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Moment-Based Image Normalization
With High Noise-Tolerance

Matthias Gruber and Ken-Yuh Hsu

Abstract —In this paper the effects of noise with nonzero mean on
existing moment-based image normalization methods are studied.
Several modifications to reduce noise sensitivity are presented and
tested. They involve nonlinear mapping and fractional- and negative-
order moments.

Index Terms —Moments, image normalization, image centroid, pattern
recognition, noise suppression.

————————   ✦   ————————

1 INTRODUCTION

THE normalization of images with respect to position, orientation,
and scale can be used as a preprocessing step in pattern recogni-
tion procedures to limit the range of variations within different
classes of patterns thus allowing the use of classification criteria
that are sharper and need not be invariant under geometric trans-
formations of the processed data. Such a normalization step can be
implemented on the basis of moments.

The moment-concept has been introduced to pattern recogni-
tion by Hu [1]. Since then, a variety of new moment-types and
moment-based methods have been developed and used [2], [3],
[4], and [5]. Moments are attractive because their computation is
algorithmically simple and uniquely defined for any image-
function; it can be carried out in parallel and therefore very fast,
and, since moments are global quantities, all available information
is used making moment-based methods less vulnerable to losses
or changes of pattern details than methods that use (few) particu-
lar features.

However, moments become very noise-sensitive with increas-
ing order [5]. Hence, the lowest possible orders should be used in
a moment-based procedure. As for image-normalization, the clas-
sical method (in [3]), here referred to as Method ”I,” involves
(integral) moments up to an order of two; a modified and more
robust algorithm involving only zero- and first-order moments
(Method ”II”) has been presented in [4]. We will describe how a
nonlinear mapping and fractional- and negative-order moments
can be used to further reduce the noise-sensitivity.

2 EXISTING METHODS

Moment-based image normalization methods can be formulated in
a very simple and transparent way by means of ordinary and ro-
tational moments which are defined by

M x y f x y dxdypq
p q= zz ,c h (1)

and

R r e f r rdrdst
s it= −zz ϕ ϕ ϕ,b g (2)

respectively, with p, q, s, t Œ N0 as order indices, and (x, y) and (r,
j) as Cartesian and polar coordinates; f shall be a non-negative
continuous image function with bounded support so that integra-
tion within the available image area, defined as |x|, |y| £ 1 for
geometric and r £ 1 for rotational moments, is sufficient to gather
all signal information.

The two existing methods mentioned earlier adjust the coordi-
nate system in a first step by moving its origin into the classical
centroid (x1, h1) =  (M10/M00, M01/M00) of the image, which con-
stitutes a unique reference-point. Subsequent operations are then
carried out in the adjusted coordinate system.

Expressions to determine orientation and scale exploit the par-
ticular changes that rotational moments experience under rota-
tions f(j) Æ f(j + f) and scale changes f(r) Æ f(kr) of an image.

Rst(f(j + f)) = eitf ◊ Rst(f(j)) (3)

Rst (f(kr)) = k-s-2 ◊ Rst (f(r)) (4)

The standard orientation is defined as the one at which a certain
rotational moment with non-zero repetition t is real positive, and
the angle f by which a given image is rotated from it is obtained
by
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Methods “I” and “II” use moments R22 and R02, respectively in (5).
As for scale, the factor k by which a given image is magnified with
respect to its normalized version can be derived from (4); assum-
ing that f(r) is the normalized version, we obtain

k
R
R

i

j

j i
= ⋅

F
HG

I
KJ

−
κ 0

0

1

(6)

with k being a constant that is composed of moments of f(r).
Method “II” uses the most simple form of (6) involving R00 and R10

while Method ”I” uses R00 and R20.
After computing f and k the image is normalized through a

rotation of -f, a dimensional scaling by a factor 1/k, and a shift of
all image points that moves the origin back into the center of the
image. The whole procedure is unaffected by intensity-changes
f Æ c ◊ f, since they cause a common factor in all moments which is
canceled in above fractional terms.

3 EFFECTS OF NOISE

Above methods yield perfect results only under ideal noise-free
conditions. In the presence of noise the involved moments suffer
errors which in turn falsify the normalization. f and k are thereby
affected directly through (5) and (6), and indirectly through
changes of the centroid position.

Earlier studies of noise effects [4], [5] using models of uncorre-
lated random disturbances with mean zero have shown that errors
increase with increasing moment-orders and that the error in f is
unbiased up to quadratic-order expansion terms. However, zero-
mean noise models are often unrealistic, especially when dealing
with non-negative image functions.
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To address this problem it is sufficient to study the disturbing
effects of an additive constant n on the normalization process. The
additive approach allows a separation of moments into signal and
noise components: Rst = Sst + Nst and Mpq = S’pq + N’pq. After inte-
gration N’pq becomes

′ = + +
R
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T|
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pq
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, (7)

and we note that expressions M10/M00 and M01/M00 for the cen-
troid are only affected in the denominators which pick up a term
N’00 = 4n. This amounts to a down-scaling by a factor M00/(M00 + 4n)
compared to an image without bias n. In other words, the centroid
is located closer to the image center. Since there is no simple gen-
eral expression for Nst in a shifted coordinate-system, we use in-
stead the term for the centered one
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which is a good approximation for the relevant moment-orders.
According to (5), (6), and (8), only k is directly affected by a

bias. To quantify this effect we need an estimate for Ss0 which shall
be computed from an averaged signal function: We assume that
the average of all centered but otherwise unnormalized signals of
the same size rsig. (radius of the smallest circle around the origin
that completely covers the signal) is a binary function with a cer-
tain non-zero value inside the rsig.-circle and 0 outside. Assuming
further that all sizes up to rsig. = r occur with equal probability, the
general averaged signal is the average of all these binary functions
up to radius r, i.e., a cone-shaped function with radius r and a
certain height s. Then Ss0 becomes
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Table 1 lists several numerical values of k for different signal-to-
noise-ratios S00/N00; thereby r = 0.5 and k is set so that k = 1 in the
noise free case. Apparently, the induced error is sizable and gets
larger for higher order moments. An amount that still allows cor-
rect recognition of the signal is often already surpassed for com-
paratively weak noise levels. Therefore, an efficient noise-
suppression is indispensable.

Method “II” performs a clipping prior to all further operations.
If there is a gap between the intensities of the signal and those of
the background noise (i.e., noise at locations without significant
signal-intensity) as it is usually the case for binary signals, and if
the clipping-threshold is set properly in between, background-
noise will be perfectly suppressed. In the analog case, however,
significant parts of the signals often have intensities comparable to
those of the background-noise, which means, noise will be left
and/or parts of the signal lost after a clipping. Hence, values x1, h1,
f and k can be significantly changed. Even more problematic: The
threshold needs to be adjusted for every image to be normalized,
and this requires information which is usually unknown. This prob-
lem is avoided in the noise suppression scheme we present now.

4 MODIFICATIONS

4.1 Nonlinear Mapping
For analog signals we propose as first operation a nonlinear map-
ping that, rather than completely eliminating low intensities,
weights them instead overproportionally weaker than higher ones.
This will enhance the total weight of the signal relative to that of the
background-noise and can be implemented without a threshold. In
addition, if the mapping is of type f Æ fm, m > 1 it preserves the in-
variance of the normalization with respect to absolute intensities.

How should m be chosen? The larger m is, the better will back-
ground noise be suppressed, but at the same time, the stronger
will signal-noise (i.e., noise at locations with significant signal-
intensity) be amplified. So, there must be an optimum m with
minimum overall error. Its value depends on the extent with
which these two types of disturbances occur.

4.2 Fractional- and Negative-Order Moments
Following an idea by Reddi [6] we will now generalize the mo-
ment-concept to include moments with fractional and negative
orders and investigate their usefulness for image normalization.
We focus on generalized rotational moments, which shall be de-
fined as in (2) but with real-valued s. Such moments generally
exist for s > -2.

4.2.1 Coordinate-Origin
Methods “I” and “II” adjust the coordinate-system by shifting its
origin into the centroid (x1, h1). This point can also be defined
through the condition R11 = 0 and approached asymptotically
through a stepwise shifting of the coordinate-system along the x-
and y-axis by successively decreasing distances in directions oppo-
site to the signs of the current values of ¬(R11) and ¡(R11), respec-
tively. Using the generalized condition

Rs1 = 0, with s Œ R (11)

this iterative method still defines a reference-point, denoted (xs,
hs), whose relative position is invariant with respect to orientation
and scale of the signal. We show now that it is unique for

018 3 2 2 3 2 2 5 82. .≈ − ⋅ < < + ⋅ ≈s
(12)

Rs1 consists of a real and an imaginary part, Xs and Ys, which
have to be 0 simultaneously to satisfy (11). Expressed as functions
of a shift (x, h) of the origin, Xs and its partial derivatives with
respect to x and h read

X xr f x y dxdyx
sξ η ξ η, ,b g b g= + +−zz 1 (13)
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Xs is certainly positive/negative when the signal is completely
located in the half-plane with pos./neg. x. Since it decreases mo-
notonously when the origin is shifted in x-direction (cf.,(14) the value
0 is taken on exactly one time for any (fixed) h. Hence, the set of
points (Xs(x, h) = 0) is a bounded continuous function of h. Similarly,
(Ys(x, h) = 0) constitutes a bounded continuous function of x and
both curves must have at least one finite intersection point.

A sufficient condition that there are no further ones is that
curves (Xs = 0) and (Ys = 0) run nowhere steeper than 45o against
the h- and x-axis, respectively. For Xs this is equivalent to the de-
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mand |∂/∂x, (Xs)| ≥ |∂/∂h, (Xs)|, and if the relation is to hold for
any f it must be satisfied for the weighting kernels of the involved
integrals i.e.,

sx y

r
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rs s

2 2

3 3
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>

−
− −

a f
(16)

which is equivalent to (12). For Ys we obtain the same relation.
In practice, the iterative approach towards (xs, hs) has to be

halted after a finite number of steps, usually when |Xs| and |Ys|
fall below a certain acceptance threshold ta. This introduces a re-
sidual error of coordinates xs, hs, which can be significant despite a
small ta if (Xs = 0) and (Ys = 0) intersect at a very sharp angle. To
avoid such a problem we limit s to 0.33 < s < 5.67 in which case the
intersection angle cannot be sharper than 30o.

For the large majority of images where rsig. is significantly
smaller than one, the reference-point location will be more noise
resistant for small s because then the marginal zone of the image,
which carries only noise, has a lower relative weight in integral (2).

4.2.2 Scale-Factor
According to (10) and Table 1, the bias related error of k is order-
dependent. Now we look for the real-valued i, j that minimize the
error for the averaged signal defined earlier. If Ni0, Nj0 π 0 the
value of k can only remain unchanged if
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Inserting terms (8) and (9) this condition becomes ri-j = (i + 3)/(j +
3), which, after substituting i = u + v - 3, j = v - 3, can be trans-
formed to

ru u
v= +1 (18)

Equation (18) can be interpreted as an intersection point of func-
tions ru and 1 + u/v. Besides the trivial solution u = 0 ¤ i = j,
which cannot be used in (10), there can only be another intersec-
tion point if v < 0. A negative v also lets the two functions intersect
at a sharper angle so that (18) is approximately fulfilled for a wider
range of u-values.

Based on these considerations we expect normalization errors
to be lower for negative i, j. This suggestion is also supported by
the fact that in moments with negative radial orders the region
around the origin, where the signal information is concentrated, is
weighted higher than the marginal regions, which carry only noise.

TABLE  1
INCREASE OF K DUE TO A BIAS

S00/N00 Æ
method Ø

50 25 12.5 6.25 2

“I” 1.033 1.064 1.124 1.230 1.556

“II” 1.013 1.026 1.051 1.099 1.283

5 PERFORMANCE TESTS

To substantiate our earlier statements we present now some test
results of the proposed modifications. In these tests

• the signals are images of the ten numerals. We use low-pass-
filtered versions of binary raw-patterns to obtain intensity
histograms similar to those found in images from CCD-
cameras.

• Signal-noise (symbolized by S) is created by modulating the
signals with slowly varying random disturbances to mimic
the effect of non-uniform illumination, a real-world S-noise

source. It is quantified through the modulation-factor mod
which indicates (in percentages) the maximum possible in-
tensity change-rate in both direction.

• Background-noise (B) consists of a few randomly distributed
speckles with a maximum intensity of 85 % of the maximum
signal intensity, and it is quantified through the signal-to-
noise-ratio (SNR) S00/N00 .

In an experiment to determine the optimum m for the nonlinear
mapping we generated randomly positioned signals of fixed orienta-
tion and size rsig., added S-noise (mod = 15) and/or B-noise (SNR = 6),
and computed the statistical errors of xs, hs, f and k (using orders s = 0.33,
i = -0.75, j = -0.25). Table 2 lists the mean distance between noisy and
noise-free reference-points, and the variances of k and f for different
m. As expected, errors due to S-noise increase with increasing m
while errors due to B-noise decrease. If both types of noise occur, a
certain finite m (here m = 3) yields the lowest overall error.

TABLE  2
NORMALIZATION ERRORS FOR DIFFERENT M DUE TO SIGNAL- AND/OR

BACKGROUND-NOISE

mean error of ref.-point location (in % of rsig.)

mÆ
noise-
type Ø

1 2 3 4 5

S 1.92 3.98 6.22 8.52 10.94
B 13.30 6.56 4.12 2.96 2.36

S+B 13.30 7.48 7.24 8.86 11.06

Var(k) ¥ 10-2

S 0.6 1.6 2.8 4.1 5.7
B 5.9 4.1 3.4 3.0 2.8

S+B 6.0 4.5 4.4 5.1 6.2

Var(f) (in deg.)
S 1.09 2.01 2.83 3.53 4.16
B 18.45 7.59 4.46 3.07 2.37

S+B 18.46 7.61 4.89 4.48 4.68
For details, see text.

TABLE  3
MEAN DISTANCE BETWEEN NOISY AND NOISE FREE (xS, hS)

FOR DIFFERENT S DUE TO BACKGROUND NOISE

absolute mean distance (in % of rsig.)

mod Æ
s Ø

128 32 8 2 1 0.5

1 2.2 8.6 32.1 94.7 148 203

relative mean distance
1 1.0 1.0 1.0 1.0 1.0 1.0

0.5 0.45 0.49 0.49 0.61 0.70 0.82
0.33 0.37 0.37 0.41 0.51 0.55 0.71
0.25 0.34 0.35 0.35 0.42 0.54 0.67

For details see text.

TABLE  4
MEAN DISTANCE BETWEEN NOISY AND NOISE FREE (xS, hS)

FOR DIFFERENT S DUE TO SIGNAL NOISE

absolute mean distance (in % of rsig.)

mod Æ
s Ø

10 21 33 46 61 77

1 0.9 2.0 2.9 4.3 6.2 7.5

relative mean distance
1 1.0 1.0 1.0 1.0 1.0 1.0

0.5 1.28 1.26 1.29 1.24 1.24 1.27
0.33 1.41 1.43 1.46 1.46 1.41 1.43
0.25 1.50 1.48 1.52 1.48 1.50 1.49

For details see text.
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In order to quantify the noise-sensitivity of (xs, hs) signals with
size rsig. = 1/4 and random orientation were generated and then
shifted by 3/4 from their normalized positions in random direc-
tions. After adding noise we determined the noisy reference-points
and their distances from the noise-free ones. Tables 3 and 4 show
the mean distances for B- and S-noise, respectively. For small s,
errors due to S-noise increase slightly but the effect is by far over-
compensated through the decrease of the error due to B-noise.
Hence, small s provide significantly higher robustness.

In an experiment to find the moment-orders i, j that minimize
the error of k we added B-noise (SNR = 10) to normalized signals
and computed mean and variance of k. The results (Table 5) indi-
cate that small negative orders provide the highest noise-tolerance.

TABLE 5
MEAN E(K) AND VARIANCE VAR(K) OF K FOR DIFFERENT ORDERS I, J

IN THE PRESENCE OF BACKGROUND NOISE

i
j

0
2

0
1

–0.5
0

–0.75
–0.25

–1
–0.5

–2
–1.5

E(k) 1.138 1.102 1.051 1.034 1.029 0.999
Var(k) 0.068 0.049 0.035 0.028 0.032 0.052

We conclude that a normalization algorithm with high noise-

tolerance should use a mapping f Æ f3, moment R− 1
30

 to define the

reference-point, and moments R− 1
4 0

 and R− 3
4 0

 to compute scale-

factor k.
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Rigid Body Segmentation and Shape
Description from Dense Optical Flow

Under Weak Perspective

Joseph Weber and Jitendra Malik

Abstract —We present an algorithm for identifying and tracking
independently moving rigid objects from optical flow. Some previous
attempts at segmentation via optical flow have focused on finding
discontinuities in the flow field. While discontinuities do indicate a
change in scene depth, they do not in general signal a boundary
between two separate objects. The proposed method uses the fact that
each independently moving object has a unique epipolar constraint
associated with its motion. Thus motion discontinuities based on self-
occlusion can be distinguished from those due to separate objects. The
use of epipolar geometry allows for the determination of individual
motion parameters for each object as well as the recovery of relative
depth for each point on the object. The algorithm assumes an affine
camera where perspective effects are limited to changes in overall
scale. No camera calibration parameters are required. A Kalman filter
based approach is used for tracking motion parameters with time.

Index Terms —Optical flow, epipolar constraint, fundamental matrix,
shape from motion, motion segmentation, scene partitioning problem.

————————   ✦   ————————

1 INTRODUCTION

VISUAL motion can provide us with two vital pieces of informa-
tion: the segmentation of the visual scene into distinct moving
objects and shape information about those objects. We will exam-
ine how the use of epipolar geometry under the assumption of
rigidly moving objects can be used to provide both the segmenta-
tion of the visual scene and the structure of the objects within it.

Epipolar geometry tells us that a constraint exists between cor-
responding points from different views of a rigidly moving object
(or camera). This epipolar constraint is unique to each motion.
Optical flow provides a dense set of correspondences between
frames. Therefore the unique epipolar constraint can be used to
find objects undergoing separate motions given the optical flow.
Typically the epipolar constraint is used for large displacement
motions, but it is equally valid for optical flow fields which we
assume represent small inter-frame displacements.

An algorithm will be outlined for segmenting the scene while
simultaneously recovering the motion of each object in the scene.
This algorithm makes the assumption that the scene consists of
connected piecewise-rigid objects. The image then consists of con-
nected regions, each associated with a single rigid object.

Once the motion of rigidly moving objects has been deter-
mined, scene structure can be obtained via the same epipolar con-
straint. The scene structure problem becomes analogous to stere-
opsis in that object depth is a function of distance along the
epipolar line. Dense correspondences such as those in optical flow
can lead to rich descriptions of the scene geometry.

The epipolar geometry will be examined in the context of an af-
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