第四章 結果與討論

4.1 催化劑之材料分析

4.1.1 TGA/DTA 分析

4.1.1.1 以檸檬酸鹽(ACP)法製備之 CuO 催化劑分析

利用檸檬酸鹽法合成出 CuO 前驅物粉末後,必須以 TGA/DTA 分析,決定鍛燒溫度以除去有機物及氮氧化物之成分。圖 4-1 為 CuO 前驅物之 TGA/DTA 圖形,在 TGA 分析中可以看出有四段斜率的變 化,第一段為 30~200℃,第二段為 200~300℃,第三段為 300~450℃, 溫度到達約 450℃以後,重量損失幾乎沒有改變。溫度到達 200℃之 前的重量損失,應屬於 CuO 前驅物的脫水過程;溫度到達 200℃到 450℃之間,根據 DTA 所得之分析圖形可知為吸熱反應,屬於前驅物 之有機分子或氮氧化物的分解反應【42】;溫度到達 450℃以後,沒 有任何重量損失或吸放熱反應的發生,因此將鍛燒溫度決定於 500 ℃,以確定完全除去有機物分子,並在之後進一步鍛燒到 600℃以提 高其結晶度。 4.1.1.2 以共沉澱(coprecipitation)法製備之 CuO 催化劑分析

圖 4-2(a)~(c)為以共沉澱法製備之 CuO 催化劑之 TGA 圖形,可 以看出僅有在約 250℃有重量損失,推斷為表面吸附水或結晶水的脫 除過程,250℃之後幾乎沒有重量損失變化,表示以共沉澱法製備之 CuO 催化劑已經沒有任何分子可以除去,並在之後加熱到 500℃以提 升結晶度。

4.1.2 XRD 分析

4.1.2.1 以 ACP 法製備之 CuO 催化劑 XRD 分析

圖 4-3 為以 ACP 法製備之 CuO 催化劑在 500℃及 600℃鍛燒之 XRD 圖,與 JCPDS-98 軟體對照,在 500℃鍛燒 30 分鐘即有單斜晶 (monoclinic, JCPD 48-1548)結構之 CuO 相生成,並且沒有其他雜相 的出現。接著再將 CuO 粉末經過 600℃鍛燒 1 小時以提升其結晶度, 在 XRD 發現繞射峰強度提高且更為狹窄,這是因為經過 600℃鍛燒 後晶粒成長,使得粒徑變大。

4.1.2.2 以共沉澱法製備之 CuO 催化劑 XRD 分析

圖 4-4(A)~(D)為以共沉澱法製備之CuO催化劑在 140℃乾燥後及 500℃熱處理之XRD圖,以共沉澱法合成並經過 140℃乾燥 24 小時候 即有單斜晶之CuO相生成。在圖 4-4(B)中,以CuCl_{2(aq)}和NaOH_(aq)在 10℃下反應,會有部分之雜相生成,對於之後的催化效能分析較為難 以分辨,因此本實驗不採取此方式製得CuO催化劑。

最後將140℃乾燥後之CuO粉末在空氣氣氛下,500℃熱處理1 小時,在XRD圖中發現催化劑結晶性提升使其繞射峰強度皆增大且 更為狹窄。

4.1.3 SEM 分析

圖 4-5 為 ACP 法及共沉澱法製備之 CuO 催化劑的 SEM 圖,發 現經由 ACP 法所製備之 CuO 為近似圓形的晶體形狀,且粒徑大小約 70nm;以共沉澱法經由不同起始反應物所製備之 CuO 的晶體形狀分 別為片狀及棒狀,且片狀結晶的粒徑大小約為 0.1~0.2µm 之間,棒狀 晶體則為長度 6~9µm。經過更高溫的鍛燒後,可以看出 CuO 的粒徑 明顯變大(如圖 4-6)。

圖 4-7~圖 4-8 為催化劑經過H2O2分解測試之後的晶體表面情形,其晶體形狀及大小皆沒有改變,推測反應過程中沒有溶解析出的過程。

4.1.4 EDX 分析

圖 4-9 分別為以ACP法及共沉澱法製備之CuO催化劑EDX分析,

各催化劑的成分皆只有Cu和O而已,表示所合成出的催化劑為純相之 CuO。圖 4-10 為H₂O₂分解反應測試完後,催化劑的EDX分析,發現 少部分的催化劑有H₂O₂分解反應時KOH的殘留。

4.1.5 BET 比表面積分析

利用氮氟吸附過程所測得之比表面積數值如表 4-1 所示,以ACP 法製備之CuO粉末有較高的比表面積,係因以ACP法製備出的CuO粉 末較為細緻,而以共沉澱法製備之CuO粉末則有 11~20m²/g的比表面 積。而經過較高溫的鍛燒後,催化劑因燒結現象而趨於緻密,因此比 表面積會有下降的趨勢。

4.2 催化效能之分析—H2O2分解反應

空氣陰極的氧還原反應為總反應之速率決定步驟,其可分為兩個 電子的還原過程和四個電子的還原過程,而針對兩個電子的還原過 程,氧進行還原反應時,會有H2O2或HO2中間物的生成,為了能使中 間物快速的分解及加速氧還原反應的進行,需加入能加速分解過氧化 物之催化劑。H2O2分解反應為利用催化劑加速H2O2分解成氧氣和 水,並根據氧氣生成量來估算催化劑的反應速率常數。

4.2.1 在 15℃下不同重量之催化劑的H2O2分解試驗

將市售之MnO2在 15℃下不同重量之催化劑的H2O2分解試驗

MnO₂與所製備之CuO催化劑在 15℃下,各取 5 個不同重量進行H₂O₂ 分解反應,利用(2-22) 式、(2-23) 式及(2-24)式求得ln(θ_0/θ)與時間的 關係,並繪製成ln(θ_0/θ)對時間之圖形,如圖 4-11,並求出速率常數k。

$$(1 + \frac{(\gamma + \gamma')S(t)}{1033})(V_i + V(t)) = \frac{1}{2}\Delta\theta RT + P_0 V_{air}$$
(2-22)

$$(1 + \frac{(\gamma + \gamma')S(t)^{\infty}}{1033})(V_i + V(t)^{\infty}) = \frac{1}{2}\theta_0 RT + P_0 V_{air}$$
(2-23)

$$2.33V(t)^{2} + 1658V(t) + 757 = 12200\Delta\theta \qquad (2-24)$$

其中θ₀為H₂O₂的初始濃度,θ₀值每次實驗會有所變動,這是因為進行 實驗時溶液配製上的誤差和注射量的些微誤差所致。根據圖 4-11 中 發現,反應物濃度與反應時間呈線性關係,屬於一級反應,並且速率 常數k隨著催化劑重量的增加而增加,將各催化劑所求得之速率常數k 值對重量作圖如圖 4-12,可得斜率及截距,表 4-2 為圖 4-12 之斜率 及截距發現截距幾乎為零,表示溶出的金屬離子影響甚小,主要是進 行異相催化作用,而其中以ACP法及以CuCl₂為起始反應物合成之 CuO的斜率最高。

在相同重量(0.030g)之下,各催化劑的速率常數比較如圖 4-13, 各催化劑的速率常數(表 4-3)大小順序為:

CuO-citric-500 > CuO-A1 > CuO-B1 > CuO-B2 > MnO₂ 由此表示以ACP法及以CuCl₂為起始反應物合成之CuO催化劑能將 H_2O_2 或HO₂⁻快速的分解成氧氣和水,進行反應時的催化速率比市售之 MnO₂高。 提升催化劑結晶度後,在相同重量(0.030g)下進行H₂O₂分解反應,發現經過更高溫鍛燒後的催化劑,其催化性能會減少(如表 4-4), 推測原因有二,一為高溫產生燒結現象,使催化劑粒徑增大,比表 面積下降;另一原因為經過退火處理後,催化劑表面型態改變,可供 反應進行的活性位置減少,導致催化速率下降。

4.2.2 比表面積的影響

前述對於催化劑的分解效率是以固定重量下的反應速率常數來 判斷,但實際上各個催化劑的比表面積皆不同,因此如果要判斷某種 催化劑的催化活性,必須加以考量比表面積的因素所造成的影響。利 用(2-27)式及(2-28)式,求出單位表面積之催化活性值,其整理如表 4-5。

$$k = \alpha W_{cat} k' e^{-\frac{Q}{KT}}$$
(2-27)

$$\frac{dk}{dW_{cat}} = \alpha k' e^{-\frac{Q}{KT}}$$
(2-28)

可以看出各催化劑間催化活性大小順序為:

CuO-A1 > CuO-B2 > CuO-citric-500 > CuO-B1 > MnO₂ 而催化劑經過較高溫鍛燒後,由於粒徑增大使比表面積減少,在未考 慮比表面積的影響前,單位重量下的反應速率常數皆遠小於未經高溫 鍛燒的催化劑,因此將反應速率常數換算為單位比表面積的催化活性 後,可以明顯看出高溫鍛燒後的 CuO 之催化反應速率改變,且各催 化劑間的催化活性大小順序為:

CuO-A1-500 > CuO-citric-600 > CuO-B1-500 > CuO-B2-500 > MnO₂ 其中CuO-B2-500 的催化反應速率變動最大,推測應為高溫使得催化 劑表面型態改變,使能夠參與反應的活性位置減少所致。以CuCl₂為 起始反應物合成出之CuO在高溫鍛燒前後皆展現出高的催化活性,推 測應該是以此方式製備出的CuO表面活性較高,因此能有較高的催化 反應速率。因此若能提高催化劑的比表面積,則可提供更多的反應位 置,能有效的提高催化反應速率。

4.2.3 固定催化劑重量下不同溫度之H2O2分解試驗

由於催化反應進行時,活化能會影響催化的難易,因此必須求出 各催化劑的活化能。進行實驗時,取相同重量的催化劑,改變4個不 同的溫度(10℃、15℃、20℃、25℃),利用(2-29)式繪製反應速率常 數與溫度的關係圖形(如圖 4-14),

$$\ell nk = \ell nA - \frac{\Delta Ea}{RT} \tag{2-29}$$

從圖中求得的活化能 Ea 及 InA 列於表 4-6,得知其活化能的順序高低為:

CuO-B2 > CuO-citric-500 > CuO-B1 > CuO-A1 CuO-B2-500 > CuO-B1-500 > CuO-A1-500 > CuO-citric-600 可以發現進一步退火處理後的催化劑之活化能有增加的趨勢,研判為 高溫鍛燒後使催化劑表面型態改變,導致能降低活化能的反應位置減

4.3 空氣陰極電池性能分析

4.3.1 空氣陰極表面分析

空氣陰極是由擴散層、催化層及集電網所組成,由於最後製成空 氣電極時,須以熱壓的方式將上述三層結構緊密的壓合,因此對於擴 散層及催化層需有一定強度的要求。製作擴散層及催化層時,所加入 的疏水性黏結劑(PTFE)之分散為提升這兩層膜機械強度的關鍵,若能 在滾壓的過程中,使擴散層或催化層中的 PTFE 產生拉絲的效果,則 會使擴散層或催化層的韌性增加,使其在壓合成空氣電極時不致於龜 裂。雖然擴散層及催化層中的 PTFE 含量會影響到電池性能的表現, 但在本實驗僅對固定 PTFE 的比例(擴散層 40wt%,催化層 20wt%), 探討催化劑含量變化對於空氣陰極的影響。

相對於擴散層,催化層中包含了催化劑的加入,因此如何能有效 的將催化劑分散也是一個問題所在,若能分散均勻,則催化劑不至於 過度集中,而展現出空氣陰極的真正電池性能。

圖 4-15 為擴散層及催化層的 SEM 照片,可以明顯的觀察出 PTFE 拉絲的情形及催化層中催化劑的分散情況,因此擴散層及催化層皆能 展現出不錯的拉伸性。雖然相較於傳統製作空氣陰極的方式,以高速 混合攪拌機製作空氣陰極的方式能使催化劑及 PTFE 的分散效果提升,但是最終的滾壓過程仍是以人工方式達成,對於擴散層及催化層的厚度上仍無法達到完全一致,因此對於後面空氣陰極的測試上會產 生些許的誤差。

4.3.2 鋅-空氣電池之 I-V 放電測試

鋅-空氣電池中加入催化劑的目的是要加速氧還原反應的進行, 而在文獻【17、43】上指出純碳材也能進行氧氣還原反應,原因是碳 的表面能提供氧氣進行還原反應的活性位置,因此碳材的比表面積大 小會影響電池性能的表現。雖然碳材的比表面積為影響電池性能因素 之一,但本實驗僅改變催化劑種類及含量,並與市售之MnO2做比較, 其他諸如鋅陽極、集電網、電解液濃度等皆為固定參數。

對於前述傳統製程方式所製成的空氣陰極,與改善後的製程放電 測試比較如圖 4-16,可以看出傳統製作方式的空氣陰極之極化情形較 為嚴重,在同樣含有 20wt%的MnO2催化劑,1.0V的電流密度表現也 不如改善後的製程,推測為傳統製作方式無法將催化劑及PTFE分散 均勻,而使在同樣電極反應面積下的催化劑含量較少,無法有預期的 表現。

催化層中有無添加催化劑對於空氣極的性能比較,其放電曲線為圖 4-17,可以看出在相同載體時,含有 20wt%MnO2在 1.0V時有

105mA/cm²,而純碳材只有 56mA/cm²,含有催化劑的空氣電極性能 明顯高於未添加催化劑之空氣極的表現,並且可看出只有純碳材之空 氣極產生相當嚴重的極化情形,表示氧氣進行還原反應的速率過慢。

空氣陰極的性能表現除了會受到催化劑的催化活性影響外,空氣 陰極整體的導電度也會影響其表現。氧氣發生還原反應必須接受電 子,若將空氣陰極的導電度提升則能有助於電子的快速轉移,提升導 電度的方式有很多種,如加入銀(Ag)或其他高導電的物質,但由於考 量整體成本,必須加入價格較低的導電物質,VGCF為一種以氣相方 式合成的碳纖維(如圖 4-15(C)),其電阻為 0.012Ωcm,將其掺入催化 層中取代部份載體,並製作成空氣陰極,其 I-V 放電曲線如圖 4-18, 表 4-7 為其 1.0V 及 0.8V 的電流密度,可以發現加入 5wt%VGCF 在 1.0V 時電流密度並沒有顯著的提昇,研判是由於所使用的 VGCF 的 比重太小,使得僅加入 5wt%時的 VGCF 量已超過容許值,從改變 VGCF 的添加量的放電曲線圖(圖 4-19)中可發現,VGCF 的加入量在 5wt%時已經達到飽和,因此對於空氣陰極的幫助甚少。

由H2O2分解反應中可知,催化劑的重量與反應速率成正比,因此 空氣電極中催化劑的含量越多,則所表現出的電池性能越好,如圖 4-20,其開路電位(OCV)值也會提升,但從本實驗中不同含量的催化 劑中的放電性能較無規則性,研判是製備催化層的過程中,催化層的 厚度不一致。由本實驗中從I-V曲線中可知各催化劑的含量最適當為: 25wt%CuO-citric-500、25wt%CuO-A1、25wt%CuO-B1、20wt%CuO-B2、15wt%CuO-citric-600、15wt%CuO-A1-500、25wt%CuO-B1-500、15wt%CuO-B2-500,表4-8列出各催化劑不同含量所得之OCV值及1.0V和0.8V時的電流密度。

從圖 4-21(A)中可發現同樣在 20wt%催化劑含量下,各催化劑的 電池性能在 1.0V 時的電流密度之大小順序為:

CuO-citric-500 > CuO-A1 > CuO-B1 > CuO-B2 > MnO₂ 與H₂O₂分解測試反應所得的結果一致,故有助於加速H₂O₂或HO₂ 分解 的催化劑,在全電池測試上也有好的表現,且其電壓平台在0.8V~1.0V 之間。催化劑經高溫鍛燒後,製作成空氣陰極進行全電池放電測試如 圖 4-21(B),在1.0V時電流密度大小為:

CuO-A1-500 > CuO-citric-600 > CuO-B2-500 > CuO-B1-500 各空氣陰極放電測試所得之結果大致上與H2O2分解反應結果相符 合。而經高溫鍛燒前後的放電曲線比較如圖 4-22,發現經過高溫鍛燒 後催化劑表現比鍛燒前差,原因可能為高溫使催化劑燒結,粒徑增 大,在相同重量比例下,所能提供給氧氣還原反應的活性位置較少, 故在相同電壓下有較低的電流密度,若能使粒徑降低提高其比表面 積,相信能有更高的電流密度展現。

另外由催化劑的 SEM 照片(圖 4-5~4-6)可發現,各催化劑的晶體

形態不同,而從 I-V 放電曲線中並無法觀察出晶體形態與電池性能的 關連性,研判催化劑表面的活性位置對電池性能的影響較大。

4.3.3 空氣陰極之循環伏安法(Cyclic Voltammetry, CV)分析

經由循環伏安法的分析,可以知道空氣電極上所發生之電化學反應,作為定性分析之用,本實驗採用三極式架構如圖 3-10,電位掃瞄 是以 10mV/s 由 0.9V → -0.9 進行還原反應,再由-0.9V → -0.9 進行還原反應,再由-0.9V → -0.9 進行還原反應,再由-0.9V → -0.9 進行還原反應,再由-0.9V → 0.9V 進行氧化反應,每次掃描 10 圈,由於前幾圈的結果尚未達穩定,因此取第 10 圈為結果。

由 2.5.2 節可知氧還原反應可經由 4 個電子的還原反應或 2 個電子的還原反應,其反應式為: $\Omega_{2} + 2H_{2}\Omega + 4e^{-} \rightarrow 4\Omega H^{-}$ (2-13)

$$O_2 + H_2O + 2e^- \rightarrow O_2H^- + OH^-$$
 (2-14)

 $O_2H^- \to 1/2O_2^+ OH^-$ (2-15)

因此藉由CV的分析可以判斷出催化劑對於氧還原反應的機制, 由文獻【26】可知氧化錳(MnO_x)可加速氧氣進行 4 個電子的還原反 應,將市售之MnO₂與所製備之催化劑的CV曲線圖(圖 4-23)比較,發 現CuO之CV曲線圖與MnO₂近似,因此CuO能加速氧氣的還原反應的 進行,但由於HO₂⁻的濃度甚少且在還原過程中(2-14)式反應可能被 (2-13)式反應的訊號重疊,因此並無法看出CuO對於 2 個電子還原反 應的影響。從正電位掃瞄到負電位時會進行氧氣的還原反應;反之則 進行氧氣的氧化反應,各反應式為:

(a)氧氣的還原反應: $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

(b)氧氣的氧化反應: $4OH^- \rightarrow O_2 + H_2O + 4e^-$

在氧化還原過程中,除了有一還原峰的出現外,並沒有其他氧化 或還原峰的出現,而此還原峰位於 0V 附近,研判此還原峰為氫的還 原,其反應式為:

 $H^+ + 2e^- \longrightarrow H_2$ (4-1)

4.3.4 空氣陰極之極化曲線

氧還原能力較高。同時對於經過高溫鍛燒後催化劑氧氣還原性能比較,發現鍛燒後的催化劑氧還原能力較差。而各催化劑表現較好的為: 20wt%MnO₂、 20wt%CuO-citric-500、 20wt%CuO-A1、 25wt%CuO-B1、 15wt%CuO-B2、 20wt%CuO-citric-600、 25wt%CuO-A1-500、25wt%CuO-B1-500、20wt%CuO-B2-500。

將圖 4-24 表示成Tafel之圖形如圖 4-25~圖 4-27,可得斜率及截 距,並利用(2-32)式及(2-33)式求出交換電流i₀,列於表 4-10。

$$\eta = a + b \ln i \tag{2-32}$$

(2-33)

由表 4-10 可看出各催化劑間的交換電流值差距不大,而CuO理 論上應有更好的表現,但實際上卻與市售之MnO₂相差不多,研判是 因為CuO的導電度不夠好,雖然CuO的氧還原催化能力極佳,但是製 作成空氣電極後仍須考量到電極的導電度,因此無法完全展現出CuO 的性能。

4.3.5 空氣陰極之陽極極化曲線——氧氣的生成反應

由循環伏安之圖形發現,CuO對於氧氣的氧化反應也有加速反應 進行的能力,因此經由陽極極化曲線可判斷出氧氣氧化反應的過程及 反應速率,氧氣的氧化反應在鹼性環境下的反應式為: $4OH^- \rightarrow 2H_2O + O_2 + 4e^-$

本實驗是由 0V以 3mV/s之掃描速率掃到 1.0V,因為 1.0V以上已 經開始進行電解水的反應,會影響實驗分析。添加 20wt%催化劑之空 氣電極的陽極極化曲線如圖 4-28,其斜率列於表 4-11,從表中可以發 現CuO不僅在氧氣還原反應的催化上非常有效,並且對於氧氣的氧化 反應也比市售之MnO₂高,推測原因為催化劑的表面活性較高,使其 能加速反應的進行。各催化劑氧氣生成反應的催化速率高低順序為:

 $CuO-B2>CuO-B1=CuO-A1>CuO-citric-500>MnO_2$

經過高溫鍛燒後的催化劑,在氧氟氧化反應上表現出的斜率較高,研判是因為高溫燒結後催化劑的表面形態改變,而對於氧氟生成 反應的活化能下降所致。由此可知,CuO不僅對於氧氣的還原反應有 顯著的效果,在氧氣的氧化反應上也能有效的催化反應的進行。

圖 4-1 ACP 法製備之 CuO 前驅物 TGA/DTA 圖形

圖 4-2 以共沉澱法製備之 CuO 催化劑之 TGA 圖形,
 (A)以CuCl₂為起始反應物,在 80℃下反應
 (B)以CuSO₄為起始反應物,在 80℃下反應
 (C)以CuSO₄為起始反應物,在 10℃下反應

圖 4-3 以 ACP 法製備之 CuO 催化劑 XRD 圖形

圖 4-4 以共沉澱法製備之 CuO 催化劑 XRD 圖形
 (A)以CuCl₂為起始反應物在 80℃下反應
 (B)以CuCl₂為起始反應物在 10℃下反應

圖 4-4 以共沉澱法製備之 CuO 催化劑 XRD 圖形(續)
 (C)以CuSO₄為起始反應物在 80℃下反應
 (D)以CuSO₄為起始反應物在 10℃下反應

(A) CuO-citric-500

(C) CuO-B1

(D) CuO-B2

圖 4-5 以(A)ACP 法;(B)~(D)共沉澱法製備之 CuO 催化劑 SEM 照片

(A) CuO-citric-600

(B) CuO-A1-500

(C) CuO-B1-500

(D) CuO-B2-500

圖 4-6 以(A)ACP 法;(B)~(D)共沉澱法製備之 CuO 催化劑經過高溫 鍛燒後的 SEM 照片

(A) CuO-citric-500-r

(B) CuO-A1-r

(C) CuO-B1-r

(D) CuO-B2-r

圖 4-7 以(A)ACP法;(B)~(D)共沉澱法製備之CuO催化劑經H₂O₂ 分解反應後的 SEM 照片

(A) CuO-citric-600-r

(B) CuO-A1-500-r

(C) CuO-B1-500-r

(D) CuO-B2-500-r

圖 4-8 以(A)ACP 法;(B)~(D)共沉澱法製備之 CuO 催化劑經過 高溫鍛燒後,再經過H₂O₂分解反應後的SEM照片

(B)

Sample	CuO-citric-500
Spectrum	Atomic percent (%)
Cu	43.49
0	56.51
Totals	100.00

"Spectrum 9	Sample	CuO-A1
AND NOT	Spectrum	Atomic percent (%)
1411	Cu	40.12
R H - C A	0	59.88
	Totals	100.00
and the second se		

Electron Image 1

圖 4-9 以(A)ACP 法;(B)~(D)共沉澱法製備之 CuO 催化劑 EDX 分析

(C)

Sample	CuO-B1
Spectrum	Atomic percent (%)
Cu	41.52
0	58.48
Totals	100.00

圖 4-9 以(A)ACP 法;(B)~(D)共沉澱法製備之 CuO 催化劑 EDX 分析 (續) (A)

Electron Image 1

Sample	CuO-citric-500-r
Spectrum	Atomic percent (%)
Cu	33.00
О	67.00
Totals	100.00

(B)

50µm Electron Image 1

Sample	CuO-A1-r
Spectrum	Atomic percent (%)
Cu	68.98
0	31.02
Totals	100.00

圖 4-10 CuO催化劑經過H2O2分解反應後之EDX分析

(C)

Sample	CuO-B1-r
Spectrum	Atomic percent (%)
Cu	23.71
0	76.29
Totals	100.00

Oµm Electron Image 1

(D)

Sample	CuO-B2-r
Spectrum	Atomic percent (%)
Cu	19.70
0	80.30
Totals	100.00

圖 4-10 CuO催化劑經過H2O2分解反應後之EDX分析(續)

(E)

Sample	CuO-citric-600-r
Spectrum	Atomic percent (%)
Cu	43.77
0	55.77
K	0.47
Totals	100.00

(F)

Sample	CuO-A1-500-r
Spectrum	Atomic percent (%)
Cu	43.91
0	56.09
Totals	100.00

圖 4-10 CuO催化劑經過H2O2分解反應後之EDX分析(續)

(G)

Sample	CuO-B1-500-r
Spectrum	Atomic percent (%)
Cu	43.56
0	56.44
Totals	100.00

(H)

Sample	CuO-B2-500-r
Spectrum	Atomic percent (%)
Cu	43.98
0	56.02
Totals	100.00

圖 4-10 CuO催化劑經過H2O2分解反應後之EDX分析(續)

Sample	比表面積(m ² /g)
MnO ₂	40.74
CuO-citric-500	29.25
CuO-A1	11.88
CuO-B1	19.79
CuO-B2	15.18
CuO-citric-600	7.17
CuO-A1-500	3.95
CuO-B1-500	F S N 11.55
CuO-B2-500	6.74

表 4-1 各催化劑之比表面積

圖 4-11 催化劑在 H_2O_2 分解反應中 $ln(\theta_0/\theta)$ 與時間的函數圖

圖 4-11 催化劑在 H_2O_2 分解反應中 $ln(\theta_0/\theta)$ 與時間的函數圖(續)

圖 4-11 催化劑在 H_2O_2 分解反應中 $ln(\theta_0/\theta)$ 與時間的函數圖(續)

(B)

圖 4-12 催化劑在H2O2分解反應中k對Wcat的函數圖

Sample	斜率	截距
CuO-citric-500	0.3752	0.0023
CuO-A1	0.3392	0.0032
CuO-B1	0.1720	0.0026
CuO-B2	0.2520	0.0001
CuO-citric-600	0.1412	0.0019
CuO-A1-500	0.14	0.0019
CuO-B1-500	0.1422	0.0016

表 4-2 各催化劑 k 值對重量之圖形的斜率及截距

Sample	1896 k值
MnO ₂	0.0035
CuO-citric-500	0.0137
CuO-A1	0.0135
CuO-B1	0.0079
CuO-B2	0.0077
CuO-citric-600	0.0061
CuO-A1-500	0.0060
CuO-B1-500	0.0058
CuO-B2-500	0.0013

表 4-3 各催化劑在 0.030g 之反應速率常數 k 值

圖 4-13 催化劑在 0.030g時H₂O₂分解反應中ln(θ₀/θ)與時間的函 數圖

Sample	Annealing 前後 比表面積(m ² /g)	比表面積 減少率 (%)	Annealing 前後 0.030g,15℃時 的速率常數 k	速率常數 減少率 (%)
CuO-citric-500	29.25	76	0.0137	55
CuO-citric-600	7.17	-70	0.0061	-55
CuO-A1	11.88	-67	0.0135	-55
CuO-A1-500	3.95	-07	0.0060	-33
CuO-B1	19.79	12	0.0079	_26
CuO-B1-500	11.55	-42	0.0058	-20
CuO-B2	15.18	ESSA	0.0077	83
CuO-B2-500	6.74	7.50	0.0013	-05

表 4-4 退火前後比表面積變化與H2O2分解反應速率常數變化比較

Sample	單位表面積之催化活性
MnO ₂	0.0028
CuO-citric-500	0.0128
CuO-A1	0.0286
CuO-B1	0.0087
CuO-B2	0.0166
CuO-citric-600	0.0197
CuO-A1-500	0.0354
CuO-B1-500	0.0123
CuO-B2-500	0.0068

表 4-5 各催化劑之單位表面積的催化活性

表 4-6 各催化劑之活化能 Ea 及 InA 值

Sample 🐬	Ea(KJ/mole)	lnA
CuO-citric-500	53.6	18.4
CuO-A1	46.9	14.5
CuO-B1	51.6	16.2
CuO-B2	108.3	39.3
CuO-citric-600	76.1	26.0
CuO-A1-500	78.5	27.0
CuO-B1-500	80.2	27.7
CuO-B2-500	101.3	35.7

(B)圖 4-14 各催化劑之 Arrhenius 圖形

(A) 擴散層

(B)催化層--MnO₂

· · · · · · · · ·

(C)催化層--MnO2+5%VGCF

(D)催化層--CuO-citric-500

(E)催化層--CuO-A1

(F)催化層--CuO-B1

圖 4-15 擴散層和各催化層之 SEM 照片

(G)催化層--CuO-B2

(H)催化層--CuO-citric-600

441111

(I)催化層--CuO-A1-500

(J)催化層--CuO-B1-500

(K)催化層--CuO-B2-500

圖 4-15 擴散層和各催化層之 SEM 照片(續)

圖 4-17 催化層中有無添加催化劑之放電曲線圖

圖 4-19 添加不同比例 VGCF 之催化層放電曲線圖

		開路電壓	1.0V 時	0.8V 時
Sample		(OCV)	電流密度	電流密度
		(V)	(mA/cm^2)	(mA/cm^2)
	10wt%MnO ₂	1.24	100	326
5wt%VGCF	15wt%MnO ₂	1.25	100	345
	20wt%MnO2	1.25	100	348
	25wt%MnO ₂	1.26	110	350
5wt%VGCF	E []	1.25	100	348
10wt%VGCF	20wt%MnO ₂	1.25	100	305
15wt%VGCF		1.25	115	336
20wt%VGCF	TIM.	1.25	100	345

表 4-7 添加 VGCF 後鋅-空氣電池在 1.0V 及 0.8V 之電流密度

圖 4-20 各種不同含量催化劑的空氣陰極之放電曲線圖

圖 4-20 各種不同含量催化劑的空氣陰極之放電曲線圖(續)

		OCV	1.0V 時	0.8V 時
Sample	添加比例	(V)	電流密度	電流密度
		(•)	(mA/cm^2)	(mA/cm^2)
XC72		1.20	56	170
	15wt%	1.25	94	352
MnO ₂	20wt%	1.25	105	374
	25wt%	1.26	118	375
	15wt%	1.28	109	321
CuO-citric-500	20wt%	1.29	144	376
	25wt%	1.29	135	412
	15wt%	1.28	134	313
CuO-A1	20wt%	1.30	129	359
	25wt%	1.30	139	369
	15wt%	1.27	118	354
CuO-B1	20wt%	1.28	116	353
	25wt%	1.29	166	403
	15wt%	^{B9} 1.25	80	313
CuO-B2	20wt%	1.28	110	376
	25wt%	1.29	104	350
	15wt%	1.27	130	343
CuO-citric-600	20wt%	1.28	102	317
	25wt%	1.29	121	331
	15wt%	1.27	139	400
CuO-A1-500	20wt%	1.27	144	372
	25wt%	1.27	139	382
	15wt%	1.27	87	335
CuO-B1-500	20wt%	1.28	68	257
	25wt%	1.30	106	374
	15wt%	1.26	101	336
CuO-B2-500	20wt%	1.27	99	330
	25wt%	1.25	105	335

表 4-8 不同含量催化劑之電池性能比較

圖 4-21 添加 20wt%催化劑之空氣陰極放電曲線圖

圖 4-22 各催化劑高溫鍛燒前後製備成空氣電極之放電曲線圖

圖 4-23 空氣電極以(A)MnO2;(B)CuO為催化劑之CV曲線圖

圖 4-24 不同含量之各種催化劑的空氣陰極極化曲線圖

圖 4-24 不同含量之各種催化劑的空氣陰極極化曲線圖(續)

Sample 催化劑含量	催化剩合导	-0.6V 時的	-0.8V 時的	纠玄
	唯他的百里	電流(A)	電流(A)	新 千
	15wt%	-0.0801	-0.1306	0.25
MnO ₂	20wt%	-0.0747	-0.134	0.30
	25wt%	-0.0789	-0.1265	0.24
	15wt%	-0.0313	-0.0904	0.30
CuO-citric-500	20wt%	-0.0335	-0.1	0.33
	25wt%	-0.0309	-0.0873	0.29
	15wt%	-0.0893	-0.1411	0.26
CuO-A1	20wt%	-0.0617	-0.13	0.34
	25wt%	-0.0626	-0.1240	0.31
	15wt%	-0.0738	-0.1234	0.25
CuO-B1	20wt%	-0.0754	-0.123	0.24
	25wt%	-0.0900	-0.1421	0.26
	15wt% 🍯	-0.0775	-0.1269	0.25
CuO-B2	20wt% 💈	-0.0786	-0.126	0.24
	25wt%	-0.0807	-0.1276	0.23
	15wt%	-0.0719	-0.1205	0.24
CuO-citric-600	20wt%	-0.0573	-0.0973	0.20
	25wt%	-0.0764	-0.1274	0.26
	15wt%	-0.0797	-0.1304	0.25
CuO-A1-500	20wt%	-0.0815	-0.129	0.24
	25wt%	-0.0967	-0.1487	0.26
CuO-B1-500	15wt%	-0.0568	-0.0980	0.20
	20wt%	-0.0678	-0.114	0.23
	25wt%	-0.0749	-0.1236	0.25
	15wt%	-0.0568	-0.0980	0.20
CuO-B2-500	20wt%	-0.0712	-0.12	0.24
	25wt%	-0.0739	-0.1218	0.24

表 4-9 不同含量之各種催化劑的極化曲線比較

圖 4-25 添加 15wt%催化劑之空氣陰極的 Tafel 曲線圖

圖 4-26 添加 20wt%催化劑之空氣陰極的 Tafel 曲線圖

圖 4-27 添加 25wt%催化劑之空氣陰極的 Tafel 曲線圖

Sample	催化劑含量	斜率	截距	交換電流io
	15wt%	-3.9604	-0.28277	0.93
MnO ₂	20wt%	-3.3727	-0.3481	0.90
	25wt%	-4.20168	-0.26849	0.94
	15wt%	-3.38409	-0.49408	0.86
CuO-citric-500	20wt%	-3.0075	-0.4992	0.85
	25wt%	-3.5461	-0.49043	0.87
	15wt%	-3.861	-0.25521	0.94
CuO-A1	20wt%	-5	-0.3135	0.94
	25wt%	-3.25733	-0.39609	0.89
	15wt%	-4.03226	-0.30242	0.93
CuO-B1	20wt% 🔬	-2.9283	-0.4193	0.87
	25wt%	-3.83877	-0.25451	0.94
	15wt%	-4.04858	-0.28623	0.93
CuO-B2	20wt%	-4.2105	-0.2568	0.94
	25wt% 🐬	-4.26439	-0.25586	0.94
	15wt%	-4.11523	-0.30412	0.93
CuO-citric-600	20wt%	-4.2017	-0.2832	0.93
	25wt%	-3.92157	-0.30039	0.93
	15wt%	-3.94477	-0.2856	0.93
CuO-A1-500	20wt%	-4.329	-0.3065	0.93
	25wt%	-3.84615	-0.22808	0.94
	15wt%	-4.85437	-0.32427	0.94
CuO-B1-500	20wt%	-4.2194	-0.2684	0.94
	25wt%	-4.10678	-0.2924	0.93
	15wt%	-3.75235	-0.32383	0.92
CuO-B2-500	20wt%	-4.0984	-0.3082	0.93
	25wt%	-4.17537	-0.29144	0.93

表 4-10 各催化劑之 Tafel 斜率及交换電流比較

圖 4-28 添加 20wt%催化劑之空氣電極的陽極極化曲線圖

Sample	0.6V 時的電流	0.8V 時的電流	斜索		
Sample	(A)	(A)	新十		
MnO ₂	0.00381	0.0137	0.05		
CuO-citric-500	0.00167	0.0143	0.06		
CuO-A1	0.00264	0.018	0.08		
CuO-B1	0.00354	0.0195	0.08		
CuO-B2	0.00301	0.0239	0.10		
CuO-citric-600	0.00332	0.0183	0.08		
CuO-A1-500	0.00498	0.0364	0.16		
CuO-B1-500	0.00351	0.0266	0.12		
CuO-B2-500	0.00475	0.0281	0.12		
The second second					

表 4-11 添加 20wt%催化劑之空氣電極的陽極極化曲線

122