
 

 

 

國  立  交  通  大  學  
 

應用數學所 
 

碩 士 論 文  

 

 

 

多種傳播媒介的會完全復原的傳染模型之分析 

Analysis of a SIS model with multiple infective media on 

complex networks 

 

 

 

研 究 生： 林辰燁 

指導教授： 莊  重  教授  

  

  

  

  

中 華 民 國 一 ○ 三 年 七 月 

  



 

 

多種傳播媒介的會完全復原的傳染模型之分析 

Analysis of a SIS model with multiple infective media on 

complex networks 

 

研 究 生： 林 辰 燁                    Student： Chen-Ye Lin 

指導教授： 莊    重                    Advisor： Jonq Juang 

 

國  立  交  通  大  學 

應  用  數  學  所 

碩  士  論  文 

 

 

A Thesis  

Submitted to Department of Applied Mathematics  

College of Science  

National Chiao Tung University  

In Partial Fulfillment of the Requirements  

for the Degree of  

Master  

in  

Applied Mathematics 

 

July 2014  

  

Hsinchu, Taiwan, Republic of China  

  

  

中華民國一○三年七月 



 

i 
 

多種傳播媒介的會完全復原的傳染模型之分析 

 

學生：林辰燁  指導教授：莊   重 

 

國立交通大學應用數學所(研究所)碩士班  

 

 

摘        要 

  在這篇論文中我們提出與研究一個多重傳染媒介的 SIS 病毒傳播

模型，在這個一般化的模型中人類之間的以異構的 scale-free 網絡

作為連結方式，而人類與媒介間的連接方式我們則採用更一般化的

網絡，如此一來具選擇性與不具選擇性的模型可以同時被我們討

論、研究。我們的研究發現這個疾病疫情的模型可以用疾病再生指

數 R0做分類、討論，並得出以下結果。若R0 < 1，則疾病疫情會消

失，這表示人類與傳染媒介都痊癒。若R0 > 1，則疾病疫情會爆

發，穩定收斂到一個穩定的平衡態。 
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complex networks 

Student: Chen-Ye Lin  Advisors: Jonq Juang 

 

 

Department of Applied Mathematics 

National Chiao Tung University 

 

 

ABSTRACT 

In this paper, an epidemic SIS model (e.g., rabies) with multiple 

infective media (e.g., dogs, ferret-badgers and shrews) in complex 

networks is proposed and investigated. Such generalized model include a 

heterogeneous scale-free network between individuals and a generalized 

network between media and individuals. Such generalized networks is 

formulated in such a way so that both heterogeneous and homogeneous 

network are its special cases. The global dynamics of the model is studied 

rigorously. We compute the basic reproduction number R0 for our model 

and then show that if R0 < 1, then the disease-free equilibrium is globally 

asymptotically stable. On the contrary, if R0 > 1 , then there exists a 

unique endemic equilibrium which is globally asymptotically stable. 
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1 Introduction

The study of the diseases spread is an important issue no matter in the medical prac-

tice or the academic. Heretofore, many different epidemic models are constructed and

investigated to describe how the infectious transmission in one area (network) is and why

some diseases eventually break out but some eventually extinguish, such as tuberculosis,

malaria, and rabies or etc. Classically, these models divide involved nodes (individu-

als) into several compartments such as susceptible (S), infected (I), exposed (E) and re-

covered (R) compartments, and then are classified as the susceptible-infected-susceptible

(SIS), susceptible-infected-recovered (SIR), susceptible-infected-died (SID) or susceptible-

exposed-infected-susceptible (SEIR) models according to the period of immunity of nodes.

Recent researches [1–5] about the epidemic models have demonstrated that the struc-

ture of the network plays a significant role in determining the outbreak or the extinction

of an epidemic. As a result, the heterogeneity of contacts for nodes in the network should

be taken into consideration. Specifically, one should further separate each compartment,

e.g., S, into several smaller parts Si, i = 1, . . . , n, where nodes in each different part

have the different levels of influence to the epidemic. Specifically, the network of dis-

ease transmission inside the individuals could be considered as the scale-free(SF) one, an

heterogeneous network with power-law degree distributions.

The network model with an infective vector is considered in [6–8]. They consider an

epidemic model where the disease spread not only through the contacts between individu-

als themselves but also through the contacts between individuals and one kind of infective

media.

It should also be noted that in [6], both individuals and the infective vector are con-

sidered as the same nodes in the network, i.e. both are scale-free nodes. However, the

model under consideration in [7,8] assumes that the infective vector may contact a person

without any selectivity. However, it may happens that some infectious diseases spread
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with more than one infective media. For instance, it was reported, see e.g., [9] that the

animals tested positive for rabies in Taiwan from January 1–October 3, 2013 include not

only dog but also ferret-badgers and shrews. In fact, 159 of 512(31.1%) ferret-badgers and

one of 138(0.7%) shrews tested positive for rabies. Motivated by the incidence occurred in

Taiwan recently, we generalize the model so that our model consists of multiple infective

media. Moreover, our model assume that the contact between vectors and individuals is

satisfied by a general formulation, which include both scenarios considered in [6] and [7,8],

respectively.

The rest of this paper is organized as follows. In Section 2, we build the epidemic

model considered in this paper. In Section 3, we first summarize the work of Driessche and

Watmough in [10] where a general method to determine whether epidemic will breakout

or extinguish was given. It was shown that when the basic reproduction number R0 is

less than 1, the disease free equilibrium (DFE) is locally asymptotically stable; whereas

when R0 is greater than 1, the DFE is unstable. Then we show that this method can

be well applied to our model. In Section 4, we present a global analysis of our model in

both cases R0 < 1 and R0 > 1. In Section 5, we do some numerical simulations to verify

the correction of our results and discuss the relationship between the basic reproduction

number R0 and the epidemic parameters in the model. We finally conclude our results in

Section 6.

2 Model formulation

In this section, we introduce our epidemic model, a SIS model with multiple infective

media within the diseases spread not only through the contacts between individuals them-

selves, but also through the contacts between individuals and multiple infective vectors.

To simulate the process of interactions, a complex network is established and nodes

in the network are assumed spatially distributed. Here each node represents either an
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individual (human) or a vector. In the process of disease spread, the state of each node

belongs to either one of the following states: susceptible (healthy), infected. A susceptible

node could become an infected one if it has a contact with infected nodes. Moreover, an

infected node could become a susceptible one if one accepts a successful cure. Precisely,

we assume that, at each time step, the transmission rate that susceptible individuals

become infected by contacts with infected individuals is α, and an infected individual

is cured and becomes susceptible again with probability γ. For the consideration of the

heterogeneity in the individuals’ contacts, we divide the individuals into n subgroups

where each individual in the k’s group, k = 1, . . . , n, has the same contact degree k. We

shall denote the number of susceptible, infected individuals of degree k at time t by Sk(t),

Ik(t), respectively. Furthermore, we assume that there is no natural death or disease-

related death for the individuals. Hence the total population Nk of each kth group is

constant. That is, Nk (= Nk(t)) ≡ Sk(t) + Ik(t), k = 1, . . . , n, are constant.

We further assume that there are m kinds of medias involving the disease transmission

in our model. In the epidemic process, it is assumed that no infection exists between any

two vectors and an infected vector of the l-th kind can recover to a susceptible one with

the probability µ̄l. Denote the numbers of susceptible, infected media of the l-th kind

at time t by Sm
l (t), Iml (t), respectively. Similarly, we will not consider the possibility of

vector removal due to birth and death. Hence the total population Nm
l of each media

of the l-th kind is constant. That is, Nm
l (= Nm

l (t)) ≡ Sm
k (t) + Imk (t), l = 1, . . . ,m, are

constant.

Now we are in the position to describe the interactions between the individuals and

media. We assume that a susceptible individual with degree k, k = 1, . . . , n, may be

attacked by an infected vector with probability q̄k (
∑n

k=1 q̄k = 1). And at each time

step, the transmission rate that susceptible individuals become infected by contacts with

infected media of the l-th kind is β̄l. Meanwhile, the transmission rate that susceptible

3



Table 1. The description of parameters

Parameter Description

Sk(t), Ik(t) the number of susceptible, infected individuals with degree k at time t

Nk the total population of individuals with degree k

Sm
l (t), Imk (t) the number of susceptible, infected medium of the l-th kind at time t

Nm
k the total population of medium of the l-th kind

α the transmission rate that susceptible individuals become infected

by contacts with infected individuals

γ the probability that an infected individual is cured and

become susceptible

µ̄l the probability that an infected vector of the l-th kind recover and

become susceptible

q̄k the probability that a susceptible individual with degree k is attacked

by an infected vector

β̄l the transmission rate that susceptible individuals become infected

by contacts with infected media of the l-th kind

r̄l the transmission rate that susceptible media of the l-th kind become infected

by contacts with infected individuals

media of the l-th kind become contagious (infected) by contacts with infected individuals

is r̄l.

For clarity, we list the parameters and variables on our model in Table 1 and the

transmission sketch is shown in Fig. 1.

Under above assumptions, the dynamics of the epidemic model is governed by in the

following nonlinear differential equations:

dSk(t)

dt
= −αkSk(t)Θ̄(I(t))− q̄kSk(t)

m∑
l=1

β̄l
Iml (t)

Nm
l

+ γIk(t),

dIk(t)

dt
= αkSk(t)Θ̄(I(t)) + q̄kSk(t)

m∑
l=1

β̄l
Iml (t)

Nm
l

− γIk(t), k = 1, . . . , n,

dSm
l (t)

dt
= −r̄lSm

l (t)Φ̄(I(t)) + µ̄lI
m
l (t),

dIml (t)

dt
= r̄lS

m
l (t)Φ̄(I(t))− µ̄lI

m
l (t), l = 1, . . . ,m,

(1)

4



Susceptible individuals Infected individuals

Susceptible media Infected media
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m
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l
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m

l

r̄lS
m

l
Φ̄(I)

Figure 1. Flowchart of disease transmission between individuals and medias.

where I(t) := (I1(t), I2(t), . . . , In(t))
T (T takes the notation of the transpose) is the

collection of all infected individuals with different degrees at time t,

Θ̄(I(t)) :=

n∑
k=1

kIk(t)

n∑
k=1

kNk

represents the probability of a link from an individual pointing to an infected individual

and

Φ̄(I(t)) :=
n∑

k=1

q̄k
Ik(t)

Nk

represents the probability of a link from a vector pointing to an infected individual. We

remark that the specific setting of function Θ̄ is based on the consideration of the wide

range distribution of the contact degrees between individuals. On the other hand, the

setting of function Φ̄ is quite free since there is no assumption made on the contact degrees

from a vector to individuals.

Let xk(t) := Ik(t)
Nk

(yk(t) := Sk(t)
Nk

), k = 1, . . . , n, and vl(t) :=
Iml (t)

Nm
l

(ul(t) :=
Sm
l (t)

Nm
l

),

l = 1, . . . ,m, be the relative densities of infected (susceptible) individuals of degree k and

media of the l-th kind at time t, respectively. Then by the fact that xk + yk = 1 and
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vl + ul = 1 for all k, l, we can rewrite equation (1) as the following density-related form.

dxk(t)

dt
= αk[1− xk(t)]Θ(x1(t)) + q̄k[1− xk(t)]

m∑
l=1

β̄lvl(t)− γxk(t), k = 1, . . . , n,

dvl(t)

dt
= r̄l[1− vl(t)]Φ(x1(t))− µ̄lvl(t), l = 1, . . . ,m,

dyk(t)

dt
= −αk[1− xk(t)]Θ(x1(t))− q̄k[1− xk(t)]

m∑
l=1

β̄lvl(t) + γ[1− yk(t)], k = 1, . . . , n,

dul(t)

dt
= −r̄l[1− vl(t)]Φ(x1(t)) + µ̄l[1− ul(t)], l = 1, . . . ,m,

where

x1(t) := (x1(t), x2(t), · · · , xn(t))T (2)

is the collection of all relative densities of infected individuals with different degrees at

time t,

Θ(x1(t)) :=

n∑
k=1

kIk(t)

n∑
k=1

kNk

=

n∑
k=1

k Ik(t)
Nk

Nk

N

n∑
k=1

kNk

N

≡

n∑
k=1

kpkxk(t)

n∑
k=1

kpk

≡

n∑
k=1

kpkxk(t)

< k >
, (3)

pk :=
Nk

N
is the density of individuals of the degree k, < k >:=

∑n
k=1 kpk, and

Φ(x1(t)) :=
n∑

k=1

q̄kxk(t). (4)

For the simplification of notations, we define xk for k = n+ 1, . . . , 2n+ 2m, by

xk =



vk−n, if k = n+ 1, . . . , n+m,

yk−(n+m), if k = n+m+ 1, . . . , 2n+m,

uk−(2n+m), if k = 2n+m+ 1, . . . , 2n+ 2m,
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and

qk =


q̄k, if k = 1, . . . , n,

q̄k−(n+m), if k = n+m+ 1, . . . , 2n+m,

βk = β̄k−n, k = n+ 1, . . . , n+m,

rk =


r̄k−n, if k = n+ 1, . . . , n+m,

r̄k−(2n+m), if k = 2n+m+ 1, . . . , 2n+ 2m,

µk =


µ̄k−n, if k = n+ 1, . . . , n+m,

µ̄k−(2n+m), if k = 2n+m+ 1, . . . , 2n+ 2m.

Then above density-related differential equations become:

dxk(t)

dt
=



αk[1− xk(t)]Θ(x1(t)) + qk[1− xk(t)]
n+m∑
j=n+1

βjxj(t)− γxk(t), k = 1, . . . , n,

rk[1− xk(t)]Φ(x1(t))− µkxk(t), k = n+ 1, ..., n+m,

−αkxk(t)Θ(x1(t))− qkxk(t)
n+m∑
j=n+1

βjxj(t) + γ[1− xk(t)],

k = n+m+ 1, . . . , 2n+m,

−rkxk(t)Φ(x1(t)) + µk[1− xk(t)],

k = 2n+m+ 1, . . . , 2n+ 2m,

(5)

where x1 = (x1(t), x2(t), · · · , xn(t))T , Θ and Φ are defined as in (2), (3), and (4), respec-

tively.

Furthermore, since xk+xk+(n+m)(= xk+yk) = 1 for k = 1, . . . , n, and xk+xk+(n+m)(=

vk−n + vk−n) = 1 for k = n + 1, . . . , n + m, to analyze the dynamics of equation (5)

is equivalent to analyze the dynamics of equations (just) related to variables xk, k =
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1, . . . , n+m. Then the equivalent dynamical equation reads as the following:

dxk(t)

dt
=


αk[1− xk(t)]Θ(x1(t)) + qk[1− xk(t)]

n+m∑
j=n+1

βjxj(t)− γxk(t), k = 1, . . . , n,

rk[1− xk(t)]Φ(x1(t))− µkxk(t), k = n+ 1, ..., n+m.

(6)

3 Local stability analysis

In this section, we are to analyze the local stability of the disease free equilibrium (DFE)

ξ0 := (0, · · · , 0︸ ︷︷ ︸
n+m

, 1, · · · , 1︸ ︷︷ ︸
n+m

)T (7)

for equation (5) (equivalently, x0 = 0 ∈ Rn+m for (6)) by using the general method

proposed by Driessche and Watmough in [10]. We first use a subsection to introduce their

work and then we show how this method can be applied to our model (5).

3.1 Definition of the basic reproduction number R0

Let ξ = (ξ1, · · · , ξn̄)T denote the collection of all numbers of compartments in the epi-

demic model (network) and the first m̄ components of ξ correspond to all the infected

compartments. Suppose that the dynamics of the epidemic model is governed by the

following equation.
dξ

dt
= f(ξ)

:= F(ξ)− V(ξ)

:= F(ξ)− [V−(ξ)− V+(ξ)],

(8)

where f(ξ) = (f1(ξ), · · · , fn̄(ξ))T ,F(ξ) = (F1(ξ), · · · ,Fn̄(ξ))
T , V(ξ) = (V1(ξ), · · · ,Vn̄(ξ))

T

and V±(ξ) = (V±
1 (ξ), · · · ,V±

n̄ (ξ))
T . Here each function takes the meaning as follows:

Fi(ξ) is the rate of appearance of new infections in compartment i, V+
i (ξ) is the rate of

transfer of nodes into compartment i by all other means, and V−
i (ξ) is the rate of transfer

of nodes out of compartment i. Moreover, these functions are assumed to satisfy the

following assumptions (A1) – (A5) described below.
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Since each function represents a directed transfer of nodes, they are all nonnegative.

Thus,

(A1) If ξ ≥ 0, then F(ξ), V+(ξ), V−(ξ) ≥ 0. Here a vector v ≥ 0 means that all

components of v are nonegative.

If a compartment is empty, then there can be no transfer of nodes out of the compart-

ment by death, infection, nor any other means. Thus,

(A2) If ξ has some component ξi = 0, then V −
i (ξ) = 0.

Notice that (A1) and (A2) imply that the nonnegative cone {ξ : ξ ≥ 0} is positive

invariant since fi(ξ) ≥ 0 whenever ξi = 0.

The next condition arises from the simple fact that the incidence of infection for unin-

fected compartments is zero.

(A3) Fi(ξ) = 0 for i > m̄.

Define Xs be the set of all disease free states, i.e.,

Xs := {ξ ≥ 0 : ξi = 0, i = 1, . . . , m̄}. (9)

Then to ensure that the disease free subspace Xs is invariant, we assume that if the

population is free of disease, then the population will remain free of disease. That is,

there is no (density independent) immigration of infection. This condition is stated as

follows:

(A4) If ξ ∈ Xs, then Fi(ξ) = 0 and V +
i (ξ) = 0 for i = 1, . . . , m̄.

The remaining condition is based on the derivatives of f near a DFE. For our purposes,

we restrict a DFE of (8) to be locally asymptotically stable equilibrium for the disease

free model, i.e., (8) restricted to Xs. Note that we need not assume that the model has

a unique DFE. Consider a population near the ξ0 ∈ Xs. If the population remains near

9



the DFE (i.e., the introduction of a few infective nodes does not result in an epidemic),

then the population will return to the DFE according to the linearized system

ξ̇ = Df(ξ0)(ξ − ξ0), (10)

where Df(ξ0) is the derivative [∂fi/∂ξj] evaluated at the DFE ξ0 (i.e., the Jacobian

matrix). Here the derivative is one sided since ξ0 is on the domain boundary. We restrict

our attention to systems in which the DFE is stable in the absence of new infection. That

is,

(A5) If F(ξ) is set zero, then all eigenvalues of Df(ξ0) have negative real parts.

Lemma 1. ( [10]) Let ξ0 be a disease free equilibrium of (8) and suppose assumptions

(A1)–(A5) hold true. Then the derivatives DF(ξ0) and DV(ξ0) are partitioned as

DF =

 F 0

0 0

 , DV(ξ0) =

 V 0

J3 J4

 ,

where F and V are the m̄× m̄ matrices defined by

F =

[
∂Fi

∂ξj
(ξ0)

]
and V =

[
∂Vi

∂ξj
(ξ0)

]
with 1 ≤ i, j ≤ m̄. (11)

Furthermore, F is nonnegative, V is a nonsingular M-matrix and all eigenvalues of J4

have positive real part.

Define the basic reproduction number R0 by

R0 := ρ(FV −1), (12)

where ρ(A) denotes the spectral radius of a matrix A. Then it describes “the expected

number of secondary cases produced, in a completely susceptible population, by a typical

infective individual”. Precisely, if R0 < 1, then on average an infected individual produces

less than one new infected individual over the course of its infectious period, and the

infection cannot grow. Conversely, if R0 > 1, then each infected individual produces, on
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average, more than one new infection, and the disease can invade the population. We

conclude the result in the following theorem.

Theorem 1. ( [10]) Let ξ0 be a disease free equilibrium of (8) and suppose assumptions

(A1)–(A5) hold true. Then the following assertions hold.

(i) If R0 < 1, then ξ0 is locally asymptotically stable.

(ii) If R0 > 1, then ξ0 is unstable.

Here R0 is the basic reproduction number defined as in (12).

3.2 The basic reproduction numberR0 in our model

In this subsection, the local stability of DFE ξ0 defined in (7) for model (5) is to be

analyzed by applying Theorem 1 given in the above subsection. For it, the first step is to

find the basic reproduction number R0 for model (5).

Notice that by letting ξ := (x1, · · · , x2n+2m)
T and x1 := (x1, · · · , xn)T , we can write

(5) into the (componentwise) form given in (8):

dξk
dt

= Fk(ξ)− [V−
k (ξ)− V+

k (ξ)],

for k = 1, . . . , 2(n+m), where

Fk(ξ) =



αk[1− ξk]Θ(x1) + qk[1− ξk]
n+m∑
j=n+1

βjξj, k = 1, . . . , n,

rk[1− ξk]Φ(x1), k = n+ 1, . . . , n+m,

0, k = n+m+ 1, . . . , 2n+m,

0, k = 2n+m+ 1, . . . , 2n+ 2m,

(13)
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V−
k (ξ) =



γξk, k = 1, . . . , n,

µkξk, k = n+ 1, . . . , n+m,

αkξkΘ(x1) + qkξk
n+m∑
j=n+1

βjξj, k = n+m+ 1, . . . , 2n+m,

rkξkΦ(x1), k = 2n+m+ 1, . . . , 2n+ 2m,

(14)

V+
k (ξ) =



0, k = 1, . . . , n,

0, k = n+ 1, . . . , n+m,

γ[1− ξk], k = n+m+ 1, . . . , 2n+m,

µk[1− ξk], k = 2n+m+ 1, . . . , 2n+ 2m.

(15)

Then it is clear that the disease free subspace Xs = {ξ0}, ξ0 is the unique DFE and

assumptions (A1)–(A4) hold. Furthermore, note that when Fk(ξ), k = 1, . . . , 2(n +m),

are set zero, we have that

Df(ξ0) =



C1 0 0 0

0 C2 0 0

0 0 C1 0

0 0 0 C2


,

where C1 = −γIn and C2 = −diag([µ1, · · · , µm]). Here In is the n × n identity matrix.

Consequently, eigenvalues ofDf(ξ0) are−γ, −µ1, · · · ,−µm, which are all negative. Hence

assumption (A5) holds.

Since all assumptions (A1)–(A5) in Theorem 1 hold true, we can apply it to our model.

By direct computation, we have that matrices F and V defined in (11) are:
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F =



(1 · 1)αp1
< k >

(1 · 2)αp2
< k >

...
(1 · n)αpn
< k >

q1βn+1 q1βn+2 ... q1βn+m

(2 · 1)αp1
< k >

(2 · 2)αp2
< k >

...
(2 · n)αpn
< k >

q2βn+1 q2βn+2 ... q2βn+m

...
...

...
...

...
...

(n · 1)αp1
< k >

(n · 2)αp2
< k >

...
(n · n)αpn
< k >

qnβn+1 qnβn+2 ... qnβn+m

rn+1q1 rn+1q2 ... rn+1qn 0 0 ... 0

rn+2q1 rn+2q2 ... rn+2qn 0 0 ... 0

...
...

...
...

...
...

rn+mq1 rn+mq2 ... rn+mqn 0 0 ... 0



,

and

V =



γ

γ

. . .

γ

µn+1

µn+2

. . .

µn+m



.

Then the reproduction number is given by R0 = ρ(FV −1), the spectral radius of matrix
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FV −1. We compute that

FV −1 =



(1 · 1)αp1
γ < k >

(1 · 2)αp2
γ < k >

...
(1 · n)αpn
γ < k >

q1
βn+1

µn+1

q1
βn+2

µn+2

... q1
βn+m

µn+m

(2 · 1)αp1
γ < k >

(2 · 2)αp2
γ < k >

...
(2 · n)αpn
γ < k >

q2
βn+1

µn+1

q2
βn+2

µn+2

... q2
βn+m

µn+m

...
...

...
...

...
...

(n · 1)αp1
γ < k >

(n · 2)αp2
γ < k >

...
(n · n)αpn
γ < k >

qn
βn+1

µn+1

qn
βn+2

µn+2

... qn
βn+m

µn+m

rn+1q1
γ

rn+1q2
γ

...
rn+1qn
γ

0 0 ... 0

rn+2q1
γ

rn+2q2
γ

...
rn+2qn
γ

0 0 ... 0

...
...

...
...

...
...

rn+mq1
γ

rn+mq2
γ

...
rn+mqn
γ

0 0 ... 0



=

 α
γ<k>

ηχT qβT

1
γ
rqT 0

 ,

where η = (1, · · · , n)T , χ = (1p1, · · · , npn)T , q = (q1, · · · , qn)T , β = (βn+1, · · · , βn+m)
T

and r = (rn+1, · · · , rn+m)
T . Thus, we obtain that the basic reproduction number R0 is

the largest modulus of the roots of the cubic polynomial described below:

λ3 + a2λ
2 + a1λ+ a0 = 0,

where

a2 = − α

γ < k >

n∑
k=1

k2pk, (16)

a1 =

(
n∑

k=1

q2k

)(
n+m∑
j=n+1

rjβj
µj

)
, (17)

a0 =
α

γ < k >

(
n∑

k=1

k2pk

n∑
k=1

q2k −
n∑

k=1

kqk

n∑
k=1

kpkqk

)(
n+m∑
j=n+1

rjβj
µj

)
. (18)

Then we give a formula to compute to the roots of a cubic polynomial.
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Lemma 2. [11] Consider the general cubic polynomial

x3 + ax2 + bx+ c = 0. (19)

Let △ :=
(

2a3−9ab+27c
54

)2
+
(

3b−a2

9

)3
. Then the following assertions hold:

Case 1: When △ > 0, (19) has one real root and one pair of conjugate virtual roots;

Case 2: When △ = 0, (19) has three real roots, at least two of which are repeated roots;

Case 3: When △ < 0, (19) has three different real roots.

Moreover, the roots of (19) are

z1 = 3
√
ρ1 + 3

√
ρ2 +

a

3
,

z2 = ψ 3
√
ρ1 + ψ̄ 3

√
ρ2 +

a

3
,

z3 = ψ̄ 3
√
ρ1 + ψ 3

√
ρ2 +

a

3
,

where ρ1 = −2a3 − 9ab+ 27c

54
+
√
△, ρ2 = −2a3 − 9ab+ 27c

54
−
√
△, ψ = −1

2
+ i

√
3

2
and

i2 = −1.

By Lemma 2, if △ ≤ 0, the basic reproduction number R0 = max{|z1|, |z2|, |z3|}; if

△ > 0, we obtain the reproduction number R0 = z1. We conclude our local stability in

the following theorem.

Theorem 2. For the disease transmission model (5) (equivalently, (6)), if R0 < 1, then

the disease-free equilibrium ξ0 (x0) is locally asymptotically stable. On the other hand, if

R0 > 1, then ξ0 (x0) is unstable.

4 Global stability analysis

In this section, the qualitatively global analysis of model (6) (equivalently, (5)) is pre-

sented. We first show that set △n+m := [0, 1]n+m is positive invariant.
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Lemma 3. Set △n+m is positively invariant under the flow determined by equation (6).

That is, x(t) ∈ △n+m for all t > 0 and x(0) ∈ △n+m.

Proof. Denote the boundaries of set △n+m by ∂△n+m. Then it consists of the two parts

∂△1
n+m and ∂△2

n+m, where

∂△1
n+m := {x ∈ △n+m : xk = 0 for some k}, and

∂△2
n+m := {x ∈ △n+m : xk = 1 for some k}.

Then to prove that △n+m is positively invariant, it suffices to prove that the assignment

vector at any boundary point of the vector field yielded by equation (6) is tangent or

pointing into the set △n+m. Since △n+m is a rectangle in Rn+m, the “outer normals”

at boundaries ∂△1
n+m and ∂△2

n+m are n⃗1
k := −ek and n⃗2

k := ek, respectively, where ek

denotes the standard unit vector in Rn+m. Moreover, we compute that

(I). For x ∈ ∂△1
n+m with xk = 0 for some k = 1, . . . , n+m:

ẋ · n⃗1
k =


−

[
αkΘ(x1) + qk

n+m∑
j=n+1

βjxj

]
, for k = 1, · · · , n,

−rk
n∑

j=1

Φ(x1), for k = n+ 1, 2, · · · , n+m.

Thus, ẋ · n⃗1
k ≤ 0 for all k = 1, . . . , n+m.

(II). For x ∈ ∂△2
n+m with xk = 1 for some k = 1, . . . , n+m:

ẋ · n⃗2
k =


−γ, for k = 1, · · · , n,

−µk, for k = n+ 1, 2, · · · , n+m.

Thus, ẋ · n⃗2
k < 0 for all k = 1, . . . , n+m.

By (I) and (II), we have that the assignment vector at any boundary point of the vector

field yielded by equation (6) is tangent or pointing into the set △n+m. Hence, the proof

of Lemma 3 is complete.

Next, we show that DFE ξ0 defined in (7) is globally asymptotically stable in model

(5) if R0 < 1. Equivalently, equilibrium x0 = 0 ∈ Rn+m is globally asymptotically stable
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in model (6) if R0 < 1. (For simplification, we also call x0 to be a DEF for model

(6).) Before it, we first show that no equilibrium lies in △n+m expect x0 and recall a

general qualitative analytic result in the differential equations proposed by Lajmanovich

and Yorke [12].

Lemma 4. The only equilibrium for (6) in ∂△n+m, the boundary of △n+m, is DFE x0.

Proof. Suppose the statement of Lemma 4 is false. Then there exists an equilibrium

x̄ := (x̄1, · · · , x̄n+m) for (6) in ∂ △n+m −{x0}. Then by definition, x̄k = 0 for some

k ∈ {1, · · · , n+m}.

(I). If k ∈ {1, · · · , n}, then by (6), since dxk

dt
= 0, we have that αkΘ(x̄1)+qk

∑n+m
j=n+1 βjx̄j =

0. Hence Θ(x̄1),
∑n+m

j=n+1 βjx̄j = 0. Consequently, x̄j = 0 for all j = 1, . . . , n + m, i.e.,

x̄ = x0(= 0), a contradiction.

(II). If k ∈ {n + 1, · · · , n +m}, then by (6), since dxk

dt
= 0, we have that Φ(x̄1) = 0

and hence x̄j = 0 for all j = 1, . . . , n. Moreover, for j = n + 1, . . . , n +m, since
dxj

dt
= 0,

we have that x̄j = 0. Thus, x̄ = x0(= 0), a contradiction.

By (I) and (II), we conclude that the only equilibrium for (6) in ∂△n+m, is the DFE

x0. It completes the proof of Lemma 4.

Lemma 5. ( [12]) Consider the system

dx

dt
= Ax+H(x), (20)

where A is an m̄×m̄ matrix and H(x) is continuously differentiable in a region D ∈ Rm̄.

Suppose that the following assumptions hold:

(A1) The compact convex set C ⊂ D is positively invariant under the flow determined by

equation (20).

(A2) lim
x→0

∥H(x)∥
∥x∥

= 0.
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(A3) There exist some r > 0 and eigenvector ν ∈ Rm̄ of AT such that ν · x ≥ r∥x∥ for

all x ∈ C.

(A4) ν ·H(x) ≤ 0 for all x ∈ C.

(A5) {0} is the largest positively invariant set for (20) contained in set M := {x ∈ C :

ν ·H(x) = 0}.

Then either (i) x = 0 is globally asymptotically stable in C, or (ii) for any initial value

x̃0 ∈ C − {0}, the solution ϕ(t, x̃0) of (20) satisfies lim inft→∞ ∥ϕ(t, x̃0)∥ ≥ m, where

m > 0 is independent of x̃0. Moreover, there exists a nontrivial equilibrium x∗ of (20) in

C.

Theorem 3. If R0 < 1, then x0 is globally asymptotically stable in △n+m. On the

other hand, if R0 > 1, then there exists an epidemic equilibrium x∗(> 0) in △n+m.

Moreover, for any initial value x̃0 ∈ △n+m − {x0}, the solution ϕ(t, x̃0) of (6) satisfies

lim inft→∞ ∥ϕ(t, x̃0)∥ ≥ m, where m > 0 is independent of x̃0.

Proof. Notice first that equation (6) can be rewritten in the form of (20):

dx

dt
= Ax+H(x), (21)

where

A =



−γ +
p1

< k >
α

2p2
< k >

α · · · npn
< k >

α q1βn+1 · · · q1βn+m

p1
< k >

2α −γ +
2p2
< k >

2α · · · npn
< k >

2α q2βn+1 · · · q2βn+m

...
...

...
...

...

p1
< k >

nα
2p2
< k >

nα · · · −γ +
npn
< k >

nα qnβn+1 · · · qnβn+m

rn+1q1 rn+1q2 · · · r1qn −µn+1

...
...

...
. . .

rn+mq1 rn+mq2 · · · rmqn −µn+m


(22)
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and

H(x) =



−αx1Θ(x1)− q1x1

(
n+m∑
j=n+1

βjxj

)
...

−αnxnΘ(x1)− qnxn

(
n+m∑
j=n+1

βjxj

)

−rn+1xn+1Φ(x1)

...

−rn+mxn+mΦ(x1)



. (23)

Then (i) by Lemma 3, △n+m is a positive invariant (compact) set for equation (6) in

Rn+m; (ii) Since each term of H(x) has degree equal to 2, we have that lim
x→0

∥H(x)∥
∥x∥

= 0.

(iii) Let A1 := AT + aI where a = max{γ, µn+1, · · · , µn+m}. Then A1 is a nonnegative,

irreducible matrix. Hence, by Perron-Frobenius theorem, there exists an eigenvalue λ ∈ R

of A1 such that λ = ρ(A1)(> 0). Moreover, it has a corresponding eigenvector ν > 0.

Consequently, λ− a is an eigenvalue of AT and ν is its corresponding eigenvector. Then

for all x ∈ △n+m = [0, 1]n+m, we have that ν · x ≥ ν0∥x∥1 ≥ ν0∥x∥2 where ν0 > 0 takes

the minimum value of all components of ν. (iv) For x ∈ △n+m, since H(x) ≤ 0, we

have that ν ·H(x) ≤ 0. Moreover, the equality holds if and only if H(x) = 0. (v) Let

M := {x ∈ △n+m : ν ·H(x) = 0}. Then we have that

M = {x ∈ △n+m : H(x) = 0}

= {x ∈ △n+m : xk = 0, ∀ k = 1, · · · , n}.

Let x ∈ M − {0}. Then Ax+H(x) = Ax has its first n components being positive by

(22). This means that initial value starting at point x will leave M immediately under

the flow determined by (21). Hence, we conclude that the largest invariant set for (21)

contained in M is {0}. Thus, all assumptions in Lemma 5 hold and hence either one of

the following cases hold: Case 1: Equilibrium x0(= 0) is globally asymptotically stable
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in △n+m. Case 2: For any initial value x̃0 ∈ △n+m − {x0}, the solution ϕ(t, x̃0) of (6)

satisfies lim inft→∞ ∥ϕ(t, x̃0)∥ ≥ m, where m > 0 is independent of x̃0. Moreover, there

exists a nontrivial equilibrium x∗ of (6) in △n+m. In fact, by Lemma 4, x∗(> 0) is an

epidemic equilibrium. By Theorem 2, Case 1 occurs iff R0 < 1 and Case 2 occurs iff

R0 > 1. This completes the proof of Theorem 3.

Theorem 4. If R0 > 1, then there exists a unique endemic equilibrium x∗(> 0) of (6)

such that x∗ is globally asymptotically stable in △n+m − {x0}.

Proof. Note that the existence of the endemic equilibrium x∗(> 0) is guaranteed by

Theorem 3. Then we aim to show that such endemic equilibrium is unique and globally

asymptotically stable.

(I). We show that the existence of the endemic equilibrium x∗ is unique. Suppose that

x∗ = (x∗1, · · · , x∗n+m)
T and z∗ = (z∗1 , · · · , z∗n+m)

T are two distinct endemic equilibria of

(6). Then there exists at least one k0 such that x∗k0 ̸= z∗k0 . Without loss of generality, we

assume that x∗k0 > z∗k0 and
x∗
k0

z∗k0
≥ x∗

k

z∗k
(or z∗k ≥

z∗k0
x∗k0

x∗k) for all k = 1, . . . , n +m. Since x∗

and z∗ are two equilibria of (6), we have that:

(i) If k0 ∈ {1, · · · , n}, then

− γx∗k0 + αk0(1− x∗k0)Θ(x∗
1) + qk0(1− x∗k0)

n+m∑
j=n+1

βjx
∗
j

= −γz∗k0 + αk0(1− z∗k0)Θ(z∗
1) + qk0(1− z∗k0)

n+m∑
j=n+1

βjz
∗
j = 0,

⇒ −γz∗k0 + (1− x∗k0)

[
αk0Θ(x∗

1)
z∗k0
x∗k0

+ qk0

n+m∑
j=n+1

βjx
∗
j

z∗k0
x∗k0

]

= −γz∗k0 + (1− z∗k0)

[
αk0Θ(z∗

1) + qk0

n+m∑
j=n+1

βjz
∗
j

]
= 0,

by timing
z∗k0
x∗
k0

on the left-hand side of the first equality. Hence,

(1− x∗k0)

[
αk0Θ(

z∗k0
x∗k0

x∗
1) + qk0

n+m∑
j=n+1

βj

(
z∗k0
x∗k0

x∗j

)]
= (1− z∗k0)

[
αk0Θ(z∗

1) + qk0

n+m∑
j=n+1

βjz
∗
j

]

But this make a contradiction with x∗k0 > z∗k0 and z∗k ≥
z∗k0
x∗k0

x∗k for all k = 1, . . . , n+m.
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(ii) If k0 ∈ {n+ 1, · · · , n+m}, then

−µk0x
∗
k0
+ rk0(1− x∗k0)Φ(x

∗
1) = −µk0z

∗
k0
+ rk0(1− z∗k0)Φ(z

∗
1) = 0.

By timing
z∗k0
x∗
k0

on the left-hand side of the above first equality, we have that, after some

simple reduction,

(1− x∗k0)Φ(
z∗k0
x∗k0

x∗
1) = (1− z∗k0)Φ(z

∗
1).

But this make a contradiction with x∗k0 > z∗k0 and z∗k ≥
z∗k0
x∗k0

x∗k for all k = 1, . . . , n+m.

By (i) and (ii), we have the result that model (6) has a unique endemic equilibrium.

(II). We show that the endemic equilibrium x∗ is globally asymptotically stable in

△n+m − {x0}. Define G and g be two real-valued functions in △n+m by

G(x) = max
1≤k≤n+m

{
xk
x∗k

}
and g(x) = min

1≤k≤n+m

{
xk
x∗k

}
. (24)

Then G(x) and g(x) are continuous and their right-hand derivatives exist along solutions

of (6).

Let x(t) be a solution of (6). Then for any given t0 ≥ 0, there is some sufficiently

small ϵ > 0 such that G(x(t)) =
xk0

(t)

x∗
k0

, for some k0 ∈ {1, . . . , n+m} in t ∈ [t0, t0+ ϵ], and

hence

G′|(6)(x(t0)) =
x′k0(t0)

x∗k0
,

where G′|(6) is define as

G′|(6) = lim sup
h→0+

G(x(t+ h))−G(x(t))

h
.

Note that by the definition of G, we have that for t ∈ [t0, t0 + ϵ],

xk0(t0)

x∗k0
≥ xk(t0)

x∗k
(or x∗k ≥

x∗k0
xk0(t0)

xk(t0)), k = 1, . . . , n+m. (25)

In the following, we will show that ifG(x(t0)) > 1 (i.e., xk0(t0) > x∗k0), thenG
′|(6)(x(t0)) <

0. Indeed,
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(i) If k0 ∈ {1, · · · , n}, then

x∗k0
x′k0(t0)

xk0(t0)
=

{
−γxk0(t0) + [1− xk0(t0)]

[
αk0Θ(x1(t0)) + qk0

n+m∑
j=n+1

βjxj(t0)

]}
x∗k0

xk0(t0)

= −γx∗k0 + [1− xk0(t0)]

[
αk0Θ(

x∗k0
xk0(t0)

x1(t0)) + qk0

n+m∑
j=n+1

βj

(
x∗k0

xk0(t0)
xj(t0)

)]

< −γx∗k0 + [1− x∗k0 ]

[
αk0Θ(x∗

1) + qk0

n+m∑
j=n+1

βjx
∗
j

]

(by (25), x∗ > 0 and xk0(t0) > x∗k0)

= 0,

since x∗ is an equilibrium. Hence, we have that G′|(6)(x(t0)) < 0.

(ii) If k0 ∈ {n+ 1, · · · , n+m}, then

x∗k0
x′k0(t0)

xk0(t0)
= {−µk0xk0(t0) + rk0 [1− xk0(t0)]Φ(x1(t0))}

x∗k0
xk0(t0)

= −µk0x
∗
k0
+ rk0 [1− xk0(t0)]Φ(

x∗k0
xk0(t0)

x1(t0))

< −µk0x
∗
k0
+ rk0 [1− x∗k0 ]Φ(x

∗
1)

(by (25), x∗ > 0 and xk0(t0) > x∗k0)

= 0,

since x∗ is an equilibrium. Hence, we have that G′|(6)(x(t0)) < 0.

By (i) and (ii), we showed that if G(x(t0)) > 1, then G′|(6)(x(t0)) < 0. By the similar

argument, it can be showed that if g(x(t0)) < 1, then g′|(6)(x(t0)) > 0. Moreover, if

G(x(t0)) = 1, then G′|(6)(x(t0)) ≤ 0, and if g(x(t0)) = 1, then g′|(6)(x(t0)) ≥ 0. The

proof of these assertions are omitted here since the similarity.

Define the Lyapunov candidate functions U and V in △n+m by

U(x) = max{G(x)− 1, 0},

V (x) = max{1− g(x), 0}.
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Then U and V are continuous and nonnegative functions in △n+m. Moreover,

U ′ |(6) (x(t)) ≤ 0,

V ′ |(6) (x(t)) ≤ 0.

Let SU := {x ∈ △n+m : U ′ |(6) (x(t)) = 0} and SV := {x ∈ △n+m : V ′ |(6) (x(t)) = 0}.

Then we have that SU = {x ∈ △n+m : 0 ≤ xk ≤ x∗k, k = 1, . . . n + m} and SV =

{x ∈ △n+m : x∗k ≤ xk ≤ 1} ∪ {x0}. By LaSalle invariance principle, any solution of (6)

starting in △n+m will eventually approach to SU ∩ SV = {x∗,x0}. However, by Theorem

3, since there exists some m > 0 such that for any initial value x̃0 ∈ △n+m − {x0}, the

solution ϕ(t, x̃0) of (6) satisfies lim inft→∞ ∥ϕ(t, x̃0)∥ ≥ m, we conclude that x∗ is globally

asymptotically stable in △n+m − {x0}.

By (I) and (II), the proof of Theorem 4 is complete.

5 Numerical simulation
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Figure 2. The stable densities of infected nodes with parameters α, β2, r2.

In this section, we show some numerical simulations to verify the analytic results

obtained in above sections. First, we show that the relationship between the stable

densities of infected nodes and the model parameters α, β2, r2 in Fig. 2. There, we see

that for each parameter, there exists a threshold such that the epidemic extinguishes when

the parameter value less than it, and the epidemic breaks out when the parameter value

greater than it. Moreover, the stable densities increase as parameter value increases.
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Figure 3. The basic reproduction number R0 with m.

Fig. 3 shows the basic reproduction number R0 in term of m, the number of kinds of

media, with fixed n = 20, γ = 0.8, α = 0.056, pk = qk = 0.05 for k = 1, . . . , 20 and

µ1 = . . . = µm = 0.8, but parameters β, r are set free where r satisfying
∑m

l=1 rl = 1. In

the figure, we see that the distribution of values of R0 shrinks as m increases. Moreover,

the range of values of R0 contains 1, the epidemic threshold when m < 10, but is a subset

of (0, 1) when m > 40.

6 Conclusion

We have discussed an epidemic SIS model with multiple infective media in complex net-

works. In the model, we assume that diseases spread not only through the contacts

between individuals themselves but also through the contacts of individuals and different

kinds of infective media. This epidemic SIS model is particularly suited for disease such

as rabies where the disease can spread through the infective dogs, ferret badgers or other

animals. Moreover, for the reality, the heterogeneity of the individuals’ contacts is taken

into consideration. Through the rigorous mathematical analysis, the global dynamics of

the model is derived. We first compute the basic reproduction number R0 and then show

that if R0 < 1, then the disease-free equilibrium is globally asymptotically stable. On
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the contrary, if R0 > 1, then there exists a unique endemic equilibrium which is globally

asymptotically stable.

In spite that the epidemic model under consideration is quite general, there is still

some limitations. For instance, in our model, the disease transmission between vectors

and the disease-related death is ignored. It is an interesting and important issue for the

future investigation.
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