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ABSTRACT

In this paper, an epidemic SIS model (e.g., rabies) with multiple
infective media (e.g., dogs, ferret-badgers and shrews) in complex
networks is proposed and investigated. Such generalized maodel include a
heterogeneous scale-free network between individuals and a generalized
network between media and individuals. Such generalized networks is
formulated in such a way so that both heterogeneous and homogeneous
network are its special cases. The global dynamics of the model is studied
rigorously. We compute the basic reproduction number R, for our model
and then show that if R, < 1, then the disease-free equilibrium is globally
asymptotically stable. On the contrary, if R, > 1, then there exists a

unique endemic equilibrium which is globally asymptotically stable.
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1 Introduction

The study of the diseases spread is an important issue no matter in the medical prac-
tice or the academic. Heretofore, many different epidemic models are constructed and
investigated to describe how the infectious transmission in one area (network) is and why
some diseases eventually break out but some eventually extinguish, such as tuberculosis,
malaria, and rabies or etc. Classically, these models divide involved nodes (individu-
als) into several compartments such as susceptible (S), infected (I), exposed (E) and re-
covered (R) compartments, and then are classified as the susceptible-infected-susceptible
(SIS), susceptible-infected-recovered (SIR), susceptible-infected-died (SID) or susceptible-
exposed-infected-susceptible (SEIR) models according to the period of immunity of nodes.

Recent researches [|-5] about the epidemic models have demonstrated that the struc-
ture of the network plays a significant role in determining the outbreak or the extinction
of an epidemic. As a result, the heterogeneity of contacts for nodes in the network should
be taken into consideration. Specifically; one should further separate each compartment,
e.g., S, into several smaller parts S;, ¢ = 1,...,n, where nodes in each different part
have the different levels of influence to the epidemic.  Specifically, the network of dis-
ecase transmission inside theindividuals could be considered as the scale-free(SF) one, an
heterogeneous network with power-law-degree distributions.

The network model with an infective vector is considered in [(—8]. They consider an
epidemic model where the disease spread not only through the contacts between individu-
als themselves but also through the contacts between individuals and one kind of infective
media.

It should also be noted that in [6], both individuals and the infective vector are con-
sidered as the same nodes in the network, i.e. both are scale-free nodes. However, the
model under consideration in [7,5] assumes that the infective vector may contact a person

without any selectivity. However, it may happens that some infectious diseases spread



with more than one infective media. For instance, it was reported, see e.g., [9] that the
animals tested positive for rabies in Taiwan from January 1-October 3, 2013 include not
only dog but also ferret-badgers and shrews. In fact, 159 of 512(31.1%) ferret-badgers and
one of 138(0.7%) shrews tested positive for rabies. Motivated by the incidence occurred in
Taiwan recently, we generalize the model so that our model consists of multiple infective
media. Moreover, our model assume that the contact between vectors and individuals is
satisfied by a general formulation, which include both scenarios considered in [0] and [7,],
respectively.

The rest of this paper is organized as follows. In Section 2, we build the epidemic
model considered in this paper. In Section 3, we first summarize the work of Driessche and
Watmough in [10] where a general method to determine whether epidemic will breakout
or extinguish was given. It was shown that when the basic reproduction number Ry is
less than 1, the disease free equilibrium (DFE) is locally asymptotically stable; whereas
when R, is greater than 1, the DFE is unstable. Then we show that this method can
be well applied to our model. In Section 4, we present a global analysis of our model in
both cases Ry <1 and Ry > 1. In Section 5; we do some numerical simulations to verify
the correction of our results and discuss the relationship between the basic reproduction
number R, and the epidemic parameters.in-the model. We finally conclude our results in

Section 6.

2 Model formulation

In this section, we introduce our epidemic model, a SIS model with multiple infective
media within the diseases spread not only through the contacts between individuals them-
selves, but also through the contacts between individuals and multiple infective vectors.

To simulate the process of interactions, a complex network is established and nodes

in the network are assumed spatially distributed. Here each node represents either an



individual (human) or a vector. In the process of disease spread, the state of each node
belongs to either one of the following states: susceptible (healthy), infected. A susceptible
node could become an infected one if it has a contact with infected nodes. Moreover, an
infected node could become a susceptible one if one accepts a successful cure. Precisely,
we assume that, at each time step, the transmission rate that susceptible individuals
become infected by contacts with infected individuals is «, and an infected individual
is cured and becomes susceptible again with probability v. For the consideration of the
heterogeneity in the individuals’ contacts, we divide the individuals into n subgroups
where each individual in the k’s group, k= 1,...;n, has the same contact degree k. We
shall denote the number of susceptible, infected individuals of degree k at time ¢ by Sk(t),
It (t), respectively. Furthermore, we assume that there is no natural death or disease-
related death for the individuals. Hence the total population N of each kth group is
constant. That is, Ny (= Ni(t)) = Sk(t) + Ix(t), k= 1,...,n, are constant.

We further assume that there are m kinds of medias involving the disease transmission
in our model. In the epidemic process, it is assumed that no infection exists between any
two vectors and an infected vector of the [-th kind can recover to a susceptible one with
the probability ji;.- Denote the numbers of susceptible; infected media of the [-th kind
at time ¢ by S/"(t), I*(t), respectively. Similarly, we will not consider the possibility of
vector removal due to birth and death. Hence the total population N;" of each media
of the [-th kind is constant. That is, N/" (= N™(t)) = S;*(t) + I[*(t), L = 1,...,m, are
constant.

Now we are in the position to describe the interactions between the individuals and
media. We assume that a susceptible individual with degree k, £ = 1,...,n, may be
attacked by an infected vector with probability g (3°,_; @ = 1). And at each time
step, the transmission rate that susceptible individuals become infected by contacts with

infected media of the [-th kind is §;. Meanwhile, the transmission rate that susceptible



Table 1. The description of parameters

Parameter Description

Sk(t

N,

), I (t) the number of susceptible, infected individuals with degree k at time ¢
the total population of individuals with degree k

S (), ;7 (t)  the number of susceptible, infected medium of the {-th kind at time ¢

Ny

(67

the total population of medium of the [-th kind

the transmission rate that susceptible individuals become infected
by contacts with infected individuals

the probability that an infected individual is cured and
become susceptible

the probability that an infected vector of the [-th kind recover and
become susceptible

the probability that a susceptible individual with degree k is attacked
by an infected vector

the transmission rate that susceptible individuals become.infected
by contacts with infected media of the [-th kind

the transmission rate that susceptible media of the [-th kind become infected

by contacts with infected individuals

media of the [-th kind become contagious (infected) by contacts with infected individuals

For clarity, we list the parameters and variables on our model in Table 1 and the

transmission sketch is shown in Fig. 1.

Under above assumptions, the dynamics of the epidemic model is governed by in the

following nonlinear differential equations:

§ dS;t(t) = —akSy(t)O(I(t)) — GrSk(t) l:il 3 Iﬁ,ﬂf) A L(®),
0 _ 0o + i) $ A5 - om0, k-1
dsf;(t) = —7SMO)R(I(t)) + mIm(t),

|0 e dan) - i), —1.m
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Figure 1. Flowchart of disease transmission between individuals and medias.

where I(t) := (I(t), L(1),..., L,(t))* (T takes the notation of the transpose) is the

collection of all.infected individuals with difterent degrees at time ¢,

: > kli()
SO e —
> kN
k=1
represents the probability of ‘a link from an individual pointing to an infected individual

and
()

represents the probability of a link from a vector pointing to an infected individual. We
remark that the specific setting of function © is based on the consideration of the wide
range distribution of the contact degrees between individuals. On the other hand, the
setting of function ® is quite free since there is no assumption made on the contact degrees

from a vector to individuals.

Let ax(t) = %0 ((t) := 20), k= 1, n, and () == L2 (u(r) = L),

[ =1,...,m, be the relative densities of infected (susceptible) individuals of degree k and

media of the [-th kind at time ¢, respectively. Then by the fact that zx + yr = 1 and



v+ u, =1 for all k, [, we can rewrite equation (1) as the following density-related form.

d(i];t(t) — ak‘[]. — .Z‘k(t)]@(wl(t)) + (jk[]. — $k(t)] égl’vl(t) — ’V.Tik(t), k= 1, o,
dv(;it) =71 — ()] P(21(t)) — mui(t), l=1,...,m,
g
dyslft) - —Ozk[l — xk(t)]@(a71(t)) — (jk[l — l‘k(t)] l:ZlBl’Ul(t) + ’}/[1 — yk(t)], k=1,...,n,
| duégt) = —[l — v (t)]®(@1 (1) + full — w(t)], I=1,...,m,
where
( ()" 2)

is the collection of .3

time ¢,
2 kpray ()
S = 3
k > ) ( )
Dr = % is d i, and

/ (4)
\ ,2n + 2m, by

) notat1ons we define a:k for
L9 ' h 9 m?

Th =N Yk—(nim)s HEk=n+m+1,...,2n+m,

For the simplificati

Up—(2ntm), ifk=2n+m+1,...,2n+ 2m,



and

qr, ifk=1,...,n,
k. =
Qk—(n+m), fk=n+m+1,...,2n+m,

/Bk:Bk—nvk:n'i_lv"'an_l_m’

4
Th—n, itk=n+1,....,n4+m,

\ Th—(2n4m), fk=2n+m+1,...,2n+ 2m,

k=2n+m+1,...,2n 4 2m,

(5)

where @, = (z1(t), 72(t),- -+ ,2,(t))", © and ® are defined as in (2), (3), and (4), respec-

tively.
Furthermore, since o 4+ it (nim) (= 2+ ) = Lfor k= 1,...,n, and x4+ Tip (nm) (=
Ug—p + Vk—p) = 1 for k = n+1,...,n 4+ m, to analyze the dynamics of equation (5)

is equivalent to analyze the dynamics of equations (just) related to variables xy, k =



1,...,n+ m. Then the equivalent dynamical equation reads as the following:

Qs (1) akll — 2 (1)]O(1(1)) + qu[l — z1(1)] if; Bia;(t) — yap(t), k=1,....n,
it
Till — xp(8)| (21 (t)) — prar(t), hentlontm

(6)
3 Local stability analysis

In this section, we are to analyze the local stability of the disease free equilibrium (DFE)

50::(07"'a0717"'a1)T (7)

n+m n—+m

for equation (5) (equivalently, &y = 0 € R"*™ for (6)) by using the general method
proposed by Driessche and Watmough in [ 0]. We first use a subsection to introduce their

work and then we show how this method can be applied to our model (5).

3.1 Definition of the basic reproduction number R

Let &€ = (&55+0+ ,&x)T denote the collection of all numbers of compartments in the epi-

demic model (network) and the first m components-of & correspond to all the infected

compartments. Suppose that the dynamics of the epidemic model is governed by the
following equation.

a5

dt

= F(&) - V() (8)

f(€)

=F (&) -V (&) -Vl
where (&) = (f1(§),- -+, fa(§)", F(&) = (F1(§),--- . Fal§))", V(&) = (Vi (&), . Val§))"
and VE(&) = (VE(E),--- ,VE(€))". Here each function takes the meaning as follows:
F;(&) is the rate of appearance of new infections in compartment 7, V;"(£) is the rate of
transfer of nodes into compartment i by all other means, and V; (&) is the rate of transfer
of nodes out of compartment ¢. Moreover, these functions are assumed to satisfy the

following assumptions (A1) — (A5) described below.

8



Since each function represents a directed transfer of nodes, they are all nonnegative.

Thus,

(A1) If £ > 0, then F(&), V¥ (), V(&) > 0. Here a vector v > 0 means that all

components of v are nonegative.

If a compartment is empty, then there can be no transfer of nodes out of the compart-

ment by death, infection, nor any other means. Thus,
(A2) If £ has some component & = 05 then. V,~ (&) = 0.

Notice that (Al) and (A2) imply that the nonmegative .cone {£ : €& > 0} is positive
invariant since fi(&) > 0 whenever & = 0.
The next condition arises from the simplefact that the incidence of infection for unin-

fected compartments is zero.
(A3) F;(&) =0 for i > m.
Define X4 be the set of all disease free states, i.e.,
Xi={£>0:=0,i=1,...;m}. 9)

Then to ensure that the disease free subspace X is invariant, we assume that if the
population is free of disease, then the population will remain free of disease. That is,
there is no (density independent) immigration of infection. This condition is stated as

follows:
(A4) If € € X, then F;(¢§) =0and V" (§) =0fori=1,...,m.

The remaining condition is based on the derivatives of f near a DFE. For our purposes,
we restrict a DFE of (8) to be locally asymptotically stable equilibrium for the disease
free model, i.e., (8) restricted to X. Note that we need not assume that the model has

a unique DFE. Consider a population near the & € X,. If the population remains near



the DFE (i.e., the introduction of a few infective nodes does not result in an epidemic),

then the population will return to the DFE according to the linearized system

£ = Df(&)(& &), (10)

where D f(&) is the derivative [0f;/0;] evaluated at the DFE &, (i.e., the Jacobian
matrix). Here the derivative is one sided since & is on the domain boundary. We restrict
our attention to systems in which the DFE is stable in the absence of new infection. That

is,
(A5) If F(€) is set zero, then all eigenvalues of D f (&) have negative real parts.

Lemma 1. ( [10]) Let & be a disease free equilibrium of (8) and suppose assumptions

(A1)-(A5) hold true. Then the derivatives DF (&y) and DV (&) are partitioned as

F 0 vV 0
DF = ) DV(EO): 3

0 0 Js Jy

where F and V. are the m, x m_matrices defined by

oV,
/3

Fe [85 (50)} and V. = [

3 (go)] with 1 <.4,7 < m. (11)

Furthermore, F' is nonnegative, V' is a nonsingular M-matrix and all eigenvalues of Jy

have positive real part.

Define the basic reproduction number Ry by
Ry := p(FV ), (12)

where p(A) denotes the spectral radius of a matrix A. Then it describes “the expected
number of secondary cases produced, in a completely susceptible population, by a typical
infective individual”. Precisely, if Ry < 1, then on average an infected individual produces
less than one new infected individual over the course of its infectious period, and the

infection cannot grow. Conversely, if Ry > 1, then each infected individual produces, on

10



average, more than one new infection, and the disease can invade the population. We

conclude the result in the following theorem.

Theorem 1. ( [10]) Let & be a disease free equilibrium of (8) and suppose assumptions

(A1)-(A5) hold true. Then the following assertions hold.
(i) If Ry < 1, then &g is locally asymptotically stable.
(11) If Ry > 1, then &, is unstable.
Here Ry s the basic reproduction number defined as in (12).

3.2 The basic reproduction numberR, in our model

In this subsection, the local-stability of DFE &, defined in (7) for model (5) is to be
analyzed by applying Theorem 1 giveniin the above subsection. Forit, the first step is to
find the basic reproduction number Ry for model (5).

T

Notice that by letting & = (@1, s@o,40m)" and x; := (vy, -, x,)T, we can write

(5) into the (componentwise) form given in (8):

de; 96 |
=~ Rl - i@ - V)

for k =1,...,2(n+m), where

( n+m
ak:[l —gk]®(m1)+qk[1 —fk] Z ﬁjfj, k = 1,...,n,
Jj=n+1
ri[l — & P(xy), E=n+1,...,n+m,
Fr(§) =
0, k=n+m+1,...,2n+m,
0, k=2n+m-+1,...,2n+ 2m,

(13)

11



fygk? k:].,...,’l’l,,
:U’ké.lm k:n+1,"'an+m7
Vk_(g) =9 n+m (14)
ak&O(x1) + @ Y. Bi&, k=n+m+1,....2n+m,
j=n+1
& ®(x1), k=2n+m+1,...,2n+ 2m,
0, k=1,...,n,

(15)

|
Then it is clear e disease free ‘st ace s the unique DFE and
assumptions 1,....2(n+m),

are set zero

where Cy} = —vI,, and Cy = —diag([p1, -, ttm)). Here I, is the n x n identity matrix.
Consequently, eigenvalues of D f (&) are —7, —p1, - -+ , —fim, which are all negative. Hence
assumption (A5) holds.

Since all assumptions (A1)—(A5) in Theorem 1 hold true, we can apply it to our model.

By direct computation, we have that matrices F' and V' defined in (11) are:

12



(1-Dapr  (1-2)ap, (1-n)ap, \
{ <k> <k> < k> QBnr1 Qbniz o @Bnim
(2-Dapr  (2-2)ap, (2-n)ap,
<k> < k> <k> Qb1 @Bny2 o @Bnim
(n-Dapr  (n-2)aps (n-n)ap,
< k> <k> k> @bBns1 GnbBnt2 - GnbBnim

n+14n 0

and

Hn+m /

Then the reproduction number is given by Ry = p(FV '), the spectral radius of matrix

13



FV~!. We compute that

(1-Dapr  (1-2)ap, (1-n)ap, lﬁnﬂ " Brt2 o Brtm
y<k> y<k> v<k> Hnt1 Hn+2 Hntm
(2 : 1)(1]71 (2 ' 2)(1/]92 (2 : n)Oan Qﬁn—i—l % Bn+2 % ﬁn-i-m
’7<k> fy<k> ’7<k> Mn1 Hn42 Mntm
(n-Lapi  (n-2)aps (n-n)ap, . Bri1 . Bryo Brtm
1 y<k> y<k> v<k> g g " tnm
FV—" =
+141 +1492 +19 0 0 0
Y Y 1
T 7 T
+24q1 n+242 +20n 0 0 0
Y Y Y
1 — | | 0 o .. 0
\ Y <) i
- »Y<ak> TlXT q/BT

T T, T
7X:(1p17"'7npn) 7q:(Q1a"'>Qn) 7/3:(ﬁn+17"'7ﬁn+m)
and r = (rp4q, - ,rn+m)T. Thus, we obtain that the basi¢ reproduction number Ry is

the largest modulus of the roots of the cubic polynomial described below:
)\3 —|— CLQ)\2 + al)\+ ag = O,

where

n n n n n—+m
ag = 7;% <; Kpe Y di — Z_: kax z_: kpqu) ( > ﬂ) - (18)

o1 M

Then we give a formula to compute to the roots of a cubic polynomial.

14



Lemma 2. [/1] Consider the general cubic polynomial
2® 4+ ax® +br +c=0. (19)

2 3
Let I\ .= <W> + (%) . Then the following assertions hold:

Case 1: When A >0, (19) has one real root and one pair of conjugate virtual roots;
Case 2: When A =0, (19) has three real roots, at least two of which are repeated roots;
Case 3: When A <0, (19) has three different real roots.

Moreover, the roots of (19) are
21 = /p1 + /p2 + %,
72 = /Pl w0V T g,
23 = YYp1 + U pz + g,

2a% — 9ab + 27¢ 2a® — 9ab + 27c
54 VD, = 54

where p; ==

—\/Z,ib:—%—ki\/?g and

2= 1.

By Lemma 2, if A <0, the basic reproduction number Ry = max{|z|, |22|, |23|}; if
A > 0, we obtain the reproduction number Ry = z3: We conclude our local stability in

the following theorem.

Theorem 2. For the disease transmission model (5) (equivalently, (6)), if Ry < 1, then
the disease-free equilibrium &y (xo) is locally asymptotically stable. On the other hand, if

Ry > 1, then &, () is unstable.

4 Global stability analysis

In this section, the qualitatively global analysis of model (6) (equivalently, (5)) is pre-

sented. We first show that set A, := [0, 1]""™ is positive invariant.

15



Lemma 3. Set A\, ., is positively invariant under the flow determined by equation (6).

That is, (t) € DNpim for allt >0 and £(0) € Dpyimm.

Proof. Denote the boundaries of set A4, by A, 1,,. Then it consists of the two parts

OA, ., and A2 where
ON) = {x € Ny 11, = 0 for some k}, and
ONZ. . ={x € Npym : 7 = 1 for some k}.

Then to prove that A,,.,, is positively invariant, it suffices to prove that the assignment
vector at any boundary point of the vector field yielded by equation (6) is tangent or
pointing into the set A,y e Since A, 4, is a rectangle in R™™™ the “outer normals”

and OA?

n+m

at boundaries OAL

ey are M, = —ey and n; ;= ey, respectively, where ey

denotes the standard unit vectorin R™™™. Moreover, we compute that

(I). For @ € A}y with @y = 0-for some k& =1, ..., n+nu

ntm
— |akO(@®1) +aqr X Byzy|, for k=1--- n,
T - mp= j=n+1
_Tkzq)(wl)a fork=n+1,2,"-- . n+m.

7=1
Thus, -7}, <0 forall k=1,....;n+m.

(IT). For ¢ € A2, withuay, = 1 for some k = 1,0 .y n +m:

n-+m,
—, fork=1,""n,
—pg, fork=n+1,2,--- ., n+m.
Thus, - n: <0 forall k=1,...,n+m.
By (I) and (II), we have that the assignment vector at any boundary point of the vector

field yielded by equation (6) is tangent or pointing into the set A,,,. Hence, the proof

of Lemma 3 is complete. [

Next, we show that DFE &, defined in (7) is globally asymptotically stable in model

(5) if Ry < 1. Equivalently, equilibrium axy = 0 € R™"™ is globally asymptotically stable

16



in model (6) if Ry < 1. (For simplification, we also call xy to be a DEF for model
(6).) Before it, we first show that no equilibrium lies in A, expect o and recall a

general qualitative analytic result in the differential equations proposed by Lajmanovich

and Yorke [12].
Lemma 4. The only equilibrium for (6) in 0D, im, the boundary of Nyim, is DFE .

Proof. Suppose the statement of Lemma 4 is false. Then there exists an equilibrium
T = (T1, -, Tpym) for (6) in O Ny —{@o}. Then by definition, z = 0 for some
ke{l,--- ., n+m}.

(I).Ifk € {1,--- ,m}, thenby (6), since 2= = 0, we have that akO(z:)+q, 2?3111 Bz =

0. Hence ©(xy), Z?;ﬁl B;z; = 0. Consequently, &; = 0 forall j =1,....,n+m, ie,
T = xo(= 0), a contradiction:

(I). If k'e{n +dy==r ;n+m}, then by (6), since &= — 0, we have that (&) = 0
and hence Z; = 0 for all' y = 1,...,n. Moreover, for j =n +1,...,n+ m, since % =0,
we have that @; = 0. Thus, £ = xy(= 0), a contradiction.

By (I) and (II), we conelude that the only equilibrium for (6) in 0A, 1., is the DFE

xy. It completes the proof of Lemma 4.

Lemma 5. ( [12]) Consider the system

d
d—f — Az + H(z), (20)

where A is an m x m matriz and H (x) is continuously differentiable in a region D € R™.

Suppose that the following assumptions hold:

(A1) The compact convex set C' C D is positively invariant under the flow determined by

equation (20).

(Ag) 1 IHOI_

z=0 x|

17



(A3) There exist some r > 0 and eigenvector v € R™ of AT such that v - x > r||z| for

allx e C.
(A4) v-H(x) <0 for allx € C.

(A5) {0} is the largest positively invariant set for (20) contained in set M := {x € C :
v-H(x)=0}.

Then either (i) € = 0 is globally asymptotically stable in C, or (ii) for any initial value

&y € C — {0}, the solution ¢(t,&o) of (20) satisfies liminf; o ||d(t, Zg)|| > m, where

m > 0 is independent of &y. Moreover, there exists a nontrivial equilibrium x* of (20) in

C.

Theorem 3. If Ry < 1, then xg is globally asymptotically stable in AN, ,. On the
other hand, 4f Ry > 1, then-there exists an epidemic equilibrium x*(> 0) in Njipm.

Moreover, for any initial value &y € Lpim — {®0o ), the solution ¢(t,x) of (6) satisfies

liminf, , [[@(t, &o)|| > m, where m > 0 is independent of &.

Proof. Notice first that equation (6)can be rewritten in the form of (20):

dx
— = Az + H(x), (21)
dt
where
b1 2p;y NPn
+ e (0 n n+m
Y - k> ¥ N » - @1 8n+1 q1Bn+
P1 2py npn
k> k> k> q28n+1 q25n+
A= Lo 202 nao —ry Pr_ e Gnf3 qn 3
<k> <k> k nintl .
T'n4+14q1 T'n+1942 T1qn —Hn+1
T'n+m{1 T'n+md2 T"'mdn —Hn+m
(22)
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and

n+m
—04%’1@(531)—6]1931< > 5;‘%‘)
Jj=n+1

—anz,O(x1) — ¢y ( "im ﬁjxj)

j=n+1

—T’n+1$n+1‘p(331)

~TntmTntm®(@1)
Then (i) by Lemma 3, A, is a positive invariant (compact) set for equation (6) in
R™*™: (ii) Since each term of H () has degree equal to 2, we have that alcli% % = 0.
(iii) Let Ay i=AT + oI where a.= max{y, flps1, " atm}- Then A; is a nonnegative,
irreducible matrix. Hence, by Perron-Frobenius theorem, there exists an eigenvalue A € R
of Ay such.that A = p(A1)(> 0). Moreover, it has a corresponding eigenvector v > 0.
Consequently, A — a is an eigenvalue of AT and v is its corresponding eigenvector. Then
for all @ € Ay, = [0, 1], we have that v - & > |||, > v|lx]|2 where vy > 0 takes
the minimum value of all components of v. (iv) For & € A,.,,, since H(x) < 0, we

have that v - H(x) <0. Moreover, the equality holds if and only if H(x) = 0. (v) Let
M:={x € At :v-H(x) =0} Then we have that
M={xe,m:H(x)=0}
={xeclpim:2,=0,Vk=1,--- n}
Let « € M — {0}. Then Ax + H(x) = Ax has its first n components being positive by
(22). This means that initial value starting at point x will leave M immediately under
the flow determined by (21). Hence, we conclude that the largest invariant set for (21)

contained in M is {0}. Thus, all assumptions in Lemma 5 hold and hence either one of

the following cases hold: Case 1: Equilibrium xy(= 0) is globally asymptotically stable

19



in Npym. Case 2: For any initial value &y € A, — {xo}, the solution ¢ (¢, &) of (6)
satisfies liminf, , ||@(t, Zo)|| > m, where m > 0 is independent of &,. Moreover, there
exists a nontrivial equilibrium a* of (6) in A, 4,,. In fact, by Lemma 4, *(> 0) is an
epidemic equilibrium. By Theorem 2, Case 1 occurs iff Ry < 1 and Case 2 occurs iff

Ry > 1. This completes the proof of Theorem 3. ]

Theorem 4. If Ry > 1, then there exists a unique endemic equilibrium x*(> 0) of (6)

such that x* is globally asymptotically stable in /\, 1, — {xo}.

Proof. Note that the existence of the endemic equilibrium x*(> 0) is guaranteed by
Theorem 3. Then we aim to show that such endemic equilibrium is unique and globally
asymptotically stable.

(I). We show:-that the existence of the endemic equilibrium @* is unique. Suppose that

x* = (23, wan, )" and 2= = (zf,- -, zF )L are two distinct-endemic equilibria of

(6). Then there exists at least one ky such that @y, # 25 . Without loss of generality, we

¥ x* k .
assume that zg > z; and =& > =& (opzg > —%ay) forall k = 1,....n+m. Since z*
ko k
ko

and z* are two_equilibria of (6), we have that:

(i) If ko € {1, -+ ,n}, then

n+m
— Yy + ekl — 77,)0(@]) + ar, (1= i) Y By
j=n+1
n+m
= —yzp, + ako(1 = 25)O(=2F) + qre (1 — 25,) > Bz =0,
Jj=n+1
z; iy z;
= =y, (L= af,) [ake®@) =2 +an, Y Bz
xk’o j=n+1 xko

==z, T (1= 2,)

n+m
ako©(27) + qi, Z /sz;(] =0,

j=n+1
by timing ;’i‘) on the left-hand side of the first equality. Hence,
ko

* n+m * n+m
* “ko % ko« * * *
(1 =) |akoO(=22T) + i, Z B; ( - xj>] =(1—-2,) [ako@(zl) + Gk, Z ﬁjzj]
Lo - Lk, -
j=n+1 0 j=n+1
Z*
But this make a contradiction with zj > z; and z; > % xpforallk=1,...,n+m.
T,
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(i) If ko € {n+1,--- ,n+m}, then

_IU/kOxZO + Tko(l - x;;o)q)(w}'j) = _I’LkOZZO + Tko(l - Z;:‘o)q)(zr) = 0

*

sz
*
k,

=% on the left-hand side of the above first equality, we have that, after some

By timing

0
simple reduction,
*

(1= o3, 0(=20wi) = (1 - 2,)0(=1).

*

ko

*
Zko
*

Ty
By (i) and (ii), we have the result,that model (6) has a unique endemic equilibrium.

But this make a contradiction with zj > 2; and z; > xp forallk=1,...,n+m.
(IT). We show that the endemic equilibrium @* is globally asymptotically stable in

Apim — {xo}. Define G and g be two real-valued functions in A, ,,, by

G(x) = max {%} and  g(z) = min {ﬁ} (24)

1<k<ntm | T7, 1<k<ntm | Ty

Then G(x) and g(x) are continuous and their right-hand derivatives exist along solutions
of (6).
Let x(t) ‘be a solution of (6). Then for any given t, > 0, there is some sufficiently

small € > 0 such that G(x(t)) = x;‘i(t), for some ko €{1,...,n+m}int € [to, to + €], and
ko

hence

Zig(t0)

*
.’L’ko

G|y (z(t0)). =

Y

where G'|(g) is define as

Gx(t+h)) — G(x(t

Gl — timsup CEUED) — Cla(t)
h—0+ h

Note that by the definition of G, we have that for t € [to, to + €],

o (to) o 2r(to)
xzo Xy,

a:zo
T, (o)

(or zj, >

zk(to)), k=1,...,n+m. (25)

In the following, we will show that if G(x(to)) > 1 (i.e., x4, (to) > 7%,), then G| (x(t0)) <

0. Indeed,
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(i) If ko € {1,--- ,n}, then

. T (to) > -
o, Zal)_ {_w,m(to) 11— i (to)] | ako® (aa (t0)) + Z; Wﬂfo)] } (i)

= =T, + [1 = T (t0)]

* n+m *
akoO( %; x1(to)) + qr, Z 53( ko xj(to)>]

n+m

Oéko@(wt) +Qk0 Z B].CIZ';

j=n+1

< —yaxp, + 1— xzo]

(by (25), " > 0 and xx,(to) > %)
=0,
since &* is an equilibrium. Hence, we have that G'|c)((ty)) < 0.

(ii) If ko € {n+1,--- yn+m}, then

* xlo(to) - $*O
gy, l’zo (to) {=Ho Lo (L) + Tog [1 — 2o (10)] 2 (1(F0)) } Ikolzto)
= —UkoThy + Tho[l — Tk, (to)]q)(xkolzzo)ml(to))

< —Hko Ty & o[ = 3, | ®(27)
(by (25), " > 0 and x,(to) > 23,)
L)Y
since &* is an equilibrium. Hence, we have that G'|@y(z(ty)) < 0.

By (i) and (ii), we showed that if G'(@(tg)) > 1, then G’|)(x(to)) < 0. By the similar
argument, it can be showed that if g(x(ty)) < 1, then ¢'|@)(x(to)) > 0. Moreover, if
G(x(to)) = 1, then G'|)(x(to)) < 0, and if g(x(to)) = 1, then ¢'|s)(x(to)) > 0. The
proof of these assertions are omitted here since the similarity.

Define the Lyapunov candidate functions U and V' in A, by
U(x) = max{G(x) — 1,0},

V(x) = max{1 — g(x),0}.
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Then U and V are continuous and nonnegative functions in A, ,,. Moreover,

U ) (2(t)) <0,

V' (e) ((t)) < 0.
Let Sy :={x € Dy : U’ |(6) (2(t)) = 0} and Sy := {x € Dpprn : V' |6) (2(t)) = 0}.
Then we have that Sy = {&x € Ay 0 0 < 2 < 25,k = 1,...n+m} and Sy =
{x € Ny 2 <z, < 1} U {xp}. By LaSalle invariance principle, any solution of (6)
starting in A,,,, will eventually approach to Sy NSy = {x*, xy}. However, by Theorem
3, since there exists some m >0 such that for any initial value &y € A, 4 — {0}, the
solution ¢(t, o) of (6) satisfies lim inf; .. ||d(t, ®g)|| = m, we conclude that x* is globally
asymptotically stable in A, .., — {xo}-

By (I) and(1I), the proof-of Theorem 4 is complete. O

5 Numerical simulation

Infected density
Infected density
Infected density

(a) (b) ()

Figure 2. The stable densities of infected nodes with parameters «, 32, 7o.

In this section, we show some numerical simulations to verify the analytic results
obtained in above sections. First, we show that the relationship between the stable
densities of infected nodes and the model parameters «, s, o in Fig. 2. There, we see
that for each parameter, there exists a threshold such that the epidemic extinguishes when
the parameter value less than it, and the epidemic breaks out when the parameter value

greater than it. Moreover, the stable densities increase as parameter value increases.

23



1.02

1.01r

M 4
i .
. i
i i“.'!:l
0.99r
o
ad
0.98r
, l:l
’ '

0.97r '
*3 ] .

0.96

0.95 I I I I
0 10 20 30 40 50

Figure 3. The basic reproduction number Ry with m.

Fig. 3 shows the basic reproduction number Ry in term of m, the number of kinds of
media, with fixed n = 20, v =0.8, a = 0.056, pp = qx = 0.05 for £ = 1,...,20 and
p1 = ...= fy = 0.8, but parameters J, r are set free where r satisfying > " r, = 1. In
the figure, we see that the distribution of values of Ry shrinks as m increases. Moreover,
the range of values of R, contains 1, the epidemic threshold when m < 10, but is a subset

of (0,1) when-m > 40.

6 Conclusion

We have discussed an epidemic SIS model with multiple infective media in complex net-
works. In the model, we assume that diseases spread not only through the contacts
between individuals themselves but also through the contacts of individuals and different
kinds of infective media. This epidemic SIS model is particularly suited for disease such
as rabies where the disease can spread through the infective dogs, ferret badgers or other
animals. Moreover, for the reality, the heterogeneity of the individuals’ contacts is taken
into consideration. Through the rigorous mathematical analysis, the global dynamics of
the model is derived. We first compute the basic reproduction number Ry and then show

that if Ry < 1, then the disease-free equilibrium is globally asymptotically stable. On
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the contrary, if Ry > 1, then there exists a unique endemic equilibrium which is globally
asymptotically stable.

In spite that the epidemic model under consideration is quite general, there is still
some limitations. For instance, in our model, the disease transmission between vectors
and the disease-related death is ignored. It is an interesting and important issue for the

future investigation.
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