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In order to make the thesis self-contained, we only assume the readers
are familiar with basic theory of groups, rings and fields and basic knowledge
of metric spaces. The purpose of the article is to classify quaternion algebras
over Q explicitly.

Here are some assumptions throughout the thesis: rings always have
identities and ring homomorphisms always preserve identities and additive
and multiplicative operations.

1 Preliminaries I

We shall recall some basic results about central simple algebras in order to
introduce quaternion algebras in the next section. All the materials in the
section could be found in [5].

Definition. Let K be a field. A K-algebra A is a ring such that A is a
vector space over K satisfying a(xy) = (ax)y = x(ay) for any x, y ∈ A and
a ∈ K.

Given a K-algebra A, the map k −→ k1A is a monomorphism from K
to A, where 1A is the identity of A. We may assume the ground field K is
a subfield of A.

Recall that a group G is simple if and only if G has no nontrivial normal
subgroup. Similarly, a simple ring is a ring which has no nontrivial ideal.

Proposition 1.1. Let D be a division ring.

(i) The center Z(D) is a subfield of D and any maximal subfield contains
Z(D).

(ii) There exists a maximal subfield.

(iii) Any division ring is a simple algebra over its center.

Definition. A central simple K-algebra A is a simple K-algebra such that
the center of A is the field K.

There is a classification theorem of central simple algebras.

Theorem 1.2. (Artin-Wedderburn) Let A be a finite dimensional central
simple K-algebra. Then A is K-algebra isomorphic to Mn×n(D) for some
central division K-algebra D (unique up to K-algebra isomorphism) and
unique integer n ≥ 1.

Let K be an algebraically closed field, e.g. C. For any finite dimensional
central division K-algebra D and d ∈ D, [D:K]<∞ implies that there exists
a nonconstant polynomial p ∈ K[x] with p(d) = 0. Since K is algebraically
closed, d ∈ K and thenD = K. Hence any finite dimensional central division
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K-algebra is K. By Artin-Wedderburn theorem, any finite dimensional
central simple K-algebras is a matrix algebra over K.

Before discussing central simple algebras over a finite field, we need the
following theorem.

Theorem 1.3. (Wedderburn) Every finite division ring is a field.

Let Fq be the finite field with q elements. Combining two theorems
above, any finite dimensional central division Fq-algebra is just the finite
field Fq. Then any finite dimensional central simple Fq-algebra is a matrix
algebra over Fq.

We shall introduce tensor products first before discussing further prop-
erties of division rings. Recall the multiplication of a ring R follows the
rules: x(y + z) = xy + xz, (x+ y)z = xz + yz for any x, y, z ∈ R. We hope
there is a vector space in which one can take ”products” xy of elements x
in a vector space and y in another vector space and satisfying the two rules
mentioned before.

Here is the construction of tensor products. Given two vector spaces
V and W over a field K. Let X be a vector space over K with a basis
{(v, w)|v ∈ V,w ∈W}. Consider the subspace Y of X generated by

(v + v′, w)− (v, w)− (v′, w),

(v, w + w′)− (v, w)− (v, w′),

(av, w)− a(v, w),

(v, aw)− a(v, w),

for any v, v′ ∈ V , w,w′ ∈ W and a ∈ K. Denote the quotient space X/Y
by V ⊗K W and (v, w) + Y by v ⊗ w. Then we have the following rules in
V ⊗K W : (v + v′)⊗w = v⊗w+ v′ ⊗w, v⊗ (w+w′) = v⊗w+ v⊗w′ and
a(v ⊗ w) = (av) ⊗ w = v ⊗ (aw). It can be shown that v ⊗ 0 = 0 ⊗ w = 0
for any v, w and β1 ⊗ β2 is a basis of V ⊗K W if β1 and β2 are basis of V
and W , respectively.

Given two K-algebras A and B, choose two basis {xα} and {yβ} of A
and B, respectively. Define the multiplication on the basis {xα} ⊗ {yβ} by
(xα1⊗yβ1)(xα2⊗yβ2) = xα1xα2⊗yβ1yβ2 . Extend the multiplication linearly.
In this way, A ⊗K B forms a K-algebra. The identity of A ⊗K B is 1 ⊗ 1.
The multiplication we defined is independent of the choice of basis of A and
B. The maps x −→ x⊗ 1 and y −→ 1⊗ y are K-algebra monomorphisms.
This means A⊗K B is a K-algebra contains isomorphic copies of A and B.
If F is an extension field of K and A is a vector space over F , A ⊗K B is
an F -algebra with α(x ⊗ y) = (αx) ⊗ y, where α ∈ F , x ∈ A and y ∈ B.
In particular, F ⊗K B is an F -algebra with F -basis 1 ⊗ {yβ}. This can
be regarded as extending the coefficients of B from K to F . When B is a
central division K-algebra, there are more properties about B.
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Proposition 1.4. Let D be a central division K-algebra, F be a maximal
subfield and A be a K-algebra.

(i) [D:K] is finite if and only if [F :K] is finite.

(ii) F ⊗K D ∼= Mn×n(F ) as F -algebras and [D:K]=[F :K]2 if [D:K]<∞.

(iii) F ⊗K Mn×n(A) ∼= Mn×n(F ⊗K A) as F -algebras for any n ≥ 1.

The proposition says if we extend the coefficients of a finite dimensional
central division algebra from the ground field to its maximal subfield, the
extended algebra is a matrix algebra over the maximal subfield.

Let A be a finite dimensional central simple K-algebra. By Artin-
Wedderburn theorem, A ∼= Mn×n(D) for some central division algebra over
K and n ≥ 1. Let F be a maximal subfield of D and m=[F :K]. Then
F ⊗K A ∼= Mn×n(F ⊗K D) ∼= Mn×n(Mm×m(F )) ∼= Mnm×nm(F ).

This means after extending the coefficients, the extended algebra may
become a matrix algebra over a field.

Definition. A finite dimensional central simple K-algebra A splits over a
field F if F is an extension field of K satisfying F ⊗K A ∼= Mn×n(F ) for
some n ≥ 1. In this case, F is called a splitting field of A.

For further properties of central simple algebras, see Section 8.
Recall that for any element g of a group G, the map x −→ gxg−1 is an

automorphism of G, called an inner automorphism of G. Given a central
simple K-algebra A, the maps of the form x −→ axa−1, where a ∈ A×, are
also automorphisms, inner automorphisms of A.

Theorem 1.5. (Noether-Skolem) Let A be a finite dimensional central sim-
ple K-algebra and B1 and B2 be two K-subalgebras of A. If φ : B1 −→ B2 is
a K-algebra isomorphism, there exists an inner automorphism Φ of R such
that Φ|B1 = φ.

As a corollary of Noether-Skolem theorem, every automorphism of a
finite dimensional central simple algebra is an inner automorphism.

2 Basic Properties of Quaternion Algebras

For convenience, we assume the ground field K is of characteristic not equalt
to 2 when discussing quaternion algebras. Except for Theorem 2.12 and
Corollary 2.13, the materials in this section come from [1].

Definition. A quaternion algebra H over K is a K-algebra with a basis
{1, i, j, ij} satisfying i2 = a, j2 = b and ij = −ji, where a and b are some
nonzero elements of K. In this case, {1, i, j, ij} is called a standard basis
corresponding to (a, b).
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Lemma 2.1. Let A be a K-algebra. If i and j are two elements of A
satisfying i2 = a ∈ K×, j2 = b ∈ K× and ij = −ji, then {1, i, j, ij} is
linearly independent over K.

Proof. Suppose a1+a2i+a3j+a4ij = 0. SinceK is of characteristic not equal
to 2, we have 0 = i(a1+a2i+a3j+a4ij)i

−1 = a1+a2i−a3j−a4ij, a1+a2i = 0
and a3j + a4ij = 0. Since j is a unit of A, we have a1 + a2i = a3 + a4i = 0.
ij = −ji and j ∈ A× imply the equality jij−1 = −i. By the equality and
0 = j(a1 + a2i)j

−1, we obtain a1 − a2i = 0 and then a1 = a2 = 0 since K is
of characteristic not equal to 2. Similarly, a3 = a4 = 0. Therefore {1, i, j, ij}
is linearly independent over K.

From the proof of the lemma, if we replace the condition j2 = b ∈ K×
by j ∈ A×, the lemma still holds.

Given a quaternion algebra H with a standard basis {1, i, j, ij} corre-
sponding to (a, b), the multiplication rules on H are determined by the pair
(a, b). Hence we write H = (a,bK ) while the quaternion algebra H over K has
a standard basis corresponding to (a, b).

Theorem 2.2. Let a, b ∈ K×. Then (a,bK ) exists.

Proof. Let K be an algebraic closure of K. Choose α, β ∈ K with α2 = a
and β2 = −b. Put i = ( α 0

0 −α ) and j = ( 0 β
−β 0 ). Then i2 = aI2, j

2 = bI2
and ij = −ij. By Lemma 2.1, {1, i, j, ij} is independent over K. Hence the
4-dimensional K-subspace generated by {1, i, j, ij} is a quaternion algebra
over K.

It is possible that (a,bK ) ∼= ( c,dK ) for two different pairs (a, b) and (c, d).

In other words, (a,bK ) may contain another standard basis {1, î, ĵ, îĵ} corre-
sponding to (c, d) for some (c, d) 6= (a, b). It is easy to prove the following
proposition.

Proposition 2.3. Let a, b, c ∈ K×.

(i) (a,bK ) ∼= ( b,aK ).

(ii) (a,bK ) ∼= (ac
2,bd2

K ) for any c, d ∈ K×.

(iii) M2×2(K) = (1,cK ) with i = ( 1 0
0 −1 ) and j = ( 0 c

1 0 ).

There is a characterization of quaternion algebras which we need in Sec-
tion 8.

Proposition 2.4. Every quaternion algebra over K is a 4-dimensional cen-
tral simple K-algebra, and vice versa.
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Proof. Let H = (a,bK ) be a quaternion algebra and I be a proper ideal of H.
Then H/I is a K-algebra and, by Lemma 2.1, {1 + I, i + I, j + I, ij + I}
is a K-basis of H/I. Thus I is a zero ideal and H is a simple ring. Let
x = a1 + a2i + a3j + a4ij be an element in the center of H. Comparing
the coefficients from ix = xi and jx = xj, we have a2 = a3 = a4 = 0 and
x = a1 ∈ K. Hence H is a 4-dimensional central simple K-algebra.

Conversely, let A be a 4-dimensional central simple K-algebra. By Artin-
Wedderburn theorem, A is a 4-dimensional central division K-algebra or A
is isomorphic to M2×2(K). From Proposition 2.3, M2×2(K) is a quaternion
algebra over K. We may assume that A is a 4-dimensional central division
K-algebra. Choose α ∈ A − K. Since K ⊂ K(α) ⊂ A are division rings,
we have 4 = [A : K] = [A : K(α)][K(α) : K]. That A is noncommutative
and [K(α) : K] > 1 implies [K(α) : K] = 2. Moreover, K(α) = K(

√
a) for

some a ∈ K× since K is of characteristic not equal to 2. Put i =
√
a. Since

i ∈ A−K, x2−1 is the minimal polynomial of φ over K, where φ is the inner
automorphism z −→ izi−1. Then φ has an eigenvector j corresponding to
−1, that is, ij = −ji. Since i2 = a ∈ K×, j ∈ A× and ij = −ji, it can
be shown that {1, i, j, ij} is independent over K by the same argument of
Lemma 2.1. It is easy to check that j2 commutes all elements of the basis
and thus j2 = b ∈ Z(A) = K. Therefore A = (a,bK ).

In order to determine whether H is a division algebra or not, we need
the concept of pure quaternions and norm maps to obtain some criteria.

Definition. Let H = (a,bK ) be a quaternion algebra and {1, i, j, ij} be a
standard basis corresponding to (a, b). The subsapce H0 = Ki ⊕Kj ⊕Kij
is called the pure quaternion of H.

By straightforward computation, we have the following proposition.

Proposition 2.5. If x ∈ H = (a,bK ), then x2 ∈ K if and only if x ∈ K or
x ∈ H0.

The proposition above implies the pure quaternion is independent of the
choice of standard basis. In other words, if a quaternion algebra H contains
two standard basis {1, i1, j1, i1j1} and {1, i2, j2, i2j2}, the pure quaternion
of H is Ki1 ⊕Kj1 ⊕Ki1j1 = Ki2 ⊕Kj2 ⊕Ki2j2.

Definition. Let H be a quaternion algebra. For any x = a + α ∈ H,
a ∈ K,α ∈ H0, the element x = a− α is called the conjugate of x.

Recall the opposite ring Rop of a ring R is another ring with the same
elements and addition operation, but the multiplication on Rop is performed
in the reverse order. It is clear that the opposite ring of a central simple
K-algebra is still a central simple K-algebra.

It is easy to prove the following proposition if we write the conjugate
map as linear combinations of a fixed standard basis.
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Proposition 2.6. Let H be a quaternion algebra. The map H −→ Hop by
x −→ x is a K-algebra isomorphism, where Hop is the opposite ring of H.

The proposition above implies the corresponding class of a quaternion
algebra in the Brauer group is of order 1 or 2. See Section 8.

For a quaternion algebra H = (a,bK ) and a /∈ (K×)2, K⊕Ki is a quadratic
extension field of K. The Galois group is generated by the map σ : i −→ −i.
Hence the conjugate map is an extension of σ.

Let H be a quaternion algebra constructed in Theorem 2.2 and a matrix
x = ( a bc d ) ∈ H. Then x = ( d −b

−c a ), i.e. the classical adjoint matrix of x.
Moreover, we have xx = det(x)I2 and x+ x = tr(x)I2.

Definition. Let H be a quaternion algebra. The map N : H −→ H by
x −→ xx is called the norm map and T : H −→ H by x −→ x+ x is called
the trace map.

From the definition the norm map and trace map are independent of the
choice of standard basis. For each standard basis of a quaternion algebra,
it is easy to write down the norm map and trace map explicitly.

Proposition 2.7. Let H = (a,bK ) be a quaternion algebra. For a, ai ∈ K,
α ∈ H0 and x, y ∈ H,

(i) N(a1 + a2i+ a3j + a4ij) = a21 − aa22 − ba23 + aba24;

(ii) N(xy) = N(x)N(y) and N(ax) = a2N(x);

(iii) N(a+ α) = a2 − α2;

(iv) T (a1 + a2i+ a3j + a4ij) = 2a1;

(v) T (x+ y) = T (x) + T (y) and T (ax) = aT (x);

(vi) H× = {x ∈ H|N(x) 6= 0} and x−1 = x
N(x) ;

(vii) H is a division algebra if and only if N(x) 6= 0 for any x 6= 0 ∈ H.

For a quaternion algebra H = (a,bK ) and a /∈ (K×)2, the restriction of
norm map and trace map on F = K ⊕Ki, which is the quadratic extension
field of K, are the norm NF/K and trace TF/K .

Since the norm map and trace map are independent of the choice of stan-
dard basis and any isomorphism of quaternion algebras preserves standard
basis, the norm map and trace map are invariant under isomorphism.

Proposition 2.8. Let H1 and H2 be two quaternion algebras over K. If
φ : H1 −→ H2 is a K-algebra isomorphism, φ(x) = φ(x), N(φ(x)) = N(x)
and T (φ(x)) = T (x) for all x ∈ H1.

Here is the first criterion for splitness.
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Theorem 2.9. Let H = (a,bK ) be a quaternion algebra. The following con-
ditions are equivalent:

(i) H splits over K.

(ii) There exists an x 6= 0 ∈ H with N(x) = 0.

(iii) b ∈ NF/K(F×), where F = K(
√
a).

(iv) a ∈ NF/K(F×), where F = K(
√
b).

Proof. (i)⇒(ii): Since H splits over K H ∼= M2×2(K) which is not a division
algebra, by (vii) in Proposition 2.7, there must exists a nonzero element x
such that N(x) = 0. (ii)⇒(iii): By hypothesis, 0 = a21 − aa22 − ba23 + aba24
for some (a1, a2, a3, a4) 6= (0, 0, 0, 0) ∈ K4. Then a21 − aa22 = b(a23 − aa24).
When a is square, b is in the image of norm. When a is nonsquare, we have
a21 − aa22 = b(a23 − aa24) 6= 0. Hence

b =
a21 − aa22
a23 − aa24

=
NF/K(a1 + a2

√
a)

NF/K(a3 + a4
√
a)

= NF/K((a1 + a2
√
a)(a2 + a4

√
a)−1)

and b is in the image of the norm. (iii)⇒(i): By Proposition 2.3, H splits
over K if a is square. For a nonsquare a, b = x2−ay2 for some (x, y) 6= (0, 0).
0 = x2 − ay2 − b = N(x + yi + j) and x + yi + j 6= 0. By Proposition 2.3
again, H is not a division algebra. Hence H splits over K. (ii)⇒(iv) and
(iv)⇒(i) are proved in similar arguments.

Corollary 2.10. Let a ∈ K×. (a,−aK ) ∼= M2×2(K).

Proof. {1, i, j, ij} is a standard basis corresponding to the pair (a,−a). Since
N(i+ j) = −a(1)− (−a)(1) = 0, by Theorem 2.9, (a,−aK ) ∼= M2×2(K).

Corollary 2.11. Let p be a prime. The quaternion algebra (−1,pQ ) splits
over Q if and only if p = 2 or p ≡ 1 mod 4.

Proof. By Theorem 2.9, (−1,pQ ) splits over Q if and only if p = x2 + y2 some

(x, y) 6= (0, 0) ∈ Q2. From elementary number theory, any positive integer
n is a sum of two square of integers if and only if all prime factors of n of
the form 4m+ 3 have even exponent in the prime factorization of n. Hence
(−1,pQ ) splits over Q if p = 2 or p ≡ 1 mod 4. Conversely, p = (ab )2 + ( cd)2 for

some (ab ,
c
d) 6= (0, 0) ∈ Q2. d2|b2d2p = a2d2 + c2b2 implies d|b since c, d are

relatively prime. Similarly, b|d and thus b = d. Now, we have b2p = a2 + c2,
which implies all prime factors of a2 + c2 of the form 4m + 3 have even
exponent. Therefore p = 2 or p ≡ 1 mod 4.
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The key point in the proof of Proposition 2.4 is to prove the existness of
element z such that iz = −zi. Suppose H = (a,bK ) is a quaternion algebra
containing an element z such that iz = −zi . Then z = xj + yij, where
(x, y) 6= (0, 0) ∈ K2. And z2 = (xj + yij)2 = b(x2 − ay2). By Lemma 2.1,
{1, i, z, iz} is a standard basis corresponding to the pair (a, b(x2 − ay2)) if
z2 6= 0. With the observation we can characterize some families of quater-
nion algebras in the following theorem.

Theorem 2.12. Let a, b, c ∈ K×. Two quaternion algebras (a,bK ) and (a,cK )
are isomorphic if and only if b = c in K×/NF/K(F×), where F = K(

√
a).

Proof. If a is square, both sides hold trivially. We may assume a is non-
square. Let {1, i, j, ij} be the standard basis of (a,bK ) and suppose b = c.
Then c = b(x2 − ay2) for some (x, y) 6= (0, 0). Put j′ = xj + yij. Hence
j′2 = b(x2 − ay2) and ij′ = −j′i. By Lemma 2.1, {1, i, j′, ij′} is a standard
basis of (a,bK ) corresponding to (a, b(x2−ay2) = (a, c) and thus (a,bK ) ∼= (a,cK ).

Conversely, suppose (a,bK ) and (a,cK ) are isomorphic. By assumption, (a,bK )
contains a standard basis {1, ĩ, j̃, ĩj̃} corresponding to the pair (c, d). Since
φ : K ⊕Kĩ −→ K ⊕Ki by ĩ −→ i is an isomorphism, by Noether-Skolem
theorem, φ can be extended to an inner automorphism Φ of (a,bK ). Write
Φ(j̃) = a1+a2i+a3j+a4ij. Since ĩj̃ = −j̃ ĩ and Φ(̃i) = φ(̃i) = i, a1 = a2 = 0
and Φ(j̃) = a3j+a4ij. Hence c = (Φ(j̃))2 = (a3j+a4ij)

2 = b(a23−aa24).

Corollary 2.13. For any two distinct odd primes p, q ≡ 3 mod 4, (−1,pQ )

and (−1,qQ ) are nonisomorphic division algebras.

Proof. By Corollary 2.11 , (−1,pQ ) is a division algebra for any odd prime
p ≡ 3 mod 4. Suppose there are two distinct primes p, q ≡ 3 mod 4 with
(−1,pQ ) ∼= (−1,qQ ). From Theorem 2.12

p = q[(
a

b
)2 + (

c

d
)2] (1)

for some (ab ,
c
d) 6= (0, 0) ∈ Q2. Then b2d2p = q[a2d2+c2b2] and q must divide

b or d. We may assume that q|b. We have q2|b2d2p = q[a2d2 +c2b2] and thus
q|a2d2 + c2b2. Since q|b and q|a2d2 + c2b2 , q|a2d2. If q|a, then q|(a, b) = 1,
a contradiction. Hence b and d have a common prime factor q. Rewrite (1):

p = q[(
a

e
)2 + (

c

f
)2]

1

q2
(2)

, where e = b
q , f = d

q ∈ N. By (2), we have e2f2pq = a2f2 + c2e2. All prime

factors of a2f2 +c2e2 of the form 4m+3 have even exponent. But the prime
factor of e2f2pq of p has odd exponent, a contradiction.

From the corollary, we know there are infinitely many nonisomorphic
quaternion algebras over Q.
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3 Viewpoints from Quadratic Forms

We shall recall some basic results about symmetric bilinear forms and quadratic
forms. Detailed proofs can be founded in [6],[8].

Definition. Let V be a vector space over K. The map φ : V × V −→ K
is a symmetric bilinear form if for each x ∈ V , φ(x, . ) and φ( . , x) are
linear maps from V to K and φ(x, y) = φ(y, x) all x, y ∈ V . A vector space
V equipped a symmetric bilinear form φ is denoted by (V, φ).

The easiest example of symmetric bilinear forms is the inner product on
the Euclidean space Rn.

Definition. Let V be a vector space over K. A symmetric bilinear form φ
is nondegenerate if the map x −→ φ(x, . ) is a monomorphism from from
V to its dual space V ∗.

It is clear that a symmetric bilinear form φ on a finite dimensional vector
space V is nondegenerate if and only if the map x −→ φ(x, . ) is an
isomorphism. Let X = {xi} be a basis and x =

∑
i aixi, y =

∑
i bixi ∈ V .

Then φ(x, y) = [ai]
t[φ(xi, xj)][bi]. That means φ is determined by the matrix

[φ(xi, xj)], denoted [φ]X . One can proved φ is nondegenerate if and only if
[φ]X is invertible. If Y = {yi} is also a basis, we have [φ]X = P t[φ]Y P for
some invertible matrix P . Therefore φ is nondegenerate if and only if [φ]X
is invertible for any basis X of V .

Now we are going to see what is a quadratic form. Consider a sym-
metric bilinear form φ on Kn and (aij) be the matrix corresponding to the
standard basis. Then φ((x1, ..., xn), (x1, ..., xn)) =

∑
i,j
aijxixj . Hence we can

associate a homogeneous polynomial of degree 2 in variables x1, ..., xn with
a symmetric bilinear form on a n-dimensional vector space if a basis is fixed.

Definition. Let V be a vector space over K. The map Q : V −→ K is a
quadratic form if the map φ(x, y) = 1

2 [Q(x+y)−Q(x)−Q(y)] is a symmetric
bilinear form on V . A vector space V equipped a quadratic form Q is denoted
by (V,Q), which called a quadratic space.

We shall point out the relationship among symmetric bilinear forms,
quadratic forms and homogeneous polynomials of degree 2.

Proposition 3.1. Let V be a n-dimensional vector space over K and {vi}
be a basis of V .

(i) The map φ −→ Q, where Q is defined by Q(x) = φ(x, x), is a bijection
between the set of symmetric bilinear forms and the set of quadratic
forms.
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(ii) The map φ −→
∑
i,j
φ(vi, vj)xixj is a bijection between the set of sym-

metric bilinear forms and the set of homogeneous polynomials of degree
2 in variables x1, ..., xn.

Definition. Let (Vi, Qi) be a quadratic space and φi be the correspond-
ing symmetric bilinear form, i = 1, 2. Q1 and Q2 are equivalent, denoted
(V1, Q1) ∼= (V2, Q2), if there is an isomorphism Φ : V1 −→ V2 such that
Q2(Φ(x)) = Q1(x) for any x ∈ V1. φ1 and φ2 are equivalent, denoted
(V1, φ1) ∼= (V2, φ2), if there is an isomorphism T : V1 −→ V2 such that
φ2(Tx, Ty) = φ1(x, y) for any x, y ∈ V1.

It is clear that two quadratic forms are equivalent if and only if the
corresponding symmetric bilinear forms are equivalent.

Go back to quaternion algebras.

Proposition 3.2. Let H be a quaternion algebra. Then the norm map N
is a quadratic form on H0.

Proof. Suppose H = (a,bK ). Let {1, i, j, ij} be a standard basis corresponding
to (a, b). For x = a1i+ a2j + a3ij, y = b1i+ b2j + b3ij ∈ H0,

φ(x, y) =
1

2
[N(x+ y)−N(x)−N(y)] = −aa1b1 − ba2b2 + aba3b3. (3)

It is easy to see that φ is a symmetric bilinear form on H0 and then N is a
quadratic form.

Theorem 3.3. Let Hi be a quaternion algebra with norm map Ni , i = 1, 2.
Then H1

∼= H2 if and only if ((H1)0, N1) ∼= ((H2)0, N2).

Proof. Suppose Φ : H1 −→ H2 is an isomorphism. Let x be an element
of pure quaternion of H1. By Proposition 2.5, x /∈ K and x2 ∈ K and
then Φ(x) /∈ K and Φ(x)2 ∈ K, i.e. Φ(x) ∈ (H2)0. Since any isomorphism
of quaternion algebras keeps the values of norm maps (Proposition 2.8),
the restriction Φ is an isomorphism of two quadratic spaces ((Hi)0, Ni),
i = 1, 2. Conversely, let σ : (H1)0 −→ (H2)0 be an isomorphism of quadratic
spaces and {1, i, j, ij} be a standard basis of H1. By (iii) in Proposition 2.7,
the equivalence of the corresponding symmetric bilinear forms φi and the
equality φi(x, y) = −1

2(xy + yx) ∈ K for elements x, y in pure quaternions,
one can show that {1, σ(i), σ(j), σ(i)σ(j)} is a standard basis of H2. Hence
the isomorphism of vector spaces by 1 −→ 1, i −→ σ(i), j −→ σ(j) and
ij −→ σ(i)σ(j) is a K-algebra isomorphism.

4 Preliminaries II

We shall recall some results about the theory of valuations and local fields
which we need in the next section. Detailed Proofs could be found in [5],[6].
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In order to apply Theorem 2.9 and Theorem 2.12 in the next section, we
shall find all the quadratic extension fields of p-adic fields and characterize
the images of their norms.

Definition. An absolute value on a field K is a map ‖ . ‖: K −→ R≥0
satisfying the following properties:

(i) ‖ x ‖= 0 if and only if x = 0.

(ii) ‖ xy ‖=‖ x ‖‖ y ‖ for any x, y ∈ K.

(iii) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ for any x, y ∈ K.

The group ‖ K× ‖ is called the the value group of K with respect to ‖ . ‖.
If an absolute value satisfies ‖ x + y ‖≤ max(‖ x ‖, ‖ y ‖) for all x, y, the
absolute value is called nonarchimedean; Otherwise, it is called archimedean.

The usual absolute value on Q is archimedean. For each prime p, the
p-adic absolute value on Q is defined by ‖ a

b ‖p= (1p)ordp(a)−ordp(b), where
ordp(a) is the exponent of p in the prime factorization of nonzero integer a.
The p-adic absolute value is nonarchimedean.

Definition. Let K be a field with absolute values ‖ . ‖1 and ‖ . ‖2. ‖ . ‖1
and ‖ . ‖2 are equivalent if {xn} is a Cauchy sequence with respect to ‖ . ‖1
if and only if {xn} is a Cauchy sequence with respect to ‖ . ‖2.

There are several characterizations of equivalence of absolute values. Let
‖ . ‖1 and ‖ . ‖2 be absolute values on a field. ‖ . ‖1 and ‖ . ‖2 are equivalent
if and only if there is an a > 0 such that ‖ . ‖2=‖ . ‖a1 if and only if the
corresponding topologies are the same.

Theorem 4.1. (Ostrowski) Every nontrivial absolute value on Q is equiva-
lent to the usual absolute value or the p-adic absolute value for some unique
prime p.

Ostrowski’s theorem says all nontrivial absolute value on Q are the usual
absolute value and p-adic absolute value for all primes p up to equivalence.

Definition. The usual absolute value on Q is called the infinite place, de-
noted by ∞ or -1. And R is denoted by Q∞ or Q−1. For each prime p the
p-adic absolute value is called a finite place, denoted by p.

Recall that a commutative ring R is local if and only if there is a unique
maximal ideal of R(or equivalently, R−R× is an ideal).

Proposition 4.2. Let K be a field with a nonarchimedean absolute value
‖ . ‖.

(i) OK = {x ∈ K| ‖ x ‖≤ 1} is a an integral domain with a unique
maxiaml ideal MK and the group of units is {x ∈ K| ‖ x ‖= 1}.
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(ii) OK is a principal ideal domain with a unique maximal ideal (π), where
‖ π ‖ generates the value group, if the value group is cyclic of infinite
order.

Definition. Let K be a field with a nonarchimedean absolute value ‖ . ‖.
OK is called the valuation ring with respect to ‖ . ‖. The field OK/MK is
called the residue field. For the second case in the proposition above, π is
called a uniformizer which is unique up to units and ‖ . ‖ is called a discrete
nonarchimedean absolute value.

For the p-adic absolute value on Q, p is an uniformizer and the value
group is 〈1p〉, which is an infinite cyclic subgroup of R>0. The valuation ring
is {ab ∈ Q|b /∈ pZ}, which is the localization Z(p) of Z at the prime ideal pZ.
The residue field is isomorphic to Z/pZ by a

b −→ (a+ pZ)(b+ pZ)−1.
Since a field with an absolute value forms a metric space, we can discuss

convergence, Cauchy sequences, completeness, denseness, etc.

Theorem 4.3. Let K be a field with an absolute value ‖ . ‖. There exists
a field K̂, which is complete with respect to an absolute value ‖ . ‖′, and
a monomorphism φ : K −→ K̂ preserving absolute values such that K is
dense in K̂.

Moreover, K̂ is unique in the following sense: if K̂1 is a field, which
is complete with respect to an absolute value ‖ . ‖1, and a monomorphism
φ1 : K −→ K̂1 preserving absolute values such that K is dense in K̂1, then
there is a unique isomorphism Φ : K̂ −→ K̂1 preserving the absolute values
and Φ ◦ φ = φ1.

The unique complete field is called the completion of K with respect to
‖ . ‖. For convenience, we assume that any field with an absolute value is a
subfield of its completion and use the same notation for the absolute values.

It is clear that R is the completion of Q with respect to the usual absolute
value. The completion of Q with respect to p-adic absolute value is called
the p-adic field and denoted by Qp.

Proposition 4.4. Let K be a field with a nonarchimedean absolute value
‖ . ‖. The absolute value on the completion K̂ is also nonarchimedean and
the canonical map x +MK −→ xMK̂ is an isomorphism of residue fields.
If ‖ . ‖ on K is discrete and nonarchimedean, then any uniformizer of K is
also a uniformizer of K̂.

The valuation ring of Qp is denoted by Zp. From the proposition above
and the discussion before we have Zp/pZp ∼= Z(p)

∼= Z/pZ. A field that is
complete with respect to a discrete nonarchimedean absolute value and the
residue field is finite is called a nonarchimedean local field.

Theorem 4.5. Let K be a nonarchimedean local field with a uniformizer π.
If S is a set of representatives of residue field of K containing 0, then any
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element x ∈ K× can be written as
∑
i≥n

aiπ
i for ai ∈ S, an 6= 0 and n ∈ Z

uniquely. Moreover, the absolute value of the sum
∑
i≥n

aiπ
i is ‖ π ‖n.

Since Zp/pZp ∼= Z/pZ , {0, 1, ..., p− 1} is a set of representatives. Then

Qp = {
∑
i≥n

aip
i|ai = 0, 1, ..., p− 1, n ∈ Z},

Zp = {
∑
i≥0

aip
i|ai = 0, 1, ..., p− 1},

Z×p = {
∑
i≥0

aip
i|ai = 0, 1, ..., p− 1, a0 6= 0}.

Theorem 4.6. Let K be a complete field with respect to an absolute value
‖ . ‖ and F be a finite extension field of K. The map ‖ . ‖′: F −→ R≥0 by

x −→‖ NF/K(x) ‖
1

[F :K] is the unique absolute value on F extending ‖ . ‖ and
F is also complete with respect to ‖ . ‖′. ‖ . ‖′ is (discrete) nonarchimedean
if ‖ . ‖ is (discrete) nonarchimedean.

Let K be a nonarchimedean local field. For any finite extension field F
the value group of K is a subgroup of the value group of F and the canonical
map x+MK −→ x+MF is a monomorphism from the residue field of K
to the residue field of F .

Definition. Let K be a nonarchimedean local field. For any finite extention
F of K, the ramification index e is defined as the index of the value group of
K in the value group of F . The residue degree f is defined as the dimension
of the residue field of F over the residue field of K. F is unramified over K
if and only if e=1.

Theorem 4.7. Let K be a nonarchimedean local field. Then [F :K]=ef for
any finite extension field F of K, where e and f are the ramification index
and residue degree, respectively.

Here is the idea of the proof of the theorem. ‖ π ‖′=‖ π ‖e, where π and
π are uniformizers of F and K, respectively, and {πi|i = 0, 1, ..., e−1} is a set
of representatives in the coset of value groups. {uj |j = 1, ..., f} is a subset of
OF such that {uj +OFπ} is a basis of the residue field of F over the residue
field of K. Then it can be proved that {πiuj |i = 0, 1, ..., e− 1, j = 1, ...f} is
a K-basis of F .

Before discussing unramified extension fields, we need the following the-
orem.

Theorem 4.8. (Hensel’s Lemma) Let K be nonarchimedean local field and k
be the residue field of K. Let p be a monic polynomial over the valuation ring
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OK . If π(p) has a simple root r ∈ k, p has a unique root r ∈ OK such that
π(r) = r, where π : OK −→ k is the canonical map and π : OK [x] −→ k[x]
is the map induced by π.

Theorem 4.9. Let K be a nonarchimedean local field and F be a finite
extension field of K. Let f be the corresponding residue degree. Then F
contains a unique maximal subfield W such that W is unramified over K.
Moreover, W is cyclic over K of degree f and W is the cyclotomic extension
field of K of degree qf − 1, where q is the cardinality of the residue field of
K.

The main idea of the proof of the theorem is that the residue field of
F is the splitting field of xq

f − x over the residue field of K and then, by
Hensel’s Lemma, there is a set S of representatives of the residue field of F
consisting of all roots of xq

f −x. Let W be the splitting field of xq
f −x over

K. Then one can show that W is the desired one.
From the discussion above, it is easy to prove the uniqueness of unram-

ified extension fields.

Theorem 4.10. Let K be a nonarchimedean local field and K be an al-
gebraic closure of K. For each n ≥ 1, there exists a unique umramified
extension field of degree n in K.

There is a characterization of the image of the norms of unramified ex-
tension fields.

Theorem 4.11. Let K be a nonarchimedean local field and F be a unram-
ified extension of K with a uniformizer π. Let f and k be the residue fields
of F and K, respectively. Then

(i) F is cyclic over K of degree [F :K] and the Galois group Gal(F/K) is
isomorphic to the Galois group Gal(f/k) by σ −→ σ, where σ is defined
by σ(x+ πOF ) = σ(x) + πOF ;

(ii) NF/K(F×) = {uπm|u ∈ O×K ,m ∈ nZ} and K×/NF/K(F×) is a cyclic
group generated by πNF/K(F×) of order n, where n = [F :K].

Before discussing further properties of local fields, we shall see some
explicit examples which we actually need in Section 5.

Proposition 4.12. Let p be an odd prime and ωp be an element such that
1 ≤ ωp ≤ p− 1 with the Legendre symbol (

ωp

p ) = −1. We have the following
properties:

(i) For a =
∑
i≥0

aip
i ∈ Z×p , a ∈ (Z×p )2 if and only if (a0p ) = 1.

(ii) Zp/(Z×p )2 = {1, ωp}.
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(iii) For a =
∑
i≥n

aip
i ∈ Q×p , a ∈ (Q×p )2 if and only if n is even and (anp ) = 1.

(iv) Qp/(Q×p )2 = {1, ωp, p, pωp}.

One shall keep in mind that

pnu =


1 if n is even and (a0p ) = 1

ωp if n is even and (a0p ) = −1

p if n is odd and (a0p ) = 1

pωp if n is odd and (a0p ) = −1

, where u =
∑
i≥0

aip
i ∈ Z×p .

Proposition 4.13. We have the following properties for p = 2:

(i) For a =
∑
i≥0

ai2
i ∈ Z×2 , a ∈ (Z×2 )2 if and only if a ≡ 1 mod 8.

(ii) Z×2 /(Z
×
2 )2 = {1, 3, 5, 7} ∼= (Z/8Z)× by a −→ a mod 8.

(iii) For a =
∑
i≥n

ai2
i ∈ Q×2 , a ∈ (Q×2 )2 if and only if n is even and a

2n ≡ 1

mod 8.

(iv) Q×2 /(Q
×
2 )2 = {1, 3, 5, 7, 2, 6, 10, 14}.

For the case p = 2, we have

2nu =



1 if n is even and u ≡ 1 mod 8

3 if n is even and u ≡ 3 mod 8

5 if n is even and u ≡ 5 mod 8

7 if n is even and u ≡ 7 mod 8

2 if n is odd and u ≡ 1 mod 8

6 if n is odd and u ≡ 3 mod 8

10 if n is odd and u ≡ 5 mod 8

14 if n is odd and u ≡ 7 mod 8

, where u ∈ Z×2 .
Recall that for any field K of characteristic 6= 2, the map a −→ K(

√
a) is

a bijection between the set of nontrivial representatives of K×/(K×)2 and
the set of all distinct quadratic extension fields of K. Hence there are 3
distinct quadratic extension fields of Qp for any odd prime p and 7 distinct
quadratic extension fields of Q2.
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Corollary 4.14. Let ωp be a nonzero element such that (
ωp

p ) = −1 for any
odd prime p and ω2 ≡ 5 mod 8. Then Qp(

√
ωp) is the unique quadratic

unramified extension field of Qp for any prime p.

There is a result from local class field theory: [F : K] = [F× : NF/K(F×)]
for any finite abelian extension F of a nonarchimedean local field K. Hence
[NF/K(F×) : (K×)2] = 4 for any quadratic extension F of a nonarchimedean
local field K. We can write down the representatives in NF/Qp

(F×)/(Q×p )2

explicitly without knowledge of class field theory, where F is a quadratic
extension field of Qp. Here we only treats the case of Q2, which is much
tedious than the cases of odd primes. One can use similar process to find
the corresponding representatives for each odd prime p.

Proposition 4.15.

(i) F = Q2(
√

3), NF/Q2
(F×)/(Q×2 )2 = {1, 5, 6, 14}.

(ii) F = Q2(
√

5), NF/Q2
(F×)/(Q×2 )2 = {1, 3, 5, 7}.

(iii) F = Q2(
√

7), NF/Q2
(F×)/(Q×2 )2 = {1, 5, 2, 10}.

(iv) F = Q2(
√

2), NF/Q2
(F×)/(Q×2 )2 = {1, 7, 2, 14}.

(v) F = Q2(
√

6), NF/Q2
(F×)/(Q×2 )2 = {1, 3, 10, 14}.

(vi) F = Q2(
√

10), NF/Q2
(F×)/(Q×2 )2 = {1, 7, 6, 10}.

(vii) F = Q2(
√

14), NF/Q2
(F×)/(Q×2 )2 = {1, 3, 2, 6}.

Proof. Let F be a quadratic extension field of Q2. By Proposition 4.13,
8 = [Q×2 : (Q×2 )2] and thus [NF/Q2

(F×) : (Q×2 )2]=1, 2, 4, 8.

(i): Put F = Q2(
√

3). Since 12 − 3(1)2 = −2 and 12 − 3(2)2 = −11,
we have −2 = 14, −11 = 5 ∈ NF/Q2

(F×)/(Q×2 )2. Since NF/Q2
(F×)/(Q×2 )2

is a group, 5 × 14 = 6 ∈ NF/Q2
(F×)/(Q×2 )2. Then {1, 5, 6, 14} is a subset

of NF/Q2
(F×)/(Q×2 )2 and thus NF/Q2

(F×)/(Q×2 )2 is a group of order 4 or
8. Observe that x2 − 3y2 ≡ 0, 1, 4, 5, 6 mod 8 for any x, y ∈ Z2. Thus
2 6= x2 − 3y2 = NF/Q2

(x + y
√

3) for any x, y ∈ Z2. It suffices to show
that 2 /∈ NF/Q2

(F×). Suppose 2 = a2 − 3b2 for some (a, b) 6= (0, 0) ∈ Q2
2.

By the equality 2 = a2 − 3b2, we have ‖ a2 ‖2≤ max{12 , ‖ b
2 ‖2} and

‖ b2 ‖2≤ max{12 , ‖ a
2 ‖2}. Then ‖ a ‖2≤ 1 if and only if ‖ b ‖2≤ 1. Since

2 6= x2 − 3y2 for any x, y ∈ Z2 and 2 = a2 − 3b2, where (a, b) 6= (0, 0) ∈ Q2
2,

‖ a ‖2=‖ b ‖2> 1. Write a = 2ku and b = 2kv, k < 0 and u, v ∈ Z×2 .
Then 2 = a2 − 3b2 = 22k(u2 − 3v2) and u2 − 3v2 = 21−2k ≡ 0 mod 8 since
1 − 2k ≥ 3. We have u2 ≡ 3v2 mod 8 and (uv )2 ≡ 3 mod 8, which means
3 is square in Z/8Z, a contradiction. Therefore 2 /∈ NF/Q2

(F×)/(Q×2 )2 and

NF/Q2
(F×)/(Q×2 )2 = {1, 5, 6, 14}.

One can prove the rest of cases by similar arguments.
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5 Quaternion Algebras over Local Fields

Except some additional materials, the treatments here mainly from [1].

Theorem 5.1. Let a, b ∈ R×. Hamilton quaternion H = (−1,−1R ) is the

unique quaternion division algebra over R. (a,bR ) ∼= H if and only if a, b < 0.

Proof. Since any positive real number has a unique positive square root in
R and Proposition 2.3, (a,bR ) splits over R if a, b > 0 , (a,bR ) splits over R
if ab < 0 and (a,bR ) ∼= H if a, b < 0. It is clear that −1 /∈ NC/R(C×). By
Theorem 2.9, H is a division algebra.

Now we are going to deal with the cases of Qp. We shall note that the
following theorems and propositions hold for any nonarchimedean local field
K, i.e. K has a nonarchimedean absolute value whose value group is infinite
cyclic and is complete with respect to the absolute value.

Proposition 5.2. Let H be a quaternion division algebra over Qp. Define

‖ . ‖: H −→ R by x −→‖ N(x) ‖1/2p . H has the following properties:

(i) ‖ . ‖ is a non-archimedean absolute value on H.

(ii) The restriction of ‖ . ‖ on F is the unique absolute value extending
‖ . ‖p for any quadratic extension field F of Qp in H.

(iii) ‖ . ‖ is the unique absolute value extending ‖ . ‖p such that H is
complete with respect to ‖ . ‖.

(iv) ‖ H× ‖ is an infinite cyclic group generated by ‖ π ‖ for some π ∈ H×
and ‖ π ‖=‖ p ‖ep for e=1 or 2.

(v) OH = {x ∈ H| ‖ x ‖≤ 1} is a subring containing Zp.

(vi) O×H = {x ∈ H| ‖ x ‖= 1}.

(vii) Any nonzero ideal I of H is of the form OHπn = πnOH for some
n ≥ 0 and OH −O×H = OHπ = πOH is the unique maximal ideal.

(viii) N(OH) ⊆ Zp and N(πOH) ⊆ pZp.

Proof. (i),(ii): It is easy to verify that ‖ x ‖= 0 if and only if x = 0 ,
‖ xy ‖=‖ x ‖‖ y ‖= 0 and ‖ . ‖=‖ . ‖p on Qp. For any quadratic extension
field F of Qp in H, F = Qp(

√
a) for some nonsquare a ∈ Q×p . Put i =

√
a.

From the proof of Proposition 2.4, there exists a j ∈ H such that ij = −ji
and j2 = b ∈ K×. Hence {i, i, j, ij} is a standard basis corresponding to
(a, b) and F = Qp(

√
a) = Qp ⊕Qpi. Since the norm map on F is the norm

of F over Qp, the restriction of ‖ . ‖ on F is the unique absolute value
extending ‖ . ‖p. ‖ x+ y ‖≤ max(‖ x ‖, ‖ y ‖) holds trivially if x = 0, y = 0
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or x + y = 0. For x, y, x + y 6= 0, ‖ . ‖p. ‖ 1 + x
y ‖≤ max(‖ 1 ‖, ‖ x

y ‖) if
x
y ∈ Qp. The inequality also holds for x

y /∈ Qp since Qp(
x
y ) is a quadratic

extension of Qp. (iii): It is proved by the same argument for proving unique
absolute value extending an absolute value on a complete field. (iv): It is
easy to see that 〈1p〉 ⊆‖ H

× ‖⊆ 〈 1√
p〉. (v),(vi),(vii),(viii): These are done by

routine checks.

Before discussing further properties of OH , we shall recall some basic
results for the readers who are not familiar with module theory.

Roughly speaking, a module is a ”vector space” over a ring. The formal
definition of modules is as follows: for a given ring R, M is an R-module if
M is an additive group and there is a scalar product satisfying the following
conditions: for any r, s ∈ R and x, y ∈M ,

(i) rx ∈M ;

(ii) 1x = x;

(iii) r(x+ y) = rx+ ry;

(iv) (r + s)x = rx+ sx;

(v) (rs)x = r(sx).

We shall know that for any additive group M , Hom(M,M), the set of
all group homomorphism from M to M , is a ring with identity. And M
has a R-module structure if and only if there exists a ring homomorphism
R −→ Hom(M,M).

Here are some terminologies we need to know. Let R be a ring and M
be a R-module. N is a submodule of M if N is an additive subgroup of M
and closed under scalar product. A subset X of M is linearly independent
over R if

∑
i
rixi = 0 implies ri = 0 for all i, where ri ∈ R and xi ∈M , and

generates M if any element x of M is a linear combination of X. X is called
a basis of M if X is linearly independent over R and generates M . M is a
free R-module if M contains a basis.

There are two nontrivial results we shall keep in mind: any two basis of a
free R-module have the same cardinality if R is commutative; any submodule
of a free R-module is free if R is a principle ideal domain. The rank of a
free module over a commutative ring is defined as the cardinality of a basis.

Now, we can continue discussing the properties of OH .

Proposition 5.3. OH is a free Zp-module of rank 4.

Proof. Clearly, H is a Zp-module. Since ‖ x ‖p≤ 1 for any x ∈ Zp, OH is
a Zp-submodule. Observe that for each x ∈ H, ‖ πnx ‖≤ 1 if n sufficiently
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large. We can choose a Qp-basis {xi} of H such that xi ∈ OH . From (3) in
the proof of Proposition 3.2,

[φ]X =

(
1
−a
−b

ab

)
, where φ is the corresponding symmetric bilinear form and X is a standard
basis corresponding to (a, b), and then φ is nondegenerate. Hence {φ(xi, .)}
is a Qp-basis of the dual space H∗. Let {fxi} be the dual basis of {xi}. Then
fxj =

∑
i
aijφ(xi, ) for all j and (aij) ∈ GL4(Qp). Put yj =

∑
i
aijxi. {yi} is

a Qp-basis such that φ(yj , xi) = δij(Kronecker delta). Let x =
∑
i
biyi ∈ OH .

Then

bi′ = φ(
∑
i

biyi, xi′) =
1

2
[N(x+ xi)−N(x)−N(xi)] ∈

1

2
Zp.

We have OH is a free Zp-submodule of ⊕iZp 12yi since Zp is a principal ideal
domain. It is clear that {xi} is an independent subset of OH over Zp.
Therefore OH is a free Zp-module of rank 4.

Proposition 5.4. OH/πOH is a finite field containing Zp/pZp with a canon-
ical embedding.

Proof. Since Zp ⊆ OH , pZp ⊆ πOH and πOH is a maximal ideal of OH ,
OH/πOH is a division ring and x+pZp −→ x+πOH is a monomorphismfrom
Zp/pZp to OH/πOH . It is clear that any Zp-basis {xi} of OH , {xi + πOH}
generates OH/πOH as a Zp/pZp-module. With the observation and Propo-
sition 5.3, OH/πOH is a division ring and a finite dimensional over the
finite field Zp/pZp. By Wedderburn’s theorem, OH/πOH must be a finite
field.

For any finite extension F of a nonarchimedean local field K , [F :K]=ef ,
where e is the ramification index and f is the residue degree. The result
still holds for the case of quaternion division algebras over nonarchimedean
local fields.

Theorem 5.5. Let H be a quaternion division algebra over Qp. Let e be the
index of ‖ Q×p ‖p in ‖ H× ‖ and f be the dimension of OH/OH −O×H over
Zp/pZp. Then e = f = 2 and H contains a quadratic unramified extension
field of Qp.

Proof. One can prove that 4 = ef by the same argument for the case of
fields. By Proposition 5.2, (e, f) = (1, 4), (2, 2). Since Zp/pZp ∼= Z/pZ
and Proposition 5.4, OH/πOH is the extension field Zp/πOH(ξ + πOH),
where ξ + πOH is a primitive (pf − 1)th root of unity. ξ ∈ OH − Zp since
f ≥ 2. Moreover, ξ /∈ Qp and Qp(ξ) is a quadratic extension field of Qp
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in H. Put F = Qp(ξ). By Proposition 5.2, the restriction of the absolute
value on F is the unique absolute value extending p-adic absolute value and
thus Zp ⊆ OF ⊆ OH . Since OH/πOH = Zp/πOH(ξ + πOH) and ξ ∈ F ,
Zp/πOH ⊆ OF /πOH = OH/πOH and then

2 ≤ f = [OH/πOH : Zp/πOH ] = [OF /πOH : Zp/πOH ] ≤ [F : K] = 2.

We have e = f = 2. Since F = Qp(ξ) and ξ+ πOH is a primitive (pf − 1)th
root of unity, F is the unique quadratic unramified extension of Qp

From Corollary 4.14, we know Qp(
√
ωp) is the unique quadratic unram-

ified extension fied of Qp, where ωp is an integer such that 0 < ωp < p and
the Legendre symbol (

ωp

p ) = −1 for any odd prime p and ω2 = 5.

Theorem 5.6. Let p be a prime. Then (
ωp,p
Qp

) is the unique quaternion
division algebra over Qp.

Proof. Put F = Qp(
√
ωp). Since F is unramified over Qp, by Theorem 4.11,

NF/Qp
(F×) = {upn|u ∈ Z×p , n ∈ 2Z} and Q×p /NF/Qp

(F×) = 〈p〉 which is a

cyclic group of order 2. By Theorem 2.12, (
ωp,p
Qp

) and (
ωp,1
Qp

) = M2×2(Qp) are

nonisomorphic and thus (
ωp,p
Qp

) is a division algebra.
Now for uniqueness. Let H be a quaternion division algebra over Qp.

From Theorem 5.5, H contains a quadratic unramified extension field of
Qp. By the uniqueness of unramified extension fields, Qp(

√
ωp) ⊆ H. Put

i =
√
ωp. From the proof in Proposition 2.4, there exists an element j such

that {1, i, j, ij} is a standard basis. Then H = (
ωp,j2

Qp
). Write j2 = vp2k+r for

v ∈ Z×p , k ∈ Z and r = 0, 1. H = (
ωp,vp2k+r

Qp
) ∼= (

ωp,vpr

Qp
). In Q×p /NF/Qp

(F×),

vp = p and v = 1. By Theorem 2.12, r = 1 and

H = (
ωp, vp

2k+r

Qp
) ∼= (

ωp, vp

Qp
) ∼= (

ωp, p

Qp
).

Corollary 5.7. Let p be an odd prime such that p ≡ 1 mod 4. Let a, b 6=
0 ∈ Zp.

(i) For a, b ∈ Z×p , (a,bQp
) splits over Qp.

(ii) For a ∈ Z×p and b ∈ pZp−p2Zp, (a,bQp
) ∼= (

ωp,p
Qp

) if and only if a /∈ (Z×p )2.

(iii) For a, b ∈ pZp − p2Zp, (a,bQp
) ∼= (

ωp,p
Qp

) if and only if exactly one of a
p

and b
p is square.
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Proof. Put F1 = Qp(
√
ωp), F2 = Qp(

√
p) and F3 = Qp(

√
pωp). (i): If

a ∈ (Z×p )2, (
√
a
2
,b

Qp
) ∼= ( 1,bQp

). For a /∈ (Z×p )2, a = ωpu
2 for some u ∈ Z×p by

Proposition 4.12. Then (a,bQp
) ∼= (

ωp,b
Qp

). By Theorem 4.11 and Theorem 2.9,

b ∈ NF1/Qp
(F×1 ) and thus (a,bQp

) splits over Qp.

(ii): (a,bQp
) splits over Qp if a ∈ (Z×p )2. For a /∈ (Z×p )2, (a,bQp

) ∼= (
ωp,b
Qp

).

By Theorem 4.11 and Theorem 2.9, b /∈ NF1/Qp
(F×1 ) and thus (

ωp,b
Qp

) is a

division algebra. By Theorem 5.6, (a,bQp
) ∼= (

ωp,p
Qp

).

(iii): Write a = pu and b = pv, where u, v ∈ Z×p .
Case 1: u, v ∈ (Z×p )2.

Then (a,bQp
) ∼= (p,pQp

). Since p = −1 in Q×p /NF2/Qp
(F×2 ), by Theorem 2.12,

(p,pQp
) ∼= (p,−1Qp

). Since p ≡ 1 mod 4, by Proposition 4.12, −1 ∈ (Z×p )2 and

thus (p,−1Qp
) splits over Qp. Hence (a,bQp

) splits over Qp.

Case 2: u /∈ (Z×p )2, v ∈ (Z×p )2.

Then a = pωpu
2
1 and b = pv21, where u1, v1 ∈ Z×p , and (a,bQp

) ∼= (
pωp,p
Qp

).

Since −1 ∈ (Z×p )2 and −1
p ∈ NF2/Qp

(F×2 ), 1
p ∈ NF2/Qp

(F×2 ). By Theo-

rem 2.12, (
pωp,p
Qp

) ∼= (
pωp
p
,p

Qp
) = (

ωp,p
Qp

). Hence (a,bQp
) ∼= (

ωp,p
Qp

).

Case 3: u, v /∈ (Z×p )2.

Then a = pωpu
2
1 and b = pωpv

2
1, where u1, v1 ∈ Z×p , and (a,bQp

) ∼= (
pωp,pωp

Qp
).

Since −1 ∈ (Z×p )2 and −1
pωp
∈ NF3/Qp

(F×3 ), 1
pωp
∈ NF3/Qp

(F×3 ). By Theo-

rem 2.12, (
pωp,pωp

Qp
) ∼= (

pωp,1
Qp

). Hence (a,bQp
) splits over Qp.

Corollary 5.8. Let p be an odd prime such that p ≡ 3 mod 4. Let a, b 6=
0 ∈ Zp.

(i) For a, b ∈ Z×p , (a,bQp
) splits over Qp.

(ii) For a ∈ Z×p and b ∈ pZp−p2Zp, (a,bQp
) ∼= (

ωp,p
Qp

) if and only if a /∈ (Z×p )2.

(iii) For a, b ∈ pZp − p2Zp, (a,bQp
) ∼= (

ωp,p
Qp

) if and only if a
p and b

p are both
square or both nonsquare.

Proof. (i) and (ii) have proved in Corollary 5.7. (iii): Put F1 = Qp(
√
ωp),

F2 = Qp(
√
p) and F3 = Qp(

√
pωp). Write a = pu and b = pv, where

u, v ∈ Z×p .
Case 1: u, v ∈ (Z×p )2.

As in Corollary 5.7, (a,bQp
) ∼= (p,−1Qp

). Since p ≡ 3 mod 4, by Proposi-

tion 4.12 and Theorem 2.9, −1 /∈ (Z×p )2 and thus (p,−1Qp
) is a division algebra.

By Theorem 5.6, (a,bQp
) ∼= (

ωp,p
Qp

).

Case 2: u /∈ (Z×p )2, v ∈ (Z×p )2.
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As in Corollary 5.7, (a,bQp
) ∼= (

pωp,p
Qp

). Since −1p ∈ NF2/Qp
(F×2 ), by Theo-

rem 2.12, (
pωp,p
Qp

) ∼= (
− pωp

p
,p

Qp
) = (

−ωp,p
Qp

). By Proposition 4.12 , −1 = ωp and

thus −ωp ∈ (Z×p )2. Hence (a,bQp
) splits over Qp.

Case 3: u, v /∈ (Z×p )2.

As in Corollary 5.7, (a,bQp
) ∼= (

pωp,pωp

Qp
). Since −1pωp

∈ NF3/Qp
(F×3 ), by The-

orem 2.12, (
pωp,pωp

Qp
) ∼= (

pωp,−1
Qp

). By Proposition 4.12, −1 = ωp in Z×p /(Z×p )2

and thus (
pωp,−1

Qp
) ∼= (

pωp,ωp

Qp
). By Theorem 4.11, pωp /∈ NF1/K(F×1 ) and thus

(a,bQp
) is a division algebra. Hence (a,bQp

) ∼= (
ωp,p
Qp

).

Definition. Let H be a quaternion algebra over Q. The ramified places of
H consists of places v such that Qv ⊗QH is the quaternion division algebra
over Qv, where Q−1 = R.

We will see that there is a stronger statement about quaternion alge-
bras over Q than the following corollary after introducing Hilbert symbol in
Section 7.

Corollary 5.9. Let H be a quaternion algebra over Q. Then the set of
ramified places of H is a finite set.

Proof. Let H = (a,bQ ) be a quaternion algebra. Since (ii) in Proposition 2.3,
we may assume a, b ∈ Z. It is clear that the number of odd prime(s) p such
that p|a or p|b is finite. This means a, b ∈ Z×p for all but finitely many odd
prime(s) p. By Corollary 5.7 and Corollary 5.8, the set of ramified places
contains only finitely many odd prime(s). Hence the set of ramified places
of H is a finite set.

Now, we are going to deal with the case of Q2. Using the results in
Proposition 4.15, Theorem 2.9 and Theorem 5.6, it is easy to prove the
following corollary.

Corollary 5.10. Let a, b 6= 0 ∈ Z2. (a,bQ2
) ∼= (5,2Q2

) if and only if (a, b) is one
of the following pairs:

(3, 3), (3, 7), (3, 2), (3, 10),

(5, 2), (5, 6), (5, 10), (5, 14),

(7, 3), (7, 7), (7, 6), (7, 14),

(2, 3), (2, 5), (2, 6), (2, 10),

(6, 5), (6, 7), (6, 2), (6, 6),

(10, 3), (10, 5), (10, 2), (10, 14),

(14, 5), (14, 7), (14, 10), (14, 14).
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Using Corollary 5.7, Corollary 5.8 and Corollary 5.10, we can find the
ramified places of quaternion algebras (a,bQ ) for a, b = ±1,±p, where p is a
prime. Let p, q be distinct odd primes. Here are the results. In the following
two tables, a is the congruence class modulo 4 and â is the congruence class
modulo 8.

Ramified
Places of
(a,bQ )

-1 2 -2 p -p

-1 {−1, 2} φ {−1, 2} φ
if p = 1.
{2, p}
if p = 3.

{−1, 2}
if p = 1.
{−1, p}
if p = 3.

2 φ φ φ
if p̂ = 1̂, 7̂.
{2, p}
if p̂ = 3̂, 5̂.

φ
if p̂ = 1̂, 7̂.
{2, p}
if p̂ = 3̂, 5̂.

-2 {−1, 2} φ
if p̂ = 1̂, 3̂.
{2, p}
if p̂ = 5̂, 7̂.

{−1, 2}
if p̂ = 1̂, 3̂.
{−1, p}
if p̂ = 5̂, 7̂.

p φ
if p = 1.
{2, p}
if p = 3.

φ

-p {−1, 2}
if p = 1.
{−1, p}
if p = 3.
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Ramified
Places of
(±p,±qQ )

q -q

p (p, q) 6= (3, 3):
φ if (pq ) = 1.

{p, q} if (pq ) = −1.

(p, q) = (3, 3):
{2, p} if (pq ) = 1.

{2, q} if (pq ) = −1.

(p, q) 6= (3, 1):
φ if (pq ) = 1.

{p, q} if (pq ) = −1.

(p, q) = (3, 1):
{2, p} if (pq ) = 1.

{2, q} if (pq ) = −1.

-p (p, q) = (1, 1):
{−1, 2} if (pq ) = 1.

{−1, 2, p, q} if (pq ) = −1.

(p, q) 6= (1, 1):
{−1, q} if (pq ) = 1.

{−1, p} if (pq ) = −1.

We will see that the ramified places of a quaternion algebra over Q is of
even cardinality in the next section and two quaternion algebras over Q are
isomorphic if and only if they have the same ramified places. With these in
mind and from the two tables above, we have some suggestions about the
choice of quaternion algebras over Q for a given places of the form {−1, p}
and {2, p}.

Ramified Places Choice of Quaternion Algebras

{−1, 2} (−1,−1Q )

{−1, p}, p ≡ 1 mod 4 (−p,−qQ ), where q is an odd prime
such that q ≡ 3 mod 4 and the Leg-
endre symbol ( qp) = −1

{−1, p}, p ≡ 3 mod 4 (−1,−pQ )

{2, p}, p ≡ 1 mod 8 (−p,qQ ), where q is an odd prime such
that q ≡ 3 mod 4 and the Legendre
symbol ( qp) = −1

{2, p}, p ≡ 5 mod 8 (2,±pQ )

{2, p}, p ≡ 3 mod 4 (−1,−pQ )

6 Preliminaries III

In previous section we have shown that the the set of places in which a
quaternion algebra over Q ramifies is finite. In fact, the set is of even
cardinality. In order to prove the property, we shall recall Hilbert symbol
and some results which are from [8].
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Definition. Let K be a field and a, b ∈ K×. Define (a, b)K = 1 if the polyno-
mial z2−ax2−by2 has a nontrivial solution in K3; Otherwise, (a, b)K = −1.
The number (a, b)K is called the Hilbert symbol of a and b relative to K.

For simplicity, ( , )R and ( , )Qp are denoted by ( , )−1 and ( , )p,
respectively. We shall recall some basic properties of the Hilbert symbol
and then focus on R and p-adic fields Qp.

Proposition 6.1. Let K be a field and a, b ∈ K×.

(i) (a, b)K = (b, a)K .

(ii) (au2, bv2)K = (a, b)K for any u, v ∈ K×.

(iii) (a, b)K = 1 if and only if b ∈ NF/K(F×), where F = K(
√
a).

By (ii) of the proposition above and Theorem 2.9, the quaternion algebra
(a,bK ) is a division algebra if and only if (a, b)K = −1.

The following theorem rephrases Corollary 5.7, Corollary 5.8 and Corol-
lary 5.10.

Theorem 6.2.

(i) (a, b)−1 = −1 iff a < 0 and b < 0.

(ii) Let p be an odd prime. (pnu, pmv)p = (−1)nm
p−1
2 (a0p )m( b0p )n, where

n,m ∈ Z, u =
∑
≥0
aip

i, v =
∑
≥0
bip

i ∈ Z×p and ( ..) is the Legendre

symbol.

(iii) (2nu, 2mv)2 = (−1)(
u−1
2

mod 2)( v−1
2

mod 2)+m(u
2−1
8

mod 2)+n( v
2−1
8

mod 2),
where n,m ∈ Z and u, v ∈ Z×2 .

Recall that we choose ωp as an integer such that 1 ≤ ωp ≤ p − 1 with
the Legendre symbol (

ωp

p ) = −1 for any odd prime p and ω2 = 5. By the
formulas above, (ωp, p)p = −1 for all primes p.

By the formulas in Theorem 6.2, one can show the following proposition.

Proposition 6.3. (ab, c)K = (a, c)K(b, c)K for any a, b, c ∈ K, where K =
R or Qp.

Theorem 6.4. (Hilbert reciprocity) Let V be the set of all primes p together
with -1. Let a, b ∈ Q. Then (a, b)v = 1 for all but finitely many v ∈ V and∏
v∈V

(a, b)v = 1.

The reason (a, b)v = 1 for almost all v ∈ V is that a and b are both units
of p-adic integers for all but finitely many odd primes p. The last equality
is proved by checking

∏
v∈V

(a, b)v for all a, b ∈ V and using Proposition 6.3.
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Corollary 6.5. Let H be a quaternion algebra over Q. The set of ramified
places of H is finite and of even cardinality.

Let (V,Q) be a n-dimensional quadratic space over a field K with a
basis β and F be an extension field of K. Then F ⊗Q V is a vector space
over F with a basis 1 ⊗ β. By Proposition 3.1, Q is associated with a
unique homogenous polynomial p of n variable over Kand there is a unique
quadratic form QF on F ⊗K V associated with the polynomial p under the
basis 1⊗β. Hence we associate the quadratic space (V,Q) with a quadratic
space (F ⊗K V,QF ) over F .

In fact, the association is coordinate-free. For any quadratic space (V,Q)
over a field K, one can show that the map Φ : F ⊗K V × F ⊗K V −→ F by
(
∑
i
αi ⊗ vi,

∑
j
βj ⊗wj) −→

∑
i,j
αiβjφ(vi, wj) is a symmetric bilinear form on

F ⊗K V , where φ is the corresponding symmetric bilinear form of Q. Let
QF be the corresponding quadratic form of Φ. Then QF (α ⊗ v) = α2Q(v)
and the association coincides with the association in the above paragraph.
The quadratic space (F ⊗K V,QF ) is denoted by (V,Q)F . For simplicity, we
write (V,Q)−1 and (V,Q)p instead of (V,Q)R and (V,Q)Qp , respectively.

7 Quaternion Algebras over Global Fields

In this section we will show two quaternion algebras over Q are isomorphic
if and only if they are isomorphic locally, which is equivalent to that their
ramified places are the same. On the other hand, we have discussed some
families of quaternion algebras in the end of Section 5. We will give an
unified method to find a pair (a, b) for a given finite set of places with even
cardinality in which the quaternion algebra (a,bQ ) is ramified.

Theorem 7.1. (Hasse-Minkowski) Let (Vi, φi) be a quadratic space over Q,
i = 1, 2. Then (V1, φ1) ∼= (V2, φ2) if and only if (V1, φ1)v ∼= (V2, φ2)v for all
places v.

For detailed proof of Hasse-Minkowski theorem, see [8].

Theorem 7.2. Let H and H ′ be two quaternion algebras over Q Then H
and H ′ are isomorphic if and only if the ramified places of H and H ′ are
the same.

Proof. It is clear that the ramified places of H and H ′ are the same if H
and H ′ are isomorphic. Suppose H and H ′ have the same ramified places.
Then Hv = Qv ⊗Q H and H ′v = Qv ⊗Q H ′ are isomorphic for all places
v of Q. Let N and N ′ be the corresponding quadratic forms of H and
H ′, respectively. By Theorem 3.3, (H0, N)v and (H ′0, N

′)v are isomorphic
all places v of Q. By Hasse-Minkowski theorem, (H0, N) and (H ′0, N

′) are
isomorphic and then H and H ′ are isomorphic by Theorem 3.3.
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Theorem 7.3. Let R be a finite subset of places with even cardinality. Then
there is a quaternion algebra H over Q such that R is the set of ramified
places of H.

Proof. Set a =
∏
v∈R

v. By Chinese Remainder Theorem and Dirichlet’s theo-

rem on arithmetic progressions, there exists an odd prime or a negative odd
prime b /∈ R satisfying the congruence equations ( bv ) = −1 for all v 6= 2 ∈ R
and b ≡ 5 mod 8. Here ( ·v ) is the Kronecker symbol such that when v is an

odd prime, it is equal to Legendre symbol; when v = 2, ( bv ) = −1 if and only

if b ≡ ±3 mod 8; when v = −1, ( bv ) = −1 if and only if b < 0. From the
discussion in quaternion algebras over local fields in Section 5, we see that
the quaternion H = (a,bQ ) is ramified at all places in R and except for R, it
may only be ramified at the place b. Since H is ramified at even number of
places, we conclude that it is ramified exactly at all places of R.

Serre also gave an explicit construction of quaternion algebras over Q
in [8, p.24], which is more complicated. In general, both method can not
provide the smallest pair (a, b) (in the sense that |ab| is minimal). However,
they do give an upper bound for the exhaustive method. In following table,
for given two places, we compare the pair (a, b) given by three distinct
algorithms: Serre’s algorithm (in the first row), our algorithm (in the second
row) and Magma (in the last row of each cell).

2 3 5 7 11

-1 (-3,-14)
(-2,-3)
(-1,-1)

(-19,-219)
(-3,-19)
(-3,-1)

(-3,-35)
(-5,-3)
(-5,-2)

(-11,-259)
(-7,-11)
(-7,-1)

(-3,-77)
(-11,-3)
(-11,-1)

2 (5,66)
(6,5)
(3,-1)

(-3,70)
(10,-3)
(10,-3)

(-11,42)
(14,5)
(7,-2)

(-3,154)
(22,-3)
(22,-3)

3 (-43,1515)
(15,-43)
(15,2)

(5,231)
(21,5)
(21,-1)

(29,4917)
(33,29)
(33,-1)

5 (13,2135)
(35,13)
(35,-2)

(-3,385)
(55,-3)
(55,2)

7 (13,7931)
(77,13)
(77,-1)

8 Viewpoints from Brauer Groups

In this section we introduce the Brauer groups and Galois cohomology. We
will see that the classes of quaternion algebras in the Brauer group over

27



Q forms a 2-subgroup. As in previous sections, we always assume that the
ground field K is of characteristic not equal to 2 when discussing quaternion
algebras. All materials in this section could found in [3],[4],[5],[9].

First, let us recall some properties about central simple algebras without
giving the proof.

Theorem 8.1. The tensor product of two central simple K-algebras over K
is also a central simple K-algebra.

Proposition 8.2.

(i) Mn×n(A)op ∼= Mn×n(Aop) for any K-algebra A and n ≥ 1.

(ii) (A⊗K B)op ∼= Aop ⊗K Bop for any K-algebras A and B.

Definition. Let A and B be finite dimensional central simple K-algebras.
A and B are equivalent, denoted by A ∼ B, if A ∼= Mn×n(D1), B ∼=
Mm×m(D2) and D1

∼= D2.

Proposition 8.3. ∼ is an equivalent relation on the set of finite dimensional
central simple K-algebras.

Proposition 8.4. Let Ai and Bi be a finite dimensional central simple K-
algebras, i = 1, 2.

(i) A1 ∼ A2 and B1 ∼ B2 imply A1 ⊗K B1 ∼ A2 ⊗K B2

(ii) A1 ⊗K Mn×n(K) ∼ A1 ⊗K Mm×m(K) for any n,m ≥ 1.

(iii) A1 ⊗K B1 ∼ B1 ⊗K A1.

(iv) A1 ⊗K Aop1
∼= Aop1 ⊗K A1.

Definition. The Brauer group of K, denoted by Br(K), is the set of equiva-
lent classes under the relation ∼. Define [A][B] = [A⊗KB] for all [A], [B] ∈
Br(K).

Roughly speaking, the set of elements of Br(K) is the representatives of
nonisomorphic finite dimensional division K-algebras.

Using Proposition 8.4, it is easy to prove:

Proposition 8.5. The multiplication on the set Br(K) is well defined and
the Brauer group Br(K) forms an abelian group.

Let H be a quaternion algebra over K. By Proposition 2.4, [H] ∈ Br(K).
Since [H]−1 = [Hop] and H ∼= Hop, [H] is of order 2 in Br(K). One may
ask if every element of order 2 in the Brauer group is a class of quaternion.
Brauer himself indeed gave an counterexample that there exists an element
of order 2 in the Brauer group which is not a class of quaternion algebra.
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On the other hand, since Br(K) is abelian, all elements of order 2 form
a subgroup of Br(K) and we can know more about the role of quaternion
algebras in this subgroup by theorems of Albert and Merkurjev.

Let Hi be a quaternion algebra over K with the norm map Ni, i = 1, 2.
One can show there is a unique linear map σ on the biquaternion H1⊗KH2

such that x⊗ y −→ x⊗ y for any x ∈ H1 and y ∈ H2. In fact, the map σ is
an involution on the biquaternion H1⊗KH2 and is a K-algebra isomorphism
between H1⊗KH2 and (H1⊗KH2)

op. Set V = {v ∈ H1⊗KH2|σ(v) = −v}.
Then V is a K-subspace and {i ⊗ 1, j ⊗ 1, ij ⊗ 1, 1 ⊗ ĩ, 1 ⊗ j̃, 1 ⊗ ĩj̃} is a
basis of V , where {1, i, j, ij} and {1, ĩ, j̃, ĩj̃} are standard basis of H1 and
H2, respectively. Note that any v ∈ V, v = x⊗ 1 + 1⊗ y for x ∈ (H1)0 and
y ∈ (H2)0 uniquely. Define Ñ : V −→ K by x⊗1+1⊗y −→ N1(x)−N2(y).
Then Ñ is a quadratic form on the 6-dimensional vector space V . The
quadratic form Ñ is called the Albert form for H1 and H2.

Theorem 8.6. (Albert) Let Hi be a quaternion algebra over K. The fol-
lowing conditions are equivalent:

(i) The biquaternion H1 ⊗K H2 is not a division algebra.

(ii) There exists a, b, c ∈ K× such that H1
∼= (a,bK ) and H2

∼= (a,cK ).

(iii) The Albert form for H1 and H2 has a nontrivial zero.

By Artin-Wedderburn theorem, H1 ⊗K H2
∼= Mn×n(D) for some unique

central division K-algebra and n ≥ 1. Since H1⊗K H2 is of 16-dimensional,
n = 1, 2, 4. Then n = 1 if and only if H1⊗K H2

∼= D; n = 2 if and only if D
is a quaternion division algebra over K; n = 4 if and only if H1⊗K H2

∼= D
splits over K. Hence the classes of quaternion algebras over K forms a
subgroup of the Brauer group of K if and only if any biquaternion algebra
over Kis not a division algebra, by Albert’s theorem, if and only if any
Albert form has a nontrivial zero. By the fact that any quadratic forms of
degree 6 over Q has a nontrivial zero, the classes of quaternion algebras over
Q form a subgroup of Br(Q).

Furthermore, there is a characterization of the elements of order 2 in
Brauer groups.

Theorem 8.7. (Merkurjev) Let D be a central division K-algebra such that
[D] is of order 2 in the Brauer group of K. There exist positive integers
n1, n2,m and quaternion algebras H1, ...,Hm such that

D ⊗K Mn1×n1(K) ∼= H1 ⊗K ...⊗K Hm ⊗K Mn2×n2(K).

Merkurjev’s theorem says the elements of order 2 in the Brauer group
are products of the classes of quaternion algebras.

Combining Albert’s and Merjurjev’s theorems, we conclude that
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Theorem 8.8. Every element of order 2 in Br(Q) is a class of quaternion
algebra.

Let F be an algebraically closed field or a finite field. We already know
that any finite dimensional central simple F -algebra is a matrix algebra over
F . Thus Br(F ) is a trivial group.

Proposition 8.9. The Brauer groups over algebraically closed fields and
finite fields are trivial groups.

We shall continue the discussion of the splitness of central simple algebras
in Section 1. Here are some basic properties about the splitness.

Proposition 8.10. Let A and B be two finite dimensional central simple
K-algebras.

(i) If F is a splitting field of A and B, F is also a splitting field of A⊗KB.

(ii) If F is a splitting field of A, F is also a splitting field of the opposite
ring Aop.

(iii) If A ∼= Mn×n(D), where D is the unique central division K-algebra, A
splits over F if and only if D splits over F .

Let F be an extension field of K. The first property in the proposi-
tion above implies the set of the classes of central simple K-algebras which
split over F forms a subgroup of Br(K). And the subgroup is denoted by
Br(F/K).

Due to the third property in the proposition above, if we would like to
study the splitness of central simple algebras, then we only need to study
the splitness of division algebras.

Theorem 8.11. Let D be a central division K-algebra. Then there is a
finite Galois extension field F of K such F is a splitting field of D.

By the theorem above, we have Br(K) = ∪αBr(Fα/K), where {Fα} is
the collection of finite Galois extension fields of K.

Now, we are in the position for introducing Galois (group) cohomology.

Definition. Let G be a group. A is a G-module if A is an additive group
and G acts on A such that g(a+ b) = ga+ gb for all g ∈ G and a, b ∈ A.

There are also treatments of non-abelian G-module. See [7] for more
details. Here we only consider the abelian case.

Here are characterizations of G-modules.

Proposition 8.12. Let G be a group and A be an additive group. The
following conditions are equivalent:
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(i) A is a G-module.

(ii) A is a Z[G]-module, where Z[G] is the group ring of G over Z.

(iii) There is a ring homomorphism φ : Z[G] −→ EndZ(A), where EndZ(A)
is the ring of endomorphisms on A.

(iv) There is a ring homomorphism ϕ : G −→ EndZ(A)×.

Definition. Let G be a group and A be a G-module. For n ≥ 0, the group
of n-cochains of G with coefficients in A is the set of functions from Gn to
A, denoted by Cn(G,A). The nth differential ∂n is the map from Cn(G,A)
to Cn+1(G,A) defined by

∂n(f)(g0, .., gn) =g0f(g1, ..., gn)

+

n∑
i=1

(−1)if(g0, ..., gi−1gi, ..., gn)

+ (−1)n+1f(g0, ..., gn−1).

Proposition 8.13. Let G be a group and A be a G-module. The differentials
are group homomorphisms and ∂n+1 ◦ ∂n is the zero map for any n ≥ 0.

By the proposition above, we know that im∂n−1 ⊂ ker∂n are subgroups
of the group of n-cochains. Then ker∂n/im∂n−1 forms a group since the
group of n-cochains is abelian.

Definition. Let G be a group and A be a G-module. The group ker∂n/im∂n−1

is called the nth cohomology group of G with coefficients in A, denoted by
Hn(G,A). Any f ∈ ker∂n is called a n-cocycle. And any g ∈ im∂n−1 is
called a n-coboundary.

Let f be a 2-cocycle. Define the map h : G −→ A by g −→ f(e, e) for
all g ∈ G, where e is the identity of G. Set f1 = f − ∂1h. One can show
that f1 is a 2-cocycle such that f1(g, e) = f(e, g) = 0 for any g ∈ G. f1 is
called a normalized 2-cocycle.

Theorem 8.14. Let F be a finite Galois extension field of K. For any
normalized 2-cocycle f , there is a central simple K-algebra Af satisfying the
following properties:

(i) Af has a F -basis {uσ|σ ∈ Gal(F/K)} with the same cardinality of the
Galois group Gal(F/K).

(ii) [Af : K] = [F : K]2.

(iii) F is a splitting field of Af .
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More precisely, the multiplication of Af is as follows:

(
∑
σ

ασuσ)(
∑
τ

βτvτ ) =
∑
σ,τ

ασσ(βτ )f(σ, τ)uστ

, where ασ, βτ ∈ F .

Definition. The algebra Af constructed in Theorem 8.14 is called the crossed
product algebra associated with f .

Proposition 8.15. Let Af and Ag be two crossed product algebras associ-
ated with the normalized 2-cocyles f and g, respectively. In the Brauer group
Br(K), [Af ] = [Ag] if these two cocycles f ,g are in the same class in the
2nd cohomology group; [Af ⊗K Ag] = [Afg].

Theorem 8.16. Let F be a finite Galois extension field of K. Then the
cohomology group H2(Gal(F/K), F×) is isomorphic to the relative Brauer
group Br(F/K).

Recall that we prove Theorem 2.12 using an algebraic approach. One
can prove Theorem 2.12 by a cohomological approach.

Corollary 8.17. Let F be a quadratic extension field of K. Let a be a
number such that F = K(

√
a).

(i) The crossed product algebra Af associated with f is isomorphic to the

quaternion algebra (a,f(σ,σ)K ) for any normalized 2-cocycle f .

(ii) H2(Gal(F/K), F×) ∼= K×/NF/K(F×) by [f ] −→ f(σ, σ).

Appendix

We list two MATLAB codes for Theorem 7.3. The first is a simplified vision
which based on the method in [8, p.24]. The second is the algorithm in the
proof of Theorem 7.3. In our MATLAB codes, f_primefactors is a user-
defined function which find the prime factors of a given nonzero integer;
f_findplace is a user-defined function by the formulas in Theorem 6.2.

clc; clear;
RAM=[ ] %the ramified places

% ramifies at inifinite place iff -1 appears
FP=primes(1000000); % to check the prime factors for large numbers
%%
%functions will appear in the algorithm:
%f primefactors: to find prime factors of a given integer
%f findplace: to find the ramified places of a given quaternion (a,b)

%%
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if isempty(RAM)==0 % if RAM is nonempty
RAModd=setdiff(RAM,[-1, 2]); % the set of odd prime p in RAM
temppa=5;
tempna=-3;
%%
if isempty(RAModd)==0 % RAM contains an odd prime

Legp=ones(1,length(RAModd));
% to record the value of Legendre symbol for choosing temppa
Legn=ones(1,length(RAModd));
% to record the value of Legendre symbol for choosing tempna
prodramodd=prod(RAModd);
%%
if ismember(-1,RAM)==0 % -1 is not in RAM

% to choose temppa>0 such that a is nonquare in Z/pZ for all
% odd primes p in RAModd and a=5 mod 8
if gcd(temppa,prodramodd)==1

%to avoid the situation that the input of
%Legendre symbol ( /p) is not relatively prime to p
for i=1:length(RAModd)

Legp(i)=feval(symengine,'numlib::legendre',temppa,RAModd(i));
end

end
while (ismember(1,Legp)==1)| (gcd(temppa,prodramodd)~=1)

% the last condition is to avoid the situation that
%the input of Legendre symbol ( /p) is not
%relatively prime to p
temppa=temppa+8;
if gcd(temppa,prodramodd)==1

for i=1:length(RAModd)
Legp(i)=feval(symengine,'numlib::legendre',temppa,RAModd(i));

end
end

end
%%
% to choose tempna<0 such that a is nonquare in Z/pZ for all
%odd primes p in RAModd and a=5 mod 8
if gcd(tempna,prodramodd)==1

%to avoid the situation that the input of
%Legendre symbol ( /p) is not relatively prime to p
for i=1:length(RAModd)

Legn(i)=feval(symengine,'numlib::legendre',tempna,RAModd(i));
end

end
while (ismember(1,Legn)==1)| (gcd(tempna,prodramodd)~=1)

% the last condition is to avoid the situation that
%the input of Legendre symbol ( /p) is not
%relatively prime to p
tempna=tempna-8;
if gcd(tempna,prodramodd)==1

for i=1:length(RAModd)
Legn(i)=feval(symengine,'numlib::legendre',tempna,RAModd(i));

end
end

end
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else %-1 is in RAM
%%
% to choose tempna<0 such that a is nonquare in Z/pZ for all
%odd primes p in RAModd and a=5 mod 8
if gcd(tempna,prodramodd)==1

%to avoid the situation that the input of
%Legendre symbol ( /p) is not relatively prime to p
for i=1:length(RAModd)

Legn(i)=feval(symengine,'numlib::legendre',tempna ,RAModd(i));
end

end
while (ismember(1,Legn)==1)| (gcd(tempna,prodramodd)~=1)

% the last condition is to avoid the situation that
%the input of Legendre symbol ( /p) is not
%relatively prime to p
tempna=tempna-8;
if gcd(tempna,prodramodd)==1

for i=1:length(RAModd)
Legn(i)=feval(symengine,'numlib::legendre',tempna ,RAModd(i));

end
end

end
end

end

%%
P=f primefactors(temppa,FP); % the set of prime factors of temppa
N=f primefactors(tempna,FP); % the set of prime factors of tempna
c=prod(RAM);
temppd=prod(P);
tempnd=prod(N);
%%
if ismember(-1,RAM)==0 %-1 is not in RAM

i=2;
j=2;
%find a prime p=c mod temppd (Dirichlet's Thm)
while (mod(FP(i)-c,temppd)~=0) | (ismember(FP(i),union(RAM,P))==1)

i=i+1;
end
%find a prime p=c mod tempnd (Dirichlet's Thm)

while (mod(FP(j)-c,tempnd)~=0) | (ismember(FP(j),union(RAM,N))==1)
j=j+1;

end
if abs(temppa*FP(i))<=abs(tempna*FP(j))

PAIR=[temppa c*FP(i)];
else

PAIR=[tempna c*FP(j)];
end
%%
RAMPAIR=f findplace(PAIR,FP);
% to check the ramified places of PAIR is the set RAM

if isempty(union(setdiff(RAMPAIR,RAM),setdiff(RAM,RAMPAIR)))==1
PAIR

else
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disp('errors in the Rrocess')
end

else %-1 is in RAM
%%
j=2;
%find a prime p=c mod tempnd (Dirichlet's Thm)
while (mod(FP(j)-c,tempnd)~=0) | (ismember(FP(j),union(RAM,N))==1)

j=j+1;
end
%%
PAIR=[tempna c*FP(j)];
RAMPAIR=f findplace(PAIR,FP);
% to check the ramified places of PAIR is the set RAM
if isempty(union(setdiff(RAMPAIR,RAM),setdiff(RAM,RAMPAIR)))==1

PAIR
else

disp('errors in the Rrocess')
end

end
else

PAIR=[1 1]
end

Here is the second code.

clc; clear;
RAM=[ ] %the ramified places

% ramifies at inifinite place iff -1 appears
FP=primes(1000000); % to check the prime factors for large numbers
%%
%functions will appear in the algorithm:
%f primefactors: to find finding prime factors of a given integer
%f findplace: to find the ramified places of a given quaternion (a,b)

%%
if isempty(RAM)==0

a=prod(RAM);
RAModd=setdiff(RAM,[-1, 2]); % the set of odd prime p in RAM
% -1 not in RAM:
%to choose a odd prime p* not in RAM such that
% p* is nonsquare in Z/pZ all p in RAModd and p*=5 mod 8
% or -p* is nonsquare in Z/pZ all p in RAModd and -p*=5 mod 8

% -1 in RAM:
%to choose a odd prime p* not in RAM such that
% -p* is nonsquare in nonsquare in Z/pZ all p in RAModd and -p*=5 mod 8
%%
if ismember(-1,RAM)==0 % -1 not in RAM

i=2;
j=2;
if isempty(RAModd)==0 % RAM contains an odd prime

Legp=ones(1,length(RAModd));
Legn=ones(1,length(RAModd));
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%%
if ismember(FP(i),RAM)~=1

for k=1:length(RAModd)
Legp(k)=feval(symengine,'numlib::legendre',FP(i),RAModd(k));
end

end

while (ismember(FP(i),RAM)==1)|( (mod(FP(i),8)~=5)|
(ismember(1,Legp)==1) )
i=i+1;
if ismember(FP(i),RAM)~=1

for k=1:length(RAModd)
Legp(k)=feval(symengine,'numlib::legendre',FP(i),RAModd(k));

end
end

end
bp=FP(i);
%%
if ismember(FP(j),RAM)~=1

for k=1:length(RAModd)
Legn(k)=feval(symengine,'numlib::legendre',-FP(j),RAModd(k));

end
end

while (ismember(FP(j),RAM)==1)|( (mod(-FP(j),8)~=5)|
(ismember(1,Legn)==1))

j=j+1;
if ismember(FP(j),RAM)~=1

for k=1:length(RAModd)
Legn(k)=feval(symengine,'numlib::legendre',-FP(j),RAModd(k));

end
end

end
bn=-FP(j);
%%
if bp<=abs(bn)

b=bp;
else

b=bn;
end

%%
else % RAM contains no odd primes

while (ismember(FP(i),RAM)==1)| (mod(FP(i),8)~=5)
i=i+1;

end
bp=FP(i);
while (ismember(FP(j),RAM)==1)| (mod(-FP(j),8)~=5)

j=j+1;
end
bn=-FP(j);

if bp<=abs(bn)
b=bp;

else
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b=bn;
end

end
%%

else % -1 in RAM
i=2;
if isempty(RAModd)==0 % RAM contains an odd prime

Leg=ones(1,length(RAModd));
if ismember(FP(i),RAM)~=1

for j=1:length(RAModd)
Leg(j)=feval(symengine,'numlib::legendre',-FP(i),RAModd(j));
end

end
while (ismember(FP(i),RAM)==1)|( (mod(FP(i),8)~=3)|

(ismember(1,Leg)==1) )
i=i+1;
if ismember(FP(i),RAM)~=1

for j=1:length(RAModd)
Leg(j)=feval(symengine,'numlib::legendre',-FP(i),RAModd(j));

end
end

end
b=-FP(i);

%%
else % RAM contains no odd primes

while (ismember(FP(i),RAM)==1)| (mod(FP(i),8)~=3)
i=i+1;

end
b=-FP(i);

end
end

%%
PAIR=[a b];
RAMPAIR=f findplace(PAIR,FP);
if isempty(union(setdiff(RAMPAIR,RAM),setdiff(RAM,RAMPAIR)))==1

PAIR
else

disp('errors in the process')
end

else
PAIR=[1 1]

end
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