodes at time step i isPi
j¼0

i
j

� �
¼ 2i. Thus Eq. (7) (or Eq. (8)) should be evaluated

Pn
i¼02i times, which leads the pricing algorithm runs in exponen-

tial time. To address this problem, Hull and White limits the number of buckets at each node to a manageable magnitude
[19]. When bucket ði; j;AÞ is missing, its corresponding option value is estimated by linear interpolation from its two nearest
allocated buckets ði; j;A�Þ and ði; j;AþÞ via:
vði; j;AÞ ¼ A� A�

Aþ � A�
vði; j;AþÞ þ Aþ � A

Aþ � A�
vði; j;A�Þ; ð9Þ
where A� < A < Aþ. The aforementioned method may not converge due to accumulations of interpolation error [23]. Note
that the maximum of the average stock price at time step n i:e: SþSuþ���þSun

n ¼ Sðunþ1�1Þ
nðu�1Þ

	 

grows subexponentially in n. Indeed,

the range between the maximum and the minimum average stock price also grows subexponentially in n. However, the
number of representative averages at each node must grow polynomially in n to make the pricing algorithm run in polyno-
mial time. Thus the distance between two representative averages (like Aþ and A� in Eq. (9)) and the interpolation error
grows explosively with n.

Aingworth et al. [24] derive a simple pricing formula for European-style Asian options for a node Nði; jÞ at the lattice if the
average stock price exceeds a certain amount as follows:

Theorem 2.1. Note that the corresponding prefix sum for bucket ði; j;AÞ is ðiþ 1ÞA. If the prefix sum is larger than ðnþ 1ÞX by �.
Then the option value vði; j;AÞ equals

� ½�þ ðn� iÞS0ui�jdj�=ðnþ 1Þ when r ¼ 0, and
� e�rT �þ S0ui�jdjerDt 1�eðn�‘ÞrDt

1�erDt

h i
=ðnþ 1Þ when r > 0.

This formula limits the use of the interpolation (i.e. Eq. (9)) on a smaller range of the average stock price: ½0; ðnþ1ÞX
iþ1 � since

vði; j;AÞ can be exactly solved by aforementioned formulas if A > ðnþ1ÞX
iþ1 . They then derive an Oðkn2Þ algorithm with an error

bound of Oðn=kÞ, where k now denotes the average number of representative averages allocated at a node.
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Dai et al. determine the number of representative average stock prices allocated at each node by Lagrange multipliers so
the accumulated interpolation error is minimized [25]. Let ki;j stand for the number of buckets allocated at node Nði; jÞ. The
total number of buckets is equal to

P
06j6i6nki;j � kðn2=2Þ as there are approximately n2=2 nodes. These ki;j buckets (the aver-

age stock prices) shall divide the range ½0; ðnþ 1ÞX=ðiþ 1Þ� evenly.
For example, let bði; j; ‘Þ denote the ‘th bucket at node Nði; jÞ. Then the corresponding average stock price and the prefix

sum for this bucket are ‘ðnþ1ÞX
ðiþ1Þkij

and ‘ðnþ1ÞX
kij

, respectively.3 Note that the difference between two average stock prices of two adja-

cent buckets is ðnþ1ÞX
ðiþ1Þki;j

6
2nX
ðiþ1Þki;j

. The linear interpolation error to estimate an arbitrary bucket at node Nði; jÞ by Eq. (9) is

bounded above by Mð2nX=iki;jÞ2, where the constant M denotes the upper bound of j @
2vði;j;AÞ
@A2 j for 0 6 j 6 i 6 n [23]. Thus

the accumulated interpolation error is bounded above by
3 The
X
06j6i6n

i

j

� �
pi�jð1� pÞjMð2nX=iki;jÞ2: ð10Þ
The aforementioned formula can be minimized by Lagrange multipliers by setting
ki;j ¼
n2k
2
� ½Bði; j; pÞ=i2�1=3P

06m6l6n½Bðl;m; pÞ=l2�1=3 ; ð11Þ
where Bði; j; pÞ � ðijÞpi�jð1� pÞj. They find that the error converges at a rate of Oðk�2Þ.

3. The range bound algorithm

The aforementioned algorithms do not work well for American-style Asian options since Theorem 2.1 is not valid. This
section will propose approximation algorithms that produce provable upper and lower bounds (called range bounds) that
bracket the desired option value. We will first modify Dai’s algorithm [25] to price American-style Asian options and then
prove that the resulting algorithm Up1 overestimates the desired option values. To further reduce the pricing error, the early
exercise property for American-style options is used to tighten the range of average stock price (or equivalently, the range of
prefix sum for ease of later discussion) that requires interpolation. We use Up1 to tighten the range of prefix sum that re-
quires interpolation and apply the same algorithm to the remaining portion of prefix sum. The resulting algorithm, called
Up2, provides a tighter upper bound for the desired option value. On the other hand, the lower bound algorithm DownE

for European-style Asian option is constructed by taking advantages of Jensen’s inequality. The lower bound algorithm for
American-style Asian options DownA is then constructed by modifying DownE.

3.1. Some useful terminologies

Some terms are introduced here for ease of later discussions. Let Rmaxði; jÞ and Rminði; jÞ denote the largest and the small-
est prefix sums among all the paths that end at node Nði; jÞ. As illustrated in Fig. 3, Rmaxði; jÞ is achieved by the path that
makes i� j up moves followed by j down moves, whereas Rminði; jÞ is achieved by the path that makes j down moves fol-
lowed by i� j up moves.

Thus we have
Rmaxði; jÞ ¼ S0 þ S0uþ � � � þ S0ui�j þ S0ui�jdþ � � � þ S0ui�jdj

¼ S0
ui�jþ1 � 1

u� 1
þ S0ui�jd

dj � 1
d� 1

¼ S0
eði�jþ1Þr

ffiffiffiffiffiffi
T=n
p

� 1

er
ffiffiffiffiffiffi
T=n
p

� 1
þ S0eði�jÞr

ffiffiffiffiffiffi
T=n
p

e�r
ffiffiffiffiffiffi
T=n
p e�jr

ffiffiffiffiffiffi
T=n
p

� 1

e�r
ffiffiffiffiffiffi
T=n
p

� 1
ð12Þ
and
Rminði; jÞ ¼ S0 þ S0dþ � � � þ S0dj þ S0u1dj þ � � � þ S0ui�jdj

¼ S0
djþ1 � 1

d� 1
þ S0dju

ui�j � 1
u� 1

¼ S0
e�ðjþ1Þr

ffiffiffiffiffiffi
T=n
p

� 1

e�r
ffiffiffiffiffiffi
T=n
p

� 1
þ S0e�jr

ffiffiffiffiffiffi
T=n
p

er
ffiffiffiffiffiffi
T=n
p eði�jÞr

ffiffiffiffiffiffi
T=n
p

� 1

er
ffiffiffiffiffiffi
T=n
p

� 1
: ð13Þ
The prefix-sum range (or the range of average stock price) at node Nði; jÞ is ½Rminði; jÞ;Rmaxði; jÞ� or Rminði;jÞ
iþ1 ; Rmaxði;jÞ

iþ1

h i	 

. Note that

the prefix-sum range increases as the volatility r and the time to maturity T increase.
Then we define the ideal lattice, a critical concept for deriving range bounds. The ideal lattice has an uncountably infinite

number of buckets. A bucket exists at node Nði; jÞ for each real number s 2 ½Rminði; jÞ;Rmaxði; jÞ�. Any prefix sum encountered
root node Nð0;0Þ is a special case with k00 ¼ 1. The average stock price and the prefix sum for this bucket is S0.
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Fig. 3. The largest and the smallest prefix sums for node Nði; jÞ. The node name is above the node and the stock price is under the node.
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by the approximation pricing algorithms must correspond to some bucket at the same node in the ideal lattice. Practical lat-
tices refer to the necessarily finite-sized, bucket-based lattices used by approximation pricing algorithms.

For any bucket b, we use Pb and Eb to denote its associated prefix sum and the option value for brevity. Because the option
value for bucket b evaluated by the ideal lattice may differ from that in the practical lattice, the superscripts I and P are added
to distinguish them. The option value at bucket b in the ideal lattice and that in the practical lattice, if b exists, become EI

b and
EP

b , respectively.
Because the ideal lattice contains any possible average stock prices, no interpolation is required in the ideal lattice. Thus

the value computed by the ideal lattice equals the desired option value, which is denoted by DesiredValue for
convenience.

3.2. The first upper-bound algorithm: Up1

The algorithm for pricing European-style Asian options proposed in [25] allocate buckets at the prefix sum range
½0; ðnþ 1ÞX�. My algorithm for American-style Asian options adopt ½Rminði; jÞ;Rmaxði; jÞ� instead of ½0; ðnþ 1ÞX� for the pre-
fix-sum range of any arbitrary node Nði; jÞ. This change is needed because a prefix sum exceeding ðnþ 1ÞX no longer results
in any easily calculated option evaluation formula as in Theorem 2.1 for American-style options.

Because the prefix sum range for each node of the lattice have changed, the number of buckets allocate to each node must
vary to minimize the accumulated interpolation error. Define the range of prefix sum of node Nði; jÞ as
Rij � Rmaxði; jÞ �Rminði; jÞ:
Thus the interpolation error to estimate an arbitrary bucket at node Nði; jÞ is bounded above by MðRij=iki;jÞ2. The accumulated
interpolation error is then derived by modifying Eq. (10) as follows:
X
06j6i6n

i

j

� �
pi�jð1� pÞjMðRij=iki;jÞ2:
The accumulated interpolation errors can be minimized by Lagrange multipliers (like Eq. (11)) by setting
ki;j ¼
n2k
2
�

Bði; j; pÞRij=i2
h i1=3

P
06m6l6n Bðl;m; pÞRlm=l2

h i1=3 : ð14Þ
Our Up1 algorithm bases on the Dai’s algorithm [25] with two straightforward modifications. First, the range of prefix sums
and the bucket allocation scheme are changed as mentioned above. Second, early exercise is considered at each bucket. That
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is, the backward induction formula for American-style options Eq. (8) is used instead of Eq. (7). Note that rigorous conver-
gence analysis is not available for American-style Asian options. This is because the prefix sum range of node Nði; jÞ grows
subexponentially in i. When the number of time steps n (of the lattice) increases, the prefix-sum ranges of newly added
nodes grows subexponentially in n. The interpolation errors introduced by newly added nodes do not decrease with n unless
the number of buckets allocated at these nodes also grows subexponentially in n. Numerical experiments in Section 5 also
suggests that pricing European-style Asian options without reducing the prefix-sum ranges by Theorem 2.1 results in con-
vergence problem.
3.3. The second upper-bound algorithm: Up2

As a rule, the smaller the prefix-sum ranges, the better the approximation. Note that the payoff of an early-exercise buck-
et b at time step m is simply Pb=ðmþ 1Þ � X, such buckets can be removed from the prefix-sum ranges, thus limiting the pre-
fix-sum ranges further. But how are the early-exercise buckets distributed within the prefix-sum range? Before answering
this key question, we state a useful lemma below.

Lemma 3.1 (Contraction lemma). Suppose that Pb1
> Pb2

at buckets b1 and b2 of the same node in the ideal lattice at time step
m. Then
4 Thi
Pb1

mþ 1
� Pb2

mþ 1
P EI

b1
� EI

b2
:

Proof. See Appendix A. �

The following theorem states that there exists a prefix sum at each node in the ideal lattice that separates the early-exer-
cise buckets from the non-early-exercise ones.

Theorem 3.2. Suppose that Pb1
> Pb2

at buckets b1 and b2 of the same node in the ideal lattice at time step m. Assume that it is
optimal to exercise the option at bucket b2. Then it is optimal to exercise the option at b1.

Proof. It can be claimed that
0 P
Pb1

mþ 1
� X � EI

b1
P

Pb2

mþ 1
� X � EI

b2
¼ 0:
That the option value is at least the exercise value proves the first inequality.4 The second inequality is by Lemma 3.1. The
last equality holds because b2 is an early-exercise bucket. As EI

b1
¼ Pb1=ðmþ 1Þ � X, bucket b1 is an early-exercise bucket. �

The prefix sum at each node of the ideal lattice that separates the early-exercise buckets from the non-early-exercise ones
is called the optimal exercise boundary. The optimal exercise boundary can be estimated by Up1. Early-exercise buckets can
be pruned, which tightens the prefix-sum range at each node Nði; jÞ by lowering Rmaxði; jÞ to the estimated exercise boundary.
The option value of an early-exercise bucket is simply the average stock price minus the strike price X.

We now present a two-phase algorithm, called Up2, which incorporates the idea of tightening prefix-sum ranges with the
estimated exercise boundary. Phase one uses Up1 to estimate the exercise boundary at each node. This is done by inspecting
each node for early-exercise buckets. The prefix-sum range is then tightened by lowering the maximum prefix sum to the
lowest prefix sum whose corresponding bucket is exercised early. Phase two runs Up1 on the tightened prefix-sum ranges.
Note that the number of buckets allocated in each node (i.e. kij) must be recalculated with Eq. (14) because ranges Rij have
been reduced in phase one. A bucket b at time step i with a prefix sum Pb on or above the exercise boundary will be exercised
in phase two (with the option value Pb=ðiþ 1Þ � X).

Although Up2 allocates the same number of buckets as Up1, its buckets cover more limited prefix-sum ranges. This has
the effects of raising the ‘‘resolution” of the prefix-sum range at each bucket and thus the pricing accuracy. In fact, the exer-
cise boundary estimated by Up1 is not useful only to Up2 in the paper. It in fact gives rise to a general two-phase compu-
tational framework, in which any upper-bound algorithm can be substituted in phase two to give a more accurate two-
phase upper-bound algorithm (see Section 4).
3.4. The lower-bound algorithm

We will first develop a lower-bound algorithm for pricing European-style Asian option DownE by taking advantages of
Jensen’s inequality. The algorithm for American-style Asian options (DownA) can be viewed as a two-phase algorithm:
The first phase tightens the prefix-sum ranges by the estimated exercise boundary computed by UpA and the second phase
runs DownE on the tightened prefix-sum ranges.
s can be observed in Eq. (8). The option value vði; j;AÞ is larger than or equal to the exercise value A� X.
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3.4.1. The lower-bound algorithm for European-style options: DownE
The core idea of our lower bound algorithm is to use
Fig. 4.
for the
e�rTðE½AðnÞ � X�Þþ
to approximate the desired option value (see Eq. (5)). The approximation underestimates the option value because of Jen-
sen’s inequality. To improve accuracy, our algorithm adds bucketing to the above idea.

To implement the idea with bucketing, the prefix sum for bucket bði; j; ‘Þwill no longer be a fixed value ‘ðnþ1ÞX
kij

. Instead, it is

calculated explicitly to hold the average prefix sum of all the paths covered by bucket bði; j; ‘Þ with range ‘ðnþ1ÞX
kij

; ð‘þ1Þðnþ1ÞX
kij

h 

.

Instead of the backward induction method used in upper bound algorithms like Eqs. (7) and (8), the lower bound algorithm
uses forward induction method described as follows. For convenience, let sði; j; ‘Þ be the average prefix sum of bucket bði; j; ‘Þ,
pði; j; ‘Þ be the probability of reaching bði; j; ‘Þ from the root node, and tsði; j; ‘Þ and tpði; j; ‘Þ be temporal storages for calculating
the average prefix sum and the probability for bði; j; ‘Þ. The computation begins at the bucket bð0;0;0Þwith pð0; 0;0Þ ¼ 1 and
sð0;0;0Þ ¼ S0. The average prefix sums and the probabilities of the buckets at time step iþ 1 are calculated by taking advan-
tages of those information of the buckets at time step i as follows. First, all temporal storages for the buckets at time step
iþ 1 are set to zero. Next, adding the ‘‘prefix sum and the probability” contribution for each bucket bði; j; ‘Þ with prefix
sum smaller than ðnþ 1ÞX to the following buckets at time step iþ 1. Specifically, at node Nði; jÞ with stock price S0ui�jdj,
the paths collected at bucket bði; j; ‘Þ are expected to move up to Nðiþ 1; jÞ with prefix sum sði; j; ‘Þ þ S0ui�jþ1dj and down
to Nðiþ 1; jþ 1Þ with prefix sum sði; j; ‘Þ þ S0ui�jdjþ1. The up movement from bði; j; ‘Þ goes to the bucket
b iþ 1; j;
sði; j; ‘Þ þ S0ui�jþ1dj

ðnþ 1ÞX=kiþ1;j

$ % !
: ð15Þ
Thus the temporal storages ts and tp for this bucket are updated by adding p � pði; j; ‘Þ � ½sði; j; ‘Þ þ S0ui�jþ1dj� and p � pði; j; ‘Þ to
them, respectively. Similarly, the down movement from bði; j; ‘Þ goes to the bucket
b iþ 1; jþ 1;
sði; j; ‘Þ þ S0ui�jdjþ1

ðnþ 1ÞX=kiþ1;jþ1

$ % !
: ð16Þ
Thus the temporal storages ts and tp for this bucket are updated by adding ð1� pÞ � pði; j; ‘Þ � ½sði; j; ‘Þ þ S0ui�jdjþ1� and
ð1� pÞ � pði; j; ‘Þ to them, respectively. After the above is done for every bucket at time step i, the probability and the average
prefix sum for every bucket bðiþ 1; j; ‘Þ can then be calculated by pðiþ 1; j; ‘Þ � tpðiþ 1; j; ‘Þ and
sðiþ 1; j; ‘Þ � tsðiþ 1; j; ‘Þ=pðiþ 1; j; ‘Þ, respectively. The aforementioned procedure can be applied forwardly from time step
1 to time step n. The option value for the buckets with prefix sums at or above ðnþ 1ÞX is computed by Theorem 2.1. The
option value estimated by DownE is therefore
X

b2B

pðbÞvðbÞ;
where B denotes the set of buckets with prefix sum larger than ðnþ 1ÞX in DownE, pðbÞ denotes the probability of bucket b,
and vðbÞ denotes the option value of b computed by Theorem 2.1.

To describe the core idea of our lower bound algorithm, a brief example is illustrated in Fig. 4 without the help of Theorem
2.1 and bucketing (i.e. each node has only one bucket) for simplicity. Take node E for example. Its average prefix sum is cal-
culated by adding up the contributions of the price path A–B–E and the A–C–E. The result (stored in tsð2;1;0Þ) is
ð1� pÞpðS0 þ S0uþ S0Þ þ pð1� pÞðS0 þ S0dþ S0Þ ¼ pð1� pÞ½ðS0 þ S0uþ S0Þ þ ðS0 þ S0dþ S0Þ�: ð17Þ
DownE without bucketing. The stock prices are listed above the nodes. The average prefix sums are listed to the right of the nodes. The probabilities
average prefix sums are listed under the nodes.
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Its associated probability pð2;1;0Þ is pð1� pÞ þ ð1� pÞp ¼ 2pð1� pÞ. Finally, the average prefix sum is computed by dividing
Eq. (17) by the associated probability (i.e. tsð2;1;0Þ

pð2;1;0Þ) to obtain
½ðS0 þ S0uþ S0Þ þ ðS0 þ S0dþ S0Þ�=2:
The average prefix sum and the probability for each node of the lattice are given in Fig. 4. Finally, the option value computed
by DownE (without the help of Theorem 2.1) is hence
e�rT p2 ðS0 þ S0uþ S0u2Þ � X
� �þ þ 2pð1� pÞ ðS0 þ S0uþ S0Þ þ ðS0 þ S0dþ S0Þ

2
� X

� �þ


þð1� pÞ2 ðS0 þ S0dþ S0d2Þ � X
n oþ�

:

3.4.2. The lower-bound algorithm for American-style options: DownA
DownA is based on DownE and contains two phases. Phase one is identical to Up2’s phase one. In other words, it calls upon

the upper-bound algorithm Up1 to yield an exercise boundary, and the prefix-sum ranges are subsequently tightened. Phase
two runs DownE over the tightened prefix-sum ranges. A bucket b with a prefix sum on or above the exercise boundary will
be exercised early with value Ab � X, where Ab denotes the average stock price of the bucket b. The option value estimated by
DownA is simply the sum of the values contributed by the early-exercise buckets and by the buckets with average stock price
larger than X at maturity date. These buckets are called terminal buckets for simplicity.
3.5. Complexity analysis

We now prove that the running time of our range bound algorithm is Oðn2kÞ, where n denotes the number of time steps in
a lattice model and k denotes the average number of buckets allocated at a node. Recall that ki;j buckets are allocated at node
Nði; jÞ. Thus the total number of buckets is equal to

P
06j6i6nki;j � kðn2=2Þ as there are approximately n2=2 nodes.

The upper-bound algorithm Up2 contains two phases. The first phase runs the algorithm Up1 to estimate the exercise
boundary at each node. Up1 will first evaluate the number of buckets allocated at each node by Eq. (14). This costs Oðn2Þ
time since there are about n2=2 nodes in the lattice. Then it evaluates the option value for each bucket by either Eq. (2) (only
for the buckets at the maturity date) or Eq. (8). It costs Oðn2kÞ time since there are about kðn2=2Þ buckets in the lattice. The
time complexity of the first phase is then Oðn2 þ n2kÞ ¼ Oðn2kÞ. The second phase runs Up1 again on the tightened prefix-sum
ranges generated by the first phase and it costs Oðn2kÞ time, too. Thus the overall time complexity of Up2 is Oðn2kÞ.

The lower-bound algorithm DownA also contains two phases. The first phase runs the algorithm Up1 and it costs Oðn2kÞ
time. The second phase runs the algorithm DownE over the tightened prefix-sum range. The prefix sum and the probability
contribution of each bucket are added to the following buckets (see Eqs. (15) and (16)) at the next time step, and these cal-
culations can be done in constant time. The second phase runs in Oðn2kÞ time since there are about kðn2=2Þ buckets in the
lattice. Thus the overall time complexity of DownA is Oðn2kÞ, too.
4. The range-bound proofs

Proofs will now be given to show that the proposed algorithms provide the claimed lower or upper bounds for the desired
option value. As the lower-bound result for DownA is independent of how the exercise boundary is determined, it will be
given first.

Theorem 4.1. DownA 6 DesiredValue.

Proof. The desired option value equals the discounted expected payoff of the terminal buckets in the ideal lattice when buck-
ets are exercised optimally (see Eq. (6)). It therefore suffices to prove that DownA produces an option value that does not
exceed the one given by the ideal lattice with some exercise strategy which is not necessarily optimal. When a bucket is ter-
minal, all the paths that pass through it terminate there. Let }b be the set of paths terminated at terminal bucket b at time tb.
Every path in }b has length tb. Now we use those }b to define an exercise strategy on the ideal lattice: Each path in }b on the
ideal lattice is terminated at the same node where bucket b resides. In other words, the ideal lattice uses the same early-exer-
cise strategy as DownA. This exercise strategy produces an option value A that cannot exceed the desired option value
because it may not be optimal.

Now we complete the proof by showing that DownA generates an option value that cannot exceed A. Fix any terminal
bucket b. The contribution of }b to the option value A is
e�rtb
X

q¼ðS0 ;S1 ;...;Stb
Þ2}b

prob½q� � 1
tb þ 1

Xtb

i¼0

Si � X

( )þ
: ð18Þ
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Recall that each bucket in DownA stores the average prefix sum of all the paths covered by it. Hence the contribution of }b to
DownA’s option value is5
5 Not
average
e�rtb
X
q2}b

prob½q�
( ) P

ðS0 ;S1 ;...;Stb
Þ2}b

1
tbþ1

Ptb
i¼0Si

j}bj
� X

( )þ
;

which is smaller than (18) by Jensen’s inequality. By summing the contributions over all terminal buckets b, we can conclude
that DownA gives a lower bound on A. �

The next lemma says that the Asian option value is convex with respect to the prefix sum in the ideal lattice. Before intro-
ducing this lemma, we will discuss an importance concept in finance: arbitrage. Arbitrage denotes the situation that one can
earn extra profit without suffering any risk. Financial experts argue that the arbitrage opportunity can not exist for long due
to self-beneficial nature of human. The following lemma will show that under certain assumption, one can construct an arbi-
trage portfolio to earn money (extra profit) at the option initial date but not to suffer any loss (or risk) in the future. Thus, this
assumption must not hold due to no arbitrage nature of financial markets. Similar arguments can be widely found in finan-
cial text books like [30].

Lemma 4.2 (Convexity lemma). Let b1, b2, and b3 be buckets at node Nði; jÞ in the ideal lattice with Pb1
> Pb2

> Pb3
. If k satisfies

Pb2
¼ kPb1

þ ð1� kÞPb3
, then
EI
b2
6 kEI

b1
þ ð1� kÞEI

b3
:

Proof. We define the American-style bonus Asian option AðP; iÞ that initiates at time step i to facilitate the proof. It pays
P þ R
iþ ‘þ 1

� X
� �þ
if it is exercised at time step iþ ‘, where R equals the prefix sum from time step iþ 1 to time step iþ ‘. The option AðP; iÞ is
identical to an Asian option at time step i if P is set to the prefix sum of the stock price from time step 0 to time step i. Thus
the values of these two options are equal.

Consider three bonus Asian options AðPb1
; iÞ, AðPb2

; iÞ, and AðPb3
; iÞ initiated at node Nði; jÞ and matured at time step n. By

the above discussions, the value of option AðPbk
; iÞ equals EI

bk
, k ¼ 1;2;3. Assume that EI

b2
> kEI

b1
þ ð1� kÞEI

b3
instead and we

proceed to construct an arbitrage portfolio. Assemble a portfolio of long k unit of AðPb1
; iÞ, long 1� k unit of AðPb3

; iÞ, and short
1 unit of AðPb2

; iÞ. The initial income EI
b2
� kEI

b1
� ð1� kÞEI

b3
is positive. From that point on, whenever AðPb2

; iÞ is exercised at
time step iþ ‘, we exercise AðPb1

; iÞ and AðPb3
; iÞ to generate nonnegative cash flow as follows:
� Pb2
þ R

iþ ‘þ 1
� X

� �þ
þ k

Pb1
þ R

iþ ‘þ 1
� X

� �þ
þ ð1� kÞ Pb3

þ R
iþ ‘þ 1

� X
� �þ

P 0:
If AðPb2 ; iÞ is never exercised, we junk AðPb1 ; iÞ and AðPb3 ; iÞ at time step n to generate zero cash flow. �

We next establish that Up1 is an upper-bound algorithm.

Theorem 4.3. DesiredValue 6 Up1 .

Proof. For every bucket b, we prove that EI
b 6 EP

b by induction, where the practical lattice here refers to the lattice con-
structed by Up1. The theorem holds at time step n as the option value equals fPb=ðnþ 1Þ � Xgþ at any bucket b. So
EI

b 6 EP
b at time step n. The induction hypothesis is that EI

b 6 EP
b for any bucket b in the practical model at time step t. We

next show that this remains true at time step t � 1 for t P 1.
Consider any bucket b in the ideal lattice at time step t � 1. Let the upward and downward movements from bucket b lead

to buckets uðbÞ and dðbÞ, respectively. But buckets uðbÞ and dðbÞ may not exist in the practical lattice. Let bucket uðbÞ be
sandwiched between buckets uðb1Þ and uðb2Þ in the practical lattice. With k satisfying
PuðbÞ ¼ kPuðb1Þ þ ð1� kÞPuðb2Þ;
we have
EI
uðbÞ 6 kEI

uðb1Þ þ ð1� kÞEI
uðb2Þ 6 kEP

uðb1Þ þ ð1� kÞEP
uðb2Þ ¼ EP

uðbÞ:
The first inequality is by Lemma 4.2, and the second inequality is by the induction hypothesis. The equality holds because
Up1 computes EP

uðbÞ as the linear interpolation of EP
uðb1Þ and EP

uðb2Þ with the said weights (see Eq. (9)). By the same argument,
EI

dðbÞ 6 EP
dðbÞ. We next consider three cases.
e that any path ending up at the same bucket bði; j; ‘Þ carries the same probability pi�jð1� pÞj . Thus the average prefix sum is simple the arithmetic
of those said prefix sums.
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Case 1: Suppose that b is not an early-exercise bucket in both lattices. Then

EI
b ¼ ½pEI

uðbÞ þ ð1� pÞEI
dðbÞ�e�rDt

6 ½pEP
uðbÞ þ ð1� pÞEP

dðbÞ�e�rDt ¼ EP
b:

Case 2: Suppose that b is an early-exercise bucket in the practical lattice. Then

½pEI
uðbÞ þ ð1� pÞEI

dðbÞ�e�rDt
6 ½pEP

uðbÞ þ ð1� pÞEP
dðbÞ�e�rDt

6 ðPb=tÞ � X:

So it is also optimal to exercise b in the ideal lattice. The option values at b are identical in both lattices.
Case 3: Suppose that b is an early-exercise bucket in the ideal lattice but not an early-exercise bucket in the practical

lattice. Then, trivially, EI
b ¼ ðPb=tÞ � X < EP

b .

Hence, EI
b 6 EP

b in all cases and the induction step is complete. �

Theorem 4.3 holds for a large class of algorithms, not just Up1. This is because the proof only requires that the option
value at a non-existing bucket be linearly interpolated from the option values of its two bracketing buckets. Neither the
number of buckets allocated per node nor the way the buckets are distanced in the prefix-sum range matters. It follows that
all popular approximation algorithms that follow Hull and White’s algorithm [19] with linear interpolation (see Eq. (9)) are
upper-bound algorithms.

Corollary 4.4. The approximation algorithm that follows Hull and White’s algorithm [19] with linear interpolation is an upper-
bound algorithm.

The next result states a general property that the exercise boundary determined by Up1 satisfies.

Corollary 4.5. A bucket with a prefix sum equal to or larger than the exercised boundary determined by Up1 must be an early-
exercise bucket in the ideal lattice.

Proof. By case 2 in the proof of Theorem 4.3, an early-exercise bucket under Up1 must also be an early-exercise bucket in the
ideal lattice. Theorem 3.2 completes the proof. �

The above corollary implies that the exercise boundary determined by Up1 cannot be lower than the exercise boundary of
the ideal lattice.

In fact, any upper-bound algorithm can be substituted in phase two to produce a new two-phase upper-bound algorithm.
Because this two-phase algorithm takes advantage of the tightened prefix-sum ranges made possible by the exercise bound-
ary estimated in phase one, it should outperform the original one-phase algorithm.

Theorem 4.6. An upper-bound algorithm that uses the estimated exercise boundary given by Up1 remains an upper-bound
algorithm as long as it works on the same lattice.

Proof. If bucket b lies above the tightened prefix-sum range, then EP
b ¼ EI

b because b must be an early-exercise bucket in both
the practical and the ideal lattices by Corollary 4.5. If bucket b lies within the tightened prefix-sum range, then EI

b 6 EP
b

because of the algorithm being an upper-bound one and induction. �

We finally prove that Up2 is an upper-bound algorithm.
Table 1
Pricing European-Style Asian options with tightened prefix-sum ranges. The data are: S0 ¼ X ¼ 100 and r ¼ 10% per annum. r, T, and n denote the volatility of
the stock price, time to maturity, and the number of time steps, respectively. The average number of buckets k allocated at each node is set to n. Dai denotes
Dai’s algorithm in [25]. Convergence Order represents the experimental convergence orders of the pricing errors.

r T n DownE Dai Pricing error Convergence order

10% 0.25 50 1.800870 2.175705 0.374835 –
100 1.839875 1.932832 0.092957 2.011620
200 1.847834 1.870414 0.022580 2.041518
400 1.850455 1.855982 0.005527 2.030476

50% 1.00 50 13.179130 13.210789 0.031659 –
100 13.193776 13.202119 0.008343 1.923977
200 13.200312 13.202382 0.002070 2.010935
400 13.203293 13.203823 0.000530 1.965566

50% 5.00 50 28.386460 28.395814 0.009354 –
100 28.395902 28.398327 0.002425 1.947598
200 28.400568 28.401189 0.000620 1.967644
400 28.402879 28.403038 0.000159 1.963241

100% 1.00 50 23.407397 23.422099 0.014702 –
100 23.434382 23.438502 0.004120 1.835296
200 23.447782 23.448835 0.001053 1.968138
400 23.454417 23.454680 0.000263 2.001370



Table 2
Pricing European-Style Asian Options without tightening the prefix-sum ranges. The setup is identical to Table 1 except that the average number of buckets k
allocated at each node is set to 8n.

r T n DownE Dai Dai� DownE

10% 0.25 50 1.848515 1.848533 0.000018
100 1.850035 1.850044 0.000009
200 1.850809 1.850813 0.000004
400 1.851199 1.851201 0.000002

50% 1.00 50 13.185396 13.185639 0.000243
100 13.195530 13.195701 0.000171
200 13.200738 13.200898 0.000160
400 13.203354 13.203612 0.000258

50% 5.00 50 28.387935 28.389159 0.001224
100 28.395811 28.398385 0.002574
200 28.397866 28.413588 0.015722
400 28.370135 28.920558 0.550423

100% 1.00 50 23.410075 23.411095 0.001020
100 23.434776 23.436654 0.001878
200 23.446473 23.453710 0.007237
400 23.442168 23.561833 0.119665

Table 3
Pricing European-Style Asian options without tightening the prefix-sum ranges. The setup is identical to Table 1 except that the average number of buckets k
allocated at each node is set to n2.

r T n DownE Dai Dai� DownE

10% 0.25 20 1.844141 1.844153 0.000012
40 1.847774 1.847778 0.000004
80 1.849653 1.849653 0
160 1.850615 1.850615 0

50% 1.00 20 13.157475 13.157532 0.000057
40 13.180538 13.180552 0.000014
80 13.192998 13.193001 0.000003
160 13.199459 13.19946 0.000001

50% 5.00 20 28.367295 28.367459 0.000164
40 28.384357 28.384422 0.000065
80 28.394272 28.394316 0.000044
160 28.399594 28.399629 0.000035

100% 1.00 20 23.339957 23.340255 0.000298
40 23.398085 23.398151 0.000066
80 23.428907 23.428931 0.000024
160 23.444787 23.444806 0.000019
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Corollary 4.7. DesiredValue 6 Up2 .

Proof. It is immediate from Theorems 4.3 and 4.6. �
5. Numerical results

Tightening the prefix-sum ranges that require interpolation is a key factor to obtain a convergent lattice algorithm for
pricing Asian options as illustrated in Tables 1 and 2. Table 1 illustrates convergent pricing results for pricing European-style
Asian options by tightening the prefix-sum ranges by Theorem 2.1. Dai’s algorithm [25] serves as the upper bound algorithm
and DownE serves as the lower bound algorithm. The pricing error denotes the difference between the upper bound and the
lower bound. The value x in the column Convergence Order denotes that the error converges at a rate of Oðn�xÞ as the num-
ber of time steps doubles. To be more clearly, denote en and xn as the error and the convergence order for the pricing results
generated by the n-time step lattice, then xn is defined as lnðe0:5n=enÞ

ln 2 . To avoid the truncation error (caused by the machine hard-
ware) to disturb the convergence analysis, we mark the error with 0:000000 if the error is smaller than 10�6 in the tables. The
convergence order xn is marked with ‘‘�” if en is too small. Dai et al. claim that the pricing errors converge at a rate of Oðk�2Þ
by adopting their bucket allocation scheme (see Eq. (11)). Their claim is verified by observing that the pricing errors converge
at a rate of Oðn�2Þ.6 On the other hand, Table 2 illustrates the pricing results of Dai’s algorithm and DownE without tightening
6 Note that the average number of buckets for each node k is set to n.



Table 4
Comprehensive tests for applying the range-bound algorithm on the original or tightened prefix-sum ranges. The data are: S0 ¼ 100, n ¼ 300, k ¼ 500 and
T ¼ 1. r, X, and r listed in the first three columns denote the volatility, the strike price, and the risk-free interest rate, respectively.

r X r DownA Up2 Up1 Up1 Up2

�DownA �DownA
0.1 95 0.05 8.088364 8.088422 8.088522 0.000158 0.000058
0.1 95 0.15 11.267781 11.267846 11.267954 0.000173 0.000065
0.1 105 0.05 1.344226 1.344292 1.344403 0.000177 0.000066
0.1 105 0.15 3.623832 3.623887 3.623980 0.000148 0.000055

0.3 95 0.05 12.358376 12.358517 12.359182 0.000806 0.000141
0.3 95 0.15 14.428086 14.428229 14.428934 0.000848 0.000143
0.3 105 0.05 6.311839 6.311984 6.312741 0.000902 0.000145
0.3 105 0.15 8.208416 8.208553 8.209280 0.000864 0.000137

0.5 95 0.05 17.341037 17.341237 17.344196 0.003159 0.000200
0.5 95 0.15 18.922948 18.923150 18.926233 0.003285 0.000202
0.5 105 0.05 11.623434 11.623636 11.627077 0.003643 0.000202
0.5 105 0.15 13.214077 13.214273 13.217725 0.003648 0.000196

0.7 95 0.05 22.536275 22.536540 22.552333 0.016058 0.000265
0.7 95 0.15 23.775811 23.776080 23.792101 0.016290 0.000269
0.7 105 0.05 17.065704 17.065979 17.084335 0.018631 0.000275
0.7 105 0.15 18.382506 18.382779 18.401274 0.018768 0.000273

0.9 95 0.05 27.841546 27.841955 27.952798 0.111252 0.000409
0.9 95 0.15 28.797383 28.797804 28.908081 0.110698 0.000421
0.9 105 0.05 22.587415 22.587869 22.719667 0.132252 0.000454
0.9 105 0.15 23.650191 23.650639 23.779582 0.129391 0.000448

Table 5
Convergence of the two-phase range-bound algorithm for pricing American-Style Asian options. The data are: S0 ¼ X ¼ 100 and r ¼ 10% per annum. r, T, and n
denote the volatility of the stock price, time to maturity, and the number of time steps, respectively. The average number of buckets k allocated at each node is
set to 8n.

r T n DownA Up2 Up2� DownA Convergence Order

10% 0.25 50 1.937256 1.937271 0.000015 –
100 1.947621 1.947626 0.000005 1.584962
200 1.953399 1.953401 0.000002 1.321928
400 1.956484 1.956484 0.000000 –

50% 1.00 50 14.763087 14.763184 0.000097 –
100 14.912143 14.912180 0.000037 1.390459
200 14.996588 14.996602 0.000014 1.402098
400 15.042595 15.042600 0.000005 1.485426

50% 5.00 50 33.444456 33.444608 0.000152 –
100 33.837743 33.837809 0.000066 1.203533
200 34.062623 34.062648 0.000025 1.400537
400 34.184574 34.184584 0.000010 1.321928

100% 1.00 50 27.595989 27.596134 0.000145 –
100 27.963737 27.963799 0.000062 1.225712
200 28.175147 28.175170 0.000023 1.430634
400 28.290796 28.290804 0.000008 1.523561
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the prefix-sum ranges by Theorem 2.1. Note that the average number of buckets used in this case is eight times larger than that
in Table 1. But the pricing errors do not converge especially when the volatility of the stock price r and the time to maturity T
are high. This is because the prefix sum ranges increases as r and T increase. Even we use a larger number of buckets (propor-
tional to n2) as illustrated in Table 3, the results are still poorer than those generated by the range-bound algorithm with fewer
buckets and tightened prefix-sum ranges.

For pricing American-style options, the prefix-sum ranges can be tightened by taking advantages of the early exercise
property. The advantages for tightening the prefix-sum ranges are illustrated in Table 4. The pricing errors under tightened
prefix-sum ranges are bounded above by the differences between the pricing results of Up2 and DownA, while the pricing
errors for original prefix sum ranges are bounded above by the differences between the pricing results of Up1 and DownA.
Obviously, the range bound algorithm with tightened prefix-sum ranges is more competitive.

Finally, we investigate the convergence behavior of the proposed two-phase range-bound algorithm. The pricing results
tabulated in Table 5 suggested that the errors converges well (at a rate of about Oðn�1:4Þ) even when the volatility of the stock
price and the time to maturity are high. Increasing the average number of buckets from 8n to n2 yields faster convergence as
illustrated in Table 6.



Table 6
Convergence of the two-phase range-bound algorithm for pricing American-Style Asian options. The setup is identical to Table 5 except that the average
number of buckets k allocated at each node is set to n2.

r T n DownA Up2 Up2� DownA Convergence Order

10% 0.25 20 2.573266 2.573270 0.000004 –
40 2.624786 2.624786 0.000000 –
80 2.657604 2.657604 0.000000 –
160 2.676992 2.676992 0.000000 –

50% 1.00 20 14.417994 14.418014 0.000020 –
40 14.698134 14.698138 0.000004 2.321928
80 14.872807 14.872807 0.000000 –
160 14.974642 14.974642 0.000000 –

50% 5.00 20 32.548780 32.548810 0.000030 –
40 33.270057 33.270063 0.000006 2.321928
80 33.733830 33.733831 0.000001 2.584962
160 34.004285 34.004285 0.000000 –

100% 1.00 20 26.776182 26.776223 0.000041 –
40 27.434598 27.434604 0.000006 2.772589
80 27.865683 27.865684 0.000001 2.584962
160 28.120124 28.120124 0.000000 –
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6. Conclusions

How to price Asian options efficiently and accurately is a long-standing problem. While polynomial time lattice algo-
rithms with convergence guarantee are available for pricing European-style Asian options, rigorous convergence analysis
for pricing American-style Asian options is even scarcer. This paper suggests an efficient two-phase range-bound algorithm
that bracket the desired option value, whose brute-force computation is prohibitive. By taking advantages of the early exer-
cise property of the American-style Asian options, the pricing error can be significantly reduced. Numerical experiments
show that the upper and the lower bounds option values produced by the proposed range-bound algorithm are essentially
numerically identical. Thus the desired option values for American-style Asian options can be obtained practically and effi-
ciently by the proposed range-bound algorithm.
Appendix A. Proof of the contraction lemma

Lemma 6.1. Under the assumptions given in Lemma 3.1,
Pb1

mþ 1
� Pb2

mþ 1
P EI

b1
� EI

b2
: ð19Þ
Proof. The lemma will be proved by induction backwardly from time step n to time step 0. The base case involves the buck-
ets allocated at maturity (i.e. time step n). Note that EI

bi
¼ ð Pbi

nþ1� XÞþ ¼ maxð Pbi
nþ1 ;XÞ � X, i ¼ 1;2. Thus
EI
b1
� EI

b2
¼max

Pb1

nþ 1
;X

� �
�max

Pb2

nþ 1
;X

� �
6

Pb1 � Pb2

nþ 1
because Pb1 > Pb2 . Assume that Eq. (19) is valid at time steps mþ 1. The followings will show that Eq. (19) is valid at time
step m. Assume that buckets b1 and b2 are located at node Nðm; jÞ at time step m. Bucket bi moves up to bucket uðbiÞ (at node
Nðmþ 1; jÞ) and down to bucket dðbiÞ (at node Nðmþ 1; jþ 1Þ) in the ideal lattice. The induction step is divided into the fol-
lowing four cases.

Case 1: Neither b1 nor b2 is exercised immediately. Then
Pb1

mþ 1
� Pb2

mþ 1
P

Pb1 � Pb2

mþ 2

¼ p
Puðb1Þ � Puðb2Þ

mþ 2
þ ð1� pÞ Pdðb1Þ � Pdðb2Þ

mþ 2
ð20Þ

P fp½EI
uðb1Þ � EI

uðb2Þ� þ ð1� pÞ½EI
dðb1Þ � EI

dðb2Þ�ge
�rDt ð21Þ

¼ f½pEI
uðb1Þ þ ð1� pÞEI

dðb1Þ� � ½pEI
uðb2Þ þ ð1� pÞEI

dðb2Þ�ge
�rDt

¼ EI
b1
� EI

b2
: ð22Þ
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Note that Eq. (20) holds since
Puðb1Þ � Puðb2Þ ¼ ðPb1
þ S0umþ1�jdjÞ � ðPb2

þ S0umþ1�jdjÞ ¼ Pb1
� Pb2
and
Pdðb1Þ � Pdðb2Þ ¼ ðPb1
þ S0um�jdjþ1Þ � ðPb2

þ S0um�jdjþ1Þ ¼ Pb1
� Pb2

:

Eq. (21) is by the induction hypothesis Eq. (19). Eq. (22) is by the backward induction formula Eq. (8). Note that neither b1 nor
b2 is exercised immediately. Thus the value to exercise the option early is less than the value to hold the option.

Case 2: b1 is exercised immediately, but b2 is not. Then
EI
b1
¼ Pb1

mþ 1
� X;

EI
b2
>

Pb2

mþ 1
� X:
Subtract the inequality from the equality to obtain inequality (19).
Case 3: Both b1 and b2 are exercised immediately. In this case, EI

bi
¼ Pbi

=ðmþ 1Þ � X for i ¼ 1;2, and inequality (19) holds
as an equality.

Case 4: b1 is not exercised, but b2 is. We will show that this is impossible. Assume otherwise. Then
Pb1

mþ 1
� X < ½pEI

uðb1Þ þ ð1� pÞEI
dðb1Þ�e

�rDt ; ð23Þ

Pb2

mþ 1
� X P ½pEI

uðb2Þ þ ð1� pÞEI
dðb2Þ�e

�rDt : ð24Þ
Subtracting inequality (24) from inequality (23) results in
Pb1

mþ 1
� Pb2

mþ 1
< fp½EI

uðb1Þ � EI
uðb2Þ� þ ð1� pÞ½EI

dðb1Þ � EI
dðb2Þ�ge

�rDt: ð25Þ
But
Pb1

mþ 1
� Pb2

mþ 1
P

Pb1
� Pb2

mþ 2

¼ p
Puðb1Þ � Puðb2Þ

mþ 2
þ ð1� pÞ Pdðb1Þ � Pdðb2Þ

mþ 2
P fp½EI

uðb1Þ � EI
uðb2Þ� þ ð1� pÞ½EI

dðb1Þ � EI
dðb2Þ�ge

�rDt
contradicts the inequality (25). �
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