中	文摘要	Ι
英	文摘要	Ш
致	謝	V
目	錄	Л
符	號說明	/Ⅲ
表	目錄]	Χ
圖	目錄	Х
第	一章 前言	.1
第	二章 文獻回顧	.4
	2.1 碳管的結構及其性質	.4
	2.2 單壁碳奈米管之合方法	.8
	2.3 單壁碳奈米管之成長機制	11
	2.4 各種緩衝層材料上成長之碳結構	13
	2.5 單壁碳管之鑑定	13
	表與圖	16
第	三章 實驗方法	29
	3.1 實驗流程	29
	3.2 觸媒與緩衝層的沉積方法	29
	3.3 微波電漿化學氣相沉積設備系統(MPCVD)	30
	3.4 前處理及碳奈米結構沉積步驟	31
	3.5 分析方法	33
	表與圖	36

目錄

第四章 結果與討論	42
4.1 緩衝層材料初鍍膜之 AFM 及 XRD 分析結果	42
4.2 觸媒於緩衝層材料上經氫電漿前處理後之形貌	43
4.2.1 Co 觸媒前處理後之形貌	43
4.2.2 Fe 觸媒前處理後之形貌	44
4.2.3 比較 Co 與 Fe 觸媒前處理後形貌之差異	45
4.3 Co 觸媒於緩衝層材料上成長碳奈米結構之形貌	45
4.3.1 緩衝層材料種類與成長壓力對形貌之影響	45
4.3.2 觸媒與 AION 緩衝層的厚度以及不同成長條件對網狀。	炭管形成
之影響	47
4.4 Fe 觸媒於緩衝層材料上成長碳奈米結構之形貌	50
4.4.1 緩衝層材料種類對形貌之影響	50
4.4.2 CH ₄ /H ₂ 流量比對碳管成長速率以及碳管管徑之影響	51
4.5 觸媒於緩衝層材料上成長碳奈米結構之 Raman 及 HRTEM	1 分析結
果	53
4.5.1 以 Co 為觸媒之 Raman 和 HRTEM 分析結果	53
4.5.2 以 Fe 為觸媒之 Raman 和 HRTEM 分析結果	56
4.6 觸媒於鋁基緩衝材料上成長單壁碳管之機制解析	59
4.6.1 以 Co 為觸媒之機制解析	59
4.6.2 以 Fe 為觸媒之機制解析	61
4.7 以 Fe 為觸媒之碳管場發射性質	61
表與圖	63
第五章 總結	103
第六章 未來展望	105
參考文獻	106

符號表

AFM	原子力顯微鏡(Atomic Force Microscope)
HRTEM	高解析穿透式電子顯微鏡
Ι	電流
J	場發電流密度(Current density)
G-band	拉伸振動模(tangential stretching mode)
MPCVD	微波電漿化學氣相沉積系統 Microwave Plasma CVD
MWNTs	多壁碳奈米管(Multi-Walled Carbon Nanotubes)
PVD	物理氣相沉積(Physical Vapor Deposition)
RBM	徑向呼吸模(radial breath mode, A _{1g})
Raman	拉曼光譜
SEM	掃描式電子顯微鏡
SWNTs	單壁碳奈米管
XPS	X 光光電子能譜術(X-ray photoelectron spectroscopy)
XRD	X-ray 繞射

表目錄

表 3-1 解	蜀媒與緩衝層的沉積條件	
表 3-2 碳	炭奈米結構試片編號及其製程條件	牛(以Co 為觸媒)40
表 3-3 碳	炭奈米結構試片編號及其製程條件	牛(以 Fe 為觸媒)41
表 4-1 鋌	呂基緩衝層材料沉積後之表面粗 粘	造度(AFM 量測)42
表 4-2 碳	炭奈米結構試片之形貌與特性表	(以 Co 為觸媒)63
表 4-3 碳	炭奈米結構試片之形貌與特性表	(以 Co 為觸媒)(續)64
表 4-4 碳	炭奈米結構試片之形貌與特性表	(以 Fe 為觸媒)65
表 4-5 碳	炭奈米結構試片之形貌與特性表	(以Fe 為觸媒)(續)66

圖目錄

圖	1-1	碳之異構物3
圖	2-1	由上而下分別為(a) armchair(b) zigzag 及(c) chiral 三種單壁碳管 的構型16
圖	2-2	碳管旋度向量表示法17
圖	2-3	碳管 Chiral 指數與碳管的種類之關係17
圖	2-4	碳奈米管施加電場後 Vacuum level 的變化圖18
圖	2-5	電弧放電法之系統示意圖18
圖	2-6	雷射蒸發法設備示意圖19
圖	2-7	火焰法裝置示意圖1896
圖	2-8	太陽能法裝置示意圖
圖	2-9	RFM-PECVD 設備示意圖20
圖	2-10	HFCVD 設備示意圖21
圖	2-11	Thermal CVD system 示意圖21
圖	2-12	球棒觸媒急走成長機制示意圖
圖	2-13	輻射狀類海膽之單壁碳管結構22
圖	2-14	根莖成長機制-1

圖 2-15	單壁碳管與觸媒被石墨層分開之 TEM 圖23
圖 2-16	根莖成長機制-224
圖 2-17	圓頂小帽機制示意圖24
圖 2-18	固-液-固成長機制25
圖 2-19	雷利散射與拉曼散射能階圖25
圖 2-20	為理論計算之拉曼模式的對稱性與頻率26
圖 2-21	單壁碳管拉曼位移
圖 2-22	碳管之拉曼振動模式示意圖(a) G-band mode(b)D-band mode
	(c)Radial breath ode
圖 2-23	(a) SWNTs (b) SWNT bundles (c) DWNT (d) MWNT27
圖 2-24	不同螺旋角的單壁碳管之 STM 圖
圖 3-1	實驗流程圖
圖 3-2	MPCVD 系統設備示意圖, (a) MPCVD 系統設備簡圖, (b)MPCVD
	系統之試片載台示意圖37
圖 3-3	試片放置於載台之示意圖,(a)試片結構圖(b)三明治試片堆疊圖(c)
	三明治試片放置於載台之相對位置圖圖 4-1 Co(5nm)在不同緩衝
	層材料上經氫電漿前處理後之形貌
圖 3-4	I-V 量測系統結構圖39
圖 4-1	Al ₂ O ₃ 初鍍膜(10 nm)之XRD分析圖67

- 圖 4-2 Co(5 nm)於不同緩衝層材料上經氫電漿前處理後之形貌: (a)No buffer layer; (b) ZnS-SiO₂; (c) Al₂O₃; (d) AlN; (e) AlON....68
- 圖 4-3 Co(10 nm)於不同緩衝層材料上經氫電漿前處理後之形貌: (a)No buffer layer; (b) ZnS-SiO₂; (c) Al₂O₃; (d) AlN; (e) AlON....69
- 圖 4-4 Fe(5 nm) 於不同緩衝層材料上經氫電漿前處理後之形貌: (a)No buffer layer; (b) Si₃N₄; (c)TiN; (d) Al₂O₃; (e) AlN......70
- 圖 4-6 不同緩衝層材料對碳奈米結構形貌之影響於 8 Torr成長壓力(以 5 nm厚的Co為觸媒), (a)No buffer layer; (b) ZnS-SiO₂; (c) Al₂O₃; (d) AlN; (e) AlON(試片編號分別為A1, B1, C1, D1 和E1)......72
- 圖 4-7 不同緩衝層材料對碳奈米結構形貌之影響於 8 Torr成長壓力(以 10 nm厚的Co為觸媒), (a)No buffer layer; (b) ZnS-SiO₂; (c) Al₂O₃;
 (d) AlN; (e) AlON(試片編號分別為A2, B2, C2, D2 和E2)......73
- 圖 4-8 不同緩衝層材料對碳奈米結構形貌之影響於 32 Torr成長壓力(以 5 nm厚的Co為觸媒), (a)No buffer layer; (b) ZnS-SiO₂; (c) Al₂O₃;
 (d) AlN; (e) AlON(試片編號分別為 A3, B3, C3, D3 和 E3)74
- 圖 4-9 不同緩衝層材料對碳奈米結構形貌之影響於 8 Torr成長壓力(以 10 nm厚的Co為觸媒), (a)No buffer layer; (b) ZnS-SiO₂; (c) Al₂O₃;
 (d) AlN; (e) AlON(試片編號分別為A4, B4, C4, D4 和E4)......75
- 圖 4-10 不同 AION 緩衝層厚度對碳奈米結構形貌之影響(以 5 nm 厚的 Co 為觸媒), (a) 5 nm; (b) 10 nm; (c) 20 nm(試片編號分別為 E5,E3

- 圖 4-11 不同 AlON 緩衝層厚度對碳奈米結構形貌之影響(以 10nm 厚的 Co 為觸媒),(a) 5 nm; (b) 20 nm (試片編號為 E6 和 E8)......77

- 圖 4-17 Fe觸媒厚度與CH₄/H₂流量比對碳管成長速率之影響(Al₂O₃ buffer layer),左半圖(a,c,e)與右半圖(b,d,f)分別為觸媒厚度 5 及 10nm,隨不同CH₄/H₂流量比所成長之碳管形貌侧視圖.......82

- 圖 4-19 AlN(10nm)/Fe(5nm)所成長之碳管形貌(試片編號 FE1),(a)為試片 傾斜 30 度所觀測的,(b)為(a)圖中碳管頂部之放大圖........84

- 圖 4-26 由大觸媒裂解成小觸媒所生成的碳管之 TEM 圖(試片編號 E3)
- 圖 4-27 由直徑約 1nm 的單壁碳管所構成之單壁碳管管束之 HRTEM 圖 (試片編號 E3)......90
- 圖 4-28 二根直徑約 1.1nm 的單壁碳管連接於三個觸媒之間的 HRTEM 圖 (試片編號 E3)......91

- 圖 4-39 (a) E3 試片單壁碳管管束與觸媒表面連結的低倍率形貌圖......100

圖 4-39 (b)	為(a)圖中位置1的放大圖,顯示由直徑約2.6nm的單壁碳管構成
	之單壁碳管管束100

- 圖 4-39(c) 為(a)圖中位置2的放大圖.....101
- 圖 4-40 Fe 觸媒在鋁基緩衝層成長單壁碳管機制之示意圖......102
- 圖 4-41 碳管之 J-E 圖(以 Fe 為觸媒).....102

