
Pergamon
Compufers & Geosciences Vol. 23, No. I, pp. 109-I 18, 1997

0 1997 Elsevier Science Ltd

PII: SOO98-3004(96)00071-4
Printed in Great Britain. All rights reserved

0098-3004197 $17.00 + 0.00

ON THE COMPLEXITY OF POINT-IN-POLYGON
ALGORITHMS

CHONG-WEI HUANG and TIAN-YUAN SHIH

Department of Civil Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan

(Received 4 March 1996: revised 4 July 1996)

Abstract-Point-in-polygon is one of the fundamental operations of Geographic Information Systems.
A number of algorithms can be applied. Different algorithms lead to different running efficiencies. In
the study, the complexities of eight point-in-polygon algorithms were analyzed. General and specific
examples are studied. In the general example, an unlimited number of nodes are assumed; whereas in
the second example, eight nodes are specified. For convex polygons, the sum of area method, the sign
of offset method, and the orientation method is well suited for a single point query. For possibly con-
cave polygons, the ray intersection method and the swath method shod be seiected. For eight node
polygons, the ray intersection method with bounding rectangles is faster. 0 1997 Elsevier Science Ltd.
All rights reserved

Key Words: Point-in-polygon, Complexity, Ray intersection, Sum of angles method, Swath method,
Sign of offset method.

INTRODUCTION (3)

In this article, the “point-in-polygon” problem is

defined as: “With a given polygon P and an arbitrary
point q (Fig. l), determine whether point q is
enclosed by the edges of the polygon”. This question
does not appear too difficult to solve. However, for
circumstances as in Figure 2, in the event that the

polygon is concave and composed of many vertices,
an efficient and reliable algorithm is necessary.

(4)

7

pre-processing time: the time required to
arrange the data for searching; and
update time: the time required to renew the
data structure.

In rnis article, the complexity of algorithms and its
representation is described first. Next, eight algor-
ithms for point-in-polygon are described, and their
complexities are analyzed. The applications of each
algorithm are discussed in the final conclusion.

An algorithm is understood as a series of pro-
cedures implemented to solve a particular math-

ematical problem with a computer. Manber (1989)
stated that an efficient algorithm is more valuable
than a fast computer. In Geographical Information

Systems (GIS), the node-arc-polygon model func-
tions as one of the fundamental representations to
describe accurately the topological relation between
spatial objects. Determining whether a certain pos-

ition is located in a particular district or not is a
point-in-polygon problem. Point-in-polygon is gen-
erally a subject of geometric searching; in addition,

geometric searching is one of the six major topics
of Computational Geometry (Preparata and

Shamos, 1985).

The efficiency of an algorithm can be evaluated
by the following four cost measures (Preparata and
Shamos, 1985):

(1) query time: the time required to respond to a

single query;
(2) storage: the size of memory required for the

data structure;

COMPLEXITY

Assuming that a procedure takes 1 cpu set to
process and then repeating this procedure ten times,
requires 10 sec. Restated, the required cpu time is
linearly proportional to the number of procedures.
Correspondingly, the order of growth for the
required computer time, T, with respect to the num-
ber of repetitions, N, can be modeled with a simple
relation, T = f(N), e.g. “clogllr’. When N is
reasonably large, c can be neglected. In most
instances, algorithm complexity is evaluated with
the degree of the complexity function. A notation is
then defined (Cormen, Leiserson, and Rivest, 1991).

O(f(w) = {g(N): 3 positive constants c and no,
such that 0 <g(N)< c.f(N), V N 2 no} Besides O-
notation, other indices are used to describe/measure
the complexity, such as Q(f(N)). In this article, O-
notation is used (Fig. 3).

CAGE0 23/1--E
109

110 C.-W. Huang and T.-Y. Shih

Figure 1. Point-in-polygon, example.

ALGORITHMS FOR POINT-IN-POLYGON point-in-polygon algorithms described in this

A number of algorithms can

point-in-polygon problem.
Besides the kernel procedures,

fers with the pre-processing me
r:,..,, F,... ..,,-I..,:,, Ll”llPl PI”tie;uuIEi ,“I I=UuclUg

be applied to the

the complexity dif-
:thod. The conven-
*I., “,,..,.i. ,..t,:,, LllEj Jeal~ll rjl,lallD

using the bounding rectangle of polygon P to exam-
ine point q. If q is outside this bounding rectangle,
q will not be inside P, and the problem is solved.
Assuming that the probability of point q located
inside is 50%, this filtering can reduce the expected
execution time by half. Because the coordinates
defining the bounding rectangle of a polygon are
r.x..,l.sr ;tmm. ctr,vd in a .r.wtr.~_h~~~A CTC th;c fil- ‘C~U‘“’ ICbII‘U OL”IbU 111 u “~“I”I-“uYIu UA”) l,llY 111-

tering takes no more than four Boolean operations.
This pre-processing can be applied for any of the

article.
In the next section, the kernel procedures of each

algorithm are described together with the complex-
ity analysis with an asymptotically large N. The
analysis with a limited N follows.

TIME COMPLEXITY WITH ASYMPTOTICALLY
LARGE N

Grid method

In this algorithm, the polygon P is represented as
a group of grid cells. To determine whether a given
..,-.;..t n ;r :..‘.;rln tr3, ..,.I..“,... tk., ,.,,J;,.“t,, ,.c rJ”l1.r q ID Il,J,UcI LIlti r.l”‘J~“U, LI‘ti ~““IUIIIIIL~J “1
point q are compared with the coordinates of each
grid cell of P. Figure 4 provides an illustrative

,

Figure 2. Point-in-polygon, a complex example, from Manber (1989).

The complexity of point-in-polygon algorithms 111

Figure 3. Illustration for O-notation (Cormen, Leiserson, and Rivest, 1991).

example. This algorithm is the procedure NORK
stated in Nordbeck and Rystedt (1967).

j:=((y-yo)lh]; I ydimtbnal idendfkr for q in G 1

ln.sidC :=f&s ;

Determining whether the point is within a cell
requires two steps. Because point q is compared

with each grid cell, the time complexity is O(N).
The space complexity is O(N) also because each
grid cell requires a unit to store. This algorithm is
well adapted to raster-based situations. For a vec-
tor-based situation, a vector-to-raster procedure
must be performed in advance. Because point-in-
polygon is actually applied in the polygon rasteriza-
tion process, this method is not practical for vector-
based situations.

Ray intersection method

Draw a line passing point q, and count the num-
ber of intersections made by this line and the edges
of polygon. If the number of intersections on either
side of point q is an odd number, point q is inside
polygon P. Frequently, a line parallel to one of the
coordinate axes is used, such as that shown in

Figure 1 (Nordbeck and Rystedt, 1967; Manber,
1989).

Polygon P

Point q

Figure 4. Grid method

C.-W. Huang and T.-Y. Shih

(A) (B)
Figure 5. Sum of angles method.

For each polygon’s edges, an intersection analysis
is performed. The time complexity for each inter-
section analysis is O(1). Because the number of
edges is the same as the number of nodes, the
time complexity of point-in-polygon determination
is O(N).

This algorithm can be applied for both convex-
and concave-shaped polygons. It is well suited for
vector-based applications. For implementation,
some special situations must be considered. These
include situations such as a point q lying on one of
the edges, or the ray intersecting the polygon at a
node.

Sum of angles method

As shown in Figure 5, the angles formed by
point q are computed as the vertex and the node-
pairs as the sides in sequence. If the sum of these
angles is 360”, point q is inside the polygon

(Nordbeck and Rystedt, 1967). The angles could
be positive, negative, or zero. For instance, case
(C) in Figure 5 has a negative angle. This algor-
ithm is applicable to both convex and concave
polygons. The time complexity is O(N). However,
the primary limitation of the algorithm is that it is
slow because the time required to compute an
angle is always greater than the time required for
computing the determinant of a 3 x 3 matrix
(Preparata and Shamos, 1985). Several algorithms
are available for computing an angle. However,
the efficiency of angle computation contributes to
the constant c here. The O(N) time complexity
remains unaffected. The other disadvantage is that
this algorithm is affected significantly by the
rounding errors (Nordbeck and Rystedt, 1967).

Swath method (Salomon, 1978)

This algorithm uses the ray intersection algorithm
as its kernel. However, several pre-processing pro-
cedures are added.

The complexity of point-in-polygon algorithms 113

This algorithm divides the polygon into swaths
according to the y-coordinates of its nodes (Fig. 6).
The time complexity of this dividing process is
O(MogN). There are N - 1 swaths to the maxi-
mum, that is an O(N), and each swath has at least
two edges and N - 1 edges to the maximum, that is

another O(N). The total space complexity
O(N) . O(N) = O(N’).

is then

_ _ _ _~w;h_ _ _ _ _

a 1

__________--

Swa th2
_-__-__- -_- -

Swc th3
X .__-__-__- _--_____-__--

Figure 6. Swath method.

Regarding the time complexity, three major
stages are involved. The first stage records the num-
ber of edges in each swath. It can be achieved by
looping over all edges in O(N) time. The second
staue finds the swath_ in which nnint n k lnratcd a.. AA....u 7711.w.. y”.“. y 1” IVIUIVY.

This search can be performed in O(logN) by a
balanced binary tree. The final stage counts the
number of intersections of the ray and edges in the
swath. The time complexity of this stage is O(N).

When the number of edges in each swath are lim-

ited, the space complexity can be reduced to O(N),
while the time required for the intersection counting
can be reduced to O(1).

Sign of ofset method

As shown in Figure 7, the nodes of polygon P
are arranged in a counter-clockwise manner. If the
distance between point q and the edge pipi+ 1 has
the same sign as the distance between the vertex
pi+2 and the edge pipi + 1, for all edges of P, point q
is inside the polygon (Nordbeck and Rystedt, 1967).
This is equivalent to evaluating whether point q is

Figure 7. Sign of offset method.

114 C.-W. Huang and T.-Y. Shih

0

ax2 t by, t c < 0

/

0

aq t byI t c > 0

ax t by t c = 0
Figure 8. Sign and sides.

at the same side of any two consecutive edges, ei,
ei+ i. If yes, point q is inside polygon P (Fig. 7).
This algorithm is not valid for concave polygons.
The time and space complexities of this algorithm
are O(N).

Regarding the sign evaluation, a sub-algorithm,
as illustrated in Figure 8, could be applied.
However, as far as the time complexity is con-
cerned, area computation with coordinates is a bet-
ter scheme. For a triangle formed by (pi, pi + i, q)
its area can be represented as a third-order determi-
nant (Preparata and Shamos, 1985)

Xl Yl 1

I I
x2 Y2 1 =~~2-~I~cyq-Yl~-~~g-~I~cy2-Yl~

xq y, 1

From the sign of this determinant, it can be deter-
mined whether q is located at the left or right side.
Sloan (1987) revised this algorithm into two multi-
plications, four subtractions, and one Boolean oper-
ation. This operation is considered as one of the
primitive operations in Computational Geometry
(Guibas and Stolfi, 1985). The time complexity is
O(l). Evaluating the intersection of two lines, as
applied in the ray intersection algorithm, can be
performed with four triangle area computations
(Sedgewick, 1988). That is, eight multiplications,
sixteen subtractions, and five Boolean operations
are included in Sloan’s (1987) algorithm. Taylor

(1994) reported an algorithm modified from
Saalfield (1987) which reduced the number of oper-
ations to seven multiplications, nine subtractions
and three Boolean operations. If point q is inside
polygon P, all edges must be examined. If q is out-
side P, then on average, only half of the edges must
be processed. In either instance, the time complexity
is O(N).

Sumz of area method

This algorithm states that if point q is inside
polygon P, then connecting q with each node of P
will subdivide P into a number of triangles, and the
sum of the area of these triangles is equivalent to the
area of polygon P (Nordbeck and Rystedt, 1967).
The geometrical figure is the same as in Figure 5;
however, instead of the angles, the area is computed.

Figure 9. Orientation method.

The complexity of point-in-polygon algorithms 115

Figure 10. Wedge method.

Because the for-loop is executed N times, the time
complexity is O(N). This algorithm is applicable only
to convex polygons.

The orientation method

As shown in Figure 9, if the nodes of a convex
polygon are arranged in a counter-clockwise direc-
tion, then for a point q inside polygon P, q must be
located at the left side of each edge (Nordbeck and
Rystedt, 1967).

Comparing this algorithm with the sum of area
method reveals that both of them perform area
computations, and both complexities are of O(N).
The advantage of this method is that no value for
the area has to be known-only the sign of the
area is sought. Therefore, no accumulation is
necessary. Once a sign change is detected, the evalu-
ation ends. This indicates that this method is better
than the sum of area method. Compared with the
sign of offset method, most procedures are the

same. However, the sign of offset method takes two
Boolean operations for each edge, while the orien-
tation method takes one.

Wedge method

For point z inside a convex polygon, N wedges
can be formed with z and all nodes, where N is the
number of nodes (Fig. 10). Similar to the swath
method, the wedge which contains point q is
searched first. The time complexity of this search
0-n I-.- norfnrmm4 ;n fWlr\nhA w;th -x trcxe ct,.~mc.+m,r~ .,a11 "ti prlL"1,‘Lru 111 V\‘"~‘., ..1c11 a LL1b .TCA"IIUII.

Next, whether point q is located in the sub-triangle,
that is, inside the polygon, is verified by a third-
order determinant-value computation. If point q is
located on the same side of each triangle edge, q is
inside this triangle (Preparata and Shamos, 1985).

This algorithm is applicable only to convex poly-
gons, and is well suited for multiple point queries.
Among all other convex-only algorithms, this algor-
ithm requires the least computational time in the
query stage. The complexity of forming wedges is

O(N).

TIME COMPLEXITY WITH LIMITED N

An asymptotically large N usually is assumed for
the complexity analysis of algorithms. However, for
a specific application, N is limited frequently.
According to the statistics obtained from the Land
Survey Bureau of Taiwan Provincial Government,

116 C.-W. Huang and T.-Y. Shih

Table 1. Computer times required for five million rep-
etitions

assign
+
-
*

div
I
cos
sin
arctan
sqrt
<
=
>
or
and

Integer*2 Real*6 Boolean

0.00 0.22 0.00
0.17 7.64 -
0.16 9.94 -
0.82 43.12 -
2.42 - -

- 62.12 -
- 495.43
- 538.65 -
- 314.65 -
- 293.08

0.44 4.67 -
0.38 4.13 -
0.21 4.11 -

- 0.44
- 0.49

the average number of nodes for each land parcel
in Taiwan is 7.5 (E. -S. Lu, pers. comm., 1995).
Under this circumstance, the c constant in O-nota-
tion becomes important.

Manber (1989) indicated that when N < 16,
bubble-sort, of which the time complexity is O(N*),

is faster than quick-sort, of which the time complex-
ity is O(N log N). Among algorithms for matrix
multiplication, the time complexity of Strassen’s al-

gorithm is O(N*.*‘); however, when N < 100, it is
slower than regular 0(N3) algorithms. Hence, the
number of basic operations required for each algor-

ithm is evaluated for N = 8. Table 1 lists the ex-
ecution times for five million repetitions of some
basic operations. The test is performed on an Intel
Pentium-66-based personal computer with Turbo-
PASCAL. The execution time for the loops has
haxn Am-l,,r-t~A ““ILL U&,U”UCIU.

In the following analysis, A indicates a unit ad-
dition (+) or subtraction (-), B is a Boolean oper-
ation, M is a unit multiplication, and T is a unit
arc-tangent computation. To compute the area with
a third-order determinant, the number of operations
is (ZM + 5Aj. To obtain the sign of the area in
order to determine the orientation of the triangle,
(2M + 4A + 1B) operations are needed. To verify
whether two lines intersect with the algorithm from
Taylor (1994) (7M + 9A + 3B) operations are
necessary. The times required for the looping and
the variable assignment are not included.

Ray intersection method

For a polygon with eight edges, eight line inter-
sections must be evaluated. If q is outside, the
number of intersections would likely be zero or
two. If q is inside, the number of intersections is
likely to be one. Therefore, on average, one ad-
dition is needed to count the intersections. There
is also an odd/even number verification, which is a
Boolean operation. The basic operations required
are

8(7M + 9A + 3B) + 1A + 1B = 56M + 73A + 25B.

Sum of angles method

The sum of all internal angles of a polygon is
(n - 2)~. This requires (1M + 1 A) operations.
Assuming that the angles are computed from the
azimuth of each edge,

swath 2

swath 3

swath 4

swath 5

swath 6

swath 7

Figure 11. 8-gon example for swath method.

Algorithm Pre-processing

The complexity of point-in-polygon algorithms 117

Table 2. Complexity for point-in-polygon algorithms

Polygon Suited query Number of operations for
Storage Query condition mode N=8

grid
ray
intersection
sum of angle

swath
sign of offset
sum of area
orientation
wedge

O(N) WV raster, any shape
O(N) O(N) vector, any shape

O(Y O(N) vector, any shape
00 1 O(N) usually vector, any shape

usually O(N) O(logN)
O(N) O(N) convex
O(N) O(N) convex
O(N) O(N) convex
O(N) 00ogN) convex

single, multiple 2M + 2A + 168
single 56M + 73A + 25B

single
multiple

8T + 17M + 48A + 17B
26M + 95A + 77.5B

single
single
single

multiple

9M + 18A +9B
24M + 55A + 1B
9M + 18A + 5.5B

10M + 20A + 4B

resent +i with a value between 0 and 2x, extra
(IM + 1A + 1B) operations are required to deter-
mine in which quadrant +i is located. Therefore, for
eight nodes, there are 8(1 T + 2M + 3A + 1B) op-
erations for azimuth, 8(2A + 1B) to compute angles
from azimuth, 7A for the sum of the angles, and 1 B
for the evaluation of the sum. There is a total of
(8T + 17M + 48A + 17B) operations.

Swath method

During preprocessing, the normalization on the
y-coordinate for each vertex takes N multipli-
cations. If a bubble-sort is applied, 17.5 Boolean
operations are required for eight nodes.

;@+g) =;(7+28)= 17.5.

No arithmetic operations are required to form the
balanced binary tree for (N - 1) swaths, if the tree
is represented as an array. To relate the edges to
each swath, the number of operations changes with
the shape of the polygon. For the polygon shown in
Figure 11, the total number of operations required
is (73A + 46B). To find the swath in which point q
is located, (3A + 4M + 7B) operations are required
on average. However, if the y-coordinate of q is
outside the y-coordinate range of the polygon, no
more than two Boolean operations are needed.
Because the average number of edges in each swath
is about two, to determine whether q is inside the

polygon,

2(7M+9A+3B)+ lA+lB= 14M+19A+7B

operations are needed in this procedure. There is a
total of (26M +95A + 77.58) operations.

Sign of oflset method

The evaluation of two consecutive edges for the
sign, requires two area computations and one
Boolean operation. Once different signs are
detected, the looping is curtailed. Therefore, for an
eight-sided polygon, the expected number of rep-
etitions in the looping is 4.5. The total number of
operations is:

Sum of area method

During pre-processing, the polygon’s area is com-
puted. With the coordinate method, (8M + 8A) op-
erations are required, not including the operation of
dividing the sum by two. In the loop, eight triangle
areas are computed. These need [8(2M + 5A)], that
is, (16M + 40A). Accumulating these areas takes
7A. After all, one Boolean operation is need to ver-
ify the area, 1B. There is a total of
(24M + 55A + 1B) operations.

Orientation method

Once the area of a sub-triangle is detected to be
negative, the looping is terminated. Therefore, the
number of repetitions can be assumed to be 4.5.
Then, the total number of operations is:

4.5(2M + 4A + 1B) = 9M + 18A + 5.5B.

Wedge method

For the pre-processing, to find the internal point
z, one can set

x1 +x2 +x3
x, =

3 ;

y, =YI +Y2 +Y3

3 .

This requires (2M + 4A) operations. Because the
nodes of the polygon are already in sequence, no
arithmetic operation is required to establish eight
wedges and the binary tree. To fmd the wedge
which contains point q, three (lnz8) repetitions of
orientation determination are necessary. To deter-
mine whether q is inside P, another orientation
determination must be performed. There is a
total of

2M+4A+4(2M+4A+lB)= lOM+20A+4B

operations.
Table 2 summarizes each of the algorithm’s com-

plexities.

118

(1)

(2)

(3)

(4)

C.-W. Huang and T.-Y. Shih

CONCLUDING REMARKS

When the polygon is represented in raster
format, the grid method is well suited. The
grid method is also the most efficient because
extremely few mathematical computations
are needed. However, the number of grid
cells is normally larger than the number of
nodes. Although other efficient algorithms
exist, the execution time increases with the
increase of resolution.
For a polygon stored in vector format, the
swath method is well suited for multiple
point queries. An O(MogN) pre-processing
can reduce the execution time significantly.
The drawback is the increase in space com-
plexity. This, however, may be improved
with proper data structures.
If the polygon is known to be convex, the
sum of area method, the sign of offset
method, and the orientation method, all can
be applied for a single point query. The time
complexity for all three is O(N). The wedge
method requires O(N) pre-processing, and
the complexity for the query is reduced to
O(logN). For multiple point queries, the
wedge method is well suited.
In practical applications, the number of
nodes is usually limited, and polygons are
frequently concave. The ray intersection
method and the swath method are well sui-
ted. When N equals 8, the ray intersection
method with bounding rectangles is slightly
faster than the swath method. However, the
swath method is expected to become more
efficient when N increases. For a convex
polygon with a single point query, the orien-
tation method is the most efficient algorithm
when N equals 8. The efficiency of the wedge
method increases when N increases.

(5) All algorithms discussed in this paper are
designed for single polygons. For multiple
polygons with multiple point queries, the
situation would be different. This topic is to
be explored in future work.

Acknowledgments-The authors wish to thank the anon-
ymous reviewers for their constructive suggestions that
improved the paper.

REFERENCES

Cormen, T. H., Leiserson, C. E., and Rivest, R. L., 1991,
Introduction to algorithms: MIT Press, New York,
1028 p.

Guibas, L., and Stolfi, J., 1985, Primitives for the manipu-
lation of general subdivisions and the computation of
Voronoi diagrams: ACM Trans. Computer Graphics,
v. 4, no. 2, p. 74-123.

Manber, U., 1989, Introduction to algorithms-a creative
approach: Addison-Weslev Pub]. Co.. Reading.
Massachusetts, 478 p. _

v.

Nordbeck, S., and Rystedt, B., 1967, Computer cartogra-
phy point in polygons programs: National Swedish
Institute for Building Research Rept., Sweden, 19 p.

Preparata, F. P., and Shamos, M. I., 1985, Computational
geometry-an introduction: Springer-Verlag, New
York, 398 p.

Saalfield, A., 1987, It doesn’t make me nearly as
CROSS-some advantages of the point-vector rep-
resentation of line segments in automated cartography:
Intern. Jour. Geographical Information Systems, v. 1,
no. 4, p. 379-386.

Salomon, K. B., 1978, An efficient point-in-polygon algor-
ithm: Computers & Geosciences, v. 4, no. 2, p. 173-
175.

Sedgewick, R., 1988, Algorithms (2nd ed.): Addison-
Wesley Pub]. Co., Reading, Massachusetts,‘657 p.

Sloan, S. W.. 1987. A fast aleorithm for constructine
Delaunay triangulation in the plane: Adv. Engineering
Software and Workstations, v. 9, no. 1, p. 34-55.

Taylor, G., 1994, Point in polygon test: Survey Review,
v. 32, p. 479-484.

