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單一砷化銦量子點之磁光特性及其與光子晶體共振腔之耦合 

研究生 : 傅英哲           指導教授 : 林聖迪  博士 

國 立 交 通 大 學 

電子工程學系  電子研究所  博士班 

摘要 

  此篇論文主要在研究單一量子點的螢光特性。我們報告單一自組式砷化銦/砷

化鎵量子點內中性激子(𝑋)、雙激子(𝑋𝑋)和帶電激子(𝑋+/𝑋−)對磁場的響應。與

中性激子傳統上二次方相關的反磁性位移不同，我們觀察到的負帶電激子其反磁

性位移較小而且與磁場呈現非二次方相關。更特別地的是，我們也觀察到一個負

號的反磁性位移。經過理論的分析，說明了負帶電激子這樣的異常行為是由於其

在複合發光後，剩餘電子失去了未複合前電洞的強庫倫吸引力，而導致波函數在

空間的分布劇烈地改變。對於小尺寸的量子點而言，這樣的效應非常明顯，因為

其侷限電子的能力較弱，電子波函數延伸到周圍較高能障的砷化鎵。當電子逐漸

地失去侷限性，負帶電激子的磁響應也將從對磁場二次相關的反磁性位移，逐漸

變為四次方相關，最後變成一個順磁性的行為，也就是說隨著磁場強度的增加，

負帶電激子的發光能量會變低。另一方面，我們研究單一量子點與光子晶體共振

腔的耦合行為，為了達到高品質因子的 H1 型光子晶體共振腔，我們提出一個設
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計的方法，其在計算上可以達到最高的品質因子大約 120,000。空間中共振模態

電場分布的傅立葉轉換形式說明了品質因子的提升是因為有效地抑制了漏光模

態。在實驗上，也展示了品質因子的提升，量測到的最高品質因子大約為 11,700。

我們的設計在提升品質因子的同時並不會造成模態體積太大的提高，因此可以應

用在量子點與 H1 型共振腔耦合的研究。最後我們成功地展示砷化銦量子點與 H1

型共振腔的強耦合效應。此時，量子點與共振腔混合成兩個新的 polariton 量子態

造成螢光特性的改變。量測溫度大約在 37.75 K 時，有最強的耦合效應。經分析，

其 Rabi 分裂大約是 156.7μeV。 
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Magneto-Optical Properties of Single InAs Quantum Dot and Their 

Coupling to Photonic Crystal Cavity 

Student : Ying-Jhe Fu                 Advisor : Dr. Sheng-Di Lin 

Department of Electronics & Institute of Electronics 

National Chiao Tung University 

Abstract 

  This dissertation mainly researches the photoluminescence characteristics of single 

quantum dot. We report on the magnetic responses of neutral exciton (𝑋), biexcitons 

(𝑋𝑋 ) and positive/negative trions (𝑋+ /𝑋− ) in single self-assembled InAs/GaAs 

quantum dots. Unlike the conventional quadratic diamagnetic shift for neutral excitons, 

the observed 𝑋− diamagnetic shifts are small and nonquadratic. In particular, we also 

observed a reversal in sign of the conventional diamagnetic shift. A theoretical 

analysis indicates that such anomalous behaviors for 𝑋− arise from an apparent 

change in the electron wave function extent after photon emission due to the strong 

Coulomb attraction induced by the hole in its initial state. This effect can be very 

pronounced in small quantum dots, where the electron wave function becomes weakly 

confined and extended much into the barrier region. When the electrons gradually lose 

confinement, the magnetic response of 𝑋−  will transit gradually from the usual 

quadratic diamagnetic shift to a quartic dependence, and finally into a special 

paramagnetic regime with an overall negative energy shift. 

  On the other hand, we purpose to study the coupling effect between single quantum 

dot and photonic crystal cavity, a method for designing H1 photonic crystal cavity is 
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introduced to enhance its quality factor (Q factor). The highest theoretical Q factor of 

120,000 is obtained. The Fourier transformation of field distribution shows that the 

enhancement arises from the component reduction of leaky mode. The Q-factor 

improvement has also been demonstrated experimentally with the highest value of 

11700. Our design could be useful for studying light-matter interaction in H1 cavity as 

the mode volume only increases slightly. Finally, we successfully demonstrated the 

strong coupling effect in the H1 photonic crystal cavity embedded single InAs/GaAs 

quantum dot. Two polariton states arise from the hybridization of the cavity mode and 

quantum dot, which reflect in the alterations of observed emission characteristics, such 

as emission wavelength, full width half maximum and intensity. Via analysis, the 

strongest coupling effect occurs at about 37.75 K, while Rabi splitting is equal to 

156.7 μeV. 
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Chapter 1  Introduction 

1.1 Brief review of the semiconductor QDs 

The semiconductor quantum dots (QDs) are the nanometer-scaled materials with 

size about 10~100 nm, where the carriers are confined in three dimensions, and the 

discrete quantum levels are formed, resulting in many special characteristics different 

from bulk materials. Due to its tunable light wave length and high efficiency of photon 

absorption and emission, QDs have been considered to be suited for many optical 

electric devices, such as semiconductor laser and quantum dot Infrared photodetector 

(QDIP). In addition, for quantum information process, including quantum 

cryptography and quantum computing, is another particularly noteworthy area. By 

recent researches, the realizations of these quantum information technologies are 

believed to necessarily rely on the single photon source and entangled photon pair 

[1-4]. To generate the single photon source and entangled photon pair, single QD is a 

very suitable selection due to its quantized two-level system. Hence understanding and 

manipulating the emission mechanism of single QD are quite important and interesting 

issues. 

1.2  Brief review of photonic crystal 

Photonic crystal (PhC) cavities are usually used to serve as a resonator with the 

specific light wavelength, and have been applied on many areas, including 

low-threshold nanolasers [5-6], optic filters with waveguides [7-8] and cavity quantum 

electrodynamics because of their excellent photon confinement within tiny volume. In 

cavity quantum electrodynamics, single quantum dot (SQD) coupled to photonic 
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crystal cavity has been studied extensively, QD emission rate would be effectively 

controlled or enhanced by Purcell factor [9-13]. Recently, single QD coupled to pillar 

micro-cavity has been used to realize single photon source with identical quantum 

states [14, 15]. With high quality factor (Q factor) cavities and small mode volume, the 

strong coupling effect [16, 17] has also been demonstrated in such systems, in theory , 

that is proposed to be an possible way to eliminate the fine structure splitting (FSS) of 

QDs for generation of entangled photon pairs as predicted in Ref. 18 and 19. Various 

two-dimensional PhC cavities with high Q factor and small mode volume have been 

demonstrated, such as the L3 cavity [20] and double heterostructure cavity [21]. 

However, these cavities have no two degenerately and orthogonally fundamental 

modes, which are necessary for tuning QD FSS via the strong coupling [18, 19]. 

Hence, to meet the requirements of Ref. 18 and 19, other type of high Q factor 

photonic crystal cavity has to be developed. 

1.3  Research motivation 

Based on the numbers of carriers confined in single QD, different excitonic 

complexes are formed due to the Coulomb interactions among the constituent carriers. 

Understanding the individual behaviors of these excitonic complexes would provide 

helpful information for quantum information technologies, thus the Coulomb 

interactions are necessary to be studied. By applying an external magnetic field, the 

distributions of carrier’s wave function are more concentrated in QD, resulting in the 

changes of quantum levels and the raises of the binding energies. Thus the diamagnetic 

shifts induced by the magnetic field can reflect not only the QD’s spatial confinement 

but also the interparticle Coulomb interaction [22]. The observations of diamagnetic 

shifts for three excitonic complexes, including netrual exciton (𝑋), biexcitons (𝑋𝑋) 
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and positive trions 𝑋+, have been analyzed systematically [23], but that of negative 

trion (𝑋−) may be more interesting and still not yet realized completely. For example, 

C. Schulhauser et al. have theoretically predicted that a weakly confined negative trion 

(𝑋−) in large-size QDs would exhibit a negative magnetic dispersion [24], however, 

such an unusual behavior of 𝑋− has not yet been observed in past works focused on 

charged trions in QD system [25, 26]. We study InAs QDs and hope to observe the 

spontaneous emission spectra of the all four excitonic complexes and their magnetic 

response. By comparing the difference among their diamagnetic shifts, we hope to 

realize the interparticle Coulomb interactions how to affect the overall diamagnetism. 

If Coulomb energies dominate over the single particle energies, the diamagnetic shifts 

should be expected to be more complicated because they become a measure of 

magnetic response of Coulomb energies. On the other hand, in the part of studying the 

coupling effective between QD and PhC cavity, we select the H1 PhC cavity though it 

has smaller Q factor than other cavities. However, it intrinsically has two 

orthogonal-fundamental dipole modes and relatively small mode volume. If its Q 

factor is enough high for entering the strong coupling regime, the FSS of QDs may be 

eliminated to generate the polarized entangled photon pair. With FDTD simulation, we 

hope to design a modified H1 photonic crystal cavity to enhance its Q factor while the 

mode volume is nearly unchanged so that the strong coupling with a single InAs QD 

would be realized. 

1.4  Organization of this dissertation 

In this dissertation, we mainly observe the magneto-photoluminescence of single 

InAs QD, the Q factor of the modified H1 cavity, and the strong coupling effect 

between QD and cavity by using the Micro-photoluminescence system. Chapter 1 



4 
 

introduces the applications of QDs and photonic crystal cavity. Chapter 2 presents the 

fundamental theorems of magneto-optical effect, PhC and the light-matter interaction, 

the Coulomb energies among carriers in QDs are also introduced for their magnetic 

responses. Chapter 3 presents experimental techniques, including the preparation of 

sample and measurement setup. The sample was grown by the MBE system, fabricated 

by an E-beam lithography and an ICP/RIE system. A micro-PL system can help us 

study the emission characteristics of the sample. Chapter 4 exhibits the experimental 

results of magneto-PL for excitonic complexes. We observed an anomalous 𝑋− 

diamagnetic shift. A numerical simulation by using the finite element method within 

the Hartree and one band effective mass approximation is proposed to reasonably 

explain the anomalous behavior. Chapter 5 illustrate the structure of a modified H1 

PhC cavity designed to enhancing Q factor, which demonstrates the highest theoretical 

Q factor of 120,000. The experimental results of Q factor are collected by the same 

micro-PL system. It also includes the detailed discussion of the distributions of the 

electric field in the cavity. Finally we report an observation of strong coupling effect 

between single QD and H1 cavity by the temperature-dependent PL measurement. 

Chapter 6 gives the conclusions of this work. 
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Chapter 2  Theoretical studies: the magnetic response of 

single quantum dot, photonic crystal cavity and light-matter 

interaction 

2.1  Electronic configurations of quantum dot 

Because of the confinement in three dimensions, quantum dots have discrete 

energy states. The electronic configuration of QD is always a rather interesting and 

complicated topic. A. Schliwa et al. [27] have had a detailed discussion about InGaAs 

QD’s electronic configuration, in which the effects of QD shape, strain, Valence band 

mixing are all considered. Due to the relative position of conduction band and valence 

band of dot and barrier materials, QD is mainly classified into two groups: Type Ι and 

Type Π heterostructures as described in Fig. 2.1. Because carriers prefer to concentrate 

in the material with lower potential, for Type Ι structure, electrons and holes are both 

confined in low band gap material 2. However, for Type Π structure, electrons and 

holes are confined in material 2 and material 1, respectively. In this dissertation, the 

investigated InAs/GaAs QDs belong to Type Ι structure, thus the overlap of electron 

and hole wave functions is higher than that of Type Π QDs, which leads higher 

emission intensity useful to our measurement. 

Because of the strain effect of QDs, the valence band of heavy hole and light hole 

are split off so that holes mainly fill in the quantum states of heavy hole. When 

electrons and holes occupy quantum states, they can form so-called excitonic 

complexes due to Coulomb interactions. By Pauli exclusion principle, each state of 

conduction (valence) band can only be filled in two electrons (holes). Depend on the 

various numbers of constituent electrons and holes, four excitonic complexes are 
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formed in the ground state: neutral exciton (𝑋), biexciton (𝑋𝑋), negative trion (𝑋−), 

and positive trion (𝑋+) as illustrated in Fig. 2.2. After the recombination of one pair of 

electron and hole, each excitonic complex radiates a photon and degenerate to its final 

state. For these excitonic complexes, the strengths of Coulomb interactions are 

different from each other, which would reflect in the spontaneous emission energy of 

the photon. Considering the direct Coulomb energies as the perturbation terms, the 

emission energies can be approximately written as, 

𝐸𝑋− = 𝐸𝑒 + 𝐸ℎ + 𝐸𝑔 + 𝑉𝑒𝑒 − 2𝑉𝑒ℎ                             (2.1) 

𝐸𝑋 = 𝐸𝑒 + 𝐸ℎ + 𝐸𝑔 − 𝑉𝑒ℎ                                             (2.2) 

𝐸𝑋𝑋 = 𝐸𝑒 + 𝐸ℎ + 𝐸𝑔 + 𝑉𝑒𝑒 + 𝑉ℎℎ − 3𝑉𝑒ℎ                  (2.3) 

𝐸𝑋+ = 𝐸𝑒 + 𝐸ℎ + 𝐸𝑔 + 𝑉ℎℎ − 2𝑉𝑒ℎ                             (2.4) 

where 𝑉𝛼𝛽 is the Coulomb energy between α and β carrier, 𝐸𝑒/𝐸ℎ is the quantum 

energies of electron/ hole, 𝐸𝑔 is the band-gap of QD’s material. 
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Figure 2.1: Band diagrams of TypeΙ and Type Π heterostructure 
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Figure 2.2: The excitonic complexes: neutral exciton (𝑋), biexciton (𝑋𝑋), negative 

trion (𝑋−) and positive trion (𝑋+) in initial state (a) and final state (b) 
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2.2  Fine structure splitting 

In the development of entangled photon pairs by QDs, an unavoidable problem of 

fine structure splitting (FSS) is always expected to be solved because it breaks the 

entanglement of the photons associated with 𝑋 and 𝑋𝑋 emissions. In general, FSS is 

believed to arise from the broken symmetry of QD structure, such as the geometry 

elongation, strain and piezoelectric effect, which cause the long range e-h exchange 

interaction defined as 

δ = ∬𝑑3𝑟1𝑑
3𝑟2𝜓

ℎ(𝑟1)
∗𝜓𝑒(𝑟2)

∗
𝑒2

4𝜋𝜀0𝜀𝑟|𝑟1 − 𝑟2|
𝜓ℎ(𝑟2)𝜓

𝑒(𝑟1)               (2.5) 

, where 𝜓𝑒(𝜓ℎ) denotes the envelope wave function of electron (hole), 𝜀0 and 𝜀𝑟 

are vacuum permittivity and relative permittivity, 𝑒 is electron charge, and 𝑟𝛼 is the 

position vector of α  particle. The general form of the spin Hamiltonian for 

electron-hole exchange interaction is given, 

𝐻𝑒𝑥𝑐ℎ𝑔𝑒 = − ∑ (𝑎𝑖 ∙ 𝐽ℎ,𝑖 ∙ 𝑆𝑒,𝑖 + 𝑏𝑖 ∙ 𝐽ℎ,𝑖
3 ∙ 𝑆𝑒,𝑖)

𝑖=𝑥,𝑦,𝑧

                        (2.6) 

𝐽ℎ  (𝑆𝑒) is the hole (electron) spin Pauli matrices. The relation between FSS (2δ) and 

the distributed symmetry of carriers has been proposed by H.Y. Ramirez et al. in Ref. 

[28]. H.Y. Ramirez used the single band effective mass approximation to calculate the 

e-h exchange interaction based on a three dimensionally parabolic model. Their result 

is expanded as 

δ = 𝐾 ⋅ 𝛽𝑥𝛽𝑦𝛽𝑧 ⋅
𝜉(1 − 𝜉)

(𝑙𝑦
𝑒ℎ)

3 (1 −
3

2

𝑙𝑧
𝑒ℎ

𝑙𝑦
𝑒ℎ

) + ⋯                                      (2.7) 
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, where the factor 𝐾  is determined by material parameters including the 

conduction-valence band interaction energy 𝐸𝑝, the dielectric constant 𝜀 and the bulk 

energy gap 𝐸𝑔
𝑏, 

𝐾 =
3√𝜋𝑒2ℏ2𝐸𝑝

(4𝜋𝜀0)16√2𝜀𝑚0(𝐸𝑔
𝑏)

2                                               (2.8) 

𝛽𝑥𝛽𝑦𝛽𝑧 is defined as the e-h wave function overlap, 

𝛽𝑥𝛽𝑦𝛽𝑧 = [
2(𝑙𝑥

ℎ/𝑙𝑥
𝑒)

1 + (𝑙𝑥
ℎ/𝑙𝑥

𝑒)2
] [

2(𝑙𝑦
ℎ/𝑙𝑦

𝑒)

1 + (𝑙𝑦
ℎ/𝑙𝑦

𝑒)
2] [

2(𝑙𝑧
ℎ/𝑙𝑧

𝑒)

1 + (𝑙𝑧
ℎ/𝑙𝑧

𝑒)2
]                  (2.9) 

𝑙𝛼
ℎ denotes the wave function extent of h carrier in α direction. 𝑙𝛼

𝑒ℎ represents the 

effective wave function extent of exciton and is written as 

𝑙𝛼
𝑒ℎ =

√2𝑙𝛼
𝑒 𝑙𝛼

ℎ

√(𝑙𝛼
𝑒)2 + (𝑙𝛼

ℎ)2
   (𝛼 = 𝑥, 𝑦, 𝑧)                                      (2.10) 

The asymmetry of exction wave function in x and y direction is put a factor of 𝜉. If 

QD is in-plane symmetric, 𝜉 = 1, resulting in the long range exchange δ = 0  

𝜉 = 𝑙𝑦
𝑒ℎ/𝑙𝑥

𝑒ℎ                                                                    (2.11) 

From Eq. 2.7, it is expect that the long range interaction is determined by overlap and 

asymmetry of e-h wave function. 

Fig. 2.3 is a two-level system illustrated for understanding of the 𝑋- 𝑋𝑋 cascade 

decay with and without the e-h exchange interaction. With the e-h exchange 

interaction, the two bright 𝑋 states lose their degeneracy so that the 𝑋 emissions 

associated with the transition from 𝑋  state to ground state become two linear 

polarized lights form two circular polarized lights, as well as the 𝑋𝑋 emissions 

associated with the transition from 𝑋𝑋 state to 𝑋 state. 
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In experiment, some literatures have been reported for successfully tuning FSS by 

applying in-plane magnetic field [29], in-plane electric field [30], and thermal 

annealing [31, 32]. Besides, R. Johne [18] and P. K. Pathak [19] et al. proposed 

another method for overcoming FSS in theory. They suggested that when two 

orthogonally-linearly polarized cavity modes split by the energy 𝛿𝑐 couple to the two 

𝑋 cascades split by the energy 𝛿𝑋, where the two cavity modes are polarized along 

horizontal (H) and vertical (V) directions, as well as the two 𝑋 cascades, via the 

strongly coupling effect, the 𝑋 states and cavity modes can hybridize together and 

form two groups of linear-polarized polariton states by the Eq. 2.12, 

𝐸±
𝐻,𝑉 =

𝐸𝐻,𝑉 + 𝐸𝑐
𝐻,𝑉

2
±

1

2
√(𝐸𝐻,𝑉 − 𝐸𝑐

𝐻,𝑉)
2
+ 4ℏ2Ω𝑅

2                 (2.12) 

where 𝐸𝐻,𝑉  (𝐸𝑐
𝐻,𝑉

) denotes the exciton energies (cavity modes) for H and V 

polarization, Ω𝑅 is the half of Rabi splitting. With appropriately relative positions of 

𝑋𝑋 

𝑋 

Ground 

state 

2δ 

Ground state 

𝑋𝑋 

𝑋 

|𝜎+  |𝜎−  |𝜋+  |𝜋−  

|𝜋+  |𝜋−  |𝜎−  |𝜎+  

Figure 2.3: The 𝑋-𝑋𝑋 cascade decay in QD with (a) and without (b) e-h exchange 

interaction. 

(a) (b) 
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their energy levels and coupling strength, it is possible to let the polariton states with 

different polarized directions to become degenerate, and generate the entangled 

photonic pair as illustrated in Fig. 2.4 (taken from Ref. 18). R. Johne et al. think 

polariton states can effectively prevent diphase because of its lifetime of ten to 

hundred times shorter than that of the bare exciton. Further, by their calculation, the 

degree of entanglement almost can achieve the maximum 1/2. 

In order to satisfy above requirements in polarization, H1 photonic crystal cavity, 

having two linearly-polarized fundamental modes, is one suitable selection for 

entanglement device than other types of photonic crystal cavities. Despite this, its 

relatively low Q factor and uncontrolled intrinsic splitting between two fundamental 

modes still make actual difficulties in manipulating. These difficulties are expected to 

be overcome. 

 

 

 

 

 

 

 

 

Figure 2.4: Two cavity modes strongly couple to non-degenerated 𝑋 states. Two 

groups of degenerate polariton states are formed. 
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2.3  Magnetic response of quantum structures 

The magneto-optical property means that the change in emission characteristics 

of the radiated light from one material by the presence of an external magnetic field, 

especially in emission energy. For quantum structures, the magnetic responses are 

determined by the states of the confined carriers before and after recombination, thus it 

is associated with the carrier’s quantum levels and the Coulomb interaction among 

them. 

2.3.1  Magnetic response of single particle 

When a charged particle is confined within a quantum structure under a uniformly 

external magnetic field 𝐵⃗⃗ alone z direction, the Hamilton is expressed as 

𝐻 =
1

2𝑚∗
[𝑝 − 𝑒𝐴(𝑟)]

2
+ 𝑉0(𝑟)                                    (2.13) 

, where 𝑉0(𝑟) is the confined potential, 𝐴(𝑟) is vector potential associated with 𝐵⃗⃗ 

(𝐵⃗⃗ = ∇ × 𝐴(𝑟)), 𝑚∗ is the effective mass, and e is electron charge. According to the 

symmetric gauge, i.e., 𝐴 = (−
1

2
𝑦𝐵𝑧 ,

1

2
𝑥𝐵𝑧 , 0), the Hamilton is expended as  

𝐻 = 𝐻0 + 𝐻1 + 𝐻2                                                    (2.14) 

𝐻0 =
1

2𝑚∗
𝑝 + 𝑉0(𝑟)                                                  (2.15) 

𝐻1 = −
𝑒

2𝑚∗
𝐿⃗⃗ ∙ 𝐵⃗⃗                                                       (2.16) 

𝐻2 = −
𝑒2𝐵2

8𝑚∗
𝜌̂2                                                         (2.17) 

, where 𝐿⃗⃗ is the operator of orbital angular momentum. 𝜌̂2 is the operator of the 
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vector projection of 𝑟 onto the plane perpendicular to 𝐵⃗⃗. 𝐻0 is the Hamilton as 𝐵⃗⃗ =

0, 𝐻1 is the orbital Zeeman term, and 𝐻2 is the diamagnetic term. In quantum 

mechanics, the total magnetic moment 𝑀 = 𝑀1 + 𝑀2, 

𝑀⃗⃗⃗1 =
𝑒

2𝑚∗
𝐿⃗⃗          ;        𝑀⃗⃗⃗2 = −

𝑒2

2𝑚∗
𝑟 × 𝐴                       (2.18) 

where 𝑀1 is intrinsic magnetic moment, and 𝑀2 is induced magnetic moment. One 

can see 𝐻1 = −𝑀⃗⃗⃗1 ∙ 𝐵⃗⃗, which represents the coupling energy between orbital angular 

momentum and magnetic field. In addition, the induced magnetic potential 𝑈 is 

written as 

 𝑈 = −∫ 𝑀⃗⃗⃗2 ∙ 𝐵⃗⃗
𝐵

0

d𝐵 = −
𝑒2

4𝑚∗
(𝑟 × 𝐴 ) ∙ 𝐵⃗⃗ = −

𝑒2𝐵2

8𝑚∗
𝜌̂2 = 𝐻2            (2.19) 

According to Lenz’s law, the induced magnetic moment opposes the change of 

external magnetic flux. Thus the directions of 𝑀⃗⃗⃗2 and 𝐵⃗⃗ is opposite, resulting in a 

positive 𝑈 . That is why 𝐻2  is called diamagnetic term, the induced magnetic 

potential is called the diamagnetic shift and associated with the extent of wave 

function. 

 For self-assembled InAs/GaAs QDs, they are usually formed the flat geometry 

analogous to 2-D structure. The Fock-Darwin model, which describes a 2-D disk 

structure with a parabolic-confined potential 𝑉0 =
𝑚∗𝜔0

2

2
(𝑥2 + 𝑦2), can briefly explain 

the quantum states of single particle in dot. In the presence of a uniform magnetic field 

 𝐵⃗⃗ = (0, 0, 𝐵𝑧) alone z direction, the quantum energy of a carrier confined in this QD 

can be expressed as follow (see Appendix A) 

𝐸𝑛𝑙 = (2𝑛 + |𝑙| + 1)ℏ (𝜔0
2 +

1

4
𝜔𝑐

2)
1/2

−
1

2
𝑙ℏ𝜔𝑐                   (2.20) 

, where 𝜔𝑐 = 𝑒𝐵𝑧/𝑚
∗  is the cyclotron angular frequency, 𝑛𝑙  are the quantum 
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numbers in two dimensions. By Taylor series, Eq. 2.20 is expanded by the power of B, 

𝐸𝑛𝑙(𝐵𝑧) = (2𝑛 + |𝑙| + 1)ℏ𝜔0 + (
𝑒2√〈𝜌0

2〉𝑛𝑙

2

8𝑚∗
𝐵𝑧

2 −
𝑒4√〈𝜌0

2〉𝑛𝑙

6

128𝑚∗ℏ2
𝐵𝑧

4 + ⋯) −
𝑒ℏ𝑙

2𝑚∗
𝐵𝑧   (2.21) 

√〈𝜌0
2〉𝑛𝑙 is the root mean square radius of particle in the state 𝑛𝑙 at zero magnetic 

field. In Eq. 2.21, the first term is the eigenenergy at zero magnetic field. The second 

term is attributed to the diamagnetic shift, if the magnetic length ℓ𝑀 = √ℏ/𝑒𝐵𝑧 is 

much larger than √〈𝜌0
2〉𝑛𝑙, the quadratic dependence on magnetic field dominates the 

diamagnetic shift, and the higher order terms can be ignored, while the diamagnetic 

shift is inverse to effective mass and proportional to 〈𝜌0
2〉𝑛𝑙. The third term is the 

Zeeman effect related with the orbital angular momentum of quantum state, which 

leads to the splitting of states having opposite angular momentum with increasing 

magnetic field. 

2.3.2  Magnetic response of Coulomb interaction 

The external magnetic field alters not only the quantum levels of each carrier 

confined in quantum structure, but also influences the Coulomb energy among these 

confined carriers to lead the different magnetic response for excitonic complexes. In 

Consequence, the transition energy between levels is altered, this well-known 

magneto-optical effect. Considering the 2-D Fock-Darwin model with an external 

magnetic field B as mentioned in above section and Appendix A, the wave function of 

ground state is expressed as 

𝜓00
𝛼 =

1

√𝜋𝑙𝛼
𝑒𝑥𝑝 [−

𝑟2

2𝑙𝛼
2
]                                    (2.22) 
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, where 𝑙𝛼 = √〈𝜌𝐵
2〉00 = √ℏ/𝑚 (

𝜔𝑐
2

4
+ 𝜔0

2)
−1/4

  is the root mean square radius of 

ground state at magnetic field B. Putting Eq. 2.22 into the Coulomb interaction 

Hamiltonian, the direct Coulomb energy between α and β particle can be given in 

Eq. 2.23, which has been deduced by Ref. [23,33,34] 

𝑉𝛼𝛽(𝐵) =
𝑒2

4𝜋𝜖0𝜖𝑟

∫∫
|𝜓00

𝛼 |2 ⋅ |𝜓00
𝛽

|
2

|𝑟𝛼 − 𝑟𝛽|
𝑑𝑟𝛼𝑑𝑟𝛽 =

𝑒2

4𝜋𝜀0𝜀𝑟

√
𝜋

2

1

𝑙
         (2.23) 

, where 𝑙 = √(𝑙𝛼
2 + 𝑙𝛽

2)/2. Via Taylor series, Eq. 2.23 is approximated to 

𝑉𝛼𝛽(𝐵) = 𝑉𝛼𝛽(0) +
𝑒2

4𝜋𝜖0𝜖𝑟

⋅
𝑒2

16ℏ2
√

𝜋

2
⋅
𝑙𝛼
6 + 𝑙𝛽

6

2𝑙3
⋅ 𝐵2 + ⋯       (2.24) 

Comparing Eq. 2.24 with Eq. 2.21, we see that the quadratic coefficients of single 

particle energy and Coulomb energy are proportional to 𝑙2 and 𝑙3, respectively. Thus 

we can speculation that, for weak confinement, the magnetic response of Coulomb 

energy becomes more important, and total diamagnetic diamagnetism is more 

complicated. For neutral exciton, the diamagnetic shifts have report to exhibit a 

conventional quadratic dependence on magnetic field for InGaAs dot or GaAs well, so 

on [35, 36, 37]. In particular, it has been theoretically predicted that a weakly confined 

negative trion (𝑋−) in large-size QDs would exhibit a negative magnetic dispersion 

[24]. However, such an unusual behavior of 𝑋− has not yet been observed in past 

works focused on charged trions in QD system [25,26]. 
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2.4  Concept of photonic crystal and cavity 

The concept of Photonic Crystal (PhC) was first proposed by Yablonovitch [38] 

and John [39] in 1987. PhC is a micro-structure consisted of materials with periodic 

refractive indices, hence it can form its own photonic band-structure similar to that of 

solid crystal arrayed by periodic atoms. By the different dimensions, photonic crystal 

can be classified as one, two or three dimensional structure as shown in Fig. 2.5. One 

of the many advantages of PC is that, one can change its photonic band-structure for 

controlling the characteristics of propagating light within PC such as wavelength, 

phase and polarization by adjusting the periodic structure artificially. Furthermore, 

Photonic Crystal cavities (PhC cavities), the artificial defects are purposely putted into 

the photonic crystal, have also been applied on many areas, including low-threshold 

nano-lasers [5,6], optic filters with waveguides [7,8] and cavity quantum 

electrodynamics because of their excellent photon confinement within tiny volume. 

For these defects, the original symmetry and periodicity are broken so that the defect 

modes are form in the resonant cavities. Via specific designing, the defect modes are 

possibly changed and controlled. 

 

 

 

 

 
Figure 2.5: The illustrated scheme of one, two and three dimensional PhC. 
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Because 2-D PhC can provide excellent compatibility for fabricated process, it is 

often used for integrating with optic-electric devices. Many types of 2-D cavities have 

been demonstrated such as H1, H2 and L3 cavities in triangular lattice. Fig. 2.6 plots 

their geometry and fundamental modes (taken from Ref. 40). 

 

 

 

 

 

 

 

 

Figure 2.6(a): The H1 cavity and its two fundamental modes: Horizontal and 

Vertical dipole mode. 

Figure 2.6(b): The H2 cavity and its fundamental modes: monopole mode. 

Figure 2.6(c): The L3 cavity and its fundamental modes. 
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2.5  Photonic Crystal fundamental theorem 

The photon behavior in photonic crystal can be described by Maxwell equation. If 

there is no free charge or current in this system, Maxwell equation can be represented 

as follows, 

∇ × 𝐸⃗⃗(𝑟, 𝑡) = −𝜇0

𝜕𝐻⃗⃗⃗(𝑟, 𝑡)

𝜕𝑡
                                                               (2.25) 

∇ × 𝐻⃗⃗⃗(𝑟, 𝑡) = 𝜀0𝜀𝑟(𝑟)
𝜕𝐸⃗⃗(𝑟, 𝑡)

𝜕𝑡
                                                         (2.26) 

∇ ∙ (𝜀0𝜀(𝑟)𝐸⃗⃗(𝑟, 𝑡)) = 0                                                                      (2.27) 

∇ ∙ (𝜇0𝐻⃗⃗⃗(𝑟, 𝑡)) = 0                                                                             (2.28) 

where 𝑟 is the position vector, 𝜀0 and 𝜇0 are vacuum permittivity and permeability, 

and 𝜀𝑟(𝑟) is the relative dielectric constant at position 𝑟. If we consider fields as 

harmonic modes which vary sinusoidally with time, they can be written as, 

𝐸⃗⃗(𝑟, 𝑡) = 𝐸⃗⃗(𝑟)𝑒−𝑖𝜔𝑡                                                                            (2.29) 

𝐻⃗⃗⃗(𝑟, 𝑡) = 𝐻⃗⃗⃗(𝑟)𝑒−𝑖𝜔𝑡                                                                           (2.30) 

Inserting Eq. 2.29 and 2.30 into Eq. 2.25-2.28 and eliminating time factor of 𝑒−𝑖𝜔𝑡, 

we can obtain 

∇ × 𝐸⃗⃗(𝑟) = 𝑖𝜔𝜇0𝐻⃗⃗⃗(𝑟)                                                                      (2.31) 

∇ × 𝐻⃗⃗⃗(𝑟) = −𝑖𝜔𝜀0𝜀𝑟(𝑟)𝐸⃗⃗(𝑟)                                                          (2.32) 

∇ ∙ (𝜀(𝑟)𝐸⃗⃗(𝑟)) = 0                                                                            (2.33) 
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∇ ∙ (𝜇0𝐻⃗⃗⃗(𝑟)) = 0                                                                               (2.34) 

Combining Eq. 2.31 and Eq. 2.32, they can be rewritten into 

∇ × (
1

𝜀𝑟(𝑟)
∇ × 𝐻⃗⃗⃗(𝑟)) =

𝜔2

𝑐2
𝐻⃗⃗⃗(𝑟)                                                 (2.35) 

Eq. 2.35 is a problem of eigenfunction. To solve it, all orthogonal eigenvalues ω and 

its corresponding eigenfunction H(𝑟) can be gotten. H(𝑟) tells us the variation of 

magnetic field with position, i.e., characterize the light wave how to propagating in 

this structure. Hence we can extract the wave vector 𝑘⃗⃗ from H(𝑟), and the band 

structure can be plotted according to obtained ω  and 𝑘⃗⃗ . One of the principal 

characteristics for PhC is the photonic band gap (PBG). Fig. 2.7 shows the TE mode 

band structure of an air-hole triangular lattice on a GaAs membrane calculated using 

FDTD method. The lattice period is 260 nm, and the air-hole radius is 65 nm. 

Obviously a photonic band gap (PBG) forms between two bands (the shadow region), 

in which no eigensolution exists. This is, photon with the frequency in PBG cannot 

propagate with such PhC structure. If one air-hole of above PhC is removed, a 

point-defect named H1 cavity would be formed. And a defect state of a specific 

frequency appears within the range of PBG and ranges over total 𝑘⃗⃗ space as shown in 

Fig. 2.8. It means that photon in the specific frequency is confined in the defect region. 
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Figure 2.7: A calculated TE mode band structure of an air-hole triangular lattice on a 

GaAs membrane with period=260 nm and air-hole radius=65 nm, this calculation 

uses FDTD method. The shadow region is so-called photonic band gap (PBG). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: The calculated TE mode band structure of a point defect PHC cavity 

formed by removing one hole in a perfect air-hole triangular lattice. A defect mode 

appears in the range of P BG. 
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2.6  Light-matter interaction : Jaynes-Cummings model 

    Consider a cavity-emitter coupling system as shown in Fig. 2.9. An emitter 

having two levels, ground state (|𝑔 ) and excited state (|𝑒 ), is placed within a resonant 

cavity. Because resonant mode is a quantum mechanical harmonic oscillator, the 

energy of electromagnetic field can be quantized. When the emitter couples to resonant 

mode (their emission energy are very close), the spontaneous emission rate of the 

emitter becomes rapider through Purcell effect, i.e., the excited state decays to ground 

state by another way of releasing energy to the resonant mode of high density state so 

that the rate is accelerated. If the coupling strength is strong enough to achieve the 

strong coupling regime, the photon energy is exchanged fast between the emitter state 

and cavity mode. A physical model, Jaynes-Cummings model, can describe that the 

emitter how to interact with the resonant mode in the cavity. By Jaynes-Cummings 

model, the Hamiltonian of the full system can be written as Eq. 2.36 

𝐻𝐽𝐶 = ℏ𝜔𝑐𝑎̂
+𝑎̂ + ℏ𝜔𝑎

𝜎̂𝑧

2
+ 𝑔 ⋅ (𝑎̂+𝜎̂− + 𝑎̂𝜎̂+)                                (2.36)  

The three terms represent the free field Hamiltonian, emitter excitation Hamiltonian 

and interaction Hamiltonian, respectively, where 𝑎̂+ and 𝑎̂ are the bosonic creation 

and annihilation operators of the radiation field, and 𝜔𝑐 is the angular frequency of 

the resonant mode. The operator 𝜎̂𝑧 = |𝑒 ⟨𝑒| −|𝑔 ⟨𝑔| is the inversion operator, 𝜎̂+ =

|𝑒 ⟨𝑔| and 𝜎̂− = |𝑔 ⟨𝑒| are the raising and lowering operators of the emitter, and 𝜔𝑎 

is the transition energy between ground and excited states of the emitter. One most 

important factor of the coupling strength, 𝑔, is given by 𝑑 ∙ 𝐸⃗⃗(𝑟), here 𝑑 is the 

transition dipole moment of the emitter, and 𝐸⃗⃗(𝑟) is electric field of the resonant 

mode at the position 𝑟, of which the maximum satisfies |𝐸⃗⃗𝑚𝑎𝑥| = √ℏ𝜔𝑐/2𝑛2𝜀0𝑉 . 

Here 𝑛 is the material refractive index, 𝜀0 is the vacuum permittivity, and 𝑉 is the 
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mode volume. The physical meaning of 𝑔 is the rate of energy exchange between the 

emitter and resonant mode, which is connected to the strength of the transition dipole 

moment, the position of the emitter within the cavity, and mode volume. To solve this 

eigen-problem, the Hamiltonian matrix can be decomposed into a block of 2 × 2 

matrix on the basis of two states |𝑁 and |𝑁 + 1 , 𝑔  as Eq. 2.37, here 𝑁 is photon 

number in cavity, 

𝐻𝐽𝐶 = ℏ(
𝑁𝜔𝑐 +

𝜔𝑎

2
𝑔√𝑁 + 1

𝑔√𝑁 + 1 (𝑁 + 1)𝜔𝑐 −
𝜔𝑎

2

)                               (2.37) 

Diagonalizing this matrix, its eigenvalues, 𝐸+ and 𝐸−, are gotten, 

𝐸± = ℏ𝜔𝑐 (𝑁 +
1

2
) ±

1

2
√𝛿2 + Ω𝑛

2                                       (2.38) 

Where δ = ℏ𝜔𝑎 − ℏ𝜔𝑐 and Ω𝑛 = 2𝑔√𝑁 + 1 are defined as the energy detuning and 

the Rabi splitting with 𝑁 photon in cavity, respectively. Further, considering the line 

widths of resonant mode and the emitter, 𝛾𝑐 and 𝛾𝑎, which are proportional to the 

emitter’s spontaneous emission rate and the cavity’s energy loss rate. Eq. 2.38 

becomes, 

𝐸±(𝛿) = ℏ𝜔𝑐 (𝑁 +
1

2
) − 𝑖

𝛾𝑐 + 𝛾𝑎

2
±

1

2
√Ω𝑛

2 −
(𝛾𝑐 − 𝛾𝑎 − 2𝑖𝛿)2

4
            (2.39) 

When the detuning δ is zero, the difference between the two eigenvalues, ∆𝐸, would 

be the smallest splitting between two emission line observed in experiment. 

∆𝐸(0) = √Ω𝑛
2 −

(𝛾𝑐 − 𝛾𝑎)
2

4
                                             (2.40) 

To enter the strong coupling regime, the small mode volume and high Q factor are 
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necessary so that the energy exchange rate between the emitter and cavity mode is 

rapid enough to overcome the emitter’s spontaneous emission rate and the cavity’s 

energy loss rate. In this case, the emitter and cavity mode are hybridized into the 

polariton states. 

 

 

 

 

 

 

 

 

 

 

 

 

ℏ𝜔𝑎 

|𝑒  

|𝑔  

Figure 2.9: A sketch of a two-level emitter coupling to a city resonator. 
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Chapter 3 Fabrication and Experiment/Simulation techniques 

3.1  The growth of InAs/GaAs quantum dot 

The investigated samples of InAs self-assembled quantum dot (2.0 MLs) were 

grown on a GaAs (100) substrate by a Varian Gen II molecular beam epitaxy system. 

First we grew a GaAs buffer layer about 100 nm for smoothing the sample surface and 

resisting the defects from substrate, sequentially grew a 100 nm undoped GaAs layer, 

and then used the Stranski-Krastanow mode to form InAs QD at 480 °C, where InAs 

source was deposited on GaAs layer to form a 2-D heterostructure called wetting layer, 

because of the lattice mismatch between InAs and GaAs, the strain gradually 

accumulated with increasing the thick of wetting layer until it could not be sustained 

and released to form 3-D dotted structure. In the process of growth, the sample was not 

rotated, yielding a gradient in dot density on the wafer due to different distances form 

In source (In effusion cell). Finally, the InAs QDs were capped by a 100 nm undoped 

GaAs layer as the barrier material, the structure of this sample (Lm4596) is illustrated 

in Fig. 3.1(a). From the AFM images of Lm4596, which has reported in Ref. 41, 

shown in Fig. 3.2. We can see that the QD density distributes over the range from 108 

to 1011 cm-2, corresponding to different positions of the sample. Meanwhile, Ref. 41 

also reported the PL spectra of the regions with different QD density in Lm4596 as 

shown in Fig. 3.3, which indicates the signals of QD and wetting layer. On the other 

hand, for manufacturing PhC cavities, an adding 1.2 µm thick Al0.9Ga0.1As was grown 

onto the buffer layer of the sample Lm5217 before growing QDs to be a sacrificial 

layer, its structure is illustrated in Fig. 3.1 (b). 
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(a) 

Figure 3.1: The structures of the samples embedded in InAs/GaAs QDs. (a) 

Lm4596 for single QD study (b) Lm5217 for PhC cavity study. 

 
GaAs 65 nm 

Al0.9Ga0.1As 1200 nm 

GaAs buffer 100 nm 

GaAs substrate 

GaAs 65 nm 

GaAs 100 nm 

GaAs substrate 

GaAs buffer 100 nm 

GaAs 100 nm 

(b) 

Figure 3.2: The AFM images of the sample Lm4596. 
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Figure 3.3: The PL spectra of the regions with different QD density in the sample 

Lm4596. 
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3.2  Fabrication of Aluminum apertures on QD sample 

In order to indeed observe the individual QD, we took a specific process on the 

InAs QDs sample (LM4596). The hollow apertures immersed in an Al layer were 

manufactured on the sample surface, we expected only one QD under each aperture. If 

so, there is only one QD to be excited in 𝜇-PL measurement because laser cannot 

penetrate these areas covered with Al. Fig. 3.4 shows the diagram of process flow, and 

the fabricated steps are as follows, 

(1) Deposition of the Al layer: 

First we used an electron-gun evaporator to deposit an Al film about 100 nm upon 

the sample after growing. 

(2) PMMA resist coating: 

A resist layer of poly methyl methacrylate A5 (PMMA A5) was coated about 300 

nm upon the Al film. The spin condition are distinguished into two steps, spin 

time and speed are that 10s / 1000RPM for the first step, and 25s / 6000RPM for 

the second step. 

(3) E-beam writing: 

We used an E-beam Lithography System (ELS-7500EX) to define the patterns of 

apertures on the PMMA resist. The E-beam Lithography System was operated on 

accelerated voltage of 50 kV and emission current of 50 pA. 

(4) Development: 

After Lithography, the sample was immersed in a MIBK solution of 25 °C for 70s 

to develop the resist, and then dried by a hot plate at 180 °C for 90s. 

(5) DHF wet etching: 

Putting the sample inside DHF solution to etch the part of Al film which was not 
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covered by PMMA and cleaning the sample by DI water. Then, the aperture 

patterns were transferred to Al layer so that the hollow apertures were formed. 

(6) Removing the PMMA resist: 

Finally, we clean the sample in ACE solution for removing the remnant PMMA. 
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GaAs 100 nm 

GaAs 100 nm 

 

 

GaAs buffer 100 nm 

GaAs substrate 

GaAs 100 nm 

GaAs 100 nm 

GaAs substrate 
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Al 100 nm 

PMMA 

GaAs 100 nm 

GaAs 100 nm 

GaAs substrate 

GaAs buffer 100 nm 

Al 100 nm 

GaAs 100 nm 

GaAs 100 nm 

Al 100 nm 

 

GaAs buffer 100 nm 

GaAs substrate 

GaAs 100 nm 

 

GaAs 100 nm 

GaAs substrate 

GaAs buffer 100 nm 

E beam 

GaAs 100 nm 

GaAs 100 nm 

GaAs substrate 

GaAs buffer 100 nm 

Al 100 nm 

PMMA 

(1) (2) 

(3) (4) 

(6) 

Figure 3.4: The process flow of A1 aperture on the sample Lm4596 



29 
 

3.3  Fabrication of photonic crystal cavity 

In this section, we interpret the fabrication of 2-D PhC cavities based on the 

InAs/GaAs self-assembled QDs sample. The sample (LM5217) was also grown by a 

Varian Gen II molecular beam epitaxy system with solid sources as mentioned in 

section 3.1, its epitaxy structure mainly consists of a 1.2 µm thick Al0.9Ga0.1As 

sacrificial layer and an active InAs QDs layer centered at 130 nm GaAs layer (see Fig. 

3.1 (b)). To fabricate the PhC cavity, we took the followed process steps as illustrated 

in Fig. 3.5. 

(1) Hard mask deposition : 

First we deposited a SiNx layer about 200 nm as hard mask upon the sample by 

using a plasma-enhanced chemical vapor deposition (PECVD) system. 

(2) PMMA resist coating : 

A PMMA (A5) of about 300 nm was coated on the SiNx layer, and the spin 

parameters are the same as that mentioned in section 3.2. 

(3) Defining the patterns of PhC cavities (Ebeam writing and development) : 

The photonic crystal cavities were patterned on PMMA resist using the E-beam 

Lithography System which were also operated on accelerated voltage of 50 kV 

and emission current of 50 pA. Sequentially, the sample was also developed in 

MIBK solution. 

(4) Patterns transference from PMMA to SiNx layer : 

An inductively coupled plasma/reactive ion etching (ICP/RIE) system was used to 

etch the SiNx, resulting in transferring the PhC patterns from PMMA to SiNx layer 

by using gases O2/CHF3. 

(5) Patterns transference from SiNx layer to GaAs layer: 
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By this ICP/RIE system, the patterns were again transferred from SiNx layer to 

GaAs cavity layer by using gases of Ar/SiCl4 to etch the GaAs. 

(6) Removing the sacrificial layer : 

Finally, the suspending membrane was released by etching the sacrificial layer 

with DHF solution. Here we added tiny surfactant antifoaming agent in DHF 

solution because such addition could assist to take away the remnant product in 

etch process [42,43]. The used surfactant antifoaming agent in this process was 

Benzalkonium chloride (BKC). By adding BKC, the etch rate became slow 

obviously, and the etch uniform was dramatically improved. The DHF solution 

consisted of HF, BKC and H2O by the ratio of HF ∶  BKC ∶  H2O = 1 ∶ 1 ∶ 100. 

(1) SiNx deposition 

SiNx 

 
GaAs 130 nm 

Al0.9Ga0.1As 1200 nm 

GaAs buffer 100 nm 

GaAs substrate 

 

 

Al0.9Ga0.1As 1200 nm 

GaAs buffer 100 nm 

GaAs substrate 

    

     

 
GaAs 130 nm 

Al0.9Ga0.1As 1200 nm 

GaAs buffer 100 nm 

GaAs substrate 

 

GaAs buffer 100 nm 

  

GaAs substrate 

  

PMMA 

SiNx 

 
GaAs 130 nm 

Al0.9Ga0.1As 1200 nm 

GaAs buffer 100 nm 

GaAs substrate 

 

 

    

 
GaAs 130 nm 

Al0.9Ga0.1As 1200 nm 

GaAs buffer 100 nm 

GaAs substrate 

(2) PMMA coating (3) Define patterns by E-beam 

(4) SiNx etching (5) GaAs etching (6) Removing the sacrificial layer 

Figure 3.5: The process flow of PhC cavity on the sample Lm5217. 
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3.4  Conventional photoluminescence setup 

The photoluminescence (PL) system is an effective and convenient tool to 

investigate the intrinsic physical properties of materials. The basic concept is that the 

laser light is used to optical-excited the sample to its excited state, and then the sample 

decay from the excited state to the ground state with generating a photon. For quantum 

structures, such as quantum dot and quantum well, the emission can reveal many 

fundamental properties, such as band gap and electronic structure. 

The sketch of the conventional PL setup is depicted in Fig. 3.6. The sample is 

mounted on a helium close-cycle cryostat for cooling to low temperature about 15 K. 

An Argon laser with wave length of 488 nm passes a chopper with specific frequency 

and excites the investigated sample. The radiative photoluminescence is focused as 

parallel light by a lens, and then focused into the silt of monochromator by passing 

through another lens. Sequentially, the photoluminescence is dispersed through a 

grating of 0.55 m long, and detected by an InGaAs detector, of which the detection 

wave length can be ranging from 830 nm to 1650 nm. Due to the modulated laser 

beam by the chopper, the detected PL signals also have been modulated by the same 

frequency. A Lock-in Amplifier is used to enlarge the PL signals with the chopper’s 

frequency to filter out the environmental noise. 
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3.5  Micro-photoluminescence setup 

In this dissertation, we mainly used a specially designed micro-photoluminescence 

setup (µ-PL) to observe the device with micro-scaled area, including the individual QD 

and PhC cavities because of its small laser spot size about 4µm2. The framework of the 

µ-PL setup is shown in Fig. 3.7 (a). A He-Ne laser, of which the wavelength is 632 nm 

shorter than that of the wetting layer (about 870 nm in our sample), was used as the 

optical-pumped source. The laser beam passed through an attenuator to tune the 

excited power, and then was split into two beams by the beam splitter. Transmitted 

beam entered the power meter to detect the excited power, and reflected beam was 

focused onto the sample through a 100 X microscope objective (NA=0.5) which could 

concentrate the spot size to about 4µm2. The photoluminescence (PL) radiated from 

Ar laser Cryostat 

Chopper 

Lock-in Amplifier 

iHR 550 

InGaAs detector 

Computer 

Figure 3.6: The framework of the conventional PL setup. 
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the excited sample was collected by the identical objective, and then passed through a 

series of optic components including λ/2 orλ/4 wave plate and linear polarizer, 

finally arrived at the monochromator. After entering the monochromator, the PL 

signals were dispersed through a grating of 0.75 m long and 1200 g/mm and then 

detected by a Si liquid-nitrogen-cooled charged coupled device camera (Si CCD), 

which connected to the exit of the monochromator. The CCD yield a resolution limited 

spectral linewidth of about 60 µeV and a detected range of spectral wave length of 

from 400 to 1100 nm. 

When beginning the measurement, the samples were mounted on a cryostat, which 

could be cooled down to 4 K by liquid helium and maintained in such low temperature 

environment. Moreover, to avoid the solidification of steam, we pumped the internal 

pressure of the cryostat chamber to 2 X 10-5 Torr before cooling down. On the other 

hand, for the magneto-µPL measurement, the cryostat chamber was inserted in the 

bore of superconducting magnet which can supply an external magnetic field (0T—6T) 

normal to the cryostat. The magneto- 𝜇 PL measurement are operated by the 

magneto-𝜇PL system provided by Prof. Wen-Hao Chang lab in Department of 

Electrophysics, National Chiao Tung University.    

In addition, the cryostat chamber was fixed on a three axes motor stage for 

accurately controlling the position of the sample. A white light beam arising from a 

mercury lamp was led into the microscope objective after passing through a beam 

splitter, and then illuminated on the sample. The light reflected from the sample was 

collected to a CCD and imaged on the computer. In the image, we could see if the laser 

beam was focused onto the positions that we wanted to observe. By tuning the three 

axes motor, we could control the position of the sample so that the laser beam was 

accurately focused onto the hollow Al apertures or PhC cavities as shown in Fig. 3.7 

(b). 
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Figure 3.7: (a) The framework of the µ-PL setup. (b) The laser beam is focused onto 

the Al aperture. 
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3.6  Finite-element method (fem) : Comsol Multiphysics 

Finite element method (FEM) is a numerical method for solving the partial 

differential equations. Via the discretization of the space, the problem can be 

simplified to a matrix equation with finite unknown numbers. Comsol Multiphysics is 

a commercial software based on finite element method, in this dissertation, we use it to 

calculate the quantum levels of QDs and the electric potentials induced by carriers by 

solving one-band Schrodinger equation and Possion equation. The calculations for the 

emission energies of excitonic complexes will be interpreted in section 4.3. 

3.7  Finite-difference time domain (FDTD) method : Rsoft  

In addition, we also use another commercial simulation software (Rsoft, Fullwave 

mode), which is based on finite-difference time domain (FDTD) method, to simulate 

the PhC structures. FDTD is a time domain method to solve partial differential 

equations, for which the time-dependent Maxwell’s equations (Eq. 2.25 and 2.26) are 

discretized using central difference approximation in spatial and time domain. When 

operating Rsoft, we depict the structure of PhC and input the material parameters. 

Then, a Gaussian pulse is placed in the middle of the cavity as an excited light source 

as shown in Fig. 3.8. With the PML boundary condition, we get the solutions of 

electric field profile, Q factor and mode volume by using its built-in tool Q-finder, a 

fast harmonic analysis. 

 

 

 
Figure 3.8: The top/side view of the calculated H1 cavity structure (left/right). The 

orange arrow is the excited Gaussian pulse. 
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Chapter 4  Magnetic response of single InAs QD 

In this Chapter, we report the measured magnetic response of single InAs QD, 

when the external magnetic field was applied along the grown direction of sample 

(Faraday geometry). The sample is studied via the µ-PL measurements. The typical 

characteristics of Zeeman and diamagnetic effect are observed and discussed. 

Moreover, we propose a numerical simulation to explain the diamagnetic behaviors. 

4.1  Micro- photoluminescence results 

  After the fabrication of the sample, we carried out the µ-PL measurements for the 

apertures on the sample LM4596 maintained at the low temperature 8 K in 

non-magnetic field environment. Fig. 4.1 shows the spectra excited from seven 

different apertures at the areas with appropriate QDs density. Clearly, each one of these 

spectra has only four peaks in measured range. We conjecture that each group of four 

peaks all belongs to the same QD, and arise from the emissions of four excitonic 

complexes, negative trion (𝑋−), neutral exciton (𝑋), biexciton (𝑋𝑋), and positive trion 

(𝑋+) from low to high energy, respectively. To confirm such scenario, we execute the 

power-dependent and polarization-resolved PL measurement, which can tell us the 

identity of each peak and will be discussed latter. In Fig. 4.1, we shifted all spectra to 

fix the 𝑋 emission energies at 0, the actual 𝑋 emission energies were noted in the 

right of the figure, which distributes over the range from 1340 to 1382 meV. Take note 

of the binding energies of 𝑋−, 𝑋𝑋, and 𝑋+, which are defined as 

𝐸𝑋−
𝑏 = 𝐸𝑋 − 𝐸𝑋− = 𝑉𝑒ℎ − 𝑉𝑒𝑒                                               (4.1) 

𝐸𝑋𝑋
𝑏 = 𝐸𝑋 − 𝐸𝑋𝑋 = 2𝑉𝑒ℎ − 𝑉𝑒𝑒 − 𝑉ℎℎ                                (4.2) 
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Figure 4.1: The measured micro-PL spectra of seven different apertures 

in Lm4596. 

𝐸𝑋+
𝑏 = 𝐸𝑋 − 𝐸𝑋+ = 𝑉𝑒ℎ − 𝑉ℎℎ                                            (4.3) 

One can clearly see that 𝐸𝑋−
𝑏  are about 6 meV identical for all QDs, however, 𝐸𝑋𝑋

𝑏  

and 𝐸𝑋+
𝑏  are both negative and have the same variation trend with different QDs. 

According to the report of Ref. [23], due to the signs of binding energies, we can know 

the nonequivalent Coulomb energies, 𝑉ℎℎ > 𝑉𝑒ℎ > 𝑉𝑒𝑒 . It suggests that the wave 

function of hole is more concentrated inside QDs, thus the change of hole wave 

function induced by the variation of QD’s size is larger than that of electron, which 

causes more obvious change in 𝑉ℎℎ  for different QDs and then reflects in the 

variation of 𝐸𝑋𝑋
𝑏  and 𝐸𝑋+

𝑏 . 
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4.1.1  Power-dependent measurement 

In this part, we observed the change of signal intensities when varying the laser 

excitation power. The amount of excited carriers dominates the occupied states. For 

low excitation power, the few carriers have no enough possibility to fill the  𝑋𝑋 state 

before the recombination of electron-hole pair in 𝑋 state, hence the 𝑋 signal is 

stronger than the 𝑋𝑋 signal. With increasing the excitation power, the excited carriers 

become more and can fill the 𝑋𝑋 state that results in the rapid raise of the 𝑋𝑋 signal. 

Fig. 4.2 (a) and 4.3 (a) are the spectra excited by the power from 43 nW to 10 µW for 

QD3 and QD5, as expected, the 𝑋𝑋 signal rapidly raise with increasing the excitation 

power, finally far more than the 𝑋 signal. According to reference [23], the relation of 

intensity 𝐼 and the excitation power 𝑃 can be written as, 

Log(𝐼) = 𝑚Log(𝑃) + Log(𝑐)                                               (4.4) 

𝑚 is the number of e-h pair, and c is a constant. We plot the PL signal intensity for 

each excitonic complex as a function of the excitation power in logarithmic scale, as 

shown in Fig. 4.2 (b) and 4.3 (b). It exhibits that the slopes for 𝑋 and 𝑋𝑋 are 

respectively about 1 and 2 consistent with their number of e-h pair confined in QDs. 

Thus we can distinguish 𝑋 signal from 𝑋𝑋 signal. Besides, the slopes for 𝑋− and 

𝑋+ are close to 1. 
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Figure 4.3: (a) The PL spectra of QD5 excited by the power from 43nW to 10μW. 

(b) The dependence between PL intensity and the excitation power. 
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Figure 4.2: (a) The PL spectra of QD3 excited by the power from 43nW to 10μW. 

(b) The dependence between PL intensity and the excitation power. 
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4.1.2  Polarization resolution measurement 

The polarizations of the four signals of each QD have been resolved by a λ/2 

wave plate and a polarizer before entering the monochromator. By rotating the angle of 

λ/2 wave-plate, we could selectively allow the photon with specific linearly-polarized 

direction to pass through the polarizer. The completely angle measurement exhibits 

that 𝑋 and 𝑋𝑋 are split by a fine structure splitting. However, the signal of 𝑋− (𝑋+) 

is not split because the two electrons (holes) in 𝑋− (𝑋+) form the singlet state, i.e., 

total spin of electrons (holes) is zero to eliminate the spin Hamiltonian of the e-h 

exchange interaction. Thus we can distinguish neutral exciton from charged exciton. 

For QD3, the FSS is about 37 µeV shown in Fig. 4.4. In addition, Fig. 4.5 exhibits the 

relation of the peak intensities versus polarized angle for 𝑋 and 𝑋𝑋, their strong 

dependence on angle indicates the characteristic of linear polarization. 
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Figure 4.4: The polarized PL spectrum of 𝑋, 𝑋𝑋, 𝑋− and 𝑋+ in QD3 for 
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Figure 4.5: The figure of peak intensity versus polarized angle for 𝑋 (left) and 𝑋𝑋 

(right). The blue and red curves represent the split peaks due to FSS. 
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4.2  Magneto-photoluminescence results 

Sequentially, the cryostat was inserted into the bore of superconducting magnet, 

which provided the sample for an external magnetic field along the grown direction 

(Faraday geometry). We executed the magneto-µ-PL measurement on the total of 

seven QDs mentioned in last section. Representative spectra selected from particular 

dot (QD1) are shown in Fig. 4.6. With increasing the magnetic field, each peak splits 

into the Zeeman double corresponding to two spin states, the emission energy shift are 

related to two mechanisms. The first one is the Zeeman spin splitting that arises from 

the interaction between magnetic field and spin angular momentums of carriers and 

increases linearly with magnetic field. Another one is the well-known diamagnetic 

shift that usually increases quadratically with magnetic field for neutral exciton in QD.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6: (a) The magneto-PL spectra for QD1 under a magnetic field B=0–6 T. (b) 

The corresponding peak energies of different excitonic complexes as a function of B 

for QD2, where σ + and σ − in each form a Zeeman doublet. The dashed line is the 

average energy of σ + and σ −. 



43 
 

Fig. 4.6 (b) plots the energies of two split peaks as a function of B for all 

excitonic complexes of QD1, which are denoted by the symbols 𝜎+ and 𝜎−. The 

Zeeman spin splitting and diamagnetic shift can be extracted by the energy difference 

𝜎− − 𝜎+ and the average value of 𝜎+ and 𝜎−, as the following two relations, 

Zeeman spin splitting = σ+ − σ−                                   (4.5)  

Diamagnetic shift =  
σ+ + σ−

2
                                          (4.6) 

In Fig. 4.7 (a), the measured Zeeman spin splitting for four excitonic emission 

lines of four investigated QDs ( QD2, QD3, QD4 and QD5) are plotted as a functions 

of 𝐵. Generally, the Zeeman spin splitting is expressed as Eq. 4.7, 

Zeeman splitting = 𝑔𝜇𝐵𝐵                                                 (4.7) 

where 𝜇𝐵 is the Bohr magneton equal to 5.7883818066 × 10−5 eV/T. The factor of 

𝑔  indicates the magnitude of the splitting and is determined by the material 

parameters of band gap, spin-orbit splitting, and so on. It can be expressed as, 

𝑔 = 𝑔0 −
4

3

𝑚0𝑃
2

ℏ2

∆𝑠𝑜

𝐸𝑔(𝐸𝑔 + ∆𝑠𝑜)
                                            (4.8) 

where 𝑚0 and 𝑔0 ≈ 2 are the free electron mass and the Lande factor, 𝐸𝑔 is the 

band gap, ∆𝑠𝑜 is the spin-orbit splitting of valence band, and 𝑃 = 𝑖(ℏ/𝑚0)⟨𝑆|𝑃𝑧|𝑍  

is the Kane momentum matrix element formed between the s-antibonding conduction 

(𝑆) and p-bonding valence-band states (𝑍) [44]. Besides the material parameters, the 

quantum confinement of the quantum structure also acts another crucial factor for its 

𝑔 factor. For example, the shapes and sizes of QDs are reported to connect to the 

values of the 𝑔 factor significantly in Ref. 45, 46, 47 
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We fitted the data in Fig. 4.7 (a) by the Eq. 4.7 to get their 𝑔 factors. Clearly, the 

deduced 𝑔 factors for all four excitonic emission lines (𝑋−, 𝑋, 𝑋𝑋, and 𝑋+) of the 

same QD are almost identical, which gives a proof that the four excitonic emission 

lines are indeed belong to the same QD. On the other hand, the deduced 𝑔 factors for 

the four investigated QDs distribute over a range from 3.05 to 3.27, the slight 

difference in 𝑔 factors maybe attributes to the variation of QD’s shape and size. 

In addition, we also plot the measured diamagnetic shifts for four excitonic 

emission lines of the four investigated QDs as a function of 𝐵2 in Fig. 4.7 (b). 

Obviously, for 𝑋, 𝑋𝑋, and 𝑋+ in the four QDs, the measured diamagnetic shifts all 

display a quadratic dependence ∆E = γ𝐵2, from which we can get the diamagnetic 

coefficient denoted γ. Actually, the quadratic dependence is still hold for other 

investigated QDs not shown in Fig. 4.7. In very strong contrast, the diamagnetic shift 

for the 𝑋− does not always obey the quadratic dependence, and has quite large 

variations among individual QDs. For QD2 and QD5, the 𝑋− diamagnetic shifts still 

maintain the quadratic dependence, but for QD3, that is more close to a quartic 

dependence. Interestingly, QD4 exhibits an unexpected-negative diamagnetic shift for 

𝑋−, i.e., a special paramagnetic behavior. However we still use a quadratic dependence 

to fit the anomalous 𝑋−  diamagnetic shift to get 𝛾𝑋− , the deduced diamagnetic 

coefficients for four excitonic complexes of all investigated QDs are plotted as a 

function of 𝑋 emission energy as shown in Fig. 4.8. A clear trend of 𝛾𝑋 > 𝛾𝑋𝑋 ≅ 𝛾𝑋+ 

is observed for all QDs, and the diamagnetic coefficients 𝛾𝑋, 𝛾𝑋𝑋 and 𝛾𝑋+ become 

larger with the raise of 𝑋 emission energy. On the other hand, the diamagnetic 

coefficient 𝛾𝑋− was found to be the smallest one among the four excitonic species, 

and it seems not to have obvious dependence on 𝑋 emission energy. The difference of 

diamagnetic coefficients among the four excitonic complexes can be attributed to 

interparticle Coulomb interactions. For this trend of 𝛾𝑋 > 𝛾𝑋𝑋 ≅ 𝛾𝑋+, M. F. Tsai et al. 
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have discuss its cause in Ref. 23. In their theory model, a 2D-disk with a 

parabolic-confined potential is considered, and the interparticle Coulomb energies are 

regarded as perturbation terms. They suggested that because of the wider lateral extent 

of electron than that of hole in small InAs QDs, the increasing rates of 𝑉𝑒𝑒 and 𝑉𝑒ℎ 

with magnetic field are more rapid than that of 𝑉ℎℎ , i.e., ∆𝑉𝑒𝑒(𝐵) ≅ ∆𝑉𝑒ℎ(𝐵) >

∆𝑉ℎℎ(𝐵), thus resulting in the trend 𝛾𝑋 > 𝛾𝑋𝑋 ≅ 𝛾𝑋+. However, the anomalous 𝑋− 

diamagnetic shifts are not yet explained in Ref. 23. We think that the supposition of 

regarding the interparticle Coulomb energies as perturbation terms is no more suitable 

for 𝑋−  diamagnetic shifts, i.e., the carrier’s wavefunctions would be obviously 

changed by Coulomb interactions. Therefore, we would develop another numerical 

simulation to help us explain these diamagnetic shifts of all excitonic complexes, 

including the anomalous 𝑋− behavior in latter section. 
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Figure 4.7: The Zeeman splitting versus 𝐵 (a) and the diamagnetic shifts versus 

𝐵2 (b) for 𝑋−, 𝑋, 𝑋𝑋, and 𝑋+ of four QDs (QD2, QD3, QD4, QD5). Points are 

the measured data, and the lines are guide for the eye. 
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4.3  The simulation method for emission energies of excitonic 

complexes 

To discuss the interparticle Coulomb interaction how to affect the diamagnetic 

behavior, we perform the numerical simulation for the quantum states of constituent 

carriers of excitonic complexes implemented by using the finite element method 

within the Hartree and one band effective mass approximation. In the Hartree and one 

band effective mass approximation (see Appendix B), the Schrodinger equation of a 

carrier in an interacting excitonic complex is written as,  

[−∇ ⋅ (
ℏ2

8𝜋𝑚𝑖
∗ ∇𝜙𝑛

𝑖 (𝑟𝑖⃗⃗⃗ )) + 𝑉(𝑟𝑖⃗⃗⃗ ) + 𝑉𝐻(𝑟𝑖⃗⃗⃗ )] 𝜙𝑛
𝑖 (𝑟𝑖⃗⃗⃗ ) = 𝜀𝑛

𝑖 𝜙𝑛
𝑖 (𝑟𝑖⃗⃗⃗ )        (4.9) 

Figure 4.8: The diamagnetic coefficients 𝛾𝑋−, 𝛾𝑋, 𝛾𝑋𝑋 and 𝛾𝑋+ are plotted as a 

function of 𝑋 emission energy. 
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where 𝑟𝑖⃗⃗⃗  and 𝑚𝑖
∗ denote the position coordinate and the effective mass of the ith 

partiicle, 𝑉  the confined potential, 𝜀𝑛
𝑖  the eigenenergy, 𝜙𝑛

𝑖 (𝑟𝑖⃗⃗⃗ ) the particle wave 

function of the eigenstate |𝑛 , and 𝑉𝐻(𝑟𝑖⃗⃗⃗ ) is the Hartree potential (a sum of the 

electrostatic potentials induced by other charged particles besides the considered 

particle itself). In the calculation, cone-shaped QDs setting on a 0.4 nm-thick wetting 

layer are considered. Due to the symmetry of geometry, the eignfunction 𝜙𝑖(𝑟𝑖⃗⃗⃗ ) can 

be separated into Eq. 4.10 in cylindrical coordinate, 

𝜙𝑖(𝑟𝑖⃗⃗⃗ ) = 𝜒𝑖(𝑧𝑖  ,  𝑟𝑖)Θ
𝑖(𝜑𝑖)                                             (4.10) 

putting Eq. 4.10 to Eq. 4.9, Eq. (4.9) is rewritten as, 

−
ℏ2

8𝜋
(

𝜕

𝜕𝑧𝑖
(

1

𝑚𝑖
∗

𝜕𝜒𝑖

𝜕𝑧𝑖
) +

1

𝑟𝑖

𝜕

𝜕𝑟𝑖
(

𝑟𝑖
𝑚𝑖

∗

𝜕𝜒𝑖

𝜕𝑟𝑖
))Θ𝑖 −

ℏ2

8𝜋

𝜒𝑖

𝑚𝑖
∗𝑟𝑖

2

𝑑2Θ𝑖

𝑑𝜑𝑖
2 + (𝑉 + 𝑉𝐻)𝜒𝑖Θ𝑖 = 𝜀𝑖𝜒𝑖Θ𝑖      (4.11) 

Dividing the Eq. 4.11 by 
𝜒𝑖(𝑧𝑖 ,𝑟𝑖)

𝑚𝑖
∗𝑟𝑖

2 Θ𝑖(𝜙𝑖), and rearranging the terms. We can get two 

independent equations, 

1

Θ𝑖

𝑑2Θ𝑖

𝑑𝜙𝑖
2 = −𝑙2                                                               (4.12) 

−
𝑚𝑖

∗𝑟𝑖
2ℏ2

8𝜋2
[

𝜕

𝜕𝑧𝑖
(

1

𝑚𝑖
∗

𝜕𝜒𝑙
𝑖

𝜕𝑧𝑖
)

1

𝜒𝑙
+

1

𝑟𝑖

𝜕

𝜕𝑟𝑖
(

𝑟𝑖
𝑚𝑖

∗

𝜕𝜒𝑙
𝑖

𝜕𝑟𝑖
)

1

𝜒𝑙
𝑖
] + 𝑚𝑖

∗𝑟𝑖
2[𝑉 + 𝑉𝐻 − 𝜀𝑖] =

−ℏ2

8𝜋
𝑙2 

(4.13) 

𝑙 is the quantum number of the angular momentum, and 

Θ𝑖 = exp[−𝑖𝑙𝜙]                                                              (4.14) 

Eq. 4.13 can be rewritten as, 

−
ℏ2

8𝜋2
[

𝜕

𝜕𝑧𝑖

(
1

𝑚𝑖
∗

𝜕𝜒𝑙
𝑖

𝜕𝑧𝑖

) +
1

𝑟𝑖

𝜕

𝜕𝑟𝑖
(

𝑟𝑖
𝑚𝑖

∗

𝜕𝜒𝑙
𝑖

𝜕𝑟𝑖
)] + [

ℏ2

8𝜋2𝑚𝑖
∗

𝑙2

𝑟𝑖
2 + 𝑉 + 𝑉𝐻] 𝜒𝑙

𝑖 = 𝜀𝑙
𝑖𝜒𝑙

𝑖      (4.15) 
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It is simplified to a two-dimension partial differential problem. Here we only 

considered the ground state with 𝑙 = 0 because of the electronic configurations for all 

considered excitonic complexes. This partial differential equation was solved by using 

the finite element method that is packaged in a commercial software (Cosmol 

Multiphysics). 

First we selected the 2D-PDE function (coefficients form) of Comsol to calculate 

the quantum levels 𝜀0 and the wave functions 𝜒0 of all (noninteraction) particles, 

and then the volume carrier density ρ(𝑧𝑖 , 𝑟𝑖) gotten from the wave functions of all 

particles, excluding the objective 𝑖𝑡ℎ-particle, was brought into Poisson equation to 

calculate the Hartree potential 𝑉𝐻(𝑧𝑖 , 𝑟𝑖) for the considered 𝑖𝑡ℎ-particle by using the 

2D-Electrostatics function of Comsol as Eq. 4.16. 

−[
𝜕

𝜕𝑧𝑖

(𝜀0𝜀𝑟

𝜕

𝜕𝑧𝑖

𝑉𝐻(𝑧𝑖 , 𝑟𝑖)) +
1

𝑟𝑖

𝜕

𝜕𝑟𝑖
(𝜀0𝜀𝑟𝑟𝑖

𝜕

𝜕𝑟𝑖
𝑉𝐻(𝑧𝑖 , 𝑟𝑖))] = 𝜌(𝑧𝑖 , 𝑟𝑖)   (4.16) 

 Again, we solved the PDE of the considered 𝑖𝑡ℎ-particle by introducing its Hatree 

potential into Eq. 4.15. A new energy level and wave function of the 𝑖𝑡ℎ-particle was 

obtained, moreover, its produced carrier density again affected the wave functions of 

other particles. By a series of iterative process, we can get a self-consistent and 

convergent solution for {𝜀0
𝑖 }. For an N-particle excitonic complex, the N-coupled 

equations of Eq. 4.15 are necessarily to be self-consistently solved by above iterative 

method. The steps of self-consistent calculation is shown in Fig. 4.9 .The total 

emission energy of the N-particle excitonic complex is then determined by the sum of 

single-particle energy {𝜀0
𝑖 }, added by InAs energy gap (𝐸𝑝), but subtracted by the 

doubly counted interparticle interaction energies (𝑉𝑒𝑒 , 𝑉𝑒ℎ, 𝑉ℎℎ) in this iterative process. 

Thus the emission energies for all excitonic complexes are given, 
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𝐸𝑋− = (2𝜀𝑒 + 𝜀ℎ + 2𝑉𝑒ℎ − 𝑉𝑒𝑒)𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − (𝜀𝑒)𝑛𝑜𝑛𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑔         (4.17) 

𝐸𝑋 = (𝜀𝑒 + 𝜀ℎ + 𝑉𝑒ℎ)𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑔                                                                 (4.18) 

𝐸𝑋𝑋 = (2𝜀𝑒 + 2𝜀ℎ − 𝑉𝑒𝑒 − 𝑉ℎℎ + 4𝑉𝑒ℎ)𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑋 + 2𝐸𝑔                     (4.19) 

𝐸𝑋+ = (𝜀𝑒 + 2𝜀ℎ + 2𝑉𝑒ℎ − 𝑉ℎℎ)𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − (𝜀ℎ)𝑛𝑜𝑛𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑔       (4.20) 
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Schrodinger equation 

−
ℏ2

8𝜋2
[

𝜕

𝜕𝑧1
(

1

𝑚1
∗

𝜕𝜒0
1

𝜕𝑧1
) +

1

𝑟1

𝜕

𝜕𝑟1
(

𝑟1
𝑚1

∗

𝜕𝜒0
1

𝜕𝑟1
)] + [𝑉 + 𝑉𝐻]𝜒0

1 = 𝜀0
1𝜒0

1 

⋮ 

−
ℏ2

8𝜋2
[

𝜕

𝜕𝑧𝑖
(

1

𝑚𝑖
∗

𝜕𝜒0
𝑖

𝜕𝑧𝑖
) +

1

𝑟𝑖

𝜕

𝜕𝑟𝑖
(

𝑟𝑖
𝑚𝑖

∗

𝜕𝜒0
𝑖

𝜕𝑟𝑖
)] + [𝑉 + 𝑉𝐻]𝜒0

𝑖 = 𝜀0
𝑖𝜒0

𝑖  

⋮ 

−
ℏ2

8𝜋2
[

𝜕

𝜕𝑧𝑁
(

1

𝑚𝑁
∗

𝜕𝜒0
𝑁

𝜕𝑧𝑁
) +

1

𝑟𝑁

𝜕

𝜕𝑟𝑁
(

𝑟𝑁
𝑚𝑁

∗

𝜕𝜒0
𝑁

𝜕𝑟𝑁
)] + [𝑉 + 𝑉𝐻]𝜒0

𝑁 = 𝜀0
𝑁𝜒0

𝑁 

𝑉𝐻(𝑟)=0 

𝜒0
1(𝑧𝑖, 𝑟𝑖),  ⋯ ,  𝜒0

𝑖 (𝑧𝑖, 𝑟𝑖) ,  ⋯ , 𝜒0
𝑁(𝑧𝑖, 𝑟𝑖) 

𝜀0
1,  ⋯ ,  𝜀0

𝑖  ,  ⋯ , 𝜀0
𝑁 

ρ(𝑧𝑖, 𝑟𝑖) = ∑|𝜒0
𝑗(𝑧𝑖, 𝑟𝑖)|

2
𝑁

𝑗≠𝑖

 

𝜌(𝑧1, 𝑟1) ,  ⋯ ,  𝜌(𝑧𝑖, 𝑟𝑖) ,  ⋯ ,  𝜌(𝑧𝑁, 𝑟𝑁) 

𝑉𝐻(𝑧1, 𝑟1) ,  ⋯ , 𝑉𝐻(𝑧𝑖, 𝑟𝑖) ,  ⋯ , 𝑉𝐻(𝑧𝑁, 𝑟𝑁) 

Possion equation 

− [
𝜕

𝜕𝑧𝑖
(𝜀0𝜀𝑟

𝜕

𝜕𝑧𝑖
𝑉𝐻(𝑧𝑖, 𝑟𝑖)) +

1

𝑟𝑖

𝜕

𝜕𝑟𝑖
(𝜀0𝜀𝑟𝑟𝑖

𝜕

𝜕𝑟𝑖
𝑉𝐻(𝑧𝑖, 𝑟𝑖))] = 𝜌(𝑧𝑖, 𝑟𝑖) 

Convergence 

Figure 4.9: The steps of self-consistent calculation. 
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4.4  The simulation results of diamagnetic shifts and their 

size-dependence 

We used the above method to calculate the emission energies of excitonic 

complexes for cone-shape InAs QDs sitting on a 0.4 nm-thick wetting layer when an 

external magnetic field B alone vertical direction is considered in this calculation. Fig. 

4.10 depicts the cross-sectional view, of which the height and diameter are denoted h 

and w, respectively. The used material parameters (the effective mass, dielectric 

constant, band offset and band gap) with the consideration of strain effect are taken 

from Ref. [48] and listed in Table 4.1. The InAs/GaAs QD is a typical Type II 

heterstructure, its band diagram of heterinterface is shown in Fig. 4.11. We reasonably 

select three investigated QDs (QD3, QD1, and QD4) to fit their experimental results 

by this calculation because their 𝑋− diamagnetic shifts both include the cases of 

quadratic dependence and anomalous behavior. For comparing, the experimental and 

simulated results of emission energies of the four different excitonic complexes are 

both plotted as a function of 𝐵2 in Fig. 4.12, of which the external magnetic field is 

given from 0T to 6T. The simulated size parameters are diameter of 11.6 nm and 

height of 1.1 nm for QD3; diameter of 11 nm and height of 1.4 nm for QD1; diameter 

of 8.4 nm and height of 1.4 nm for QD4. Besides, the simulated diamagnetic 

coefficients are obtained by taking the second derivative of simulated magnetoenergy 

spectra with respect to B using three-point numerical differentiation and shown in Fig. 

4.13. Compare with the experimental and simulated results, the diamagnetic shifts and 

diamagnetic coefficients of them are both consistent with each other very well for all 

excitonic complexes. For 𝑋−  diamagnetic shifts, we can see whether the 

quadratic-dependence or the anomalous behavior all can be gotten in our calculation 

by tuning the QD’s size, which indicates that the anomalous 𝑋− diamagnetic shifts 
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Table 4.1: The used material parameters in the simulation. 

have very strong dependence on the size factor of QDs. 

 

 

 

 

 

 

 

 𝑚𝑒
∗  𝑚ℎ

∗  ∆𝐸𝑐 ∆𝐸𝑣 𝐸𝑔 

InAs 0.044𝑚0 0.5𝑚0 
0.419eV 0.258eV 

0.842eV 

GaAs 0.067𝑚0 0.5𝑚0 1.519eV 

 

 

 

 

 

 

 

 

 

 

 

 

wetting layer 

w 

h 

Figure 4.10: The cross-section of simulated cone-shaped InAs QD, of which 

the height and diameter are denote h and w. 

GaAs 

𝑚𝑒
∗ = 0.067𝑚0 

𝑚ℎ
∗ = 0.5𝑚0 

𝑚𝑒
∗ = 0.044𝑚0 

𝑚ℎ
∗ = 0.5𝑚0 

InAs 

∆𝐸𝑐 = 0.419𝑒𝑉 

∆𝐸𝑉 = 0.258𝑒𝑉 

0.842𝑒𝑉 

Figure 4.11: The band diagram of InAs/GaAs interface in QDs. 
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Figure 4.12: The diamagnetic shifts of the excitonic complexes for the three typical 

QDs (QD3, QD1 and QD4). Blue points and red lines are the experimental and 

simulated results, respectively. The simulated parameters are diameter of 11.6 nm 

and height of 1.1 nm for QD3; diameter of 11 nm and height of 1.4 nm for QD1; 

diameter of 8.4 nm and height of 1.4 nm for QD4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuatively, we discuss the QD’s size effect on the diamagnetic shifts. The 

calculated diamagnetic coefficients for the four exciton complexes in QDs with a 

diameter ranging from 12 to 26 nm are shown in Fig. 4.14 (a). For large-sized QDs 

(D>16 nm), the diamagnetic coefficients of the four exciton complexes show similar 

Figure 4.13: The experimental and simulated diamagnetic coefficients of the excitonic 

complexes for the three typical QDs (QD3, QD1 and QD4). The simulated parameters 

are diameter of 11.6 nm and height of 1.1 nm (QD3); diameter of 11 nm and height of 

1.4 nm (QD1); diameter of 8.4 nm and height of 1.4 nm (QD4). 
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increasing trends with the QD size. Because the diamagnetic coefficient is proportional 

to the area of the carrier’s wave function, which associates with the dot diameter for 

large-size QDs [35, 49]. However, for smaller QD sizes (D<16 nm), the calculated 

values of 𝛾𝑋  increase with the decreasing dot size, while that of 𝛾𝑋𝑋  and 𝛾𝑋+ 

remain nearly unchanged. The most striking feature is that the calculated 𝛾𝑋− drops 

rapidly with the decreasing dot size. Here one can note that our self-consistent 

calculations also reproduce the experimental finding of 𝛾𝑋 > 𝛾𝑋𝑋 ≅ 𝛾𝑋+ very well.  

For the emission of negative trion 𝑋−, the initial state consists of two electrons 

and one hole leaving one electron in its final state after recombination. Thus the 𝑋− 

diamagnetic shift is dominated by the diamagnetic responses of both the initial and 

final states. To understand the anomalous behavior for 𝑋−, it is necessary to take a 

closer look at the lateral extent ℓ𝑒 = √〈𝜌𝑒
2〉 of the electron wave functions before and 

after photon emission. Fig. 4.14 (b) shows the calculated wave function extents ℓ𝑒,𝑖 

and ℓ𝑒,𝑓 for the initial-state and the final-state electrons of 𝑋−, respectively. One can 

see that the ℓ𝑒,𝑓 is always more or less larger than ℓ𝑒,𝑖. This can be realized from the 

presence of the hole in its initial state, which contracts the electron wave function by 

the Coulomb attraction. When the sizes of QDs are larger than about 16 nm, the 

differences between ℓ𝑒,𝑖 and ℓ𝑒,𝑓 are small; i.e., the presence of the hole does not 

change the electron wave function significantly. However, as the QD sizes reduces, 

ℓ𝑒,𝑓 increases rapidly, with a rate even faster than ℓ𝑒,𝑖. Such an increasing trend for 

ℓ𝑒,𝑓 indicates that the electron gradually loses confinement as the dot size reduces, 

which pushes the electron level toward the wetting-layer continuum, resulting in a 

very extended electron wave function penetrating into the barrier material, as be 

clearly seen in Fig. 4.15, which plots the distribution of calculated carrier wave 

function. In such a case of weak confinement regimes, the very extended initial-state 
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electron becomes sensitive to the long-range Coulomb attractive potential produced by 

the hole, by which ℓ𝑒,𝑖 will be contracted and become apparently smaller than ℓ𝑒,𝑓. 

As a result, the final-state diamagnetic shift increases, so that the overall diamagnetic 

shift in 𝑋− is reduced. This explains why the 𝑋− diamagnetic shift decreases rapidly 

for small-sized QDs shown in Fig. 4.14 (a). Likewise, for the emission of positive trion 

𝑋+, the initial state consists of one electron and two holes leaving one hole in its final 

state after recombination. As shown in Fig. 4.14 (b), unlike 𝑋−, the lateral extents of 

hole wave functions ℓℎ = √〈𝜌ℎ
2〉 in the initial and final states are almost identical for 

all QD sizes. Due to the larger effective mass of holes, their wave functions are well 

confined even in such small QDs. In this case, the Coulomb attractive potential 

produced by the weakly confined electron becomes less important, so that the size 

dependence of 𝛾𝑋+ behaves as usual. Comparing the experimental results in Fig. 4.8 

with calculated results in Fig. 4.14, The increased trend of the calculated 𝛾𝑋, 𝛾𝑋𝑋, and 

𝛾𝑋+  with reducing the dot diameter (when D<16 nm) is consistent with the 

experimental results because the small QDs have higher 𝑋 emission energy than that 

of large QDs. Besides, we also review the relation between the 𝑋− diamagnetic 

coefficients and 𝑋 emission energy, and found the measured 𝛾𝑋− has a decreased 

trend with increasing the 𝑋 emission energy for most dots, except for the three points 

in the circles, as shown in Fig. 4.16. We think the deviation of three dots inside the 

circles is attributed to the height variation among dots, which can influence the 

quantum levels seriously. 
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Figure 4.15: The distribution of calculated electron wave function in 𝑋− initial state 

(a), and 𝑋− final state (b); The distribution of calculated hole wave function in 𝑋+ 

initial state (c), and 𝑋+ final state (d). White line: the QD’s boundary with diameter 

of 11.6nm and height of 1.1nm. 

Figure 4.14: The simulation for QDs with various diameters, the diamagnetic 

coefficients (a), and the root mean square radius of electron and hole wave 

functions in their initial and final states (b). 
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4.5  Brief discussion of anomalous diamagnetic shift 

Now one may ask the question why the 𝑋−  diamagnetic shift exhibits a 

nonquadratic B dependence. In general, a quadratic diamagnetic shift holds only in the 

weak-field limit, i.e., when the magnetic length ℓ𝑀 = √ℏ/𝑒𝐵 is large compared to 

the lateral extents of the carrier’s wave functions ℓ = √〈𝜌2〉. We noted that ℓ𝑀 = 15 

nm at B=3 T, which becomes comparable with ℓ𝑒,𝑓 = 10 nm for the final-state 

electron in a QD with a base diameter of 12 nm. In this regime, the diamagnetic shift 

would deviate from the typical 𝐵2  dependence. To illustrate this behavior, we 

consider the diamagnetic shift in the carrier’s single-particle energy and expand it in 

powers of B as Δ𝜀𝛼
𝑆𝑃(𝐵) = 𝛾𝛼𝐵2 + 𝜅𝛼𝐵4 + ⋯ , which has been mentioned in Eq. 

2.21, where the quadratic and quartic coefficients are 𝛾𝛼 = 𝑒2ℓ𝛼
2/8𝑚𝛼 and 𝜅𝛼 =

Figure 4.16: The diamagnetic coefficients 𝛾𝑋−, 𝛾𝑋, 𝛾𝑋𝑋 and 𝛾𝑋+ are plotted as a 

function of 𝑋 emission energy. The dashed lines are guide for the eye. 
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−𝑒4ℓ𝛼
6/128𝑚𝛼ℏ2 , in which α = 𝑒 or ℎ  denotes the electron or hole, and 𝑚𝛼 

represents the effective mass of the electron or hole. Because |𝜅/𝛾| varies as ~ℓ4, 

the contribution from the 𝐵4 term becomes increasingly important as ℓ~ℓ𝑀. By 

taking into account the difference between ℓ𝑒,𝑖 and ℓ𝑒,𝑓, a simple algebraic analysis 

for the 𝑋− diamagnetic shift Δ𝐸𝑋−(𝐵) gives the following expression: 

Δ𝐸𝑋−(𝐵) ≈ 𝛾𝑋−𝐵2 + 𝜅𝑋−𝐵4 + ⋯,                          (4.21) 

where 𝛾𝑋− = (2𝛾𝑒,𝑖 + 𝛾ℎ,𝑖) − 𝛾𝑒,𝑓 and 𝜅𝑋− = (2𝜅𝑒,𝑖 + 𝜅ℎ,𝑖) − 𝜅𝑒,𝑓. Because of ℓℎ <

ℓ𝑒 and 𝑚ℎ ≫ 𝑚𝑒, the 𝛾ℎ,𝑖 and 𝜅ℎ,𝑖 for the hole only have minor influences on the 

overall diamagnetism. Accordingly, we obtain 𝛾𝑋− ≈ 𝑒2(2ℓ𝑒,𝑖
2 − ℓ𝑒,𝑓

2 )/8𝑚𝑒  and 

𝜅𝑋− ≈ 𝑒4(2ℓ𝑒,𝑖
6 − ℓ𝑒,𝑓

6 )/128𝑚𝑒ℏ
2. Equation 4.21 makes clear how the difference in 

ℓ𝑒,𝑖 and ℓ𝑒,𝑓 can lead to anomalous diamagnetic behaviors for the emission energy of 

𝑋−. We first consider a normal case of ℓ𝑒,𝑖 = ℓ𝑒,𝑓 = ℓ𝑒; we have 𝛾𝑋− ≈ 𝛾𝑒 ≈ 𝛾𝑋 and 

𝛾𝑋− ≫ 𝜅𝑋−, as long as ℓ𝑒 < ℓ𝑀. That is, the 𝑋− diamagnetic shift behaves as the 

usual quadratic dependence with a coefficient similar to that of 𝑋, which is just the 

case for large-size QDs shown in Fig. 4.14 (a). A very interesting case occurs when 

√2ℓ𝑒,𝑖 = ℓ𝑒,𝑓; i.e., ℓ𝑒,𝑖 of the initial-state electrons were contracted to 70.7% of its 

final-state extension ℓ𝑒,𝑓 by the hole. In this special case, the condition 2𝛾𝑒,𝑖 = 𝛾𝑒,𝑓 

cancels out the 𝐵2 term leading to a dominant quartic dependence on B. As the 

difference between ℓ𝑒,𝑖 and ℓ𝑒,𝑓 becomes even larger (√2ℓ𝑒,𝑖 < ℓ𝑒,𝑓), the magnetic 

response of 𝑋−  goes into a new regime where the quadratic coefficient 𝛾𝑋−  is 

negative; i.e., the energy shift is paramagnetic. This anomalous behavior can be best 

seen from the calculated results shown in Fig. 4.17 (a), where we keep ℓ𝑒,𝑓 = 10 nm 

but varying ℓ𝑒,𝑖  from 7.6 to 6.6 nm. The magnetic response of 𝑋−  emissions 
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transited gradually from the usual quadratic diamagnetic shift to quartic dependences, 

and finally into an overall negative energy shift, resembling paramagnetic behaviors. 

In Fig. 4.17 (b), we can see four typical QDs, that could represent the 𝑋− diamagnetic 

behaviors in different regimes, in qualitative agreement with our calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: The theoretical (left) and experimental (right) anomalous diamagnetic 

shifts in small QDs. 
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Chapter 5  Design of high quality-factor H1-cavities in 2-D 

photonic crystal and demonstration of their strong coupling 

to single InAs quantum dot 

In this Chapter, we propose a method for designing H1 photonic crystal cavity to 

enhance its Q factor while the mode volume is nearly unchanged. The simulations of 

Q factor and mode volume are executed by using the 3D finite-difference time-domain 

(FDTD) packed in a commercial soft ( Rsoft, fullwave), and the experimental results 

are collected by the same micro-PL system. The Q-factor enhancement is explained 

with the analysis of the Fourier transformation of electric field distribution in cavity. 

Finally, we successfully observe the strong coupling effect between cavity and single 

QD. 

5.1  The designed structure of modified H1 cavity 

The H1 PhC cavity is a 2D membrane suspended in air, with the triangular lattice of 

air holes lacking one of them to form a cavity. The tilt-view and top-view of this 

structures can be clearly seen in Fig. 5.1. In this dissertation, we used a GaAs layer 

with InAs QDs as the membrane material in order to study the coupling effect between 

QDs and cavity. Because the refractive index of GaAs is larger than that of air, the 

light of resonant mode would be confined within the membrane and the cavity. 

However, H1 cavity usually has smaller Q factor and mode volume. In order to 

enhance the coupling strength to QDs, improving its Q factor as maintaining small 

volume is necessary to be achieved. 

To enhance the Q factor of an H1 cavity, a common method is modifying the 

positions and radii of holes near the defect cavity [17, 50–52]. So far, the highest Q 
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factor obtained in experiment is about 25,000 by modifying more holes around the 

cavity, but the design principle and underlying physics have not been detailed [50]. 

   Here we propose an alternative method for enhancing the Q factor of an H1 cavity 

while the mode volume is nearly unchanged. Figure 5.2 shows our design of the H1 

cavity based on triangular lattice of air holes, the centered hole is absent leaving a 

defect as an optical cavity, and the period and radii of air holes are a and r, 

respectively. Staring with the common design, the six nearest neighbor holes around 

the cavity are shifted in radial direction and away from the defect a distance denoted as 

s here. The radii of the six holes are reduced from r to r' [51]. In addition, in our design, 

one more modification on other air holes is introduced to enhance its Q factor further. 

We reduce the radii of the fourth, fifth, eighth, and ninth rounds of air holes, as 

indicated with gray regions I and II in Fig. 5.2, from r to r''. 
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Figure 5.1: The tilt-view and top-view of H1 PhC cavity. 
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5.2  The simulation results of Q factor and mode volume 

To simulate the modified H1 cavity, we use 3-D finite-difference time-domain 

(FDTD) method that is packaged in a commercial software (Rsoft, FullWave). The 

simulated parameters are detailed as follows. The thickness of GaAs photonic crystal 

membrane, denoted as d, is 130 nm. The lattice constant a is 260 nm and the radius of 

air hole r is 0.25a. The shifted distance s of the nearest six holes is 0.12a. We use 

constant refractive index of 3.36 for GaAs. The values of r' and r'' are varied in our 

simulation to see their effects on the Q factor. The Q value and mode volume are 

obtained with the method of fast harmonic analysis. We would like to note that the 

validity of simulation has been verified by calculating the H1 cavity case reported in 

[50] as they obtained the highest Q factor of about 60,000 previously. By using our 

simulation tool and their parameters, our theoretical Q factor is considerably consistent 

with theirs as shown Fig. 5.3. 

The calculated Q factors for the modified H1 cavity and the corresponding mode 

Figure 5.2: Schematic modified H1 cavity. The lattice constant is a. The radius of 

regular air hole is r. The nearest six air holes around defect are shifted and their 

radii are reduced to r', as illustrated in the enlarged figure on the right. The radii of 

air holes inside regions I and II are reduced to r''. 
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volumes are shown in Fig. 5.4. In Fig. 5.4 (a), the Q factors of V-dipole cavity mode 

for r''/r ratios from 0.6 to 1 are plotted. Each curve represents different r' from 0.154a 

to 0.231a. We can see an evident trend that, with reducing r''/r ratio, the Q factor raises 

and reaches its maximum around r''/r = 0.65–0.75. However, it falls rapidly when the 

r''/r ratio comes to about 0.6. The strongest dependence is obtained with r' = 0.192a. 

The Q factor for an unmodified H1 cavity (r''/r = 1) is about 33,000 and reaches the 

highest value about 120,000 for the modified one of r''/r = 0.7. A four-fold Q-factor 

enhancement has been achieved. However, for other r', this enhancement becomes less 

significant. On the other hand, the corresponding mode volumes V are plotted in Fig. 

5.4(b). With decreasing r''/r ratios, the mode volumes V increases monotonically for all 

r'. Nevertheless, the increased amount is all less than 14% so the parameter Q/V, 

which governs the coupling strength between cavity and emitter, could be increased. In 

addition, we would like to note that based on the simulated results, the parameters r', s, 

and r'' are rather critical to obtain a high Q factor of modified H1 cavity. With 

appropriate r' and s, a well-tuned r'' could give us an extremely high Q factor. This, of 

course, would be a challenging task for fabricating the real devices. 

 

 

 

 

 

 

 

 

 
Figure 5.3: Our simulated Q factors compare with that of Ref. 50. The 

hollow-block points are the results of Ref. 50, and the solid-green points are ours. 



65 
 

 

 

 

 

 

 

 

 

 

 

5.3  The spatial Fourier transform of electric field distribution in 

cavity 

To understand how the H1 cavity with modified r''∕r ratio reaches a high Q factor, 

in Fig. 5.5, we plot the simulated electric field (Ex) distribution and the corresponding 

spatial Fourier transformation in tangential k-vector space (k//) for the V-dipole mode 

in the cavity. The simulated parameters are the same as those used in Fig. 5.4 except 

that r' is fixed at 0.192a. The Fourier transformation equation is represented as Eq. 5.1. 

F(𝑘′′) = ∫ 𝐸𝑥(𝑟)𝑒
−𝑖2𝜋𝑘′′𝑟𝑑𝑟                                                       (5.1)

∞

−∞

 

Note that the color scales of the Fourier transform profiles are plotted in natural 

logarithm scale for clarity. In the upper row of Fig. 5.5, the electric field distributions 

at a plane of z = 0 (the center of the membrane) of the cavities with r''/r = 0.6, 0.7, 0.9, 

and 1.0 have no clear difference between each other. However, in the lower row of Fig. 

5.5, the Fourier transformed profiles show interesting features inside the centered light 

cone indicated by the white circles. Inside the light-cone circle, the tangential 

Figure 5.4: (a) Simulated Q factors against varied r''/r ratios. Each line represents 

individual value of r' from 0.154a to 0.231a. (b) The corresponding mode volumes. 
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k-component decreases gradually when the r'/∕r ratios reduces from 1.0 to 0.7 and then 

increases slightly for that of 0.6. This is consistent with the trend of Q factors in Fig. 

5.4(a). The correlation between the Q factors and the Fourier transform components 

inside a light cone is expected because the Fourier transform components inside the 

light cone represent the components of leakage modes for which light would escape 

out of the membrane cavity [20]. More specifically, the light cone is defined as the 

region for which tangential k-vector component (|k//|) is smaller than 2π∕λ0 (where λ0 is 

the wavelength of light in vacuum). When |k//| of light lies outside light cone 

(|k//|>2π∕λ0), total internal reflection condition is satisfied at the interface between 

cavity membrane and vacuum, thus light can be confined inside the membrane. 

Therefore, by reducing the tangential component |k//| inside the light cone (|k//|<2π∕λ0), 

the Q factor of the cavity can be increased. This explanation has also been stated 

clearly in [20] for the case of L3 cavity. Fig 5.6 is a 2-D sketch for a medium 1 of 

refractive index n1 surrounded with mediums 2 of refractive index n2. The light 

propagate in these mediums by Snell’s law Eq. 5.2, 

n1 × sin 𝜃1 = n2 × sin 𝜃2                                                      (5.2) 

while 𝜃2 = 90𝜊, the critical angle 𝜃𝑐 is express as, 

sin 𝜃𝑐 =
𝑛2

𝑛1
                                                                                (5.3) 

If 𝜃1 > 𝜃𝑐 , the light cannot propagate into the medium 2, i.e., the total internal 

reflection condition is satisfied 

sin 𝜃1 > sin 𝜃𝑐 =
𝑛2

𝑛1
                                                                (5.4) 

sin 𝜃1 =
𝑘′′

𝑘𝑡𝑜𝑡𝑎𝑙

                                                                           (5.5) 

𝑘𝑡𝑜𝑡𝑎𝑙 and 𝑘′′ are total and tangential k-component in medium 1. Inserting Eq. 5.5 
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into Eq. 5.4 

𝑘′′

𝑘𝑡𝑜𝑡𝑎𝑙

>
𝑛2

𝑛1
    →    𝑘′′ > 𝑘𝑡𝑜𝑡𝑎𝑙 ×

𝑛2

𝑛1
=

2𝜋

𝜆2

                             (5.6) 

, where 𝜆2 is light wavelength in medium 2. Thus the light cone is defined as the 

region, 𝑘′′ < 2𝜋/𝜆2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The simulated electric field distributions (Ex) of V dipole mode for 

various r''/r ratios (upper row) and their 2-D spatial Fourier transform profiles in 

tangential k-vector space k// (lower row). Light cones are plotted in white circles. 
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5.4  Experimental results 

The growth and fabrication of the investigated sample (Lm5217) have been 

introduced in Chapter 3. The photonic crystal membrane is constituted of a GaAs layer 

with InAs QDs in the middle. Fig. 5.7 shows the top-viewed and cross-section-viewed 

scanning electron microscopy (SEM) images of one fabricated H1 cavity. Together 

with the enlarged images on the right, we can see that the sizes of the six nearest holes 

and those in the region I and II has been reduced. The sample is measured by using the 

micro-PL system, of which the He-Ne lasers beam was focus onto the center of cavity 

to excite the cavity signals, and the measured temperature is maintained at 50K. In Fig. 

5.8, the measured spectra taken from one of fabricated H1 cavities are shown. Two 

emission peaks arising from the two fundamental dipole modes (Horizontal and 

Vertical dipoles) are clearly observed, while we see that there is no on-resonance 

single QD transition in the emission energies of the two peaks to excite the cavity 

modes. Many studies have indicated that such off-resonance cavity modes are fed by 

acoustic phonon-assisted processes [53] or multiexciton transition process [54]. The 

nondegeneracy of energy between two cavity modes arises from unavoidable 

imperfection during device processing. The separation is about 0.1–2.0 meV among 

our studied devices. The measured polar plot of the two modes is taken from the 

emission intensities as a function of the angle of λ/2 wave-plate and shown as the inset 

Figure 5.6: The sketch of the total internal reflection condition. Medium 1 of 

refractive index n1 is surrounded with mediums 2 of refractive index n2. 
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in Fig. 5.8. It is obvious that two dipole modes are linearly polarized and orthogonal to 

each other as expected. 

The spectra of more than 40 devices were measured and the intentional size 

parameters of these devices are a = 260 nm, r = 0.25a, s = 0.12a, and r' = 0.192a. To 

see the effect of r''/r ratio on Q factor and to minimize the influence of fabrication 

non-uniformity, we arrange the devices in group so the every four devices with four 

different r'' are within an area of 1 mm2. We extract the Q factor of each device from 

its micro-PL spectrum according to the ratio between the resonant frequency (𝑓 ) and 

the full width half maximum (FWHM, ∆𝑓), Q = 𝑓/𝛥𝑓 . Here 𝑓  and ∆𝑓  are 

gotten from the Lorentz function-fitting curves of resonant peaks. The measured Q 

factors are shown in Fig. 5.9(a). Note that the Q factors in Fig. 5.9(a) are the average 

values of two dipole modes. The Q factors of the devices in the same group are plotted 

with the same symbol. In Fig. 5.9(a), the devices with r''/r ratio of 1 (reference devices) 

have the Q factors in the range of 5,000–8,000 due to the fabrication non-uniformity. 

Comparing with calculated Q factors shown in Fig. 5.4(a), the experimental ones are 

much lower, which we attribute to the imperfection during the sample growth and/or 

the device fabrication. Nevertheless, among the measured devices, we still can see a 

common trend that Q factors gradually increase with decreasing r''/r ratios. When the 

r''/r ratio comes down to 0.769, the trend becomes unclear. This trend was 

considerably consistent with the simulated results in Fig. 5.4(a). We also calculate the 

enhancement factors defined with Q-factor ratio between devices with modified r'' and 

unmodified ones. In Fig. 5.9(b), it is apparent that the enhancement factors of almost 

all devices with modified r'' are larger than 1. This tells us that our method is quite 

effective for Q-factor improvement. That is, even with the fabrication non-uniformity 

from one device to the other, the Q-factor enhancement still exists. The highest 

enhancement factor is about 1.55 and the highest Q factor is about 11,700. 
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(b) 

Figure 5.7: (a) Top view of SEM image for fabricated H1 cavity. The right figures 

are the local enlarged images of the six nearest holes and those in regions I and II. 

(b) Cross-section view of SEM image. 

Figure 5.8: Measured spectra showing H- and V-dipole modes of an H1 cavity. 

The blue and red dots were measured data, and the blue and red curves were fitted 

data. Inset: the polar plot of cavity modes. 
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Figure 5.9: Measured Q factors and (b) enhancement factors for r''/r ratios of 1, 

0.923, 0.846, and 0.769. The grouping devices are plotted with the same symbol. 

The dashed lines are guide for the eye. 
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5.5  The strong coupling effect between InAs QD and cavity 

In this part, we report an observation of coupling effect between our designed H1 

cavity and single InAs QD. We study this phenomenon via the temperature-dependent 

micro-PL measurement. The measured results reflect the characteristics of strong 

coupling. 

Temperature-dependent micro-PL measurement 

To yield the coupling effect between QD and the cavity, there are two 

requirements have to be satisfied. One is that only one QD is expected to locate at the 

high electric field region of the cavity for raising coupling strength, and avoiding too 

complicated signals from other QDs, thus we must select the area with relatively low 

QDs density in our sample. Another one is that the emission energy of QD must be 

consistent with that of the cavity mode. The investigated devices of the H1 cavities are 

fabricated on the sample Lm5217, which has be introduced in previous content. Fig. 

5.10 shows the PL spectra of the area with broad-distributed QD density, we select the 

region C to fabricate the devices of H1 cavities, which has more suitable QD density. 

The PL signals in low energy and high energy region (the red and blue shadow) arise 

from the emissions of QDs and the wetting layer, respectively. The central energy of 

the wetting layer is about 1415.5 meV, and the emission energies of QDs distribute 

over a wide range from 1260 meV to 1375meV. We reasonably design the H1 cavity 

with these parameters: a = 260 nm, r = 0.25a and d = 130 nm so that the measured 

emission energy of cavity mode would be located at the QDs (blue) region. 

Sequentially, we measure the micro-PL spectra of these devices and tune the 

detuning, i.e., the energy difference between cavity mode and single QD signal, by 

changing the measured temperature. Figure 5.11 shows the spectra taken from one 
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device at three different temperatures 5.5K, 28K and 35K, one can see that there are 

three main peaks observed in the region of 1348 nm─1354 nm. With raising 

temperature, all peaks are red shift, and the shifted rate of the middle peak is obviously 

faster than that of other peaks on both sides. Thus we can identify the middle peak is 

the signal of QD due to the obvious energy gap-shrinkage effect induced by raised 

temperature, and the side peaks are two fundamental dipole modes, respectively. 

Because the QD signal gradually approaches the dipole mode with lower energy when 

raising temperature, we would focus on discussing the interaction between QD and 

this dipole mode. More detailed temperature-dependent micro-PL spectra are taken per 

0.25 K or 0.5 K at the measured temperature range from 25 K to 50 K. Fig. 5.12 plots 

the all spectra at different measured temperature range from 35 K to 41 K. One can 

clearly see an anti-crossing phenomenon, that is, the QD signal is gradually close to 

the low energy cavity mode, but they never cross together, finally, far from each other. 

This is a typical characteristic of strong coupling effect. Using the Lorentz function to 

fit these peaks in the spectra. The central energies, full width half maximum (FWHM) 

and intensities of the two fitted peaks are gotten and plotted as a function of 

temperature in Fig. 5.13. In Fig. 5.13(a), we found that the smallest energy difference 

between two central energies (∆𝐸) is about 146 μeV, which occurs at 37.75 K. That 

means the detuning of QD and cavity mode is zero, and the coupling strength is 

strongest at this temperature. On the other hand, Fig. 5.13(b) and 5.13(c) show the 

variations of the fitted FWHM and intensities with temperature, they all exhibit a 

crossing behavior at about 37.5 K and 37.875 K, which indicates that the QD and 

cavity mode have mixed into two polariton states at this moment. With far from this 

temperature, the coupling becomes weaker, resulting in the polariton states gradually 

transfer into non-coupled QD and cavity mode, which reflects in the removed FWHM 

and intensity. According to the experimental results, we know that the smallest energy 
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difference between two central energies (∆𝐸) is equal to 146 μeV when the detuning 

is zero. The FWHM of the QD signal (𝛾𝑄𝐷) and the cavity mode (𝛾𝑐) can be obtained 

from the results at the low or high temperature. From Fig. 5.13, 𝛾𝑄𝐷 and 𝛾𝑐 are about 

110.3 μeV and 224.2 μeV, which indicates that Q factor is equal to 6022. Putting these 

parameters into Eq. 5.7 or Eq. 2.40 

∆𝐸(𝛿) = √Ω𝑛
2 −

(𝛾𝑐 − 𝛾𝑎)
2

4
                                               (5.7) 

, we can get the Rabi splitting in this system, Ω𝑛, is equal to 156.7 𝜇𝑒𝑉. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: The PL-spectra of the area with different QD density in the sample 

Lm5217. 
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Figure 5.11: The micro-PL spectra at three different temperatures 5.5 K, 28 K and 35K 

Figure 5.12: The temperature-dependent micro-PL spectra 
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Figure 5.13: The emission energy, FWHM, and intensity as a function of 

temperature. 
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Chapter 6  Conclusion and Future work 

6.1  Conclusion 

In this dissertation, we have study the magneto-optic properties of single 

InAs/GaAs quantum dot. Besides, we also design a high Q factor H1 cavity in 2-D 

photonic crystal membrane and have observed the strong interaction between quantum 

dot and cavity. 

First, we have identified four investigated excitonic complexed via the 

power-dependent and polarization resolution micro-PL measurements. The magnetic 

responses of excitonic complexes in single self-assembled InAs/GaAs quantum dots 

have been investigated, including neutral exciton 𝑋 , biexciton 𝑋𝑋 , and 

positive/negative trion 𝑋+ / 𝑋− . For 𝑋𝑋  and 𝑋+ , their diamagnetic shifts 

demonstrated the conventional quadratic dependence on magnetic field as neutral 

exaction. However, the 𝑋− diamagnetic shifts in most of the investigated dots were 

found to be considerably small and non-quadratic. In particular, we also observed a 

reversal in sign of the conventional diamagnetic shift. A theoretical analysis indicates 

that such anomalous behaviors for 𝑋− arise from an apparent change in the electron 

wave function extent after photon emission due to the strong Coulomb attraction 

induced by the hole in its initial state. This effect has strong correlation with the sizes 

of quantum dot and can be very pronounced in small ones, where the electron wave 

function becomes weakly confined and extended much into the barrier region. When 

the electrons gradually lose confinement, the magnetic response of 𝑋− will transit 

gradually from the usual quadratic diamagnetic shift to a quartic dependence, and 

finally into a special paramagnetic regime with an overall negative energy shift. On the 
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other hand, because the forming-dots time for low density QDs is shorter than that of 

high density dots in the growth process, the low density QD’s sizes are relatively small. 

This explains why the investigated dots in our low density QDs sample are relatively 

small, resulting in the anomalous 𝑋− diamagnetic shifts. 

Second, we have presented a design for enhancing the Q factor of H1 PhC cavity. 

The recorded Q factor of 120,000 in theory has been achieved with a slight increase of 

mode volume. The 2-D spatial Fourier transform profile in k-space indicates that the 

components of leakage modes obviously decrease for the designed cavities, where 

total internal condition is satisfied so that light cannot escape out of the membrane 

cavity. In experiment, the Q factors also have be improved from 5,000–8,000 to about 

11,700. With our design, one has a chance to embed QDs in the cavity for generating 

entangled photon pair by the strong coupling effect. 

Finally, we have successfully demonstrated the strong coupling effect in the H1 

cavity embedded one InAs/GaAs quantum dot. By changing measured temperature, we 

can tune the detuning between QD signal and cavity mode. The strongest coupling 

occurs at 37.5 - 37.875 K, while the Rabi splitting in this system, Ω𝑛, is equal to 

156.7 𝜇𝑒𝑉. 

6.2  Future work 

   In fact, when observing the strong coupling effect cautiously, one can see that the 

intensities of two peaks are the same at about 37.875 K, the emission energies are 

closest at 37.75 K, and the FWHM are cross at 37.5 K as shown in Fig. 6.1. This result 

seems to be strange because the three points occur at different temperature, so that one 

cannot know that the strongest coupling occurs at which temperature. We suspect that 

this temperature-variation may be attributed to the difference in polarized directions of 

QD and cavity mode. In this system, there are two orthogonal-linear polarized QD 
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emissions and a linear polarized cavity mode. If the polarized direction of cavity mode 

is not completely parallel or perpendicular to that of QD emission, the two QD 

emission would both interact with the cavity mode, that maybe lead to the 

temperature-difference shown in Fig. 6.1. However, to verify whether this supposition 

is correct, a micro-PL measurement of all polarized directions is necessary to be 

analyzed further. 
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Figure 6.1: The difference in emission energy, FWHM, and intensity of two signals 

as a function of temperature. 
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Appendix 

A  Fock-Darwin model 

Consider a particle of effective mass 𝑚∗  and charge 𝑒  is placed within a 

parabolic-confined potential 𝑉0 =
𝑚∗𝜔0

2

2
(𝑥2 + 𝑦2) and a uniform magnetic field  𝐵⃗⃗ =

(0, 0, 𝐵𝑧) = ∇ × 𝐴 along z direction, where 𝜔0 is the angular frequency, and 𝐴 is 

the vector potential represented as  𝐴 = (−
1

2
𝑦𝐵𝑧 ,

1

2
𝑥𝐵𝑧 , 0) by using the symmetric 

gauge. According to quantum mechanism, the total Hamiltonian can be written as, 

H =
1

2𝑚∗
(−𝑖ℏ∇ + 𝑒𝐴)

2
+ 𝑉0                                             (𝐴. 1) 

Bringing 𝑉0 =
𝑚∗𝜔0

2

2
(𝑥2 + 𝑦2)  and  𝐴 = (−

1

2
𝑦𝐵𝑧 ,

1

2
𝑥𝐵𝑧 , 0)  into Eq. A.1. The 

Hamiltonian is rewritten as, 

    H =
1

2𝑚∗
[−ℏ2∇2 + 𝑖ℏe𝐵𝑧 (𝑦

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑦
) +

𝑒2𝐵𝑧
2

4
(𝑥2 + 𝑦2)] +

𝑚∗𝜔0
2

2
(𝑥2 + 𝑦2)      (𝐴. 2)  

In cylindrical coordinates, Eq. A.2 is transformed into 

H = −
ℏ2

2𝑚∗
(

𝜕2

𝜕𝜌2
+

1

𝜌

𝜕

𝜕𝜌
+

1

𝜌2

𝜕2

𝜕𝜙2
) − 𝑖ℏ

𝜔𝑐

2

𝜕

𝜕𝜙
+

𝑚∗

2
(
𝜔𝑐

2

4
+ 𝜔0

2)𝜌2           (𝐴. 3) 

, where 𝜔𝑐 = 𝑒𝐵𝑧/𝑚
∗ is the cyclotron angular frequency. If 𝐵𝑧 = 0, the eigenstates 

of the Hamiltonian are well known Fock-Darwin states. According to Eq. A.3, one can 

see that the Schrodinger equation H𝜓(𝜌, 𝜙) = 𝐸𝜓(𝜌, 𝜙)  is a separable partial 

differential equation, thus the eigenfunction 𝜓(𝜌, 𝜙) can be separated into radial part 

and angular part, 

𝜓(𝜌, 𝜙) = 𝜐(𝜌)𝑒−𝑖𝑙𝜙                                                  (𝐴. 4) 
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𝑙 is the quantum number of angular momentum, 𝑙 = 0,±1,±2,⋯. Bring Eq. A.4 into 

the Schrodinger equation, we get a radial ordinary differential equation as follows, 

[
𝜕2𝑣(𝜌)

𝜕𝜌2
+

1

𝜌

𝜕𝑣(𝜌)

𝜕𝜌
−

𝑙2

𝜌2
𝑣(𝜌)] + [

𝑙𝑚∗𝜔𝑐

ℏ
+ 𝑘2 − 𝜆2𝜌2] 𝑣(𝜌) = 0       (𝐴. 5) 

where 𝑘2 =
2𝑚∗𝐸

ℏ2
 and 𝜆2 =

𝑚∗2

ℏ2
(
𝜔𝑐

2

4
+ 𝜔0

2) . To correspond with the boundary 

condition, 𝜐(𝜌) approaches zero as 𝜌 close to ∞, and 𝜐(𝜌) maintains a finite value 

as 𝜌 close to zero, we suppose 𝜐(𝜌) can be written as this form, 

𝑣(𝜌) = 𝜌|𝑙|𝑒−𝜆𝜌2/2𝐹(𝜌)                                                   (𝐴. 6) 

Bringing Eq. A.6 into Eq. A.5, we obtained Eq. A.7, 

𝑑2𝐹(𝜌)

𝑑𝜌2
+ [

2|𝑙| + 1

𝜌
− 2𝜆𝜌]

𝑑𝐹(𝜌)

𝑑𝜌
− [2𝜆(|𝑙| + 1) − 𝑘2 −

𝑙𝑚∗𝜔𝑐

ℏ
] 𝐹(𝜌) = 0     ( 𝐴. 7) 

Using the variable 𝜒 instead of 𝜆𝜌2, Eq. A.7 become into a Kummer equation as Eq. 

A.8, whose solution at 𝜒 = 0 is the Confluent Hypergeometric Series 

𝜒
𝑑2𝐹(𝜒)

𝑑𝜒2
+ [(|𝑙| + 1) − 𝜒]

𝑑𝐹(𝜒)

𝑑𝜒
−

1

2
[(|𝑙| + 1) −

𝑘2

2𝜆
−

𝑙𝑚∗𝜔𝑐

2ℏ𝜆
] 𝐹(𝜒) = 0       ( 𝐴. 8) 

The solution is 

𝐹(𝜒) = 𝑀(𝑎 , |𝑙| + 1 ; 𝜒) = ∑
𝑎(𝑗)𝜒𝑗

(|𝑙| + 1)𝑗𝑗!

∞

𝑗=0

                                         (𝐴. 9) 

where 

𝑎 =
1

2
(|𝑙| + 1) −

𝑘2

4𝜆
−

𝑙𝑚∗𝜔𝑐

4ℏ𝜆
                                          (𝐴. 10) 

For large values of 𝜒, the eigenfunction of 𝐹(𝜒) would diverge as 𝑒𝑥. In order to 
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satisfy this, the eigenfunction exists only if 

𝑎 = −𝑛                                                               (𝐴. 11) 

, where 𝑛 = 0, 1, 2,⋯ is a non-negative integer, Thus we can get the eigenfunction 

and eigenvalue 

𝜓𝑛𝑙(𝜌, 𝜙) = C𝑛𝑙𝜌
|𝑙|𝑒−𝜆𝜌2/2𝑀(−𝑛 , |𝑙| + 1 ;  𝜆𝜌2)𝑒−𝑖𝑙𝜙              (𝐴. 12) 

𝐸𝑛𝑙 = (2𝑛 + |𝑙| + 1)ℏ (𝜔0
2 +

1

4
𝜔𝑐

2)
1/2

−
1

2
𝑙ℏ𝜔𝑐                   (𝐴. 13) 

with the normalized constant C𝑛𝑙 

C𝑛𝑙 = 𝜆(|𝑙|+1)/2√
𝑛!

𝜋(𝑛 + |𝑙|)!
                                             (𝐴. 14) 

the mean square radius 〈𝜌𝐵
2〉𝑛𝑙 is defined as, 

〈𝜌𝐵
2〉𝑛𝑙 = ⟨𝜓𝑛𝑙|𝜌

2|𝜓𝑛𝑙 =
1

𝜆
(2𝑛 + |𝑙| + 1)                    (𝐴. 15) 

We expand Eq. A.13 by Taylor series 

𝐸𝑛𝑙 = (2𝑛 + |𝑙| + 1)ℏ𝜔0 (1 +
1

8

𝜔𝑐
2

𝜔0
2 −

1

128

𝜔𝑐
4

𝜔0
4 + ⋯) −

1

2
𝑙ℏ𝜔𝑐               (𝐴. 16) 

Further, Eq. A.16 can be expanded as 

𝐸𝑛𝑙(𝐵𝑧) = (2𝑛 + |𝑙| + 1)ℏ𝜔0 + (
𝑒2√〈𝜌0

2〉𝑛𝑙

2

8𝑚∗
𝐵𝑧

2 −
𝑒4√〈𝜌0

2〉𝑛𝑙

6

128𝑚∗ℏ2
𝐵𝑧

4 + ⋯) −
𝑒ℏ𝑙

2𝑚∗
𝐵𝑧  (𝐴. 17) 

√〈𝜌0
2〉𝑛𝑙 = √

ℏ(2𝑛+|𝑙|+1)

𝑚∗𝜔0
 is the root mean square radius of particle in the state 𝑛𝑙 at 

zero magnetic field. 
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B  Hartree approximation 

To consider the influence of Coulomb interaction on the magnetic responses of 

excitonic complexes, the Hartree approximation is a suitable method for solving such 

many-body problem. Beyond this approximation, the wave functions and energy of all 

particles in this system are approximated to stable status when considering Coulomb 

interaction. The Hamiltonian of total N particles system can be written as follows, 

H = ∑ℎ𝑠𝑝(𝑟𝑖⃗⃗⃗ )

𝑁

𝑖

+
1

2
∑∑𝑉𝑐(𝑟 − 𝑟′)

𝑁

𝑗≠𝑖

                           (𝐵. 1)

𝑁

𝑖

 

where ℎ𝑠𝑝 is the Hamiltonian of the 𝑖𝑡ℎ −particle without Coulomb interactions and 

𝑉𝑐 is the Coulomb interaction term. We take the Slater function Ψ𝐻𝐹  to retain the 

fermionic nature of electron and hole. 

Ψ𝐻𝐹 =
1

√𝑁!
|

𝜙1(𝑟1⃗⃗⃗ ⃗)

𝜙2(𝑟1⃗⃗⃗ ⃗)
⋮

𝜙𝑁(𝑟1⃗⃗⃗ ⃗)

  

𝜙1(𝑟2⃗⃗⃗ ⃗)

𝜙2(𝑟2⃗⃗⃗ ⃗)
⋮

𝜙𝑁(𝑟2⃗⃗⃗ ⃗)

  

⋯
⋯
⋱
⋯

  

𝜙1(𝑟𝑁⃗⃗ ⃗⃗ )

𝜙2(𝑟𝑁⃗⃗ ⃗⃗ )
⋮

𝜙𝑁(𝑟𝑁⃗⃗ ⃗⃗ )

|                               (𝐵. 2) 

𝜙𝑖(𝑟𝑛⃗⃗⃗⃗ ) is the wavefunction of the 𝑖th state while the 𝑛th particle fills into the 𝑖th 

state. The fermionic nature satisfies the anti-symmetrized condition of the Hartree 

wave function as follows,  

Ψ𝐻𝐹(⋯⋯𝑟𝑛⃗⃗⃗⃗ ⋯ 𝑟𝑚⃗⃗⃗⃗⃗ ⋯ ) = −Ψ𝐻𝐹(⋯⋯𝑟𝑚⃗⃗⃗⃗⃗ ⋯ 𝑟𝑛⃗⃗⃗⃗ ⋯ )                      (𝐵. 3) 

Thus, the total energy of the N particle system is given by 

      𝐸𝐻𝐹 = ⟨Ψ𝐻𝐹|𝐻|Ψ𝐻𝐹  

               = ∑⟨𝜙𝑖|ℎ𝑠𝑝|𝜙𝑖⟩

𝑁

𝑖

+
1

2
∑∑⟨𝜙𝑖(𝑟)𝜙𝑗(𝑟

′⃗⃗⃗⃗ )|𝑉𝑐(𝑟 − 𝑟′⃗⃗⃗⃗ )|𝜙𝑗(𝑟
′⃗⃗⃗⃗ )𝜙𝑖(𝑟)⟩

𝑁

𝑗≠𝑖

𝑁

𝑖
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                   −
1

2
∑∑⟨𝜙𝑖(𝑟)𝜙𝑗(𝑟

′⃗⃗⃗⃗ )|𝑉𝑐(𝑟 − 𝑟′⃗⃗⃗⃗ )|𝜙𝑖(𝑟
′⃗⃗⃗⃗ )𝜙𝑗(𝑟)⟩                                     (𝐵. 4)

𝑁

𝑗≠𝑖

𝑁

𝑖

 

The second and third terms in Eq. B.4 are defined as direct and exchange interaction. 

Taking the variation method, we can get Eq. B.5 

 δ[𝐸𝐻𝐹 − 𝜀𝑖(⟨𝜙𝑖|𝜙𝑖 − 1)] = 0                                                      

⟨𝛿𝜙𝑖| {[ℎ𝑠𝑝(𝑟) + ∑⟨𝜙𝑗|𝑉𝑐(𝑟 − 𝑟′⃗⃗⃗⃗ )|𝜙𝑗⟩

𝑁

𝑗≠𝑖

] 𝜙𝑖 − ∑⟨𝜙𝑗|𝑉𝑐(𝑟 − 𝑟′⃗⃗⃗⃗ )|𝜙𝑖𝜙𝑗⟩

𝑁

𝑗≠𝑖

} = 𝜀𝑖⟨𝛿𝜙𝑖|𝜙𝑖   

(𝐵. 5) 

, where 𝜀𝑖 is the eigen-energy of the 𝑖th state. In order to simplify the problem, we 

ignore the exchange term and then get the Schrodinger equation of one particle from 

Eq. B.5, 

[ℎ𝑠𝑝(𝑟) + 𝑉𝐻(𝑟)]𝜙𝑖(𝑟) = 𝜀𝑖𝜙𝑖(𝑟)                                        (𝐵. 6)  

𝑉𝐻(𝑟) = ∑⟨𝜙𝑗|𝑉𝑐(𝑟 − 𝑟′⃗⃗⃗⃗ )|𝜙𝑗⟩

𝑁

𝑗≠𝑖

= ∫𝑑3𝑟 ,⃗⃗⃗
𝑒2 ∑ |𝜙𝑗(𝑟′⃗⃗⃗⃗ )|

2
𝑁
𝑗≠𝑖

4𝜋𝜖0𝜖𝑏|𝑟 − 𝑟′⃗⃗⃗⃗ |
= ∫𝑑3𝑟

𝑒2𝜌(𝑟′⃗⃗⃗⃗ )

4𝜋𝜖0𝜖𝑏|𝑟 − 𝑟′⃗⃗⃗⃗ |
    

(𝐵. 7) 

where 𝑉𝐻(𝑟)  is called the Hartree potential arising from the direct Coulomb 

interactions among particles, which represents the electrostatic potential induced by 

other N-1 particles. ρ(𝑟′⃗⃗⃗⃗ ) is the volume particle density equal to ∑ |𝜙𝑗(𝑟
′⃗⃗⃗⃗ )|

2
𝑁
𝑗≠𝑖 . It is 

clear that the wave function of 𝑖th particle 𝜙𝑖(𝑟) is determined by the Hartree 

potential associated with other particles and the confined potential. Such problem is 

suitable to be solved by using the self-consist method, i.e., an iteratively calculated 

process until convergence. 
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