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Abstract-Point-in-polygon is one of the fundamental operations of Geographic Information Systems. 
A number of algorithms can be applied. Different algorithms lead to different running efficiencies. In 
the study, the complexities of eight point-in-polygon algorithms were analyzed. General and specific 
examples are studied. In the general example, an unlimited number of nodes are assumed; whereas in 
the second example, eight nodes are specified. For convex polygons, the sum of area method, the sign 
of offset method, and the orientation method is well suited for a single point query. For possibly con- 
cave polygons, the ray intersection method and the swath method shod be seiected. For eight node 
polygons, the ray intersection method with bounding rectangles is faster. 0 1997 Elsevier Science Ltd. 
All rights reserved 
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INTRODUCTION (3) 

In this article, the “point-in-polygon” problem is 

defined as: “With a given polygon P and an arbitrary 
point q (Fig. l), determine whether point q is 
enclosed by the edges of the polygon”. This question 
does not appear too difficult to solve. However, for 
circumstances as in Figure 2, in the event that the 

polygon is concave and composed of many vertices, 
an efficient and reliable algorithm is necessary. 

(4) 

7 

pre-processing time: the time required to 
arrange the data for searching; and 
update time: the time required to renew the 
data structure. 

In rnis article, the complexity of algorithms and its 
representation is described first. Next, eight algor- 
ithms for point-in-polygon are described, and their 
complexities are analyzed. The applications of each 
algorithm are discussed in the final conclusion. 

An algorithm is understood as a series of pro- 
cedures implemented to solve a particular math- 

ematical problem with a computer. Manber (1989) 
stated that an efficient algorithm is more valuable 
than a fast computer. In Geographical Information 

Systems (GIS), the node-arc-polygon model func- 
tions as one of the fundamental representations to 
describe accurately the topological relation between 
spatial objects. Determining whether a certain pos- 

ition is located in a particular district or not is a 
point-in-polygon problem. Point-in-polygon is gen- 
erally a subject of geometric searching; in addition, 

geometric searching is one of the six major topics 
of Computational Geometry (Preparata and 

Shamos, 1985). 

The efficiency of an algorithm can be evaluated 
by the following four cost measures (Preparata and 
Shamos, 1985): 

(1) query time: the time required to respond to a 

single query; 
(2) storage: the size of memory required for the 

data structure; 

COMPLEXITY 

Assuming that a procedure takes 1 cpu set to 
process and then repeating this procedure ten times, 
requires 10 sec. Restated, the required cpu time is 
linearly proportional to the number of procedures. 
Correspondingly, the order of growth for the 
required computer time, T, with respect to the num- 
ber of repetitions, N, can be modeled with a simple 
relation, T = f(N), e.g. “clogllr’. When N is 
reasonably large, c can be neglected. In most 
instances, algorithm complexity is evaluated with 
the degree of the complexity function. A notation is 
then defined (Cormen, Leiserson, and Rivest, 1991). 

O(f(w) = {g(N): 3 positive constants c and no, 
such that 0 <g(N)< c.f(N), V N 2 no} Besides O- 
notation, other indices are used to describe/measure 
the complexity, such as Q(f(N)). In this article, O- 
notation is used (Fig. 3). 

CAGE0 23/1--E 
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Figure 1. Point-in-polygon, example. 

ALGORITHMS FOR POINT-IN-POLYGON point-in-polygon algorithms described in this 

A number of algorithms can 

point-in-polygon problem. 
Besides the kernel procedures, 

fers with the pre-processing me 
r:,..,, . . . . . . . . . . F,... ..,,-I..,:,, Ll”llPl PI”tie;uuIEi ,“I I=UuclUg 

be applied to the 

the complexity dif- 
:thod. The conven- 
*I., “,,..,.i. ,..t,:,, LllEj Jeal~ll rjl,lallD 

using the bounding rectangle of polygon P to exam- 
ine point q. If q is outside this bounding rectangle, 
q will not be inside P, and the problem is solved. 
Assuming that the probability of point q located 
inside is 50%, this filtering can reduce the expected 
execution time by half. Because the coordinates 
defining the bounding rectangle of a polygon are 
r.x..,l.sr ;tmm. ctr,vd in a .r.wtr.~_h~~~A CTC th;c fil- ‘C~U‘“’ ICbII‘U OL”IbU 111 u “~“I”I-“uYIu UA”) l,llY 111- 

tering takes no more than four Boolean operations. 
This pre-processing can be applied for any of the 

article. 
In the next section, the kernel procedures of each 

algorithm are described together with the complex- 
ity analysis with an asymptotically large N. The 
analysis with a limited N follows. 

TIME COMPLEXITY WITH ASYMPTOTICALLY 
LARGE N 

Grid method 

In this algorithm, the polygon P is represented as 
a group of grid cells. To determine whether a given 
..,-.;..t n ;r :..‘.;rln tr3, ..,.I..“,... tk., ,.,,J;,.“t,, ,.c rJ”l1.r q ID Il,J,UcI LIlti r.l”‘J~“U, LI‘ti ~““IUIIIIIL~J “1 
point q are compared with the coordinates of each 
grid cell of P. Figure 4 provides an illustrative 

, 

Figure 2. Point-in-polygon, a complex example, from Manber (1989). 
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Figure 3. Illustration for O-notation (Cormen, Leiserson, and Rivest, 1991). 

example. This algorithm is the procedure NORK 
stated in Nordbeck and Rystedt (1967). 

j:=((y-yo)lh]; I ydimtbnal idendfkr for q in G 1 

ln.sidC :=f&s ; 

Determining whether the point is within a cell 
requires two steps. Because point q is compared 

with each grid cell, the time complexity is O(N). 
The space complexity is O(N) also because each 
grid cell requires a unit to store. This algorithm is 
well adapted to raster-based situations. For a vec- 
tor-based situation, a vector-to-raster procedure 
must be performed in advance. Because point-in- 
polygon is actually applied in the polygon rasteriza- 
tion process, this method is not practical for vector- 
based situations. 

Ray intersection method 

Draw a line passing point q, and count the num- 
ber of intersections made by this line and the edges 
of polygon. If the number of intersections on either 
side of point q is an odd number, point q is inside 
polygon P. Frequently, a line parallel to one of the 
coordinate axes is used, such as that shown in 

Figure 1 (Nordbeck and Rystedt, 1967; Manber, 
1989). 

Polygon P 

Point q 

Figure 4. Grid method 
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(A) (B) 
Figure 5. Sum of angles method. 

For each polygon’s edges, an intersection analysis 
is performed. The time complexity for each inter- 
section analysis is O(1). Because the number of 
edges is the same as the number of nodes, the 
time complexity of point-in-polygon determination 
is O(N). 

This algorithm can be applied for both convex- 
and concave-shaped polygons. It is well suited for 
vector-based applications. For implementation, 
some special situations must be considered. These 
include situations such as a point q lying on one of 
the edges, or the ray intersecting the polygon at a 
node. 

Sum of angles method 

As shown in Figure 5, the angles formed by 
point q are computed as the vertex and the node- 
pairs as the sides in sequence. If the sum of these 
angles is 360”, point q is inside the polygon 

(Nordbeck and Rystedt, 1967). The angles could 
be positive, negative, or zero. For instance, case 
(C) in Figure 5 has a negative angle. This algor- 
ithm is applicable to both convex and concave 
polygons. The time complexity is O(N). However, 
the primary limitation of the algorithm is that it is 
slow because the time required to compute an 
angle is always greater than the time required for 
computing the determinant of a 3 x 3 matrix 
(Preparata and Shamos, 1985). Several algorithms 
are available for computing an angle. However, 
the efficiency of angle computation contributes to 
the constant c here. The O(N) time complexity 
remains unaffected. The other disadvantage is that 
this algorithm is affected significantly by the 
rounding errors (Nordbeck and Rystedt, 1967). 

Swath method (Salomon, 1978) 

This algorithm uses the ray intersection algorithm 
as its kernel. However, several pre-processing pro- 
cedures are added. 
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This algorithm divides the polygon into swaths 
according to the y-coordinates of its nodes (Fig. 6). 
The time complexity of this dividing process is 
O(MogN). There are N - 1 swaths to the maxi- 
mum, that is an O(N), and each swath has at least 
two edges and N - 1 edges to the maximum, that is 

another O(N). The total space complexity 
O(N) . O(N) = O(N’). 

is then 

_ _ _ _~w;h_ _ _ _ _ 

a 1 

__________-- 

Swa th2 
_-__-__- -_- - 

Swc th3 
X .__-__-__- _--_____-__-- 

Figure 6. Swath method. 

Regarding the time complexity, three major 
stages are involved. The first stage records the num- 
ber of edges in each swath. It can be achieved by 
looping over all edges in O(N) time. The second 
staue finds the swath_ in which nnint n k lnratcd a.. AA....u 7711.w.. y”.“. y 1” IVIUIVY. 

This search can be performed in O(logN) by a 
balanced binary tree. The final stage counts the 
number of intersections of the ray and edges in the 
swath. The time complexity of this stage is O(N). 

When the number of edges in each swath are lim- 

ited, the space complexity can be reduced to O(N), 
while the time required for the intersection counting 
can be reduced to O(1). 

Sign of ofset method 

As shown in Figure 7, the nodes of polygon P 
are arranged in a counter-clockwise manner. If the 
distance between point q and the edge pipi+ 1 has 
the same sign as the distance between the vertex 
pi+2 and the edge pipi + 1, for all edges of P, point q 
is inside the polygon (Nordbeck and Rystedt, 1967). 
This is equivalent to evaluating whether point q is 

Figure 7. Sign of offset method. 
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0 

ax2 t by, t c < 0 

/ 

0 

aq t byI t c > 0 

ax t by t c = 0 
Figure 8. Sign and sides. 

at the same side of any two consecutive edges, ei, 
ei+ i. If yes, point q is inside polygon P (Fig. 7). 
This algorithm is not valid for concave polygons. 
The time and space complexities of this algorithm 
are O(N). 

Regarding the sign evaluation, a sub-algorithm, 
as illustrated in Figure 8, could be applied. 
However, as far as the time complexity is con- 
cerned, area computation with coordinates is a bet- 
ter scheme. For a triangle formed by (pi, pi + i, q) 
its area can be represented as a third-order determi- 
nant (Preparata and Shamos, 1985) 

Xl Yl 1 

I I 
x2 Y2 1 =~~2-~I~cyq-Yl~-~~g-~I~cy2-Yl~ 

xq y, 1 

From the sign of this determinant, it can be deter- 
mined whether q is located at the left or right side. 
Sloan (1987) revised this algorithm into two multi- 
plications, four subtractions, and one Boolean oper- 
ation. This operation is considered as one of the 
primitive operations in Computational Geometry 
(Guibas and Stolfi, 1985). The time complexity is 
O(l). Evaluating the intersection of two lines, as 
applied in the ray intersection algorithm, can be 
performed with four triangle area computations 
(Sedgewick, 1988). That is, eight multiplications, 
sixteen subtractions, and five Boolean operations 
are included in Sloan’s (1987) algorithm. Taylor 

(1994) reported an algorithm modified from 
Saalfield (1987) which reduced the number of oper- 
ations to seven multiplications, nine subtractions 
and three Boolean operations. If point q is inside 
polygon P, all edges must be examined. If q is out- 
side P, then on average, only half of the edges must 
be processed. In either instance, the time complexity 
is O(N). 

Sumz of area method 

This algorithm states that if point q is inside 
polygon P, then connecting q with each node of P 
will subdivide P into a number of triangles, and the 
sum of the area of these triangles is equivalent to the 
area of polygon P (Nordbeck and Rystedt, 1967). 
The geometrical figure is the same as in Figure 5; 
however, instead of the angles, the area is computed. 

Figure 9. Orientation method. 
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Figure 10. Wedge method. 

Because the for-loop is executed N times, the time 
complexity is O(N). This algorithm is applicable only 
to convex polygons. 

The orientation method 

As shown in Figure 9, if the nodes of a convex 
polygon are arranged in a counter-clockwise direc- 
tion, then for a point q inside polygon P, q must be 
located at the left side of each edge (Nordbeck and 
Rystedt, 1967). 

Comparing this algorithm with the sum of area 
method reveals that both of them perform area 
computations, and both complexities are of O(N). 
The advantage of this method is that no value for 
the area has to be known-only the sign of the 
area is sought. Therefore, no accumulation is 
necessary. Once a sign change is detected, the evalu- 
ation ends. This indicates that this method is better 
than the sum of area method. Compared with the 
sign of offset method, most procedures are the 

same. However, the sign of offset method takes two 
Boolean operations for each edge, while the orien- 
tation method takes one. 

Wedge method 

For point z inside a convex polygon, N wedges 
can be formed with z and all nodes, where N is the 
number of nodes (Fig. 10). Similar to the swath 
method, the wedge which contains point q is 
searched first. The time complexity of this search 
0-n I-.- norfnrmm4 ;n fWlr\nhA w;th -x trcxe ct,.~mc.+m,r~ .,a11 "ti prlL"1,‘Lru 111 V\‘"~‘., ..1c11 a LL1b .TCA"IIUII. 

Next, whether point q is located in the sub-triangle, 
that is, inside the polygon, is verified by a third- 
order determinant-value computation. If point q is 
located on the same side of each triangle edge, q is 
inside this triangle (Preparata and Shamos, 1985). 

This algorithm is applicable only to convex poly- 
gons, and is well suited for multiple point queries. 
Among all other convex-only algorithms, this algor- 
ithm requires the least computational time in the 
query stage. The complexity of forming wedges is 

O(N). 

TIME COMPLEXITY WITH LIMITED N 

An asymptotically large N usually is assumed for 
the complexity analysis of algorithms. However, for 
a specific application, N is limited frequently. 
According to the statistics obtained from the Land 
Survey Bureau of Taiwan Provincial Government, 
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Table 1. Computer times required for five million rep- 
etitions 

assign 
+ 
- 
* 

div 
I 
cos 
sin 
arctan 
sqrt 
< 
= 
> 
or 
and 

Integer*2 Real*6 Boolean 

0.00 0.22 0.00 
0.17 7.64 - 
0.16 9.94 - 
0.82 43.12 - 
2.42 - - 

- 62.12 - 
- 495.43 
- 538.65 - 
- 314.65 - 
- 293.08 

0.44 4.67 - 
0.38 4.13 - 
0.21 4.11 - 

- 0.44 
- 0.49 

the average number of nodes for each land parcel 
in Taiwan is 7.5 (E. -S. Lu, pers. comm., 1995). 
Under this circumstance, the c constant in O-nota- 
tion becomes important. 

Manber (1989) indicated that when N < 16, 
bubble-sort, of which the time complexity is O(N*), 

is faster than quick-sort, of which the time complex- 
ity is O(N log N). Among algorithms for matrix 
multiplication, the time complexity of Strassen’s al- 

gorithm is O(N*.*‘); however, when N < 100, it is 
slower than regular 0(N3) algorithms. Hence, the 
number of basic operations required for each algor- 

ithm is evaluated for N = 8. Table 1 lists the ex- 
ecution times for five million repetitions of some 
basic operations. The test is performed on an Intel 
Pentium-66-based personal computer with Turbo- 
PASCAL. The execution time for the loops has 
haxn Am-l,,r-t~A ““ILL U&,U”UCIU. 

In the following analysis, A indicates a unit ad- 
dition (+) or subtraction (-), B is a Boolean oper- 
ation, M is a unit multiplication, and T is a unit 
arc-tangent computation. To compute the area with 
a third-order determinant, the number of operations 
is (ZM + 5Aj. To obtain the sign of the area in 
order to determine the orientation of the triangle, 
(2M + 4A + 1B) operations are needed. To verify 
whether two lines intersect with the algorithm from 
Taylor (1994) (7M + 9A + 3B) operations are 
necessary. The times required for the looping and 
the variable assignment are not included. 

Ray intersection method 

For a polygon with eight edges, eight line inter- 
sections must be evaluated. If q is outside, the 
number of intersections would likely be zero or 
two. If q is inside, the number of intersections is 
likely to be one. Therefore, on average, one ad- 
dition is needed to count the intersections. There 
is also an odd/even number verification, which is a 
Boolean operation. The basic operations required 
are 

8(7M + 9A + 3B) + 1A + 1B = 56M + 73A + 25B. 

Sum of angles method 

The sum of all internal angles of a polygon is 
(n - 2)~. This requires (1M + 1 A) operations. 
Assuming that the angles are computed from the 
azimuth of each edge, 

swath 2 

swath 3 

swath 4 

swath 5 

swath 6 

swath 7 

Figure 11. 8-gon example for swath method. 
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Table 2. Complexity for point-in-polygon algorithms 

Polygon Suited query Number of operations for 
Storage Query condition mode N=8 

grid 
ray 
intersection 
sum of angle 

swath 
sign of offset 
sum of area 
orientation 
wedge 

O(N) WV raster, any shape 
O(N) O(N) vector, any shape 

O(Y O(N) vector, any shape 
00 1 O(N) usually vector, any shape 

usually O(N) O(logN) 
O(N) O(N) convex 
O(N) O(N) convex 
O(N) O(N) convex 
O(N) 00ogN) convex 

single, multiple 2M + 2A + 168 
single 56M + 73A + 25B 

single 
multiple 

8T + 17M + 48A + 17B 
26M + 95A + 77.5B 

single 
single 
single 

multiple 

9M + 18A +9B 
24M + 55A + 1B 
9M + 18A + 5.5B 

10M + 20A + 4B 

resent +i with a value between 0 and 2x, extra 
(IM + 1A + 1B) operations are required to deter- 
mine in which quadrant +i is located. Therefore, for 
eight nodes, there are 8(1 T + 2M + 3A + 1B) op- 
erations for azimuth, 8(2A + 1B) to compute angles 
from azimuth, 7A for the sum of the angles, and 1 B 
for the evaluation of the sum. There is a total of 
(8T + 17M + 48A + 17B) operations. 

Swath method 

During preprocessing, the normalization on the 
y-coordinate for each vertex takes N multipli- 
cations. If a bubble-sort is applied, 17.5 Boolean 
operations are required for eight nodes. 

;@+g) =;(7+28)= 17.5. 

No arithmetic operations are required to form the 
balanced binary tree for (N - 1) swaths, if the tree 
is represented as an array. To relate the edges to 
each swath, the number of operations changes with 
the shape of the polygon. For the polygon shown in 
Figure 11, the total number of operations required 
is (73A + 46B). To find the swath in which point q 
is located, (3A + 4M + 7B) operations are required 
on average. However, if the y-coordinate of q is 
outside the y-coordinate range of the polygon, no 
more than two Boolean operations are needed. 
Because the average number of edges in each swath 
is about two, to determine whether q is inside the 

polygon, 

2(7M+9A+3B)+ lA+lB= 14M+19A+7B 

operations are needed in this procedure. There is a 
total of (26M +95A + 77.58) operations. 

Sign of oflset method 

The evaluation of two consecutive edges for the 
sign, requires two area computations and one 
Boolean operation. Once different signs are 
detected, the looping is curtailed. Therefore, for an 
eight-sided polygon, the expected number of rep- 
etitions in the looping is 4.5. The total number of 
operations is: 

Sum of area method 

During pre-processing, the polygon’s area is com- 
puted. With the coordinate method, (8M + 8A) op- 
erations are required, not including the operation of 
dividing the sum by two. In the loop, eight triangle 
areas are computed. These need [8(2M + 5A)], that 
is, (16M + 40A). Accumulating these areas takes 
7A. After all, one Boolean operation is need to ver- 
ify the area, 1B. There is a total of 
(24M + 55A + 1B) operations. 

Orientation method 

Once the area of a sub-triangle is detected to be 
negative, the looping is terminated. Therefore, the 
number of repetitions can be assumed to be 4.5. 
Then, the total number of operations is: 

4.5(2M + 4A + 1B) = 9M + 18A + 5.5B. 

Wedge method 

For the pre-processing, to find the internal point 
z, one can set 

x1 +x2 +x3 
x, = 

3 ; 

y, =YI +Y2 +Y3 

3 . 

This requires (2M + 4A) operations. Because the 
nodes of the polygon are already in sequence, no 
arithmetic operation is required to establish eight 
wedges and the binary tree. To fmd the wedge 
which contains point q, three (lnz8) repetitions of 
orientation determination are necessary. To deter- 
mine whether q is inside P, another orientation 
determination must be performed. There is a 
total of 

2M+4A+4(2M+4A+lB)= lOM+20A+4B 

operations. 
Table 2 summarizes each of the algorithm’s com- 

plexities. 
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CONCLUDING REMARKS 

When the polygon is represented in raster 
format, the grid method is well suited. The 
grid method is also the most efficient because 
extremely few mathematical computations 
are needed. However, the number of grid 
cells is normally larger than the number of 
nodes. Although other efficient algorithms 
exist, the execution time increases with the 
increase of resolution. 
For a polygon stored in vector format, the 
swath method is well suited for multiple 
point queries. An O(MogN) pre-processing 
can reduce the execution time significantly. 
The drawback is the increase in space com- 
plexity. This, however, may be improved 
with proper data structures. 
If the polygon is known to be convex, the 
sum of area method, the sign of offset 
method, and the orientation method, all can 
be applied for a single point query. The time 
complexity for all three is O(N). The wedge 
method requires O(N) pre-processing, and 
the complexity for the query is reduced to 
O(logN). For multiple point queries, the 
wedge method is well suited. 
In practical applications, the number of 
nodes is usually limited, and polygons are 
frequently concave. The ray intersection 
method and the swath method are well sui- 
ted. When N equals 8, the ray intersection 
method with bounding rectangles is slightly 
faster than the swath method. However, the 
swath method is expected to become more 
efficient when N increases. For a convex 
polygon with a single point query, the orien- 
tation method is the most efficient algorithm 
when N equals 8. The efficiency of the wedge 
method increases when N increases. 

(5) All algorithms discussed in this paper are 
designed for single polygons. For multiple 
polygons with multiple point queries, the 
situation would be different. This topic is to 
be explored in future work. 
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