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Abstract —This paper is concerned with efficient derivation of the
medial axis transform of a two-dimensional polygonal region. Instead
of using the shortest distance to the region border, a potential field
model is used for computational efficiency. The region border is
assumed to be charged and the valleys of the resulting potential field
are used to estimate the axes for the medial axis transform. The
potential valleys are found by following force field, thus, avoiding two-
dimensional search. The potential field is computed in closed form
using the equations of the border segments. The simple Newtonian
potential is shown to be inadequate for this purpose. A higher order
potential is defined which decays faster with distance than as inverse
of distance. It is shown that as the potential order becomes arbitrarily
large, the axes approach those computed using the shortest distance
to the border. Algorithms are given for the computation of axes, which
can run in linear parallel time for part of the axes having initial guesses.
Experimental results are presented for a number of examples.

Index Terms —Generalized potential, Newtonian potential, topology,
medial axis, symmetric axis transform, skeletonization, distance
transform.

———————— ✦ ————————

1 INTRODUCTION

THIS paper is concerned with obtaining shape representations such
as the medial axis transform (MAT) and the generalized cylinder
representation in a computationally efficient manner. Commonly,
such representations are derived first by computing a distance
transform which yields the shortest distance from each pixel to
region border, or equivalently, by identifying at each pixel the
largest possible size of the primitive of a given shape such that it is
entirely contained in a region to be represented. The representa-
tion is derived by identifying the primitives having locally maxi-
mal sizes. Such approaches are straightforward but computation-
ally expensive since the distance computation must be performed
at each pixel. The efficiency of the approach presented in this pa-
per results from the use of an intermediate, analog representation
of the given shape information as a potential field. The use of po-
tential field representation helps avoid the expensive task of com-
puting the distance transform at each pixel, and the subsequent
elaborate search for the primitives of the desired representation.
Instead, the computation is limited approximately to the locations
of the locally maximal primitives. The computation of the poten-
tial field itself, in the approach presented, is performed efficiently
if the shape information is given in a compact form, e.g., as a set of
equations each specifying one of the segments in a piecewise con-
tinuous representation of the surface. Such a compact description
may be directly available as a part of the specification of the given
object shape, or it may be derived from the given object data such
as its surface or volume description.

Although the approach presented applies to three dimen-
sions, for concreteness, we will confine the detailed discussion to

two-dimensional (2D) images. Section 2 reviews the definitions
of MAT, and the algorithms for their computation reported in
the literature. Section 3 describes the motivation for our poten-
tial field approach and presents an overview of the approach.
Section 4 describes a potential field-based algorithm for com-
puting the MAT. Section 5 presents implementation details and
experimental results. Section 6 presents a brief comparison with
other approaches. Section 7 presents concluding remarks.

2 THE MAT
The medial axis transform of a shape is defined in terms of the
medial axis which is the loci of those points which are equidistant
from at least two points along the region border [1]. Thus, the me-
dial axis is composed of the centers of “locally maximal” discs,
defined as discs that are as large as they can be without crossing
the region border but are not contained in any other locally maxi-
mal discs. More formally, let B denote the set of boundary points
and let the distance function, or distance transform,
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denote the minimal distance between a point x in the region to
be represented and the set B. Then for any point x in the region,
if d(x, B) = d(x, y) = d(x, z) for at least two distinct boundary points
y and z, x is on the medial axis. The medial axis and the radii of
the maximal discs associated with each axis point together define
the MAT representation. Fig. 1b shows the MAT skeleton for the
rectangular region shown in Fig. 1a.

Fig. 1. (a) A rectangle ABCD; (b) its medial axis (consisting of seg-
ments Aa, Bb, Cb, Da, and ab).

The points along skeleton curves are local maxima of the short-
est distance to the border in the neighborhood of the curves. Thus,
the skeleton consists of distance “ridges” which are 1D local
maxima of the shortest distance in the direction across the ridges.
As an example, for the special case of polygonal regions, these
ridge curves are piecewise smooth and consist of linear and para-
bolic segments. The curves meet at vertices which are local 2D
maxima of the shortest distance to the border, i.e., at distance
“peaks.” The locations and the radii of the discs comprise a repre-
sentation of the original shape since the represented region is ex-
actly the union of the MAT discs. The use of the disc shape is
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motivated by the property that the (Euclidean) distance of the disc
center is the same from all points on its border. Since one could
use other types of distance, especially for digital images [2], [3],
[4], [5], [6], [7], one could use other kinds of “discs,” e.g., squares.

A number of algorithms developed to obtain the skeleton of a
digital image region explicitly compute the distance transform for
each point inside the region. Then, the definition of the locally
maximal discs is used in a straightforward way to identify centers
of such discs and, thus, the skeleton. The basic definition of MAT
is applied in [8] to piecewise uniform gray level images by using
squares as shape primitives. Continuous medial axes are obtained
in [9] and [10] by following the ridges in the distance transform. A
graph representation, called medial line, is used in [11] to join dis-
connected medial axis segments detected as local maxima of the
chessboard distance transform. The ridge points in different dis-
tance transforms are detected and connected in [12] to form
skeletons. The propagation and extinction of the fire in the grass
fire model are directly used to obtain the skeleton in [13]. An algo-
rithm for determining skeletons of polygonal regions based on the
same propagation process is presented in [14]. While the comput-
ing time is said to be roughly proportional to the number of edges
of the polygon, the algorithm is complicated to program. It is
shown in [15] that the skeletonization problem is linearly reducible
to the construction of generalized Voronoi diagram. O(n log n)
algorithms are presented in [15] and [16] for the construction of
the skeleton of a simple polygon which has n border segments.
[17] presents an algorithm with similar complexity for a set of cir-
cular and straight line segments.

3 MOTIVATION AND APPROACH

The computation of the shortest distance to the border is the heart
of obtaining the MAT. It requires at each pixel a nonlinear
(minimization) operation over shortest distance to all border pix-
els. The axes are given by the locations of the 1D or 2D local
maxima of the above shortest distance function. Because of the
nonlinear nature of shortest distance computation, the local
maxima must be found by explicit spatial search for them. Since, in
general, no initial knowledge about the axes is available, the short-
est distance function must be computed over the entire region and
then the maxima found.

The motivation for the approach presented in this paper is to
significantly reduce the computational cost of deriving the medial
axis. We achieve this by compressing information about the dis-
tances of an interior point to different border points into a single
scalar, called potential, which is derived from the distances from
the interior point to all border points. Thus, the main feature of
our approach is to replace the nonlinear distance transform that
computes the local maxima of distance to nearest border point(s),
with a linear transform that accumulates distance sensitive contri-
butions from all border points. Given the potential field, it is possi-
ble to identify the axes without performing the O(region area) com-
putation of the shortest distance, by limiting the computation to the
vicinity of the desired axes. This is because the forces resulting from
the potential field can be used to reach and follow the axes without
explicitly performing any area based search for minima.

Analytic expressions for skeleton segments are derived in [15]
and [16] with good computational complexity as mentioned ear-
lier. However, the corresponding algorithms are complicated to
program and the complete skeleton has to be computed first
even if part of it is needed. The proposed approach, on the other
hand, obtains samples along the skeleton (potential valleys) by
following the negative gradient direction of the potential func-
tion. The associated algorithm is extremely simple and the sam-
ples can be obtained only for selected portion of the skeleton,
making it very efficient. For a given number of skeleton segments

to be obtained, the computation time is proportional to the
number of edges of the polygon. The proposed approach can
also be generalized to the 3D space with little change in the
computational complexity [18]. In the rest of this section, we will
present an overview of our approach.

We assume that the boundary of each region carries an electric
charge which gives rise to a scalar potential field. The magnitude
of the field is infinity at the boundary and decreases with increas-
ing distance from the boundary. The points along potential valleys
(or trajectories of 1D potential minima) are related to branches of
the MAT skeleton, and the points which are 2D potential minima
are related to vertices of the MAT skeleton. To determine the
skeleton, we start at an arbitrary point interior to the region, and
follow the direction of the force at the point to reach the skeleton.
Once we are on the skeleton, we track it by following the direc-
tions determined by the force or the local potential variation. Be-
cause the force direction depends upon all border points, not just
the nearest ones, the result contains only coarse MAT information.
Refinements are then made in the definition of the potential to
compute an accurate MAT. To do this, the rate of decay of poten-
tial with distance from a border point is increased to reduce the
influence on potential values (and hence, on the estimate of MAT)
of border points which are not the nearest ones. This refinement is
the price paid to avoid the more expensive computation of the
nonlinear distance transform, thus representing a cost trade-off.

The potential field can be computed by adding contributions
from individual pixels along the region border. However, if a
(piecewise) analytic description of the border is available, then the
potential field may be computed in closed form for entire border
(segments), rather than one pixel at a time, and hence, much more
efficiently. In the following sections, we will present algorithms
that implement the approach outlined above.

4 2D MAT FOR POLYGONAL REGIONS

In this section, we will develop a potential field based algorithm
for the computation of MAT for a 2D polygonal region in three
stages. We will start with a preliminary algorithm which uses the
Newtonian potential and captures the basic notions and motiva-
tions for our approach summarized in Section 3. We will then de-
scribe some problems with this simplistic algorithm and present a
second algorithm that uses a generalized definition of potential to
avoid the above problems, giving a satisfactory MAT. This will be
followed by a third algorithm which performs the same computa-
tion as the second algorithm but does so more efficiently. This
algorithm will serve as our final algorithm for MAT computation
for polygonal regions.

4.1 A Newtonian Potential Based MAT Algorithm
For the preliminary algorithm (see also [19]), we will assume that
the potential due to a border point is Newtonian, i.e., it is inversely
proportional to the distance from the border point. When the re-
gion border is specified as a polygon, the overall potential field
can be computed as a linear superposition of the fields due to in-
dividual border segments. We now obtain a closed form expres-
sion for the Newtonian potential due to a line segment. Without
the loss of generosity, a special configuration is assumed for the
line segment to simplify the discussion.

4.1.1 Newtonian Potential Due to a Line Segment
Consider a point A at (0, y0 π 0) and a finite line charge on x-axis
with a unit charge density uniformly distributed between x = x1

and x = x2, as shown in Fig. 2. The Newtonian potential at point A
due to a point (x, 0) of the line charge is defined as

1 1
2

0
2 1 2r x y

x x x=
+

£ £, , (2)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  2,  FEBRUARY  1997 171

where r is the distance between these two points. The total poten-
tial due to the whole line segment can then be calculated as
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Due to the similarity of their definitions, the potential and the
distance functions have similar spatial structures, e.g., peaks, val-
leys, and ridges. In Fig. 3, the potential functions are shown for
some polygonal regions.

Fig. 2. (a) A finite line charge and a point A in a selected coordinate
system.

Fig. 3. Newtonian potential within (a) a rectangle; (b) an “L”-shaped
object; and (c) the object used in Fig. 19 of [20]. The brighter a point,
the lower is the potential. The brightness is made to vary logarithmi-
cally with potential value.

4.1.2 Newtonian Force Due to Line Segments
As outlined in Section 3, once positioned on the MAT skeleton, we
use the force experienced at that point to traverse the rest of the
skeleton. For this purpose, we now obtain an expression for the
Newtonian force at a point due to a uniformly charged line segment.

With reference to Fig. 2, the repulsive force on point A due to a
point (x, 0) on the x-axis can be calculated as
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where q is the angle of the position vector with respect to the +x
direction. By the superposition principle, the net force on A due to
the entire line segment has the following two components:
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Fig. 4 shows force fields for the regions shown in Fig. 3. The
force vector at a point is indicated by drawing an arrow. The ar-
rows, or streamlines, merge along “valleys” (1D potential minima)
and “converge” at points that are 2D potential minima. Clearly, the
potential valleys are close to the corresponding MAT skeletons.

Fig. 4. Streamline representations of Newtonian force fields within re-
gions shown in Fig. 3.
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4.1.3 A MAT Algorithm
The MAT skeleton, in general, consists of potential valleys and
isolated 2D potential minima. A region yields a connected compo-
nent of the skeleton consisting of a single 2D minimum or a graph
of potential valleys having vertices at 2D potential minima. The
basic computation of the MAT skeleton, starting with an arbitrar-
ily given point of the region called the seed point, is described in
the following algorithm (see Fig. 5):

Fig. 5. The basic MAT algorithm. Starting from point A, following the
direction of Newtonian force leads to contact with MAT at point B.
Then, the direction towards E is randomly chosen (instead of towards
C) and the valley BE is followed to E. Then E is used as the starting
point to begin a recursive traversal of the MAT skeleton along the di-
rection EF, EC, and EG.

Fig. 6. Skeletons obtained using the Newtonian potential for regions
shown in Fig. 3. (a), (b), and (c) are obtained for Figs. 3a, 3b, and 3c,
respectively. (d) MAT of Fig. 3b, from [21], (e) MAT of Fig. 3c, from [20].

Algorithm MAT-Newtonian-Polygon

Step 1: Reach the skeleton starting from the seed point by fol-
lowing the direction of the force.

Step 2: Follow the skeleton from the point of initial contact un-
til a zero force is obtained.

Step 3: Traverse the skeleton by recursively following along each
branch (out of a vertex), or by following both directions
along the skeleton (out of a nonvertex) until both ends of
the branch containing that point are reached.

For polygonal regions, all convex corners are end points of the
medial axis. Therefore, if they are chosen as seed points, Step 1 can
be avoided. Fig. 6 shows the skeletons obtained from Step 2 alone
using such seed points. Similarity between these potential skele-
tons and the MAT can be observed by comparing Figs. 6a-6c with
Fig. 1, Fig. 8c in [21] (reproduced here as Fig. 6d), and Fig. 19 in
[20] (reproduced here as Fig. 6e), respectively. A skeleton, thus,
obtained may not be connected, as shown in Fig. 6b.

Fig. 7. Force following results for obtaining (a) medical axis and (b)
potential skeleton.

Fig. 8. Potential skeletons obtained for different polygonal regions. The
polygonal approximation in (a) has only about 1/8 of boundary ele-
ments of that in (b).
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For noisy boundary, a similar force following method is not
suitable for obtaining the medial axis since a zigzag pattern like
that shown in Fig. 7a will be obtained. (In this case, the gradient
direction the distance function is followed.) The Newtonian
skeleton is less sensitive to the fluctuations in the region boundary
as can be seen from Fig. 7b. Since the Newtonian skeleton is spa-
tially smooth, we will only show discrete samples of the skeleton
in the rest of the paper.

For arbitrary shaped regions, coarse-to-fine polygonal approxi-
mations can be obtained. If the approximation error is decreased
slowly, the skeletons corresponding to successive polygons will be
similar. Therefore, the skeleton corresponding to an approximation
can be used as initial estimate to obtain the next finer estimate. Fig. 8
shows potential skeletons obtained for different polygonal regions.
The polygonal approximation in Fig. 8a has only about 1/8 of
boundary elements of that in Fig. 8b, while Figs. 8b-8d have similar
resolutions in the representation of their boundaries.

4.1.4 Problems with the Above Algorithm
The potential at a given point inside a region is by definition the
summation of the potentials due to all boundary points every-
where; it does not depend only on the nearest border points. This
leads to erroneous shifts in the potential valleys with respect to the
locations of the medial axes (see Fig. 9). To avoid these problems,
we use a different potential field which is discussed next [22].

Fig. 9. The potential value at P receives a larger contribution from MC
than from AM. Further, the Newtonian potential at point P depends not
only on segments immediately surrounding it, i.e., on segments AB,
AC, BD, CG, but also on segments EF, FG, EH, etc., as well as seg-
ments QR, RT, ST, and QS. As a result, the potential valley in the
vicinity of P is shifted to the left.

4.2 A Generalized Potential Field
We now describe a generalized potential function whose pur-
pose is to suppress the influence of the extraneous borders, as
discussed above. We achieve this by observing that if the poten-
tial is made to decay faster with distance than the Newtonian
potential, then the undesirable effects mentioned in Section 4.1.4
will become proportionately less severe. We achieve faster decay
by using the nth order potential given by 1/rn instead of the first
order. For example, for point A in Fig. 2, such a generalized po-
tential is given by
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The two components of the corresponding repulsive force, called
the nth order force, or n-force, can then be shown to be given by
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with p = (n + 2)/2. The integrals can be evaluated analytically
with
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where m = 1 is used to evaluate the x-component and m = 0 to
evaluate the y-component of the repulsive force. The larger the
value of n used in defining the generalized potential, the lower the
extraneous effects, because the direction of the force at a point not
positioned on the medial axis can be made arbitrarily close to that
pointing away from the closest border point. This leads us to the
following result:

Suppose we are given a 2D polygonal region and its medial axis
which partitions the region into cells such that points within each region
are closest to exactly one polygon edge. Then, the direction of the n-force
will converge to that of the gradient of the shortest distance function at
any point inside a cell if n increases indefinitely.

Therefore, if the potential valleys are traversed in the same
manner as in the Newtonian potential case, the resulting n-
skeleton should converge to the true skeleton. Fig. 10 shows the
effect of increasing the order of the potential function on the
corresponding force field for the rectangular region discussed
earlier. This suggests that to find MAT we require n-skeletons
for large values of n. We now present an algorithm for computing
n-skeleton from the (n - 1)-skeleton, n > 1. Let P denote the point
on the (n - 1)-skeleton whose successor Q on the n-skeleton is to be
found, and q0 be the direction perpendicular to the (n - 1)-force at
P, as shown in Fig. 11. The following algorithm finds Q with accu-
racy smin by conducting a binary search for it.

Fig. 10. Streamline representations of force fields due to generalized
potential of different orders within the region shown in Fig. 3a.

Fig. 11. A point P on the (n - 1)-skeleton (dotted line). The successor
of P, Q, on the n-skeleton (dashed line) can be found along the projec-
tion of the n-force at P along q0 which is perpendicular to the (n - 1)-
force at P.
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Algorithm Successor

Step 0: Find the direction of q0. Initialize (spatial) step size s = S
where S is a given constant.

Step 1: Compute the n-force at P and find its projection along
q0. If the projection along q0 is 0, i.e., the n-force is per-
pendicular to q0, let Q = P and go to Step 5.

Step 2: Locate the point Q, which is a distance s away from P
along the projected force direction.

Step 3: If s ≥ smin and the above projected force has not reversed
its direction so far, then let P ¨ Q, and go to Step 1.

Step 4: If s ≥ smin, then let s ¨ s/2, P ¨ Q, and go to Step 1.
Step 5: Q is the desired successor of P on the n-skeleton.

By finding successors for all points on the (n - 1)-skeleton, we can
find the n-skeleton from the (n - 1)-skeleton. (As a matter of fact,
an n’-skeleton, 1 £ n’ < n, can also be used in place of the (n - 1)-
skeleton in the above algorithm, as will be considered later.) In the
next section, we develop an nth order potential field-based MAT
algorithm.

4.3 A Generalized-Potential Field Based MAT Algorithm
The accuracy of the MAT skeleton obtained using a given n
value can be expressed in terms of the maximum deviation be-
tween the n-skeleton and the true skeleton. The maximum de-
viation must be less than some threshold distance emin to be ac-
ceptable. To reduce the displacement between the potential val-
leys and the medial axis, we need to increase the value of n.
However, the complexity of the computation of the n-force in-
creases with n. Also, the numerical error due to finite resolution
accumulates for larger values of n. Therefore, it is desirable to
use as small a value of n as possible while still ensuring the de-
sired accuracy of the MAT. We will refer to the n-skeleton ob-
tained for the smallest acceptable n value as •-skeleton. We have
already seen that as n Æ •, •-axis ∫ medial axis.

Fig. 12. N-skeletons obtained for the regions shown in Fig. 3 for N = 4. (left)
and N = 8 (right).

A straightforward algorithm to obtain •-skeleton is to
start with the Newtonian skeleton, and generate n-skeletons
for increasing value of n (e.g., the skeletons shown in Fig. 12)

until the maximum difference between the (n - 1)-skeleton

and the n-skeleton is less than emin. An immediate, simple solution
to the above problem is to not consider further generation of suc-
cessors of a point for an n value beyond which the change in its

location is less than emin. (Let NP denote such an n for a point P on
the Newtonian skeleton.) This simple solution can be modified
further so that it is computationally more efficient. Note that the
direction of the force at any nonskeleton point must ultimately
converge to the direction pointing away from the nearest bound-
ary point (see the force fields for the rectangular object in Fig. 10).
Thus, if we increase the value of n successively, and each time
compute the change in direction of the n-force at P, then the small-
est value of n, denoted as ¢NP , for which the above change will be

smaller than a fixed value, qmin, for all n > ¢NP  could serve as an

estimate of NP, as described in the following algorithm. (The sub-

script of NP is omitted for brevity.)

Algorithm MAT-Generalized-Polygonal

Step 0: (Start with N = 2 as the estimate of the lowest accept-
able value of n for point P.)

 Initialize N = 2.
Step 1: (Increase N if doing so changes qN significantly.)
 If |qN - qN-1| > qmin, then let N = N + 1 and go to

Step 1, where qN is the direction of N-force at P.
Step 2: (Ensure that two successive N values yield insignificant

changes in N.)
 If |qN+1 - qN| > qmin, then let N = N + 1 and go to Step 1.
Step 3: (The minimal required order of the generalized poten-

tial has been estimated for P.)
 Find the successor of P, Q, on N-skeleton directly by

using N-force and Steps 1-5 of the algorithm Successor.
Q is the desired medial axis point corresponding to P.

Since the amount of direction change (Dq) may not be mono-
tonic with increasing n, an additional check is carried out in Step 2
to refine the estimate, so that Step 1 will not be confused by a
wide, shallow valley of Dq before it breaks up again. Fig. 13 shows
p = (NP + 2)/2 at different skeleton locations for the rectangular
region shown in Fig. 3a with

q min cos . . .= =-1 0 999 2 56b g o

Fig. 13. The smallest values of p = (N + 2)/2 at different skeleton
locations for the rectangular region shown in Fig. 3a. The smallest
value is computed to ensure that the change in the direction of the pth
and (p - 1)th force fields, and the (p - 1)th and (p - 2)th force fields, is
less than cos-1(0.999) = 2.56∞.

An “x” is displayed if p > 9 is needed. Larger ps are needed for
locations where the •-skeleton lies farther away from the potential
skeleton, i.e., near the junction points in this case.
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5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

A simplified form of the algorithm MAT-Newtonian-Polygonal of
Section 4.1.3 was implemented. Step 2 (force following) of this
algorithm is implemented using convex polygon corners as seeds.
Translation of a fixed step size is performed along the n-force (n = 1),
which is evaluated in closed form. The translation stops when the
force reverses its direction since the exact location at which the
force is 0 may be overshot due to the nonzero step size, which is
chosen to be about 1% of the dimensions of the corresponding
regions. Fig. 6 shows the MAT skeletons obtained for three differ-
ent polygons. The skeletons are shown with a sampling distance
twice that of the step size. The computation times for Figs. 8b, 8c,
and 8d are 0.37, 0.33, and 0.71 second, respectively, on a Sun Sparc
10/51 Workstation.

For the implementation of algorithm Successor of Section 4.2,
the direction q0 in which the binary search is carried out is cho-
sen to be perpendicular to the Newtonian skeleton direction.
The latter is estimated at a skeleton point by averaging the di-
rections of the Newtonian forces at that point and at the neigh-
boring skeleton points which have a higher potential values.
The n-force is considered as perpendicular to q0 in Step 1 of
algorithm Successor if the angle between the force direction and
q0 is within

90 0 001 90 0 0571o o o± = ±-sin . . .b g
For results obtained in Fig. 12, the initial step size S in Successor is
chosen as 1% of the region dimension, and the minimal search step
smin is chosen to be 1/8 of the initial step size.

6 COMPARISONS WITH OTHER SKELETONIZATION
METHODS

6.1 The Geometric Approach in [16]
A hierarchical algorithm based on the definition of the medial
axis is presented in [16] for deriving the axis for a simple po-
lygonal region. Although the complexity of the algorithm is O(n
log n), where n is the number of convex vertices, the implemen-
tation of the algorithm is complicated. Moreover, for a noisy
region border which is often found in a digital image, the com-
plete medial axis may have a lot of branches of little significance.
For example, n is equal to 40 for the region shown in Fig. 8b. In
order to obtain a portion of the axis similar to that shown in
Fig. 8b, the whole axis has to be derived first before further
pruning of the axis is performed. Finally, since the medial axis is
formed by connecting linear or parabolic curves, the axis will not
be as spatially smooth as those shown in Fig. 8. The smoothness
property is desirable in some motion planning applications of
the medial axis, e.g., in [23].

6.2 A Thinning Algorithm
In order to identify the skeleton points in a digital image, thinning
algorithms which iteratively delete the nonskeleton border points
of a 2D region are often used. Whether a point should be deleted
or not can be determined by simply examining the local neighbor-
hood of that point [24]. Fig. 14 shows the thinning result for the 2D
region shown in Fig. 8a, in an equivalent 240 ¥ 360 binary image
format. The computation time for deriving the skeleton is about
2.2 seconds on a Sun Sparc 10/51 Workstation. Notice that several
branches of the skeleton shown in Fig. 8a are missing in Fig. 14.
Moreover, the connectivity of the skeleton is not guaranteed with
this simple implementation. Finally, certain portions of the result-
ing skeleton are not thinned to unit width.

Fig. 14. The thinning result obtained according to [24] for the 2D region
shown in Fig. 8a, in an equivalent 240 ¥ 360 binary image format.

7 SUMMARY
In this paper, we have considered the problem of efficient com-
putation of the MAT representation of objects from given border
data. The central theme of the approach we have presented is the
use of a potential field to represent the available object shape in-
formation. The potential value captures the information about the
distances of an interior point to different border segments into a
single scalar potential. In addition, the closed-form expression of
the gradient of the potential is derived and used to improve the
accuracy and efficiency in locating the potential valley by force
following. The potential valley is continuous, and its location is
spatially smooth and insensitive to noises in the object border. By
using the nth order potential given by 1/rn, it is shown that the
potential valley converges to the medial axis as n approaches in-
finity. The algorithms presented can generate part of the axis
without the need to derive the complete axis first. The algorithms
can also be used as thinning algorithms.
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Automatic Script Identification
From Document Images

Using Cluster-Based Templates

Judith Hochberg, Patrick Kelly,

Timothy Thomas, and Lila Kerns

Abstract —We describe an automated script identification system for
typeset document images. Templates for each script are created by
clustering textual symbols from a training set. Symbols from new
images are compared to the templates to find the best script. Our
current system processes thirteen scripts with minimal preprocessing
and high accuracy.

Index Terms —Script identification, document analysis, optical
character recognition.

————————   ✦   ————————

1 INTRODUCTION

SCRIPT identification is a key part of the automatic processing of
document images in an international environment. A document's
script must be known in order to choose an appropriate OCR algo-
rithm. Further processing, such as indexing or translation, de-
pends on identifying the language used in a document, and here
again script identification is crucial. Script identification accom-
plishes language identification for scripts used by only one lan-
guage, and is a necessary first step for scripts shared by many
languages. For example, once a document's script has been identi-
fied as Roman, one can search for letter sequences or word shapes
that typify English, French, etc. [1], [2], [3].

Script identification has received relatively little attention in the
document analysis field because one can normally deduce a
document's script from its country of origin, or by examining the
document. We are concerned with environments in which the
volume and variety of scripts makes such manual identification
unworkable. For example, an office might have a large volume of
incoming mail and reports in a variety of scripts that need to be
converted to a character representation and routed to the appro-
priate reader. In such cases the ability to automatically determine
the script, and further, the language of a document, would reduce
the time and cost of document handling. Script identification that
runs accurately on a small number of characters could also be used
to segment multiscript documents prior to OCR.

The Fuji Xerox group has researched automatic script identifi-
cation [3], [4]. In their current system, an initial division is made
between Asian scripts (Chinese, Korean, and Japanese) and Ro-
man. The basis of this distinction is that upward concavities are
distributed evenly along the vertical axis of Asian characters, but
tend to appear at certain locations in Roman characters. Further
distinctions among Asian scripts are then made on the basis of
character density. These distinguishing characteristics were found
through a hands-on analysis; a similar analysis would be required
for any additional script.

In contrast, our script identifier can learn to distinguish any
number of scripts automatically. In a training phase, a cluster
analysis is used to discover frequent character or word shapes in
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