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強雷射脈衝導致非線性原子激發之 Fourier-Floquet 分析 

學生 : 韓宗潔                          指導教授 : 寺西慶哲 教授 

 

國立交通大學物理研究所碩士班 

 

摘要 
  近年來由強飛秒雷射所產生的現象已受到理論上和實驗上的關注。當一個分子受到強

飛秒雷射的激發時，所發射出來的螢光訊號已被證實是來自於中性的分子碎片，此被稱

為"中性分裂"的現象被視為可以發展雷射應用的重要關鍵。造成此現象的機制或許可被

解釋成以下：經由雷射的非線性激發，分子先處於高激發態，然後再經由解離變成許多

電子激發態的中性分子碎片，最後散發出螢光訊號。儘管我們了解此現象的重要性，但

是對於其中的高非線性激發的理論機制還未被完整的了解。 

  在此論文中，我們選取氫原子作為模擬系統並應用 Fourier-Floquet 光譜去檢視高非線

性激發的理論機制，經由以上方法我們成功了提出相同奇偶的角動量最終激發態擁有相

同的激發機制。另外，一般被視為只能適用於弱微擾場下的"Ramsey fringe"也被我們

證實了在高非線性激發過程也是適用的。 
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Abstract 

 

  The atomic and molecular processes induced by intense (~10
14 

W/cm
2
) femto-second (10

-15 

s) lasers have attracted significant attention, both theoretical and experimental. When an 

intense femto-second laser is irradiated to a molecule, fluorescence signals are emitted from 

neutral fragments of the molecule. This phenomenon, called the neutral fragmentation, is 

expected to open new possibilities in laser technologies such as remote sensing and remote 

lasing. The mechanism may be understood as: (1) highly nonlinear excitation of the molecule, 

(2) the dissociation of the excited state molecule into electronically excited neutral fragments, 

(3) fluorescence from the neutral fragments. In spite of its importance, the mechanism of the 

highly nonlinear excitation has not been well understood.  

  In this thesis, we take hydrogen atom as an example to examine the mechanism of the 

highly nonlinear excitation using the Fourier-Floquet spectra. We succeeded in proposing the 

detailed mechanism, which we find different depending on the parity of the angular 

momentum of the final state. Furthermore we have shown that the Ramsey fringe, which is 

believed only applicable in the perturbatively weak field, works nicely in highly nonlinear 

processes.  
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I.  Introduction 

 

  Since laser was invented by Charles Townes and Arthur Schawlow in 1950s [1], it has been 

widely used in various fields both of science and technology. If a weak laser is irradiated, 

atoms/molecules do not change their original characters significantly, and the perturbation 

theory is applicable to describe the dynamics. When atoms/molecules interact with an intense 

laser, on the other hand, various types of complicated processes take place. Examples are 

above-threshold ionization [2], dressed-state formation [3], tunneling ionization [4], etc.  

  If the laser intensity is greater than      W/cm
2
, structure change in molecules becomes 

possible. When the intensity is around           W/cm
2
, tunneling ionization takes place, 

in which electron(s) are emitted under the tunneling process through the potential barrier 

induced by the Coulomb potential and the laser fields. Once electrons are kicked out, some of 

the chemical bonds are broken, and a drastic dissociation may take places due to the repulsive 

Coulomb interactions between ionic fragments. In general, when an intense laser is applied to 

molecules, most of molecules are believed to dissociate into ionic fragments.  

 If the ejected electrons behave as plasma, a new phenomenon so-called "Filamentation" is 

induced. When an intense laser pulse is focused on a transparent material, the refractive index 

of the material is modified depending on the intensity of the laser due to the Kerr effect. The 

spatial dependence of the laser intensity gives rise to position dependent refractive index, 

which acts as a lens to focus the laser beam (self-focusing). When the laser beam is focused, 

the power of laser may be amplified enough to ionize the material and the plasma is created in 

the trail of laser. When the plasma becomes saturated, the refractive index of the material 

decreases. That causes beam defocusing, and it is called "self-defocusing". Filamentation 

occurs as a consequence of dynamic balance between self-focusing and defocusing effects in 

the electron plasma [5], to stabilize the peak intensity for a long distance. The filamentation 
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was discovered in 1995 [6], and many papers have been published to discuss the filamentation 

in different materials and its application. There are various applications of filamentation 

proposed so far, such as remote sensing [7], remote lasing [8], lighting control [9], etc. 

  The electronic excitation of molecule induced by an intense laser field has attracted 

significant attention since the discovery of “neutral fragmentation” [10]. In their first 

experiment, methane molecules are placed in a vacuum chamber and a Ti-sapphire laser with 

intensity around           W/cm
2
 is applied to the target molecules. A spectrometer is 

placed next to the vacuum chamber to detect the photons coming from the chamber. The 

positions of the peaks in the spectrum of the photons shown in Fig. 1-1 coincide with the 

spectra of neutral CH, which implies that the observed photons are the fluorescence from 

neutral CH fragments, not from ionized fragments. They consider that the neutral CH 

fragments are produced by the excitation of the methane molecule into anti-bonding states. 

They also obtained the fluorescence signals versus the laser intensity as shown in Fig. 1-2. 

The result shows that the fluorescence signals have a power dependence on the laser intensity. 

The large value of the slope (n=10) may indicate that a high order perturbation plays an 

important role in this type of transition. Assuming that 10 photons are absorbed, the transition 

energy exceeds the ionization potential of methane (~12.6eV). This is why they claim that the 

fluorescence signals are attributed to such highly energized states known as the super-excited 

states. Similar phenomena of neutral dissociation can be seen in different target molecules, 

such as hydrogen molecules [11], oxygen molecule [12], nitric oxide molecules [13], etc. 

Here, we take oxygen molecule as an example to introduce the phenomena more in detail. 
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Figure1-1 The fluorescence spectra of methane CH4 taken from Ref. [10]. 

 

 

Figure1-2 The laser intensity dependence of the CH (A→X) fluorescence intensity. The rising 

slope of the curve is 10±1, taken from Ref. [10]. 

  The experiment with oxygen molecule as a target molecule was done by Song et al. in 2010 

[12]. The spectrum of the fluorescence shown in Fig. 1-3 implies that they are all coming 

from neutral fragments of oxygen atom, not ionized. The fluorescence signals versus the laser 

intensity in Fig. 1-4 shows similar tendencies as those of methane: (1) The fluorescence 

signals have a power dependence on laser intensity, and (2) The absorbing energy of photons 

are larger than the ionization potential of the target molecule.  
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Figure1-3 The fluorescence spectrum of the photodissociation products. The target molecule 

is oxygen, taken from Ref. [12] 

 

Figure1-4 Flourescence intensity dependence on the laser intensity. The fluorescence is 

collected and integrated around 615.9, 77.5 and 845.0nm in Fig.1-3, respectively. This 

experiment are also done by D. Song et al. in 2010.taken from Ref. [12] 

 

In order to explain these experiments, Teranishi et al proposed the three-step mechanism [14], 

which consists of excitation, dissociation and fluorescence (see Fig. 1-5). When the target 

molecule is irradiated by an intense laser pulse, electronic excitation takes place in the 

molecule. Then (mainly after the laser pulse is turned off), the molecule dissociates into 

neutral fragments. After that, the spontaneous emission from the excited fragments occurs. 

The theoretical calculation including all of the three steps is difficult, and it is thus hard to 

calculate the fluorescence intensities to reproduce the experimental results. However, the 

excitation probabilities of molecules before the dissociation can be calculated easily, if we 

ignore the nuclear motion and the electronic continuum (superexcited states are also ignored). 
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Under these assumptions, they calculated the excitation probabilities for oxygen molecular 

target (see Fig. 1-6), and they show a similar tendency as that of fluorescence intensity in Fig. 

1-4. They concluded that the fragmentation occurs through excited states of molecule, not 

through superexcited states. It is difficult, however, to confirm this conclusion in experiment, 

because they can observe only the fluorescence signals from the fragments, which do not 

provide the information of intermediate states. 

  In this thesis, we perform numerical simulations of highly nonlinear excitation of hydrogen 

atom by femto second intense laser fields to reveal the detailed dynamics. First, we calculate 

the excitation probability of hydrogen atom as function of laser intensity. Second, we 

calculate the transition probability amplitudes as functions of time. We use the 

Fourier-Floquet analysis to understand the dynamics during the transition in intense laser 

fields. Third, based on the Fourier-Floquet analysis we show that so called the Ramsey fringe 

is observed in intense field region as well, and propose a new experimental scheme to provide 

the information on the intermediate states.  

 The rest of the thesis is organized as follows. In the next chapter we summarize basic 

theories for the quantum dynamics induced by a time dependent interaction. In chapter III, the 

results of our numerical calculation is presented. The summary of this thesis is given in 

chapter IV.  
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Figure1-5 The three-step mechanism was proposed to explain the observed fluorescence 

signals by Prof. Teranishi in 2010, which are excitation, dissociation and fluorescence.[12] 

 

 

 

Figure1-6 Excitation probabilities to various excited states of O2 as functions of laser 

intensity. Here, the laser pulse duration time is 42fs, and the central frequencies of the laser 

pulse are 800nm. This theoretical calculation is done by Prof. Teranishi in 2010.[12] 
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II.  The Theory 

 

2.1 Review 

  In most cases, quantum mechanical time dependent problems cannot be solved directly. We 

usually need approximations to simplify the problems so that we can obtain the analytical 

solutions. In this research, we focus on the problem of atom-laser interaction. In this chapter, 

we summarize the basic theories related to our research such as the perturbation 

approximation, rotating wave approximation and Floquet theory. Here we start by the basic 

formulation of the time dependent problems in quantum mechanics.  

Time-dependent quantum mechanical problem: 

Here we consider the time-dependent quantum mechanics with the time-dependent 

Hamiltonian given by 

                                                                                                                                             

where     is the unperturbed Hamiltonian, and        is the time-dependent part of the 

Hamiltonian, which describes the atom-laser interaction in this thesis. The time dependent 

wave function           can be obtained as the solution of the time-dependent Schrodinger 

equation: 

                                                                                                                                            

The wave function can be expressed as a linear combination of the eigen states of the 

unperturbed Hamiltonian     with the time-dependent coefficient      , namely 

                                                                           

 

                                                               

where        is the eigenstate of    , which has the properties of orthonormality and 

completeness: 

                                                                                                                            

and 
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Here     and   are the Kronecker delta and the identity operator, respectively. 

Propagation: 

The time evolution operator, usually denoted by          transforms the wave function 

          at a time    to          at a time  : 

                                                                                                                                            

Substituting Eq. (6) into the Schrodinger equation Eq. (2), we obtain 

                                                                                                                                

This equation should hold for arbitrary initial wave function          , thus we have 

                                                                                                                                          

This is the differential equation for the time evolution operator, which should be solved with 

the boundary condition            . Integrating both side of Eq.(8) with taking the 

boundary condition into account, we obtain the integral equation for the time evolution 

operator, 

                                                       
 

 
                                                              

 

  

 

Time evolution operator has the following properties: 

1. The time evolution operator is identity, when     : 

                                                                      
                                                                      

 2. The propagator should preserve the normalization of wave functions. That is, if a wave 

function       is normalized at   , it should also be normalized at later times   

                                                                                                                                

                                                                                   
                                             

which implies                     or                     . Therefore the propagator 

         is a unitary operator 

3. The propagator          should satisfy the composition property 
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which means that the propagation from    to   can be decomposed into the propagations 

from    to    and from    to  . 

Representation: 

   Here, we introduce three representations of the state vector: the Schrodinger 

representation, the Heisenberg representation, and the interaction representation. 

  Assume we have a wave function           and an observable operator   . The expectation 

value of the observable is given by 

                                                                                                                                         

The wave function in Eq. (14) can be represented using the time evolution operator and the 

initial wave function          : 

                                                         
                                                             

In the Schrodinger representation, the state vector evolves in time: 

                                                                                                                                                    

but observables does not: 

                                                                                                                                                        

Equation (15), may be understood as follows. The state vector is defined as 

                                                                                                                                                      

which does not depend on time, whereas the observables defined by  

                                                                                                                             

depends on time. This is called the Heisenberg representation. From Eqs. (16) and (18), we 

obtain the relation between state vectors in the Schrodinger representation and in the 

Heisenberg representation as 

                                                                                                                                           

 

Now we introduce the interaction representation, which is an intermediate representation 
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between the Schrodinger representation and the Heisenberg representation, since both the 

state vector and the observables evolve in time. We define the state vector in the interaction 

representation with a unitary transformation: 

                                                                    
                                                                   

where          is defined by                   . 

The observables are transformed similarly to those in the Heisenberg representation in Eq.(19), 

namely 

                                               
                                                                       

Atom-laser interaction: 

  Here, we introduce the atom-laser interaction under the semiclassical approximation, in 

which the laser field is treated classically, while the atom is treated quantum mechanically. 

The classical Hamiltonian of an electron in an electromagnetic field can be described with the 

scalar potential         and the vector potential        : 

                                                        
 

  
    

 

 
   

 

                                                           

                                                             
   

  
 

 

   
              

  

    
                    

where    is the momentum operator of an electron. In the Schrodinger picture, the momentum 

operator    is of the form: 

                                                                                                                                                       

Substituting the Hamiltonain in Eq. (24) into the Schrodinger equation, we have 

                              
  

  
        

 

   
                  

  

    
                          

The term of            in Eq. (26) can be expanded in the form: 

                                                                                                                                   

Since in the Coulomb gauge we have 

                                                                                                                                                       

the term            in Eq. (27) becomes 
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Substituting Eq. (29) into the Schrodinger equation Eq. (26), we obtain  

                                              
  

  
        

 

  
        

  

    
                                 

Here, we consider a hydrogenic atom in the electromagnetic field, so we add the Coulomb 

potential to the Hamiltonian given by 

                                                                   
  

       
                                                               

where Z is the nuclear charge, and r is the distance between the nucleus and the electron. 

Then, the Schrodinger equation is 

                                    
  

  
        

 

  
        

  

    
    

  

       
                           

This equation can be written as: 

                                                                                                                                       

with 

                 
  

  
      

   

       
                             

 

  
        

  

    
              

The unperturbed Hamiltonian     describes the hydrogenic atom in vacuum, and the 

perturbation        describes the interaction between the atom and the laser field. According 

to the Maxwell's equation, the vector potential         satisfies 

                                                                        
 

  
  

   
                                                              

The plane wave solution of Eq.(34) with the angular frequency   is given by 

                                                                                                                           

where     is the propagation vector of laser field,    is the polarization direction, and   is a 

real constant phase. When the wavelength    
  

     
  is sufficiently larger than the size of the 

atom, namely  

                                                                                                                                                  

we can neglect the spatial variation of the vector potential (the dipole approximation), 
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In the case of a pulsed laser, the vector potential is given by 

                                                                                                                                

Here       is the envelope function. Finally we have the expression of the perturbation 

       given by 

                                                   
 

  
           

  

    
                                                   

Here we consider the gauge transformations: 

                                                                                                                                        

                                                                  
 

 

  

  
                                                               

                                                                 
   

  
                                                           

where   is an arbitrary real function of    and  . We simplify the perturbation Eq. (39) by 

the gauge transformation. We use a function given by                                                   

                                                                                                                                                

Then, the gauge transformation reads 

                                                                                                                                                       

                                                          
 

 

      

  
                                                               

                                                                
       

  
                                                             

where     are the polarization of the electric field. Equation (44) implies that 
 

 

      

  
 equals 

the electric field of the laser     . After the gauge transformation, the perturbation becomes: 

                                                                                                                                            

Then, the Schrodinger equation is given by 

                                                        
                                                                          

2.2 Perturbation Theory 

We consider a time-dependent Hamiltonian, given by 
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where     is a time-independent Hamiltonian, which eigenvalue problem has been solved, 

and        is a time-dependent perturbation. The time-dependent Schrodinger may be hard to 

solve. The perturbation theory provides an approximated solution for small perturbation cases. 

The time-dependent Schrodinger equation in the interaction representation is given by 

                                                                                                                                            

where                        . The wave function           can be represented with an initial 

wave function            and the time-evolution operator,         , namely 

                                                                                                                                         

Substituting the wave function Eq. (50) into the time dependent Schrodinger equation Eq. 

(49), we have  

                                                                                                                             

or 

                                                                                                                          

Since Eq. (52) holds for arbitrary initial wave function           , we have 

                                                                                                                                      

This is the differential equation for the time evolution operator in the interaction 

representation. Integrating both side of Eq. (53) with the boundary condition            , 

we obtain the integral equation: 

                                                       
 

 
                                                             

 

  

 

Equation (54) is an integral equation, which we solve using the perturbation theory as follows. 

Assuming the perturbation is weak,          ,we obtain the zeroth order solution 

                                                                        
   

                                                                            

Substituting the zeroth order solution into the right hand side of Eq. (54), we obtain the first 

order solution: 
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We substitute the first order approximation into the right hand side of Eq. (54) to obtain the 

second order approximation given by 

                           
   

   
 

 
            

 

 
                      

  

  

 
 

  

 

  

                   

Repeating the procedure of substituting the nth-order approximation into the right hand side 

of Eq. (54), we obtain the equation for the (n+1)th-order. 

                       
             

 

 
 
 

                
    

  

 

  

 

   

                                

For the small perturbation      , the third term of 2nd-order approximation in Eq. (57) can be 

neglected and it approximately equals to the 1st-order approximation  

                                                  
   

   
 

 
             

   
 

  

                                                 

which implies the convergence of the 1st-order approximation for small perturbation.  

  Here we represent the wave function as a linear combination of the eigen states of    : 

                                                                                                                                              

Here we call       the probability amplitude on state n. We represent the wave function at 

time   with the time evolution operator and the initial wave function           , then Eq. (60) 

reads 

                                                                              

 

                                                 

By inserting the identity operator into the left hand side of Eq. (61), we obtain the probability 

amplitude: 

                                                     
                  

 

             

 

                                     

                                                                 
                                                                        

We can obtain the nth-order probability amplitude by substituting the nth-order time evolution 

operator into Eq. (63). Here, we assume the initial wave function is one of the eigen states, 
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Then, the transition amplitude in various orders of perturbation are obtained as follows: 

Zero-order: 

                                                   
           

    
                                                                      

                                                                   
                                                                          

                                                   
                                                                                              

First-order: 

                                        
           

    
                                                                                 

                                                         
 

 
     

         
                 

 

  

                            

                                                         
 

 
                 

 

  

                                                

where                        , and              , which we call the transition 

frequency. 

Second-order: 

                                   
           

    
                                                                                      

            
 

 
                 

 

  

                   

                                              
 

 
             

                             
  

  

 

   

        

The transition probability from the initial state        to a final state        at the final time   

is given by  

                                                                            
                                                                 

Now we discuss some properties of the 1st-order perturbation theory. The 1st-order transition 

probability amplitude in Eq. (70) is a linear function with respect to the interaction potential 

       , which leads to the properties of additivity and homogeneity.  

  Suppose the potential is the sum of two potentials: 
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The first-order probability amplitudes of the respective potentials are: 

                                        
        

 

 
             

 
          

 
 

  

                                    

and 

                                        
        

 

 
             

 
          

 
 

  

                                   

 

The first-order probability amplitude of the total potential in Eq. (74) is 

         
        

 

 
                                                                                                                 

 

  

     

                       
 

 
                                

 

  

                                                                    

                      
 

 
           

 

  

               
 

 
           

 

  

                                  

                                                                                                                                                                 

The probability amplitude of the total potential is the sum of the two probability amplitudes 

given by Eq. (75) and Eq. (76), respectively. This property is called the additivity. Next, let us 

assume a potential given by  

                                                                                                                                                  

where c is a complex constant. The 1st-order probability amplitude is given by 

                                           
        

 

 
                          

 

  

                                     

                                                        
  

 
                 

 

  

                                              

The probability amplitude is c times the probability amplitude with the potential       . This 

is called the "homogeneity".  

 Hereafter, we discuss how to use the perturbation theory by taking two cases as examples: 

CW laser field and Gaussian pulse laser. Suppose the electric field of linearly polarized CW 

laser field with the driving frequency   and the polarization direction   
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where    is the electric field amplitude. The interaction potential is given by 

                                                                                                                                       

where   is the electron charge. Substituting this into the 1st-order probability amplitude in 

Eq. (68), we have 

                                       
        

 

 
                                                

 

  

     

We factor out               in the above equation, then we obtain 

                                       
       

 

 
                                                      

 

  

     

The integral in Eq. (87) is the Fourier transform of the sinusoidal function with time. Thus we 

have 

                                           
       

 

 
                                                                

The transition takes place only when the driving frequency   is equal to the transition 

frequency    . This is called the resonance. Next let us consider a Gaussian pulse given by  

                                                                                                                                      

where  ,   ,    are the driving frequency, the polarization vector, and the duration time, 

respectively. 

The interaction potential is given by 

                                                                                                                                  

Substituting Eq. (90) into the 1st-order probability amplitude in Eq. (68), we obtain 

                        
        

 

 
                             

                            
 

  

     

Factoring out               in Eq. (91), we have 

                       
       

 

 
                                                      

 

  

     

By replacing the sinusoidal function in Eq. (92) by (             , we have 
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The integrals in Eq. (94) are the Fourier transforms of the Gaussian pulses, the transition 

amplitude is given by  

                
       

 

  
                                                              

The probability amplitude is proportional to the electric field amplitude and the square root of 

the pulse duration. 

2.3 Rotating wave approximation 

  The rotating wave approximation is an approximation, which is valid when the perturbed 

Hamiltonain is a sinusoidal function and the driving frequency is close to the transition 

frequency (near resonance case). In the following, we introduce the rotating wave 

approximation. Suppose we have a two-level system with eigenvalue    
    and eigen states 

           , respectively, which is perturbed by a sinusoidal time-dependent potential with the 

driving frequency  : 

                                                                                                                                         

According to the first-order perturbation theory in Eq. (68), the transition probability 

amplitude is 

                                             
        

 

 
                             

 

  

                                    

where              . We replace          by                 in Eq. (97), and 

then take the integral to obtain  

                                            
        

   
  

                          
 

  

                                

                                                         
   
  

 
            

     
 

            

     
                            

In the near resonance case, i.e.               , the second term in the square 

brackets in Eq. (99) dominates, and the first term can be ignored. Then, the transition 

probability amplitude is approximated as: 
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Then, the transition probability in near resonance condition is a simple analytic form with 

sinusoidal function: 

                                                
  

     
 

  

                

        
                                   

According to Eq. (100), instead of ignoring the first term in the square brackets in Eq. (99) we 

can approximate the potential as:                                                        

                                             
   
  

                          
   
  

                                     

This approximation is so-called the rotating wave approximation. Using the rotating wave 

approximation, the time-dependent Schrodinger equation can be directly solved without using 

the perturbation theory as shown in the following. 

 The wave function   can be expressed as a linear combination of the eigen states             

                                                         
 
    
             

 
    
                                             

The time-dependent Schrodinger equation is given by                                                 

                                                                                                                                           

where              ,    is time-independent Hamiltonian and       is the 

approximated perturbed Hamiltonian in Eq. (104). We substitute the wave function in Eq. 

(105) into the time-dependent Schrodinger equation, then we have                           

                                                         
 

 
       

 
     

   
                                                            

                                                      
 

 
       

 
     

   
                                          

The diagonal matrix elements of H' are zero, i.e.            , which leads to 
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Substituting the approximated potential into Eqs. (108) and (109), we have 

                                                              
   
  

                                                                     

                                                               
   
  

                                                                 

These equations are solved with the initial conditions: 

                                                                                                                                  

Differentiating      in Eq. (111), we have 

                                     
   
  

                                                               

Substituting    in Eq. (110) into Eq. (113), we have                                                                                                                                  

                               
   
  

              
   
  

           
   
  

               

                                    
     

 

     
                                                                                     

Then, we obtain the second order differential equation for   : 

                                          
    
   

         
   
  

 
     

 

     
                                              

The differential equation in Eq. (115) is a linear homogeneous differential equation, the 

solution is of the form       . Substituting     into Eq. (115), we have 

                                                         
   

     
 

     
                                             

We obtain the characteristic equation for the parameter   by Eliminating     in Eq. (116): 

                                                               
     

 

     
                                                   

which has the solution: 

        
 

 
                      

      

  
     

       

 
      



 

21 
 

where    
 

 
          

     
 

  
 is so-called the Rabi flopping frequency. 

We obtain the general solution of    as: 

                                          
         

                                                                   

                                                
         

                                                             

The coefficient A and B are determined by the initial condition        , which leads to that 

A is zero. Thus the transition probability amplitude       is given by 

                                                            
         

                                                           

Taking the derivative of       in Eq. (120) and substituting it into Eq. (111), we obtain the 

transition probability amplitude      :   

                        
  

   
                         

        

 
                          

The coefficient B in Eq. (121) is determined by the initial condition           : 

                                                                    
   
    

                                                                     

Then, the general solution of the transition probability amplitude is:  

                                                    
        

   
                                      

                               
 

    
    

                                                                          

The transition probability of each state at time t is 

                                           
             

       

   
 

 

                                 

                                           
   

   
    

 
 

                                                                    

This results in Eq. (125) and Eq. (126) show that the transition probability has no linearity. 

The transition probability    derived from rotating wave approximation in Eq. (126) has a 

similar form to the transition probability derived from perturbation theory in Eq. (103), which 

implies that the rotating wave approximation is a good approximation when the driving 
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frequency is close to the transition frequency. 

2.4 Strong-Field Approximation 

  When an intense laser pulse is irradiated in a system, the perturbation theory is no longer a 

good approximation for the system. The strong-field approximation (SFA) is a good 

approximation to calculate the ionization, when the laser field is dominant over the Coulomb 

potential. 

  Assume we apply an intense laser pulse to a system, there are two complete set of states 

   and    in the system, respectively. The complete set of states    that satisfy the 

time-dependent Schrodinger equation describing the atomic electron that has the interaction 

with an intense laser pulse 

                                                                                                                                           

The other complete set of    that satisfy the Schrodinger equation describing an atomic 

electron that does not experience the laser pulse 

                                                                                                                                                  

The difference between the complete Hamiltonian and the non-perturbed Hamiltonian will 

vanish at both plus and minus infinity in time because the laser pulse is not present there 

                                                                   
    

                                                                        

At minus infinity time, a one-to-one identification will be made between the elements of two 

complete set, so that the two complete sets are well-defined. After the laser interaction has 

occurred, the only way to find out what has happened is to take probability amplitude 

overlaps of all possible final states    with the state that began as a particular interacting 

state   . This is so-called the S-matrix:  

                                                                          
    

                                                                     

We subtract the amplitude that no interaction has occurred and denote that by     : 
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or Eq. (131) can be also written as: 

                                                                 
 

  

  

  

                                                                  

We can use the time-dependent Schrodinger equation to remove the time derivatives in Eq. 

(132), then we have 

                                                                
 

 
   

  

  

                                                             

where           . This transition amplitude is so-called the direct time amplitude. An 

alternative form is so-called the time reversed amplitude: 

                                                               
 

 
   

  

  

                                                              

where the interacting state is the final state instead of the initial state. The direct time 

amplitude in Eq. (133) and the time reversed amplitude in Eq. (134) are equivalent. The 

difference between them is that instead of one-to-one identification are made between the 

elements of two complete set at minus infinity time, it is done at plus infinity time. The 

strong-field approximation is based on the time reversed amplitude in Eq. (134). 

  When an intense laser field is irradiated to a system, the eigenstates of non-perturbed 

Hamiltonian will be shifted by an intense laser. The shifted state is so-called "Volkov state". 

The transition amplitude is written as:  

                                                              
 

 
   

  

  

   
                                                          

where the Volkov state is the final state, this makes SFA not exact.  

2.5 Floquet Theory 

  When the time dependent Hamiltonian is periodic in time, the Floquet theory can be used 

as a method to obtain the solution of time dependent Schrodinger equation. In the following, 

we explain the Floquet theory to discuss a problem with a sinusoidal perturbed Hamiltonian. 

  We consider a system with the dependent Schrodinger equation given by 
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where the Hamiltonian       consist of the time-independent part     and the time 

dependent part       . 

The Hamiltonian is a periodic function in time: 

                                                                                                                                            

Now we introduce the time evolution operator after one cycle of time. The differential 

equation for the time evolution operator is 

                                                                                                                                   

with the initial condition           . This equation is valid for any times    and  . After 

one cycle of time, the differential equation of the time evolution operator is given by 

                                                                                                        

Using Eq.(137), we also have 

                                                                                                           

            and         satisfy the same linear differential equation (see Eqs. (138) 

and (140)) with the same initial condition, thus we have  

                                                                                                                               

which implies that the time evolution operator for many cycle of time is 

                                                                                                                            

Now we consider an eigen function     
    of the time evolution operator for one cycle with 

the corresponding eigenvalue    

                                                                  
          

                                                          

From Eq. (142), we find that the corresponding evolution operator is 

                                                                                                                           

for any integer n. Equation(144) implies that any eigenvalue     of           can be 

written in terms of an eigenvalue    of           

                                                                         
                                                                      

For an arbitrary number  , we have 
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From Eq. (146) and the conservation of probability, we find that the time evolution operator is 

unitary and    is a complex number 

                                                                                                                                                

where   is an arbitrary real number. Then, we have that 

                                                                   
              

                                                  

where     
    is called the Floquet state. Assume we write the Floquet state in the form 

                                                                  
        

  
 
                                                             

where       is called quasi-state and    is called the Floquet energy. In order to satisfy 

Eq.(148) for any  ,       must be periodic in time with the same period as the Hamiltonian, 

namely 

                                                                                                                                        

Here, the problem is how to obtain Floquet states. Once we obtain the Floquet states, the 

exact wave function is a linear combination of them 

                                                                       

    

 

   

                                                            

where coefficient    can be determined by the initial condition. We are showing that the 

quasi-state       can be obtained by recasting the problem in the form of a time independent 

eigensystem. Since the quasi-state is periodic in time, it can be expanded in a Fourier series. 

                                                                       
                                                   

 

    

      

where   
  

 
. Besides, the coefficient        does not depend on time, we can expand the 

coefficient with a complete basis     of the time-independent Hamiltonian     

                                                                
 

   

 

    

 

 

                                                     



 

26 
 

where the coefficient      
 

 is dependent on the laser intensity. Then, the Floquet state in Eq. 

(149) is given by 

                                                   
           

 
   

 

    

 

 

  
 
 
                                              

According to the Floquet theory, it shows that the origin eigenstates of time-independent 

Hamiltonian are coupled together to form Floquet states by a periodic potential. In other 

words, the eigenstate picture is transformed into the Floquet picture by a periodic potential. 

Then, the exact wave function is a linear combination of the Floquet states instead of the 

origin eigenstates. In experiments, we use the laser pulse as the interaction Hamiltonain. The 

duration of laser pulse is assumed to be sufficiently long so that the laser field can be 

approximated by a monochromatic field. By this kind of pulse, we can use the Floquet theory 

to analyze the system. Furthermore, the laser pulse with long duration increases gradually, so 

the transition is an adiabatic process. That means that the eigenstates are transformed to a 

Floquet state during the laser pulse is on, and the Floquet state is transformed back to the 

eigenstates with no transition at the end of laser pulse. In the following, we use the Floquet 

theory to discuss a system with a sinusoidal perturbed Hamiltonian. 

  Assume the electric field is a sinusoidal function of time and polarized along the z direction 

                                                                    sin                                                                        

The perturbed Hamiltonian is: 

                                                                    sin                                                                 

where q is the charge of the electron. According to the first order perturbation theory, the 

transition probability amplitude of each state is 

                                                                  
  
 

  
  

  

                                                

We use the strong field approximation in transition amplitude,  
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where the final state is Floquet state instead of Volkov state. We substitute the Floquet state in 

Eq. (158) and factor the constant out, we have 

                             
 

 

    

 

 

             
 
 
         

sin       
  
 

 
 

  

                   

The integral in Eq.(159) has none zero value only if 

                                                                                                                  

This result shows that the transition takes place only if the photon energy satisfies the 

resonance condition, which is 
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III.  Results & Discussion 

 

  In this study we take a hydrogen atom as example to discuss the excitation process by 

intense laser field. Here we included the eigenstates of unperturbed hydrogen atom with the 

principle quantum numbers smaller than 3-1. First we examine the intensity dependence of 

the excitation probability with a single Gaussian laser pulse, which electric field is given by 

1.8×10
13

 W/cm
2
~7.1×10

14
 W/cm

2
 with  =800nm and duration is 40fs. The Schrodinger 

equation is solved by the Runge-Kutta method with the initial condition    )=    at   = 

-3,000 (a.u.) to obtain the transition probability at the final time    = 3,000 (a.u.). In Fig. 6 

the transition probabilities are plotted as functions of the laser intensity in a log-log scale. 

Here the laser intensity is taken from          W/cm
2 

to           W/cm
2
. The 

transition probabilities show power dependences on the laser intensity with large values of the 

slope, and they can be classified into two groups having the slopes 9 and 10, respectively (The 

curves I
9
 and I

10
 are also plotted in the figure for comparison.). The group having the slope of 

9 includes 3s, 3d, 4s, 4d, 5s, 5d and 5g whereas the other group with the slope of 10 includes 

2s, 2p, 3p, 3f, 4p, 4f and 5f. The slopes may indicate the number of photons involved in the 

transitions. It should be noted here that the transition energy is not necessarily equal to the 

photon energy times the number of photon. Actually even the smaller slope 9 leads to the 

energy     ~14 eV, which is larger than the ionization potential IP = 13.6 eV. Above 

mentioned tendencies observed in our calculation are very similar to the results for the oxygen 

molecular targets showing two slopes of 9 and 11. In the present result shows an interesting 

tendency in the members of groups. Except the 2s state, all the even (odd) states belong to the 

group with the slope 9 (10). In other words, the slope can be determined by the parity of the 

angular momentum. In order to discuss how the slope is related with the parity, we examine 

the transition dynamics in detail in the followings.  
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Figure 3-1  Excitation probabilities to the excited states (n<6) of hydrogen atom as functions of the 

laser intensity. Thick dashed lines are curves of I^9 and I^10.  

 

  Since the final transition probability does not provide the information on what happens 

during the transition, we have to consider the probability amplitude       as function of time, 

which is shown in Fig. 3-2. As is shown in the figure, the transition amplitudes have very 

complicated time dependence. They show maximum at t=0, and they are significantly larger 

than the transition amplitudes at the final time. It should be noted here that many states have 

too small transition amplitudes to be seen in the plot. We observe the same behavior if you 

magnify each of them. This implies that the transition mechanism is not simple resonance one 

photon transition, which shows monotonically increasing probabilities as a function of time.  
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Figure 3-2 Excitation probability amplitude of excited states from - 3,000 (a.u.) to 3000 (a.u.). Here, 

we shows the real part of excitation probability amplitude. 

 

  In order to analyze such complicated behavior, we utilize the Floquet theorem introduced in 

Chapter (II). According to the Floquet theorem, the time dependent wave function has the 

form  

                                               

 

   

      
 

   

 

    

 

 

  
 
 
                                          

which can also be rewritten using the probability amplitudes as  

                                                                        

 

 

                                                        

Comparing Eq.(162) and Eq.(163), we obtain  

                                                  

 

   

    
 

  
 
 
         

 

    

                                              

which implies that the transition amplitudes are linear combination of periodic functions in 
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time. We can thus Fourier transform       into the frequency domain      , which peaks 

tell us the quasi energy    and the coefficients    and      
 

. Since our laser filed is a pulse 

(not periodic in time), the Floquet theorem is applicable only in an adiabatic way. We can 

define the Floquet states at a moment with a constant intensity, which we call the adiabatic 

Floquet states. If the intensity change in time is sufficiently slow, the system follows the same 

adiabatic Floquet states in its time propagation. This is the adiabatic approximation for the 

Floquet states [15][16]. Now let’s consider what happens if the adiabatic approximation 

completely holds. At the initial time, when the laser field is off, the initial eigenstate can be 

regarded as the Floquet state with zero intensity. This Floquet state propagates in time 

following the adiabatic Floquet state. When the laser is on, the adiabatic Floquet state is a 

linear combination of the ground state as well as the excited states. This leads to the transient 

nonzero transition amplitudes, which is seen in Fig. 3-2 at t =0. After the laser is turned off, 

however, these transient transition amplitudes vanish, because the adiabatic Floquet state 

should be the initial eigenstate at the zero field limit. Thus the nonzero transition amplitude at 

the final time in Fig. 3-2 can be regarded as the nonadiabatic effect.  

In order to discuss the nonadiabatic effect, we calculated the transition amplitudes with the 

laser pulse given by  

      

 
 
 

 
           

   

                                                    

                                                                             

              
 
        

  
 
                                

  

, where   ,  ,  ,   are 1.4×10
14

 W/cm
2
, 800 nm, 1000 and 4100 respectively. 

Here, with the use of this shape of the laser pulse, we can analyze the wave function with the 

use of the Floquet state, because the laser field is periodic during the intensity is kept constant. 

We hence Fourier transformed       in the limited time domain when the laser field is 

periodic. We can discuss the adiabatic Floquet states and their nonadibatic effect from the 

Floquet coefficients and quasi energies obtained in this way. The results are shown in Fig. 3-3. 
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Figure 3-3(a) shows          (k=1,2,,,15) as functions of  . Here we displayed the vertical 

grid lines with the spacing 0.05703 in the atomic unit (equal to the optical frequency of our 

laser field). We find that there is only one dominant peak on          (k=1 corresponds to the 

ground state) at      . This means that the wave function during the time interval mostly 

consists of only the unperturbed ground state. In other words, the wave function consists 

mainly of one Floquet state that is nearly equal to the initial eigenstate. This Floquet state is 

the one adiabatically propagated from the initial eigenstate. In Fig. 3-3(a)the peaks on the 

excited states are too small to be seen. In order to investigate these peaks in the excited states, 

we normalized each          so as that          
  

  
    . The normalized results are 

shown in Fig. 3-3(b). We observe that many peaks are localized in two regions:         

      and          . All the peaks in the region               have the 

positions at about 0.39, 0.44, 0.5, 0.56, and 0.61. These positions differ by the optical 

frequency. Note that two peaks belonging to the same Floquet state should have the positions 

differ by the optical frequency times an integer. This is because Eq. (164) imply that such two 

peaks have a common quasi energy. We conclude that these peaks belong to the same Floquet 

state. Since this Floquet state includes the peak at       on 1s state (the peak seen in the 

unnormalized result Fig 3-3(a)), it is the adiabatic Floquet state originated from the 1s 

eigenstate. We can clearly see the excited state components of this Floquet state in Fig. 3-3(b). 

One interesting feature here is that the peaks in this Floquet state has parity dependence. All 

the odd angular momentum states has the peaks at 0.44 and 0.56 (odd states are in solid lines), 

whereas the even states peak at 0.39, 0.5, 0.61 (dotted lines). Other peaks at a position 

satisfying        (For example, the peak on 4f state at       ) also belong to the same 

Floquet state. The peaks in the region          , on the other hand, does not belong to 

the Floquet state discussed above because the positions are not at       . Thus these peaks 

belong to the Floquet states populated after the nonadiabatic transition from the initial Floquet 
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state.  
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Figure 3-3(a) Fourier transform the excitation probability amplitudes into frequency domain.  

Floquet spectra is associated with the initial state is ground state.  
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Figure 3-3(b) Normalized the result in Fig. 3-3(a) by          
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Figure 3-3(c) Magnify the normalized result in the region                in Fig. 

3-3(b.) 

 

  In order to examine the nonadiabatically populated Floquet state, we focus on the region 

               (Fig 3-3(c)). Here we normalized the amplitudes according to the 

normalization condition          
     

      
    . In this region we observe many Floquet 

states are involved, but we still see some parity dependence. For example, the peaks in the 

region             are mainly on the even angular momentum states. As we mentioned 

above the final transition probabilities are attributed to the nonadiabatic transition. Fig 3-3(c) 

shows the information on the Floquet states nonadiabatically populated. We do not know, 

however, these Floquet states converge to which eigenstates as the final states. In order to 

discuss this, we have to understand the correlation between the eigenstates and Floquet states. 

For this purpose we performed essentially the same calculations as in Fig.3-3, but replacing 

the initial state from the ground state to varisous excited states.  

In Figs. 3-4(a)~3-4(n), we show the Fourier transformed probability amplitudes as functions 

of the frequency with the initial states 2s-5g, respectively. We found that the peaks on the 
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even angular momentum eigenstatas (dotted lines) in the region             exist only 

when the even angular momentum states are taken as the initial states (Figs. 3-4(a), 3-4(c), 

3-4(e), 3-4(f), 3-4(h), 3-4(j), 3-4(l), and 3-4(n)). The peaks on odd eigenstates (solid lines), on 

the other hand, exist only in the case of odd angular momentum initial states in this region 

(Figs. 3-4(b), 3-4(d), 3-4(g), 3-4(i), 3-4(k), and 3-4(m)). This means that one we find peaks on 

even (odd) angular momentum states on a Floquet state, it converges to even (odd) eigenstate 

as the final state when the laser is turned off. As we discussed in Fig.3-3(c), the Floquet states 

nonadiabatically populated from the ground states have peaks mostly on the even angular 

momemntum states (dotted lines in Fig.3-3(c)) in this region. This means that these 

nonadiabatically populated Floquet states mostly converge into even angular momentum 

eigenstates as the final states. In Fig. 3-3(c) in this region, small peaks exist on odd angular 

momentum states (solid line), This small population leads to the transition to the odd angular 

momentum final states. This is basically why the transition probability to even states are 

larger than those to odd states by orders (see Fig. 3-1). In some cases we observe several 

peaks in one optical frequency (one vertical grid) as is seen in Fig.3-4(n) for example, which 

indicates more than one Floquet states are populated due to the nonadiabatic transitions 

between Floquet. The analysis of the parity of peaks in the region             shows 

that the nonadiabatic transitions take places only between the states converging to the same 

parity states.   

 We have found that present Fourier-Floquet analysis of the transition amplitudes provides 

fruitful information on the non-perturbative exciation dynamics with the intense laser field. In 

what follows we propose a detailed excitation mechanism using the knowledge obtained so 

far:  

 

(1) At the initial time, the atom is in the ground state with the laser turned off. When the 

laser is off, an eigenstate can be regarded as a Floquet state. 
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(2) As the intensity increases, the system propagates in time following mostly the adiabatic 

Floquet state associated with the initial state. There is a small nonadiabatic transition 

between the Floquet states, though.  

(3) The adiabatic Floquet state associated with the initial state is a linear combinations of the 

ground and the excited states as shown in the range               of the Fig. 

3-3(b). The excited state components give rise to the large transient amplitude near the 

peak time (t=0) in Fig. 3-2. These amplitudes vanish when the laser is turned off as the 

Floquet state follows the adiabatic state converging to the ground state.  

(4) The nonzero transition amplitude on the excited states at the final time, thus, are 

attributed to the nonadiabatic transitions to other Floquet states, which spectra is 

observed in the region           of Fig. 3-3(b). Nonaidiabatic transitions between 

the Floquet states dominantly take places between those converging to the same parity 

eigen states when the laser is turned off. Since the ground state is an even angular 

momentum state, most of the Floquet states seen in this region converge to the even 

angular momentum eigenstates when the laser is turned off. Due to the nonadiabatic 

transitions between the even parity states, excited states populations may be redistributed 

among them, which can explain the reason for the same slopes in most of the even states. 

This is how the excitation to the even angular momentum state take place.  

(5) Since the nonadiabatic transitions between different parity states hardly occur, the 

excitation to the odd angular momentum states have small probabilities compared to the 

even states. Similar to the even angular momentum states, nonadiabatic transitions 

between the odd states lead to the common slope for the odd states.  

 

 

  Above discussion does not explain why the slope is 9 and 10 for even and odd states 

respectively. This may be understood by considering this problem by using the strong field 
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approximation together with the information on the Floquet states obtained in this study. This, 

however, may be investigated in a near future.  
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Figure 3-4(a) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is1st excited state(2s).  
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Figure 3-4(b) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 2nd excited state(2p). 
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Figure 3-4(c) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 3rd excited state(3s).  
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Figure 3-4(d) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 4th excited state(3p). 
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Figure 3-4(e) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 5th excited state(3d). 
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Figure 3-4(f) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 6th excited state(4s). 
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Figure 3-4(g) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 7th excited state(4p). 
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Figure 3-4(h) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 8th excited state(4d). 
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Figure 3-4(i) Fourier transform the excitation probability amplitude into frequency 

domain.This Floquet spectrum is associated with the initial state is 9th excited state(4f).                    
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Figure 3-4(j) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 10th excited state(5s). 
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Figure 3-4(k) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 11th excited state(5p).  
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Figure 3-4(l) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 12th excited state(5d).  
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Figure 3-4(m) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 13th excited state(5f).  
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Figure 3-4(n) Fourier transform the excitation probability amplitude into frequency domain. This 

Floquet spectrum is associated with the initial state is 14th excited state(5g).  

   

  In the experiments, they use molecules as target. As is explained in the introduction, they 

measure the fluorescence signals from the fragments. The fluorescence signals are attributed 
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to three physical processes: First nonlinear excitation by intense femto second laser populate 

various excited states as we discussed through the thesis. After that some of the excited states 

dissociate into fragments in electronically excited states. Since highly excited states are 

populated, dissociation process involves a breakdown of the Born-Oppenheimer 

approximation. A fragment in an excited state can emit a photon to be de-excited to a lower 

state. If it is de-excited to a fluorescing state, it may emit another photon. This kind of series 

of photon emission is called cascade fluorescence. In this thesis we focus on the excitation 

process, but our results cannot directly be compared with the experimental results without the 

analysis of dissociation and cascading processes, which is beyond the scope of us. Here we 

propose a new experimental scheme for the direct observation of the excited states in the 

parent molecule. The basic idea is similar to so called Ramsey fringes. Hereafter we briefly 

explain basic idea of it:  

  We consider the transition probabilities induced by a double weak pulse with the time delay 

T. Each pulse are polarized along z direction having the carrier frequency  . The perturbed 

Hamiltonian is given by 

                                                                                                                             

with             sin           and              s                     . Here we 

assume that    is sufficiently weak. Using the first-order perturbation theory, the transition 

amplitude from the initial state       to a final state       by the first and the second pulses are 

respectively given by 
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Defining          , Eq.(168) can be recast as 
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According to the linearity of the first order perturbation theory, the transition probability 

induced by the double weak pulse is 

                                               
           

                                                                       

                                                                       
 
                                                        

                                                          
                                                                     

The transition probability in Eq. (174) oscillates with the time delay between the two pulses 

and the frequency of oscillation is equal to the transition frequency between the initial and the 

final states. Therefore, we can obtain the spectrum of corresponding transition frequencies by 

Fourier transforming the transition probabilities with respect to the time delay. This is so 

called the Ramsey fringes. If it is possible to apply this in the neutral fragmentation 

experiment by using a double intense pulse, excitation probabilities show oscillative behavior 

in the time delay, which attributes to the oscillative behavior in the fluorescence signals as 

well. Thus if we Fourier transform a fluorescence signal, the peak position(s) tell us the 

transition frequencies from the ground state to the excited states in the parent molecule. In 

other words, if a fluorescing state are populated through more than one excited states in the 

parent molecule, the fluorescence signal should contain peaks at corresponding positions as 

finger prints. The Ramsey fringe however, is formulated using the first order perturbation 

theory, while we are interested in a highly nonlinear excitation process. Therefore we have to 
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confirm if it is applicable to the present problem. Certainly Ramsey fringe is not a general 

phenomenon. For example, Eq.(174) cannot be satisfied when      
      , because its left 

hand side exceeds unity when               . This is one of the explanation why it is not 

applicable for intense fields. The basic idea behind the Ramsey fringe is the interference 

between two transition amplitudes independently created by respective pulses. As is discussed 

above, the key mechanism in the present nonlinear excitation process is nonadiabatic 

transitions between adiabatic Floquet states.  As we see in Fig. 3-3(a), the nonadiabatic 

transition from the adiabatic Floquet state associated with the ground eigenstate is very weak. 

Therefore we can assume that the final transition probability after irradiating a double pulse is 

the consequence of the interference between the two transition amplitudes nonadiabatically 

created by the double pulse. This is why we expect that we can utilize the Ramsey fringe for 

the study of the excitation dynamics we are concerned in this thesis.   

In order to confirm this idea, we calculated the excitation probabilities with an intense double 

Gaussian pulses as functions of the delay time. Here the wave length, the duration and the 

peak intensity are 800nm, 10fs , and 1.4×10
14 

W/cm
2
, respectively. The polarization direction 

is along the z axis. After obtaining the transition probabilities as functions of the delay, we 

Fourier transformed it into the frequency domain. Fig. 3-5 shows the results. Here all the 

spectra are normalized so as that           
  

  
    .  

In Fig. 3-5, the probabilities of the same principle quantum number show the same position of 

the peaks. The positions of the peaks of the eigenstates with the principle quantum numbers 

          are 0.3754, 0.4486, 0.4711, and 0.4799, respectively, which show almost perfect 

agreement with the transition frequencies from the ground state: 0.375, 0.445, 0.4687 and 

0.48. The result shows that we can obtain the corresponding transition frequencies from the 

peak positions in the Fourier transformed probabilities. This clearly shows that Ramsey 

fringes is also practical in intense field case. We call this new experimental scheme 
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"Nonlinear Ramsey fringe". It should be noted here that our nonlinear Ramsey fringe is not a 

scheme that works with general nonlinear processes. It works only when the excitation 

mechanism is same as we discussed in this thesis. We believe, however, that the excitation 

mechanism discussed in this thesis is widely seen in atomic and molecular processes induced 

by intense laser field, so the applicability of our scheme is very broad.  
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Figure 3-5 Fourier transforming the transition probability, which is induced by the double intense 

laser pulses, into frequency domain. Here, the pulse has intensity about 1.4×10
14

W/cm
2
. The laser 

pulse duration is about 10fs(FWHM), and the wavelength of the laser pulse is 800nm. 
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V.  Summary 

 

  In this thesis, we discussed the highly nonlinear excitation process using the 

Fourier-Floquet analysis. Highly nonlinear excitation is one of the key mechanism in the 

neutral fragmentation, which has attracted a significant attention because of the possibilities in 

opening new applications of intense laser filed .  

 We first calculated the excitation probability of a hydrogen atom with the femto second 

intense laser fields as function of the intensity, and found interesting features: (1) the 

fluorescence signals have a power dependence on laser intensity, (2) the powers are very large 

(n  >ionization potential), and (3) Even (odd) angular momentum states have the power of 

10(9). 

 In order to understand the excitation mechanism, we calculated the transition amplitude 

transformed into the frequency space, which we call the Fourier-Floquet spectra. Utilizing the 

idea of the Floquet theorem, the peaks in the spectra were analyzed. From the spectra. we 

found that the weave function is dominantly consists of the Floquet state that is adiabatically 

followed from the initial state, with a small portions of various nonadiabatically populated 

Floquet state, which attribute to the excitation process. Thus we analyzed them more carefully, 

and find that the nonadiabatic transitions dominantly occur between the Floquet states leading 

to the excitation to the same angular momentum parity states. Using this idea we succeeded to 

construct the detailed mechanism of highly nonlinear excitation. The key mechanism of this 

highly nonlinear excitation is the small nonadiabatic transition. This inspired us to propose a 

new experimental scheme for the direct measurement of the intermediate excited state. Here 

we used our finding that a simple interference pattern same as the Ramsey fringe is observed 

if we apply an intense double pulse. 

Finally some future perspectives are mentioned here. In this thesis, we have obtained a 
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detailed knowledge on the Floquet states and the nonadiabatic transitions among them during 

the excitation process. We expect this knowledge combined with the strong field 

approximation will provide a new theory to predict the power dependence. Throughout this 

thesis we ignored the ionization processes, because we are interested in a qualitative 

understanding of the mechanism in the nonlinear excitation process. For the quantitative 

discussion, however, including continuum states are necessary.   
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