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Search for Rumor Center

Student: Pei-Duo Yu Advisor: Hung-Lin Fu
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Abstract

In the modern world there are many network risks which share a common struc-

ture: an isolated risk is amplified because it is spread by the network. In essence,

all of these types of spreading phenomenon can be modeled as a rumor spreading

through a network, where the goal is to find the source of the rumor in order to con-

trol and prevent these network risks based on limited information about the network

structure and the rumor infected nodes.

In this thesis, we shall use the so-called Rumor Spread model which is simplified

from an epidemic model called Susceptible-Infected-Recovered model to study the Ru-

mor Center in a tree-shaped network. Several new results are obtained on the cases

where the network is defined on a d-regular tree either infinite or finite.
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Chapter 1

Preliminaries

In this chapter, we will first introduce the background of this problem, and some

notations and knowledge about graph theory. Then, a model we use throughout this

thesis will be introduced.

1.1 Introduction

There are many networks in our daily life, to transmit electricity to everywhere

in the city we need electrical power grid network. We have social network to describe

the relation among people. Even in our body there is still some kinds of networks,

for example, neural networks. Any two units in a given network can be connected

together, so a single defect may have a great influence to the whole network. For

instance, if there was a boy got the flu, then all his classmates will have a chance

to be infected. Moreover, the flu may infect all over the school. In a city, if there

is a telegraph pole losing its function then the city may confront with power failure.

The priority of all these situations is to find out the first problematic unit, called the

source, in the network. We need a better way to find out the source rather than to

examine all problematic units. So, we need a model to describe all those situations and

try to determine where is the source. Here we use the model called Rumor�Spread

model (RS-model for short), simplified from an epidemic model called SIR - model,
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where S stands for susceptible, I stands for infected and R stands for recovered. In

an RS - model there are only two kinds of vertices, infected and susceptible, the

reason is that once a person knew the rumor, he can’t get rid of the fact that he knew

the rumor. We use the combinatorial counting to get the same result as in [5] in a

relative easy way. Prior works on disease spreading are focus on the spreading of the

epidemics or the lifetime of the disease. In [3], it showed that under some certain

network topology, the relation between the ratio of infected vertices to cured vertices

and the spectral radius of the network will decide the lifetime of the epidemic.

1.2 Preliminaries and Notations

A cycle is a graph with an equal number of vertices and edges whose vertices

can be placed around a circle so that two vertices are adjacent if and only if they

appear consecutively along the circle. Contraction of edge e with endpoints u, v is

the replacement of u and v with a single vertex whose incident edges are the edges

other than e that were incident to u or v.

A graph G is connected if for any two vertices u, v there is a u-v path in G. A

tree is a connected simple graph without cycle. A subtree of a tree T is a tree T 0

with V (T ) ✓ V (T 0) and E(T ) ✓ E(T 0) . The neighborhood of a vertex v is a set

of all neighbors of v denoted as N(v). The degree of a vertex v is the number of

its neighbors denoted as d(v). A graph is said to be k-regular if all its vertices is of

degree k. All degree 1 vertices in a tree are called leaves.

In this thesis, a d-regular tree is a tree where all its vertices are of d � regular,

that is, the order and the size of this tree are infinite. A rooted tree T is a tree with

one vertex r chosen as a root which can also denoted as vr. The length of the simple

path from the the root vr to a vertex v is the depth of v in T . The length of the
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simple path from the the vertex v to a closest leaf to v is the height of v. The height

of a rooted tree is equal to its root’s height. A level of a tree consists of all vertices

at the same depth. For any vertex v in a rooted tree with root r, a parent of v is its

neighbor on r� v path ; the children are its other neighbors and child(v) denote the

set of all children of v. A descendent u of v is the vertex that v contained in r � u

path. See more details about these notations and definitions in [1] and [8]. Given

a tree T with root r, a branch T r
v is the subtree with v as a root contains all its

descendent in Tr. For convenience, let trv denote the order of T
r
v . So for a d� regular

rooted tree with root r and order n, we have
Pd

i=1 t
r
i .

1.3 Rumor Spreading(RS) Model

Here we use SI - model (susceptible-infected) to describe a rumor spreading in a

group of people. It is a discrete time model which is simplified from the well-known

SIR model. There are two kinds of vertices in this model. Let S(t) be a set of people

who don’t know rumor yet at time t and I(t) be a set of people who have known

rumors at time t. For convenience, let St denote |S(t)| and It denote |I(t)|. Using a

fixed population, that is, St + It = N and assume that each in time period only and

exactly one rumor is spread so we have the following:

St + 1 = St + 1

It + 1 = It + 1

S0 = N, I0 = 0.

In a group of people, each person is represented by a vertex in a graph, and if

any two of them know each other then we describe the relationship as an edge in the

graph. Given a group of people, we have a graph G corresponding to these people.

Let Gt be a subgraph of order t of G. Gt is composed of t infected vertices which

3



means the people who knew the rumor at time t. So, we call G1 rumor source, that

is, G1 is the person where the rumor begin to be spread. Since in each time period

exactly one rumor is spread, we have |Gt + 1| = |Gt|+1 and Gt+1 is developed from

Gt by adding a vertex z and an edge to Gt.

For clearness, in our models presented in this thesis, we assume that the infected

probability of all vertices that may be infected in next time period is equally possible,

that is

(1.1) Pt+1(z) =
1X

v2V (Gt)

d(v)� 2(t� 1)
,

and the probability of being the source are equivalent for all vertices.

1.4 Known Results

Prior study focused on the act of an epidemic’s propagation in a network. [3]

showed the lifetime of an epidemic in a network is related to ratio of cure rate to

infection rate and the spectral radius of the graph(network). In [5], it showed the

detection probability goes to zero as n gets larger when G is a 2-regular graph. And

the detection probability is 1/4 when G is a 3-regular graph. Moreover, it computed

the detection probability when G is not a regular tree, by computing the detection

probability of the BFS-spanning tree of G to approximate the detection probability

of G. There are some numerical heuristic results shown in [5]. In [4], it provided the

same result as in [5], but in a relatively simple method: the combinatorial counting.
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Chapter 2

Rumor Source Estimator for Tree

In this chapter, we will introduce a maximum likelihood estimator to estimate

the rumor source in a tree shape network. For any given tree T , let Gn ✓ T be the

infected subtree in T. The ML� estimator for the rumor source is the vertex v with

the maximum probability P (Gn|v).

2.1 The Probability P (Gn|v) in Regular Tree

Let T be a tree represents a network. According to the assumption of an RS �

model, let Gn be the subtree of T at time n, that is, |Gn| = n and Gn represents the

n infected vertex.

P (Gn|v⇤) is the probability that view v⇤ as the source and spreads rumor to all

vertices in Gn within n steps. Let �i be the possible infecting order starts from the

source, and S(v⇤, Gn) be the collection of all �i where v⇤ is viewed as the source in

Gn. Then, we have

(2.1) P (Gn|v⇤) =
X

�i2S(v⇤,Gn)

P (�i|v⇤).

For simplicity, we explain how to calculate P (G4|v1) by an example as shown in

Figure 2.1. The vertices colored black are the infected vertices. Suppose v1 is the

source, then all possible infecting order �i are :
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�1 = v1 ! v2 ! v3 ! v4 �2 = v1 ! v2 ! v4 ! v3 �3 = v1 ! v3 ! v2 ! v4

�4 = v1 ! v3 ! v4 ! v2 �5 = v1 ! v4 ! v3 ! v2 �6 = v1 ! v4 ! v2 ! v3

(Note that, if we see v3 as the source then v3 ! v2 ! v1 ! v4 is not a possible

infecting order, since there is no edge between v3 and v2.)

Let’s calculate the probability of �1, recall that the infected probability of (t+1)th

vertex is Pt+1(z) =
1X

v2V (Gt)

d(v)� 2(t� 1)
.

Therefore, P (�1|v1) =
1

3
· 1
4
· 1
5
, and also we know that P (�i|v1) =

1

3
· 1
4
· 1
5

for i = 1, 2, 3, 4, 5, 6.

In general, we have

(2.2) P (�i|v1) =
n�1Y

k=1

1X

vi2V (Gk)

d(vi)� 2(k � 1)
,

where Gk is a subgraph of Gn and it represents the infected subgraph at kth time step

along with the infecting order �i .

For d� regular tree,

(2.3) P (�i|v1) =
n�1Y

k=1

1

dk � 2(k � 1)
.

Note that if the rumor has not been spread to leaves of the tree yet, then P (�i|v1) =

P (�j|v1) for all �i, �j 2 S(v,Gn). Now, combining (2.1) and (2.3), then we have

P (Gn|v⇤) =
X

�i2S(v⇤,Gn)

P (�i|v⇤)

= |S(v⇤, Gn)| · P (�|v⇤) 8�i 2 S(v,Gn)

= |S(v⇤, Gn)| ·
n�1Y

k=1

1

dk � 2(k � 1)

_ |S(v⇤, Gn)|.

We can now compute each P (G4|vi) by finding out the value |S(vi, Gn)|. Since

they are of the same value 1
3·4·5 = 1

60 .
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Figure 2.1: The example of how to calculate P (G4|v1)

We have:

P (Gn|v1) = 3! · 1
60

P (Gn|v2) = P (Gn|v3) = P (Gn|v4) = 1 · 2! · 1
60

therefore, by the definition, the ML estimator is v1.

In conclusion, P (Gn|v) is proportional to |S(v,Gn)|, that is, if the rumor didn’t

meet the end vertex in the tree yet, then the only fact that a↵ect P (Gn|v) is the

number of distinct ways that v can spread the rumor to all vertices in Gn.

Let R(v,Gn) = |S(v,Gn)| be called rumor centrality which is a important infor-

mation about the vertex v, we call v the rumor center of Gn if v has the maximum

rumor centrality.

2.2 Rumor Centrality R(v,Gn)

Since the P (Gn|v) is proportional to R(v,Gn), we are able to determine which

vertex is the ML estimator after calculating all R(vi, Gn) where vi 2 Gn. The following

will introduce a formula represents the rumor centrality.
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Let Gn be a rooted tree with root vr and suppose G1 = vr, then in G2, the second

infected vertex may be any child of vr. There are d(v) vertices in child(v) say ui

where i = 1, 2, 3 . . . d(v). So we have:

(2.4) R(v,Gn) =
(n� 1)!

tvu1
! · tvu2

! · . . . · tvud(v)
!
·
d(v)Y

i=1

R(ui, T
v
ui
).

We can rewrite (2.4) by the recursion from the root vr to all leaves of Gn, then we

get a simpler form :

(2.5) R(v,Gn) = n! ·
Y

u2Gn

1

tvu
.

Now, consider two adjacent vertices u,v in Gn and a vertex w 2 Gn� {u, v}, then

we have tvu = n� tuv and tvw = tuw, where tvu is defined in preliminary.

By the above two facts, we conclude that

(2.6)
P (u|Gn)

P (v|Gn)
=

R(u,Gn)

R(v,Gn)
=

tvu
n� tuv

.

Theorem 2.2.1. [5] Given an n vertices tree Gn. v 2 Gn is a rumor center

if and only if

tvu  n
2

for all u 2 Gn � {v}.

In Gn, we can define the weight [4] of a vertex v in Gn, it is defined as weight(v) =

maxu2child(v){tvc} . The vertex of Gn with the minimum weight is called the mass

center of Gn. More results on mass center of a tree can be found in [9]. Moreover,

the distance centrality [5] of v 2 Gn is defined as D(v,Gn) =
P

j2Gn
d(v, j). The

vertex in Gn with minimum distance centrality is called distance center.

Theorem 2.2.2. Let Gn be defined as in theorem 2.2.1 and v is a vertex in Gn, then

the following statements are equivalent:
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1. v is a distance center of Gn. [5]

2. v is a rumor center of Gn. [5]

3. v is a mass center of Gn.

Proof. Given Gn be a tree of size n, and v 2 Gn.

(1 ) 2) We prove it by contraposition argument, suppose v is not a rumor center,

by (2.2.1) there is a branch of v, say T v
u , with order > n/2 and u is adjacent to v.

Now, we need a relationship between
P

s2Gn
d(v, s) and

P
s2Gn

d(u, s) described as

following.

P
s2Gn

d(v, s) =
P

s2Gn
d(u, s) + (tvu � 1)� (tuv � 1).

We have
P

s2Gn
d(v, s) >

P
s2Gn

d(u, s), since tvu > tvu. This implies v is not a distance

center.

(2 ) 3) To prove this, we need a fact: If all v’s branches are of order  n/2, then v

is a mass center. Again, by contraposition argument, suppose v is not a mass center,

then there exists a branch of v whose order > n/2, that is, v is not a rumor center

by (2.2.1).

(3 ) 1) Suppose v is a mass center, then all it’s branch is of order  n/2. This

implies v is a rumor center. Let u 2 Gn, if u is adjacent to v, then
P

s2Gn
d(v, s) <

P
s2Gn

d(u, s) and we finish the proof. If u is not adjacent to v, then we can partition

all vertices in Gn into three sets. The first one is T u
v , the second one is T v

u and the last

one contains all vertices not in T u
v and T v

u say R. Let l denote d(u, v). Now, consider

P
s2Gn

d(v, s)�
P

s2Gn
d(u, s)

= (
P

s2Tu
v
d(v, s) +

P
s2T v

u
d(v, s) +

P
s2R d(v, s)) � (

P
s2Tu

v
d(u, s) +

P
s2T v

u
d(u, s) +

P
s2R d(u, s)).

Since v is the rumor center, we have :
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(1) |R|+ tvu  n/2, and tuv > n/2

(2) (
P

s2T v
u
d(v, s) +

P
s2Tu

v
d(v, s))� (

P
s2T v

u
d(u, s) +

P
s2Tu

v
d(u, s)) = l · (tvu � tuv)

(3) |
P

s2R d(v, s)�
P

s2R d(u, s)|  l · |R|.

Combine these three properties, we conclude that
P

s2Gn
d(v, s)�

P
s2Gn

d(u, s) < 0,

for any u 2 Gn, that is, v is the distance center. ⇤

In [5], it shows that there are at most two rumor centers occur when the maximum

size branch of rumor center is of size n/2. In fact, a tree has a either exactly one or

exactly two median, see [9] for reference. Note that the definition of median in [8] is

similar to distance center.

Now we know how to find the rumor center in a given treeGn, [5] gave an algorithm

called message � passing algorithm for calculating each vertex’s rumor centrality

R(v,Gn) with time complexity O(n). In chapter 3, we will discuss the correctness of

our estimator.
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Chapter 3

The Estimator for Rumor Source
in Infinite Trees

In chapter 2, we introduced the idea of “the most possible source”, which we call it

a rumor center. When we want to find out the source in Gn, the first vertex we should

consider is the rumor center v. So in the following, we will show how to compute the

probability P (source = v|Gn).

3.1 The Detection Probability P (source = v|Gn)

Let G be a tree and Gn is a subtree of G at time n, v is the rumor center of Gn.

P (source = v|Gn) is the probability of the event that the rumor center is exactly the

rumor source when given Gn. We have,

(3.1) P (source = v|Gn) =
P (Gn|source = v) · P (source = v)P

i2Gn
[P (Gn|source = i) · P (source = i)]

.

The probability of each vertex to be the source are equal, that is

P (source = i) = P (source = j) 8 i, j 2 Gn,

and also we have P (Gn|source = v) _ R(v,Gn).

Thus,

(3.2) P (source = v|Gn) =
R(v,Gn)P

i2Gn
R(i, Gn)

.

11



With (3.2) we can derive several results about the detection probability.

Theorem 3.1.1. [5] [4] Let G and Gn be defined as above, and v be the rumor center

in Gn. Then the detection probability

P (source = v|Gn)  1
2 .

Proof. Given Gn be the subtree of G with size n, and let v be the rumor center of

Gn. Obesrve that, once the rumor has been spread from v to one of its neighbors say

u, the number of spreading ways in those remaining vertices is equal to the rumor is

originate from u and been spread to v first. So, after the rumor spread from v to u,

we contract the edge (u, v) and we view it as a new graph say Gu,v. The new vertex

from the contraction called v0. Then we conclude that:

R(v,Gn) =
P

u2N(v) R(v0, Gu,v).

So, from (3.2) we have

P (source = v|Gn) =
R(v,Gn)P

i2Gn
R(i,Gn)

 R(v,Gn)
R(v,Gn)+

P
u2N(v) R(v0,Gu,v)

 1/2.

⇤

No matter how large the size is or what shape of Gn is, this trivial upper bound

won’t change. The following will introduce another bound which is derived from the

full d � regular tree. Before we introducing this bound, there are two assumptions

we need as following:

1. If the size n is fixed, then the full tree has the maximum detection probability.

2. Let Gn be a full tree, then for any k > n the detection probability of Gn is larger

than it of Gk.

Let Tc(l, d) denote the d� regular complete tree with l levels and v0 is its rumor

center. With above assumptions, we have the following result:

12



Theorem 3.1.2. Let G be a d � regular tree, and let Gn and v be defined as in

(3.1.1). Let l = blogd�1(
n�1
d
(d � 2) + 1)c + 1 and n0 = |Tc(l, d)| where Tc(l, d) is the

complete tree with l levels. Then

P (source = v|Gn) 
1

1 +
l�1X

s=1

[d(d� 1)s�1
sY

i=1

(d� 1)l�i � 1

n0d� 2n0 � (d� 1)l�i + 1
]

.

Proof. Let G, Gn and v as defined above, since Tc(l, d) is the maximum size

complete tree satisfies |Tc(l, d)|  |Gn| and v0 is the rumor center in Tc(l, d). Then

from the assumption above, we have :

P (source = v|Gn)  P (source = v0|Tc(l, d))

Now, consider P (source = v0|Tc(l, d)) =
R(v0,Tc(l,d))P

i2Tc(l,d)
R(i,Tc(l,d))

, our goal is to find out the

ratio between v0 and other vertices in Tc(l, d) . By the symmetric structure of the

complete tree, we have R(vi, Gn) = R(vj, Gn), if vi and vj are in the same level of the

complete tree. Suppose R(v0, Tc(l, d)) = 1, and let vs be the vertex with depth = s ,

then by property (2.6) we have

(3.3) R(vs�1, Tc(l, d)) : R(vs, Tc(l, d)) =

✓
n0 � (d� 1)l�s � 1

(d� 2)

◆
:

✓
(d� 1)l�s � 1

(d� 2)

◆
,

for s = 1, 2, 3, ..l � 1, where (d�1)l�s�1
(d�2) is the number of vertices in T v0

vs ✓ Tc(l, d). We

can rewrite (3.3) as

(3.4)
R(vs�1, Tc(l, d))

R(vs, Tc(l, d))
=

(d� 1)l�s � 1

n0d� 2n0 � (d� 1)l�s + 1
.

By the recursive relation in (3.4) and the assumption R(v0, Tc(l, d)) = 1 we have

X

i2Tc(l,d)

R(i, Tc(l, d)) = 1 +
l�1X

s=1

[d(d� 1)s�1
sY

i=1

(d� 1)l�i � 1

n0d� 2n0 � (d� 1)l�i + 1
],

where d(d� 1)s�1 is the number of vertex in each level.

Thus,
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P (v0 = source|Tc(l, d)) =
1

1 +
l�1X

s=1

[d(d� 1)s�1
sY

i=1

(d� 1)l�i � 1

n0d� 2n0 � (d� 1)l�i + 1
]

,

and we complete the proof. ⇤

Note that, when n is little enough such that l = 2 then this bound is exactly 1/2

and this bound will decrease as n getting larger. The following is the tendency of the

upper bound decreasing as n getting larger.

Figure 3.1: The Tendency of The Upper Bound With di↵erent d

3.2 The Value of P (source = v|Gn)

In this section, we will compute the detection probability of infinity order d �

regular tree and show two results which are the same as in [5] but in di↵erent methods.

Theorem 3.2.1. [5] [4] Suppose G is a 2� regular tree, and Gn ✓ G is the infected

subtree of G,let v be the rumor center in Gn then

lim
n�!1

P (source = v|Gn) = 0.

14



This theorem shows that, the detection probability in a 2� regular tree goes to

zero as the infected vertices increase.

Proof. Without loss of generality, suppose the order of the infected subtree is odd

and equal to 2t+ 1 for some t 2 N .

Given G, G2t+1 as defined above. By theorem 2.2.2, there is a rumor center say v and

with R(v,G2t+1) =
�
2t
t

�
. Then, we have

P (source = v|G2t+1) =
R(v,G2t+1)P

i2G2t+1
R(i, G2t+1)

=

�
2t
t

�
�
2t
0

�
+
�
2t
1

�
+
�
2t
2

�
+ . . .+

�
2t
2t

�

=
(2t)!

t! · t! ·
1

22t
.

By Stirling Formula, we have lim
t�!1

t!p
2⇡ttte�t = 1.

Now, consider P (source = v|G2t+1) when t is getting larger.

Let Hv
i = {Gi ✓ G| Gi is a 2 � regular graph and v is the source of Gi}. So, the

detection probability when t is getting larger is :

lim
t�!1

X

G2t+12Hv
2t+1

[P (G2t+1|v) · P (source = v|G2t+1)] = lim
t�!1

P (source = v|G2t+1)

= lim
t�!1

p
4⇡t · (2t)2t · e�2t

(
p
2⇡t · tt · e�t)2

· 1

22t

= lim
t�!1

1p
⇡t

= 0.

⇤

The following is going to find out the detection probability in d � regular tree

with infinity order when d > 2 by the property in Theorem 2.2.1.
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Let Ad and Bd be two sets such that

Ad = {(a1, a2, ..., ad)|0  ai 
n

2
,

dX

i=1

ai = n� 1} and

Bd = {(b1, b2, ..., bd)|bi 2 N [ {0},
dX

i=1

bi = n� 1}.

Note that, these two sets are corresponding to the orders of branch’s sizes of

a vertex. And if its branch’s size is in Ad then it is the rumor center. We have

|Bd| =
�
n�1+d�1

d�1

�
and let Sk = {(s1, s2, ..., sd)|sk > n

2 , 0  sj <
n
2 ,

dX

i=1

si = n � 1}, so

|Si| =
�
d+dn

2 e�3
d�1

�
and

|Ad| = |Bd|�
dX

k=1

|Sk|

=

✓
n+ d� 2

d� 1

◆
� d ·

✓
dn
2 e+ d� 3

d� 1

◆

since Si \ Sj = � for i 6= j.

Given a d � regular tree G and let Gn ✓ G, suppose v is the source in Gn with

the order of branch’s size (tvu1
, tvu2

, ..., tvu3
). Recall (2.4), to compute all spreading ways

that v can spread to every vertices in Gn we should compute the spreading way in

each branch of v first. Suppose u 2 N(v) and now u has the rumor, then there are

�1

d� 3

tvuY

i=0

((d� 2)(i� 1) + 1), for d � 4

spreading ways in T v
u , since there are (d � 1) choice when u is going to spread the

rumor, and once u spread the rumor to one of its child there are (2d� 3) and so on.

Note that, when d = 3, �1
d�3 is meaningless so we discuss it separately later in next

theorem. Thus, given (tvu1
, tvu2

, ..., tvud
) of v, the number of spreading ways is

(n� 1)!

tvu1
! · tvu2

! · . . . · tvud(v)
!
·

dY

k=1

[
�1

d� 3

tvukY

i=0

((d� 2)(i� 1) + 1)], for d � 4.

16



The corrected detection occurs when rumor center equals to source, so it occurs when

the ordered pair of v’s branches belongs to |Ad|. Let Pd(Ct) be the probability of

corrected detection at time t in a subtree of d� regular tree, then we have

(3.5) Pd(Ct) =

(n� 1)!
X

(tvu1 ,t
v
u2

,...,tvud
)2Ad

(
dY

k=1

�1
d�3

Qtvuk
i=0((d� 2)(i� 1) + 1)

tvuk
!

)

(n� 1)!
X

(tvu1 ,t
v
u2

,...,tvud
)2Bd

(
dY

k=1

�1
d�3

Qtvuk
i=0((d� 2)(i� 1) + 1)

tvuk
!

)

,

for d � 4.

Theorem 3.2.2. [5] [4] Let G be a 3� regular tree, then

lim
t�!1

P3(Ct) =
1
4 .

Proof. Let A3 and B3 as defined above. To use (3.5), we should avoid the case

when i = 0, that is one of the branch size of v is 0. Let A1
3 be the subset of A3 with at

least a zero in (tvu1
, tvu2

,vu3
) and A2

3 = A3 \A1
3. Also B1

3 and B2
3 are defined repectively.

Let zd(i) = (d� 2)(i� 1) + 1 .Then by (3.5), we have

P3(Ct) =

X

(tvu1 ,t
v
u2

,tvu3 )2A
1
3

(
2Y

k=1

Qtvuk
i=1(zd(i))

tvuk
!

) +
X

(tvu1 ,t
v
u2

,tvu3 )2A
2
3

(
3Y

k=1

Qtvuk
i=1(zd(i))

tvuk
!

)

X

(tvu1 ,t
v
u2

,tvu3 )2B
1
3

(
2Y

k=1

Qtvuk
i=1(zd(i))

tvuk
!

) +
X

(tvu1 ,t
v
u2

,tvu3 )2B
2
3

(
3Y

k=1

Qtvuk
i=1(zd(i))

tvuk
!

)

=

X

(tvu1 ,t
v
u2

,tvu3 )2A
1
3

1 +
X

(tvu1 ,t
v
u2

,tvu3 )2A
2
3

1

X

(tvu1 ,t
v
u2

,tvu3 )2B
1
3

1 +
X

(tvu1 ,t
v
u2

,tvu3 )2B
2
3

1
=

|A1
3|+ |A2

3|
|B1

3 |+ |B2
3 |
.

For t is even, we have

|A1
3|+ |A2

3|
|B1

3 |+ |B2
3 |

=
6 +

�
t�2
2

�
� 3 ·

�d t
2 e�2
3�1

�

3 + 3(t� 2) +
�
t�2
2

� =
n2 + 10n

4t2 + 4t
.

For t is odd, we have
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|A1
3|+ |A2

3|
|B1

3 |+ |B2
3 |

=
3 +

�
t�2
2

�
� 3 ·

�d t
2 e�2
3�1

�

3 + 3(t� 2) +
�
t�2
2

� =
n2 + 4n+ 3

4t2 + 4t
.

Thus, lim
t�!1

P3(Ct) =
1
4 . ⇤

Theorem 3.2.3. Let G be a d� regular tree, then

lim
t�!1

Pd(Ct) = 1� d

2
+

(d� 2) · �
�

d
d�2

�

2
d

d�2 · �
�

1
d�2

�
�
�
d�1
d�2

� .

Proof. See the proof in Appendix C.

Corollary 3.2.4. Let G be a d� regular tree, then

lim
d�!1

lim
t�!1

Pd(Ct) = 1� ln2.
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Chapter 4

Trees with End Vertices

In this chapter, we will discuss about the case that G is a tree not of infinte order.

Suppose Gn ✓ G, then there may exists a vertex called end vertex which can only

accept the rumor but cannot spread it, since it has only one neighbor.

4.1 The Influence of End Vertices On The Proba-
bility P (v = source|Gn)

We begin this section with a simple example. Suppose G is a finite order 3 �

regular tree and G5 ✓ G which is shown in figure 4.1. In G5, it’s easy to find the

rumor center is v1. Consider P (G5|v), for the spreading order � : v1 ! v2 ! v5 !

v3 ! v4, we have P (�|v1) = 1
3 ·

1
4 ·

1
3 ·

1
4 . Note that if v5 is not the end vertex then

P (�|v1) = 1
3 ·

1
4 ·

1
5 ·

1
6 . This shows that the time at when the rumor spread to v5 will

has influence on the probability P (�|v1). Now we list out all the spreading ways in

the following and sort it according to the position of v5 in each �i:

�1 : v1 ! v2 ! v5 ! v3 ! v4 �2 : v1 ! v2 ! v5 ! v4 ! v3

�3 : v1 ! v3 ! v2 ! v5 ! v4 �4 : v1 ! v4 ! v2 ! v5 ! v3

�5 : v1 ! v2 ! v3 ! v5 ! v4 �6 : v1 ! v2 ! v4 ! v5 ! v3

�7 : v1 ! v2 ! v3 ! v4 ! v5 �8 : v1 ! v2 ! v4 ! v3 ! v5

�9 : v1 ! v3 ! v2 ! v4 ! v5 �10 : v1 ! v3 ! v4 ! v2 ! v5
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�11 : v1 ! v4 ! v2 ! v3 ! v5 �12 : v1 ! v4 ! v3 ! v2 ! v5.

According to the above, we conclude that P (�1|v) = P (�2|v) = 1
144 , P (�3|v) =

P (�4|v) = P (�5|v) = P (�6|v) = 1
240 , and P (�7|v) = P (�8|v) = P (�9|v) = P (�10|v) =

P (�11|v) = P (�12|v) = 1
360 . So, P (G5|v1) = 34

720 . We also have P (G5|v4) = P (G5|v3) =

7
720 by symmetric, and P (G5|v2) = 40

720 . Note that although v1 is the rumor center

we have P (G5|v1) < P (G5|v2). So we will guess v2 as the source, the example shows

that the earlier the end vertex appears in �i the larger P (�i|v) it will be.

Figure 4.1: In G4, v5 is an end vertex

From this example we conclude that in a finite network, not only the spreading way

has influence on the probability of being a candidate of the source but also the distance

from the end vertex. Suppose there are two adjacency vertices say v1 and v2 in a finite

tree Gn which has an end vertex ve, with R(v1, Gn) > R(v2, Gn) and d(v2, ve) = m.

If v1 lies on the path from v2 to ve, then we have P (Gn|v1) > P (Gn|v2). Let ⌦k
v1

be

the set of all permutation (each permutation represents a spreading way) that started

from v1 and ve is the (k + 1)th element in the permutation, then |⌦k
v1
| � |⌦k

v2
|. Since

for any k 2 N , there are k �m choice before the rumor be spread to ve for v1, but
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there are only k�m� 1 choice for v2, in addition, if v2 wants to spread the rumor to

ve, the rumor must pass through v1, conversely then not. From the observation, we

have the following theorem.

Theorem 4.1.1. Let G be a tree with finite order and Gn ✓ G is a subtree of G

with an end vertex ve 2 Gn, then the vertex v⇤ with maximum probability P (Gn|v) is

located on the path from rumor center to ve.

Figure 4.2: Gn with an end vertex vd+1

Proof. Let G, Gn as defined above. vr is the rumor center in Gn and ve is the

end vertex in Gn. Suppose d(vr, ve) = d. Then, the path P from vr to ve is shown in

figure 4.2, where v1 = vr and vd+1 = ve. Define Di = { v 2 Gn| the path from v to

ve contains vi }. Given i = 1, 2, ..., d, let v 2 Di, then we have R(v,Gn)  R(vi, Gn)

(Suppose not, then v1 is not the rumor center, we get a contradiction.) So, each

vertex in Di has less spreading ways than vi and farther from ve than vi does. By the
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observation above, we conclude that P (Gn|vi) � P (Gn|v). So, the vertex with the

maximum probability to spreading the rumor all over Gn is located on the path from

v1 to ve. ⇤

Note that, if all leaves are end vertices, that is Gn = G, then the probability

P (Gn|v) of each vertex in Gn is 1
n
, since any vertex is able to spread the rumor to all

vertices in G in n step when Gn = G.

4.2 Computing P (Gn|v)

In the previous section, we know that if there are end vertices in Gn then the

rumor center may not be the most possible vertex of being the source. And also for

each spreading way the time when the rumor be spread to the end vertex will a↵ect

the probability of this spreading way. The following is going to find the vertex with

maximum probability P (Gn|v) in Gn, where Gn is a path on a d� regular graph G.

Suppose G is a d� regular tree with finite order and Gn ⇢ G is a finite 2-regular

subtree of Gn with an end point. Without loss of generality, suppose n is odd and

n = 2t+ 1 for some t. Label all vertices on Gn as shown in figure 4.3.

Figure 4.3: Gn with an end vertex v2t+1

We can get

(4.1)

P (G2t+1|vi) =
i�1X

m=0

✓
m+ (2t+ i)

m

◆m+2t+1�iY

l=1

1

zd(l) + d� 1
·

2t�1Y

l=m+2t+1�i

1

zd(l) + d� 2
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for i = 1, 2, ..., 2t.

And P (G2t+1|v2t+1) =
2tY

l=1

1

zd(l)
.

We can find that, to compute all spreading way of vi is equal to find all ways from i

to the lower right corner in the figure 4.4.

In (4.1) m = 0 means i goes right to the end and then goes down to the end,

that is, vi spread the rumor straight to the end vertex and then spread to the rest

of vertices. So m is the parameter related to the time when the rumor meets the

end vertex. And the left
Q

is the probability of this sprading way when the rumor

meet the end vertex and the right one is the probability after the rumor met the end

vertex.

From (4.1) we can use computer to compute P (G2t+1|vi) for all i, the following is the

numerical result for d = 2, 3 and n = 41, where d for d� regular and n = 2 · t+ 1 is

the size of Gn. In these figures, the x� axis is the node vi where i = 1, 2, ..., n, and

the y � axis is the probability P (vi = source|Gn). See more figures in appendix.
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Figure 4.4: d=2,n=41 Figure 4.5: d=3,n=41

Finally we will introduce how to compute the P (Gn|v) for each vertex in Gn where

Gn is general subgraph of G with an end vertex, G is a finite d� regular tree. When

we compute the probability of a spreading way � we should compute the probability

before the rumor meets the end vertex and after the rumor meets the end vertex

separately just as the case above.

Let G be a finite d � regular tree and Gn ✓ G is a subtree of G of order n with

an end vertex ve. Given v 2 Gn and v 6= ve. Let mv(t) be the number of permutation

started from v and ve is located on the (t + 1)th element in the permutation. Then

we have

(4.2) P (Gn|v) =
n�1X

t=d(ve,v)

mv(t)
tY

i=1

1

d+ (i� 1)(d� 2)
·
n�2Y

i=t

1

d+ (i� 1)(d� 2)� 1

The di↵erence between (4.1) and (4.2) is that mv(t) is easy to compute moreover we

can write a formula for it when Gn is a path, but in general tree mv(t) is unknown.

To compute mv(t) is a hard problem, it is equal to list out all permutation started

from v.
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4.3 Conclusion and Future Work

In the infinite case, we can compute all d 2 N , by counting the number of increas-

ing trees in a d � regular tree. In the finite case, we provided a theorem indicate

the “most possible source” lies on the path from rumor center to the end vertex. To

compute mv(t) for all possible t and for all v lies on the path, we have two algorithms.

One is by brute force, that is, to list out all possible spreading ways from v and then

count mv(t) for each t. Another one is a two-step algorithm, see details in appendix

B. The second one is more complicated. Since mv(t) is related to the shape or struc-

ture of Gn, it’s hard to derive a general formula. The future study would be finding

a e�cient method to compute mv(t).
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Appendix A

More Figures on Detection
Probability

The following is the numerical results of Gn which is a 2� regular graph with an

end vertex. d represents for G is d� regular and n is the order of Gn.

Figure A.1: d=10,n=7 Figure A.2: d=10,n=11
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Figure A.3: d=2,n=21 Figure A.4: d=2,n=41

Figure A.5: d=3,n=7 Figure A.6: d=3,n=11

Figure A.7: d=3,n=21 Figure A.8: d=3,n=41
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Figure A.9: d=5,n=7 Figure A.10: d=5,n=11

Figure A.11: d=5,n=21 Figure A.12: d=5,n=41

Figure A.13: d=10,n=7 Figure A.14: d=10,n=11
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Figure A.15: d=10,n=21 Figure A.16: d=10,n=41

We can observe that, when n is getting larger, the probability (y�axis) is getting

smaller. When d � 3, the influence of end vertex vn is getting smaller as n gets larger.
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Appendix B

Two-Steps Method for Computing
mv(t)

Let G be a tree, and Gn is a subtree of order n (n � subtree for short). P is

the path from root v to the end vertex ve, and suppose d(v, ve) = d. Let mv(t) be

the number of permutations started from v and ve is located on the (t+1)th element

in these permutations. In [6], it provided an algorithm to enumerate the number of

n� subtree in a tree. We just need a part of its algorithm, which is to find the family

of subtrees whose root are v.

First, we should contract all vertices lie on the path P except ve, then we get

a new tree G0 and v0 represents those contracted vertices. Now we can apply the

algorithm to find a (t�d)� subtree with root v0. For each (t�d)� subtree in G0, we

can find the number of spreading ways started from v0 by using (2.5). The (t + 1)th

vertex must be ve.

In the second step, after the rumor spread to ve, we contract all these t + 1

vertices. We get a new tree G00 from G0 and a new vertex v00 represents those vertices

contracted. We can use (2.5) again to find out the number of spreading ways. After

combining step one and step two, we can find out mv(t). See more details about the

algorithm for listing all n� subtree in a tree in [6].
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Appendix C

Proof of Theorem 3.2.3

We consider rumor spreading on d-regular graphs. First, we fix some notations.

Let T̃n denote the tree after the rumor has spread to n nodes. We give the vertices

labels from the set {1, 2, . . . , n} according to the first time a vertex learns the rumor.

Thus, the vertex with label 1 is the source and it is the only node with outdegree d

whereas all other nodes have outdegree d � 1 (if T̃n is drawn as a rooted tree in the

usual way).

Next, note that the d subtrees of the source are d�1-ary increasing trees (increas-

ing trees are labeled trees with label sequences from the root to any leaf increasing).

Set

Tn = number of (d� 1)-ary increasing trees, T (z) =
X

n�1

Tn
zn

n!
.

It is easy to derive that

(3.1) T (z) = �1 + (1� (d� 2)z)�1/(d�2).

Next, set

T̃n = number of possible T̃n and T̃ (z) =
X

n�1

2T̃n
zn

n!
.

Then,

(3.2) T̃n =
1

2

nY

i=1

[2 + (d� 2)(i� 1)] and T̃ (z) = �1 + (1� (d� 2)z)�2/(d�2)
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We are interested in Cn, the event that the source of T̃n is the rumor center. We

have,

P (Cn) = 1� dP (size of one subtree of the source of T̃n � n/2).

We fix one subtree of the source of T̃n say tv1 and denote by I its size. Let ji represent

the size of the i� th subtree of T̃n. Obviously,

P (I = j) =
1

T̃n

X

j+j2+j3+...+jd=n�1

✓
n� 1

j, j2, j3, . . . , jd

◆
TjTj2Tj3 . . . Tjd

=
(n� 1)!Tj

j!T̃n

X

j2+j3+...+jd=n�1�j

Tj2

j2!

Tj3

j3!
. . .

Tjd

jd!

=
(n� 1)!Tj

j!T̃n

[zn�1�j](1 + T (z))d�1

=
(n� 1)!Tj

j!T̃n

[zn�1�j](1� (d� 2)z)�
d�1
d�2

=
(n� 1)!Tj

j!T̃n

(d� 2)n�1�j[zn�1�j](1� z)�
d�1
d�2

=
(n� 1)!Tj

j!T̃n

(d� 2)n�1�j (n� 1� j)
1

d�2

�(d�1
d�2)

.(3.3)

In the sequel, we need the following standard lemma from analytic combinatorics.

Theorem C.0.1 (Theorem VI.1 in [2]). For ↵ 2 C \ Z0 set

f(z) := (1� z)�↵.

Then, as n ! 1,

[zn]f(z) ⇠ n↵�1

�(↵)

 
1 +

1X

k=1

ek(↵)

nk

!
,

where ek(↵) is a polynomial of degree 2k.

Asymptotics. We now turn to asymptotics. The following computation is based

on n ! 1.

First, applying Theorem C.0.1 to (3.1) gives

Tn ⇠ n! · n
2�d
d�1

�( 1
d�1)

(d� 1)n (n ! 1).
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Similarly, applying Theorem C.0.1 to (3.2) yields

T̃n ⇠ n! · n
4�d
d�2

2�( 2
d�2)

(d� 2)n (n ! 1).

By theorem 2.2.1, we need to compute

X

n/2jn�1

P (I = j),

where P (I = j) is given by (3.3). Therefore, we again use Theorem C.0.1 and the

expansions for Tn and T̃n from above. This gives

X

n/2jn�1

P (I = j) ⇠ (n� 1)!

T̃n

X

n/2jn�1

Tj

j!�(d�1
d�2)

(d� 2)n�1�j(n� 1� j)
1

d�2

⇠
(n� 1)! · 2�( 2

d�2)

n! · n
4�d
d�2 (d� 2)n

X

n/2jn�1

j!·j
3�d
d�2

�( 1
d�2 )

(d� 2)j

j!�(d�1
d�2)

(d� 2)n�1�j(n� 1� j)
1

d�2

⇠
2� 2

d�2

(d� 2) · n
2

d�2�( 1
d�2)�(

d�1
d�2)

X

n/2jn�1

j
1

d�2�1(n� 1� j)
1

d�2

⇠
2� 2

d�2

(d� 2) · n
2

d�2�( 1
d�2)�(

d�1
d�2)

· n
2

d�2�1
X

n/2jn�1

✓
j

n

◆ 1
d�2�1✓n� 1� j

n

◆ 1
d�2

⇠
2�( 2

d�2)

(d� 2)�( 1
d�2)�(

d�1
d�2)

Z 1

1/2

x
1

d�2�1(1� x)
1

d�2dx (n ! 1).

Lemma 1.
Z 1

1/2

xc�1(1� x)cdx =
1

2

✓
B(c, c+ 1)� 1

c · 22c

◆

Proof.

Z 1

0

xc�1(1� x)cdx =

Z 1/2

0

xc�1(1� x)cdx+

Z 1

1/2

xc�1(1� x)cdx

Now, consider the right part
R 1

1/2 x
c�1(1 � x)cdx, and name it R (the left part is L).

By integration by part we have

R =
1

c
(1� x)cxc

��1
x=1/2 + L
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So

L =

R 1

0 xc�1(1� x)cdx+ 1
c·22c

2
=

B(c, c+ 1) + 1
c·22c

2
,

and

R =
1

2

✓
B(c, c+ 1)� 1

c · 22c

◆
.

⇤

Finally, combining everything yields for the detection probability of the source in

d-regular trees is the following limit

lim
t�!1

Pd(Ct) = 1� d ·
X

n/2jn�1

P (I = j)

= 1� d

2
+

(d� 2) · �
�

d
d�2

�

2
d

d�2 · �
�

1
d�2

�
�
�
d�1
d�2

�
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