國立交通大學

材料科學與工程研究所

碩士論文

含甲基及氟側邊取代之三環反應型液晶單體之 研究及其在液晶顯示之應用

Study of LC Reactive Monomers Containing Methyl- and Fluoro-Substituents and their Applications in LCD Devices

> 研究生:楊育旌 指導教授:林宏洲博士

中華民國九十四年七月

誌謝

本論文承蒙指導教授林宏洲的協助下得以順利完成,在實驗方面 有足夠的經費能夠將理想付諸實行。感謝友達光電副總經理劉軍廷、 友達光電吳銘洪博士,在百忙之中審核論文並給予寶貴的建議及指 正,使本論文能更趨完善。

研究所兩年的時光實在是一閃及逝,很幸運也很快樂地在我們實驗室度過這些日子。感謝實驗室的學長姐:孝先、昇璋、冠緯、益裕、 光潔、芳雅、意惠、凱凱與琦琦及在友達計劃中幫我許多忙的博仁與 中文,這兩年的求學生涯中令我感到許多的歡笑與溫暖。也感謝實驗 室的同學永隆、敬原及學弟小龜,讓我增添了許多快樂的回憶。

另外也要特別感謝暨南大學的前校長李家同、應用化學系教授廖 明淵、賴榮豊承蒙你們看的起,並沒有因為我的成績不好且染了一頭 金髮而放棄我,讓我深深的感受到一位老師的風範。除此之外,還有 埔里的陳綢阿嬤,妳那特別的善行和人生觀,令我佩服不已。

再來就是感謝我諸多的朋友們,室友兼朋友的濤哥、晉豪,謝謝 你們這段期間陪我吃喝玩樂,體諒我這難相處的個性。當然少不了帥 氣的 keven(明瑞)、p 胖、阿狗、威宇、胖子俞蓉、建成、小黃、淑屏、 俊堯、小曹、阿肥、工研院高手馬大哥、洋鉅學長、美女琬琪、大方 的雅茹還有那位亦師亦友的小祥,最後是那胖子 green,真的很謝謝妳。

最後由衷地感謝一直栽培我的父母親,即使工作受傷經濟困難也 不願讓我知情擔憂,默默的付出令我羞愧不已,老哥、老妹,這段期 間真是辛苦你們了,由於你們大家的支持與鼓勵,使我能順利完成現 階段的學位。總之,謝謝大家。

II

含甲基及氟側邊取代之三環反應型液晶單體之研究及

其在液晶顯示之應用

學生:楊育旌

指導教授:林宏洲 博士

國立交通大學材料科學與工程研究所 碩士班

摘要

本實驗主要是以Suzuki coupling Reaction合成出一系列含甲基及 氟側邊(單或雙)取代之三環雙壓克力基反應型液晶單體材料;所有化 合物經由H¹-NMR、C¹³-NMR 和元素分析加以鑑定其結構與純度,再 與市售液晶混合進行紫外光曝照實驗。在熱性質方面,由熱微差掃瞄 分析儀(DSC)與偏光顯微鏡(POM)觀察出,除了單體BBB1Me3Me外皆 顯現了向列型液晶的性質。

而 BBB1F2Me 及 BBB1Me2F 液晶單體則是在室溫下和市售液晶小分子混合均匀,經不同條件下紫外光曝照後成功的形成 TN 型高分子隔牆,並探討其光電特性。

Study of LC Reactive Monomers Containing Methyl- and Fluoro-Substituents and their Applications in LCD Devices

Graduate student : Yu-Jing Yang Advisor : Dr. Hong-Cheu Lin

Department of Materials Science and Engineering National Chiao Tung University

Abstract

A series of novel LC reactive monomers materials with three conjugated aromatic segment including end-reactive acrylate were synthesized successfully via Suzuki coupling reaction. The thermal properties of these materials were measured by DSC and POM, and most of these compounds have the nematic phase, except reactive monomer BBB1Me3Me.

Among these reactive monomers, BBB1F2Me and BBB1Me2F are miscible with commercial liquid crystal materials. After exposure of UV light under different conditions, polymer walls cans be generated in the TN cells, and their electro-optical properties are surveyed.

目	錄
_	

第一章	と 緒論	1
1-1	液晶	
1-1.1	液晶之簡介	2
1-1.2	液晶之分類	3
1-1.3	液晶相形成之要件	10
1-2	高分子/液晶分散簡介	13
1-2.1	高分子分散型液晶	13
1-2.2	高分子穩定型液晶	15
1-3	高分子隔牆簡介	
1-3.1	高分子隔牆形成的方法	18
1-3.2	高分子隔牆的應用	23
1-4	研究動機	35
第二章	£ 實驗部分	43
2-1	實驗藥品	44
2-2	實驗儀器	45
2-3	合成流程	48
2-4	合成步驟	53
2-5	TN 型 Test cell 試片製作實驗	80
2-6	紫外光曝照實驗	80
第三章	£ 結果與討論	81
3-1	合成與機構之探討	82
3-2	熱性質分析	83
3-3	溶解度之探討	88
3-4	光學顯微鏡之觀察探討	89
第四章	と結論	95
參考文	こ獻	99

圖目錄

圖 1-1	常見的液晶結構
直 1-2	向列型液晶相4
圖 1-3	Smectic A 液晶相5
圖 1-4	Smectic C 液晶相5
圖 1-5	Smectic B 液晶相6
圖 1-6	膽固醇液晶相7
圖 1-7	主鏈型液晶與側鏈型液晶高分子之典型結構
圖 1-8	疏水性和親水性液晶相型液晶9
圖 1-9	熱向型液晶之形成方式10
圖 1-10	液晶分子之基本結構11
圖 1-11	PDLC 之示意圖13
圖 1-12	常見的 PSLC 之雙壓克力基單體15
圖 1-13	液晶膠製作示意圖16
圖 1-14	液晶膠用在反射式顯示示意圖17
圖 1-15	紫外光曝照在光罩下形成高分子隔牆示意圖19
圖 1-16	electric field pattern 所形成 polymer walls19
圖 1-17	基板圖案
圖 1-18	Polymer Walls 及 Polymer Island 形成示意圖
圖 1-19	利用 PI pattern 所形成的 Polymer Walls
圖 1-20	液晶形成 Nucleation 示意圖22
圖 1-21	Polymer Walls 及 Polymer Network 應用在 FLC 示意圖24
圖 1-22	PW-FLC 彎曲測試示意圖24
圖 1-23	PW-FLC 經彎曲測試前後 V-T curve
圖 1-24	PW-FLC 經彎曲測試前後25

圖 1-25	PILC 製作示意圖	26
圖 1-26	PILC 之 SEM 圖	26
圖 1-27	有無 PILC 之應力測試圖	27
圖 1-28	一般顯示模組及 OCB back-flow 影響示意圖	28
圖 1-29	OCB 之 bend 和 splayed 結構	28
圖 1-30	OCB 之 Gibbs free energy 和電壓的關係圖	29
圖 1-31	OCB 之 critical voltage 和 pre-tilt angle 關係圖	30
圖 1-32	OCB 之 splayed-bend transitions	30
圖 1-33	OCB 之 splayed-bend transition time 對 pre-tilt angle 關係	圖.31
圖 1-34	溫度及 UV intensity 對 polymer wall 的影響	32
圖 1-35	不具液晶相之單體形成 polymer wall 之共聚焦雷射掃瞄圖]. 33
圖 1-36	具液晶相之單體形成 polymer wall 之共聚焦雷射掃瞄圖	33
圖 1-37	偏光顯微鏡下觀察 PW-OCB 之 splay-bend 轉換	33
圖 1-38	PW-OCB 之 V-T 圖	33
圖 1-39	常見的反應型液晶單體	41
圖 2-1	紫外光照射遺棄之 UV 吸收波長	47
圖 2-2	紫外光曝照實驗示意圖	80
圖 3-1	Suzuki Reaction 反應機制	82
圖 3-2	DSC 之柱狀圖	84
圖 3-3	BBB2Me 之 DSC 圖	85
圖 3-4	BBB1Me2F 在 50℃降温時的向列相	87
圖 3-5	BBB2Me在 60℃降溫時的S _A	.87
圖 3-6	BBB1F2F 和液晶相分離嚴重	89
圖 3-7	BBB1Me2Me 黏度太大	89
圖 3-8	BBB2Me 單體殘留	89

表目錄

表 1.1	常見之硬端 X 結構	.12
表 1.2	常見之Y與Z之結構	.12
表 1.3	各種高分子混合液晶比較	35
表 1.4	雙氟取代之三環 2',3 位置的相轉移溫度	38
表 1.5	雙氟取代之三環 2',3'位置的相轉移溫度	.38
表 1.6	雙氟取代之三環 1',3 位置的相轉移溫度	39
表 1.7	雙氟取代之三環 1',3'位置的相轉移溫度	.40
表 2.1	本實驗所用的化學藥品	44
表 2.2	本實驗所使用的溶劑種類	45
表 3.1	反應型液晶單體相轉移溫度	84
表 3.2	BBB1F2Me 應答速度	.94

附圖目錄

附圖1	BBB2Me之H ¹ -NMR圖101	l
附圖 2	BBB1Me2Me之H ¹ -NMR圖102	2
附圖 3	BBB1Me3Me之H ¹ -NMR圖103	3
附圖 4	BBB1Me2F之H ¹ -NMR圖104	1
附圖 5	BBB1F2Me之H ¹ -NMR圖105	5
附圖 6	BBB1Me3F之H ¹ -NMR圖106	5
附圖 7	BBB1F2F之H ¹ -NMR圖10	7

附圖	8	BBB1F3F之H ¹ -NMR圖108
附圖	9	BBB2Me之 C^{13} -NMR圖109
附圖	10	BBB1Me2Me之C ¹³ -NMR圖110
附圖	11	BBB1Me3Me之C ¹³ -NMR圖111
附圖	12	BBB1Me2F之C ¹³ -NMR圖112
附圖	13	BBB1F2Me之C ¹³ -NMR圖113
附圖	14	BBB1Me3F之C ¹³ -NMR圖114
附圖	15	BBB1F2F之C ¹³ -NMR圖115
附圖	16	BBB1F3F之C ¹³ -NMR圖116
附圖	17	BBB2Me 之 DSC 圖117
附圖	18	BBB1Me3Me 之 DSC 圖118
附圖	19	BBB1Me2F 之 DSC 圖119
附圖	20	BBB1F2Me 之 DSC 圖
附圖	21	BBB1Me3F 之 DSC 圖121
附圖	22	BBB1F2F 之 DSC 圖122
附圖	23	BBB1F3F 之 DSC 圖123
附圖	24	Pure-TN 之 response time 圖124
附圖	25	0V 之 BBB1F2Meresponse time 圖125
附圖	26	2.5V 之 BBB1F2Meresponse time 圖126
附圖	27	5V 之 BBB1F2Meresponse time 圖127