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量 子 糾 錯 碼 的 數 學 性 質 與 建 構

研究生：蔡睿翊 指導教授：翁志文教授

國立交通大學

應用數學系

摘 要

本論文以傳統糾錯碼的觀點來看量子糾錯碼。我們亦將介紹文獻中所提及之
量子糾錯碼的構造與刻劃，最後給出一種與圖有關的量子糾錯碼的建構方法，其
擴充文獻中排除二元情形的方法，能適用所有情形。

關鍵詞：量子糾錯碼、圖。
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Mathematical Properties and
Construction of Quantum Codes

Student：Jui-Yi, Tsai Advisor：Dr. Chih-Wen Weng

Department of Applied Mathematics

National Chiao Tung University

Hsinchu 300, Taiwan, R.O.C.

Abstract

This thesis introduces about the quantum error correcting codes in the viewpoint
of classical error correcting codes. We also introduce some construction and charac-
terization of quantum error correcting codes. Thereafter, we give a construction of
quantum error correcting codes associated with graphs, which generalizes a previous
result that excludes the binary case so that it is valid for all cases.

Keywords: quantum error correcting codes, graph.
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Chapter 1

Introduction

Quantum communication like quantum coding theory and quantum cryptogra-

phy has been developed in the recent decades. This is a great improvement in com-

munication theory. Its concepts are based on quantum mechanics, but we will not

mention anything about quantum mechanics in this thesis. We will give the strict

mathematical definition of quantum error correcting codes based on [3]. The results

from [6] and [7] will be introduced. Thereafter, we give a construction of quantum

error correcting codes associated with graphs, which generalizes a previous result in

[7] that excludes the binary case so that it is valid for all cases.

The thesis is organized as follows: Chapter 2 introduces the notations which will

be used in this thesis. To compare the similarities and differences between classical

error correcting codes and quantum error correcting codes, chapter 3 recalls the

definitions and propositions of classical error correcting codes; those of quantum

error correcting codes will also be introduced in parallel. Chapter 4 introduces a

method to characterize quantum error correcting codes by logic functions from Fn
p to

Fp introduced in [6]. Chapter 5 introduces about the construction of quantum error

correcting codes using the graph-theoretical method introduced in [7], in which only

non-binary quantum codes are discussed. Thus we will generalize the result in [7].
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Chapter 2

Preliminaries

In this section, we will introduce the notations which will be used in this thesis.

Throughout the thesis, let Fp = {0, 1, · · · , p − 1} be the finite field of p elements.

Sometimes we also treat an element i ∈ Fp as its corresponding integer. Let ω be

the p-th primitive root of unity. Let A = (ai,j) be an m× n matrix and B an s× t

matrix. Then the Kronecker tensor product A⊗B of A and B is defined by the

following ms× nt matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

... ... . . . ...
am1B am2B · · · amnB

 .

Note that (A ⊗ B)(C ⊗ D) = AC ⊗ BD for matrices A,B,C,D of suitable sizes.

The n-th Kronecker tensor power of a vector space V over a field F is defined

by

V ⊗n := span{v1 ⊗ v2 ⊗ · · · ⊗ vn|vi ∈ V }.

The Hermitian inner product of complex vectors u = (u1, · · · , un)
T , v = (v1, · · · , vn)T

is defined by

⟨u, v⟩ :=
n∑

i=1

uivi,

where · stands for complex conjugation. In the the last two sections, we will fre-

quently use the block notations of matrices. Therefore we should introduce the
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following notation of a matrix M and a column vector u:

M =


∆1 ∆2

∆1 M [∆1|∆1] M [∆1|∆2]

∆2 M [∆2|∆1] M [∆2|∆2]

,u =

(
u[∆1]
u[∆2]

)
,

where M [∆1|∆2] means the sub-matrix of M with rows indexed by elements in ∆1

and the columns by elements in ∆2, and u[∆1] means the sub-column vector with

entries are indexed by ∆1.
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Chapter 3

Comparison between Classical and
Quantum Error Correcting Codes

In this chapter, we are going to recall the definitions and propositions of classical

error correcting codes and introduce those of quantum error correcting codes to

compare the similarities and differences between them.

3.1 Basic Definitions and Structures of Classical
Codes and Quantum Codes

The classical (linear) codes are vector spaces over finite fields; whereas the quan-

tum codes are vector spaces over the complex number field C.

Definition 3.1. A classical (linear) [n, k]p-code (or a classical (n,K)p-code,

where K = pk = |C|) is a k-dimensional subspace C of Fn
p .

Definition 3.2. A quantum [[n, k]]p-code (or a quantum ((n,K))p-code, where

k = logpK) is a K-dimensional subspace Q of (Cp)⊗n.

Remark 3.3. Error-correcting coding theory depends on what basis of a vector

space is chosen.

(i) Classical coding theory:

{ei = (0, · · · , 0, 1, 0, · · · , 0)T ∈ Fn
p | 1 ≤ i ≤ n},

where 1 appears in the i-th position.
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(ii) Quantum coding theory:

{ei1+1 ⊗ · · · ⊗ ein+1 | ij ∈ {0, 1, . . . , p− 1}}.

It is a convention in Quantum coding theory (Dirac notation) to write |i⟩ for ei+1

and |i1i2 · · · in⟩ for ei1+1 ⊗ ei2+1 · · · ⊗ ein+1.

3.2 Error Detection and Correction of Classical
Codes and Quantum Codes

An error can occur when passing a message, so we have to correct it to the right

one. Here we introduce the error detection and correction of classical codes and

quantum codes in an algebraic point of view.

An error in classical codes is simply a vector over a finite field, and the codewords

is interrupted by an error under addition.

Definition 3.4. An error is a nonzero vector e independent to C.

The quantum codewords may be interrupted by the errors under matrix multi-

plication. Here is the definition of the errors in quantum codes.

Definition 3.5. (i) For a, b ∈ Fp, define two linear operators X(a) and Z(b) on

Cp by

X(a)|x⟩ = |x+ a⟩, Z(b)|x⟩ = ωb·x|x⟩,

where x ∈ Fp. Then X(a) is called a bit error; Z(b) is called a phase error.

(ii) For a = (a1, · · · , an)T ,b = (b1, · · · , bn)T ∈ Fn
p ,

X(a) = X(a1)⊗ · · · ⊗X(an), Z(b) = Z(b1)⊗ · · · ⊗ Z(bn).

(iii) En := {ωtX(a)Z(b)|0 ≤ t ≤ p − 1, a,b ∈ Fn
p} is called the quantum error

group.
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An element of E ∈ En is called an error of quantum code. Note that E|u⟩ =

ωt+b·u|u+a⟩ for u ∈ Fn
p and E = ωtX(a)Z(b). In fact, from the previous definition,

we have the following proposition.

Proposition 3.6. The following (i)-(ii) holds.

(i) With respect to the basis {|0⟩, |1⟩, · · · , |p − 1⟩}, the operator X(1) is a cyclic

matrix, and the operator Z(1) is a diagonal matrix as follows.

X(1) =


0 1
1 0

1
. . .
. . . 0

0 1 0

 , Z(1) =


1 0

ω
ω2

. . .
0 ωp−1

 .

(ii) X(a) = X(1)a, Z(b) = Z(1)b, X(a)
T
= X(−a) = X(a)−1, Z(b)T = Z(−b) =

Z(b)−1, and Z(b)X(a) = ω−b·aX(a)Z(b) for all a, b ∈ Fp.

Moreover, En is a group of order p2n+1.

Here we compare the Hamming weight with the quantum weight.

Definition 3.7. (i) The Hamming weight wtH(e) of an element e ∈ Fn
p is the

number of nonzero entries in e. The Hamming distance of u,v ∈ Fn
p is

defined by d(u,v) := wtH(u−v). Note that the Hamming distance is a metric

(i.e. its value is always nonnegative, and it satisfies the symmetry and the

triangle inequality).

(ii) The quantum weight wtQ(E) of an element E = ωtX(a)Z(b) ∈ En is the

number of nonzero pairs (ai, bi) in the two vectors a, b ∈ Fn
p .

For classical codes, the Hamming distance is used to describe the ability of

error detection and correction. As for quantum codes, we use the Hermitian inner

products of quantum codewords in a quantum code Q. The orthogonality is usually

used to describe the ability of error detection and correction.
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Definition 3.8. For two quantum codewords u, v ∈ Q. Then

(i) If u = γv for some nonzero γ ∈ C, then we say u, v are totally indistin-

guishable.

(ii) If ⟨u, v⟩ = 0, then we say u, v are totally distinguishable in Q.

Here is the comparison between the definitions of error detection of classical

codes and of quantum codes.

Definition 3.9. C can detect an error e if d(u,v + e) > 0 for distinct u,v ∈ C.

Definition 3.10. For a quantum ((n,K))p-code Q with K ≥ 2 and an error E ∈ En,

Q can detect an error E if u, v are totally distinguishable implies that u,Ev are

totally distinguishable.

Note that 3.10 is equivalent to ⟨u,Ev⟩ = λE⟨u, v⟩, where λE ∈ C depends only

on E but is independent of u, v.

Here is the comparison between the definitions of error correction of classical

codes and of quantum codes.

Definition 3.11. C can correct an error e if d(v,v + e) < d(w,v + e) for all

distinct v,w ∈ C.

Definition 3.12. For a quantum ((n,K))p-code Q, where K ≥ 2. Q can correct

errors of weight at most t if, for any totally distinguishable u, v ∈ Q and any errors

E1,E2 ∈ En with wtQ(E1),wtQ(E2) ≤ t, E1u,E2v are totally distinguishable; in

other words, ⟨E1u,E2v⟩ = 0.

Here is the comparison between the definitions of minimum distance of classical

codes and of quantum codes.

Definition 3.13. The minimum distance of C with |C| ≥ 2 is at least d if C can

detect errors of Hamming weight at most d − 1; in other words, 0 < wtH(e) < d

implies that d(u, e + v) > 0 for distinct u,v ∈ C.
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Note that the previous definition is equivalent to the common one; that is,

d = min{d(u,v)|u,v ∈ C are distinct.}.

This can be verified by the triangle inequality of Hamming distance.

Definition 3.14. A quantum ((n,K))p-code Q with K ≥ 2 has minimum dis-

tance at least d if Q can detect errors of quantum weight at most d − 1; in other

words, ⟨u, v⟩ = 0 implies ⟨u,Ev⟩ = 0 for any error E ∈ En with wtQ(E) ≤ d− 1.

Note that the definitions of the minimum distance of classical codes and quantum

codes are similar because the minimum distance d is given by the detection of

classical errors of Hamming weight d − 1 in classical case and the detection of

quantum errors of quantum weight d− 1 in the quantum case.

Here is a special property often used in quantum codes.

Definition 3.15. A quantum code Q is a d-pure code if for any u, v ∈ Q and any

errors E ∈ En with 0 < wtQ(E) < d, u,Ev are totally distinguishable; in other

words, ⟨u,Ev⟩ = 0.

This property can help us to distinguish a codeword from another one interrupted

by an error of quantum weight less than d.

Remark 3.16. (i) A (quantum or classical) code has minimum distance ex-

actly d if it has minimum distance at least d, but does not have minimum

distance at least d+ 1.

(ii) From definition 3.14, a quantum ((n,K))p-code Q (or a quantum [[n, k]]p-code)

is an ((n,K,≥ d))p-quantum code (or an [[n, k,≥ d]]p-quantum code) for some

d ≥ 1 means a pk-dimensional (or K-dimensional) quantum code in (Cp)⊗n

with minimum distance at least d; if Q has minimum distance exactly d, then

Q is a quantum ((n,K, d))p-code (or a quantum [[n, k, d]]p-code).

From definitions 3.14 and 3.15, we have the following propositions:
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Proposition 3.17. A d-pure quantum ((n,K))p-code Q with K ≥ 2 has minimum

distance ≥ d.

Proof. Suppose E ∈ En with wtQ(E) ≤ d − 1. Let c1, c2 ∈ Q be codewords with

⟨c1, c2⟩ = 0. Now if E = ωkI, then wtQ(e) = 0. Thus ⟨c1,Ec2⟩ = ωk⟨c1, c2⟩ = 0. If

wtQ(E) ̸= 0, then 1 ≤ wtQ(E) ≤ d− 1, and so ⟨c1,Ec2⟩ = 0 by definition 3.14.

Note that, by definition 3.15, for K = 1 (i.e. k = 0), Q is a d-pure quan-

tum ((n, 1, d))p-code (or a d-pure quantum [[n, 0, d]]p-code) since any two vectors in

{Ec|E ∈ En, 0 ≤ wtQ(E) ≤ d − 1} are orthogonal, where c is the non-zero vector

that spans Q.

Here is the comparison between the abilities of error correction of classical codes

and of quantum codes.

Theorem 3.18. An [n, k, d]p-code C can correct errors of weight at most
⌊
d−1
2

⌋
.

Proof. Let e be an error of weight at most
⌊
d−1
2

⌋
. From the triangle inequality, we

have

d(w,v + e) ≥ d(w,v)− d(v,v + e) ≥ d−
⌊
d− 1

2

⌋
≥
⌈
d− 1

2

⌉
> d(v,v + e).

(The inequality d(w,v) ≥ d comes from the definition of minimum distance; the

other one wtH(e) = d(v,v + e) ≤
⌊
d−1
2

⌋
is from the hypothesis.)

Theorem 3.19. If Q is an quantum ((n,K, d))p-code with K ≥ 2, then Q can

correct errors of weight at most
⌊
d−1
2

⌋
.

Proof. Let E1,E2 ∈ En with wtQ(E1),wtQ(E2) ≤
⌊
d−1
2

⌋
. It is clear that wtQ(E1E2) ≤

wtQ(E1) + wtQ(E2) ≤ d− 1. Since Q has minimum distance d, Q can detect E1E2;

that is, for any totally distinguishable c1, c2 ∈ Q, we have ⟨c1,E1E2c2⟩ = 0, com-

pleting the proof.
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3.3 Bounds in Classical Codes and Quantum codes

In classical and quantum coding theory, the parameters (n,K, d) or (n, k, d) de-

termine the efficiency of communication (k/n) and the ability of error correction(d),

but there are some restrictions called the Hamming bound and the Singleton

bound, causing that we can not obtain both high efficiency of communication and

good ability of error correction. For the proofs, please see [3] in detail.

Theorem 3.20. (classical Hamming bound) If C is an (n,K, d)p code, then

pn ≥ K ·
⌊ d−1

2 ⌋∑
i=0

(p− 1)i
(
n

i

)
. (3.1)

Theorem 3.21. (classical Singleton bound) If C is an (n,K, d)p code, then

K ≤ pn−d+1. (3.2)

Theorem 3.22. (quantum Hamming bound) If Q is a d-pure quantum ((n,K, d))p-

code, then

pn ≥ K ·
⌊ d−1

2 ⌋∑
i=0

(p2 − 1)i
(
n

i

)
. (3.3)

Theorem 3.23. (quantum Singleton bound) If Q is a quantum ((n,K, d))p-code,

then

K ≤ pn−2d+2. (3.4)

3.4 Some Simple Lemmas

In this section, we provide some simple lemmas, which will be used many times

in the thesis.

Lemma 3.24. Let p be a prime and ω the p-th root of unity. Then
∑

u∈Fn
p
ωu·v = 0

for all non-zero vectors v ∈ Fn
p .
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Proof. For u = (u1, · · · , un) ∈ Fn
p and v = (v1, · · · , vn) ∈ Fn

p \ {0}, we have

∑
u∈Fn

p

ωu·v =
∑

(u1,··· ,un)∈Fn
p

ωu1v1+···+unvn =
∑

(u1,··· ,un)∈Fn
p

ωu1v1 · · ·ωunvn

=

∑
u1∈Fp

ωu1v1

 · · ·

∑
un∈Fp

ωunvn


For v ̸= 0, there is some vi ̸= 0, which is certainly an inverse of some other element

in Fp. Thus viFp = Fp, and so
∑

ui∈Fp
ωuivi = 0 (because 1+ω+ · · ·+ωp−1 = 0).

Lemma 3.25. Let p be a prime, ω a p-th primitive root of unity and Vp = (ωij)i,j∈Fp

a p× p Vandermonde matrix of the form

Vp =


1 1 · · · 1
1 ω · · · ωp−1

... ... . . . ...
1 ωp−1 · · · ω(p−1)2

 .

Then Vp is invertible with V −1
p = (1/p)Vp, and so the Kronecker tensor product

Vp ⊗ Vp ⊗ · · · ⊗ Vp of m Vp’s is invertible.

Proof. (i) By lemma 3.24, we have

(VpVp)i,j =

p−1∑
k=0

ωikω−kj =

p−1∑
k=0

ωk(i−j) =

{
0, if i ̸= j

p, if i = j.

Thus Vp is invertible with V −1
p = (1/p)Vp.

(ii) By the multiplication rule of the Kronecker tensor product, we have

(Vp ⊗ Vp ⊗ · · · ⊗ Vp)(V
−1
p ⊗ V −1

p ⊗ · · · ⊗ V −1
p )

=(VpV
−1
p )⊗ (VpV

−1
p )⊗ · · · ⊗ (VpV

−1
p )

=Ip ⊗ Ip ⊗ · · · ⊗ Ip = Ipm ,

and so (Vp ⊗ Vp ⊗ · · · ⊗ Vp)
−1 = V −1

p ⊗ V −1
p ⊗ · · · ⊗ V −1

p , completing the proof.
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Chapter 4

The Characterization of Quantum
Codes Using Logic Functions

In this chapter, we introduce a characterization of quantum codes using logic

functions introduced in [5] and [6] (for logic functions, see [1] and [2]).

Throughout this section, let Q be a K-dimensional quantum code of (Cp)⊗n with

an orthonormal basis {vi =
∑

u∈Fn
p
vi(u)|u⟩|1 ≤ i ≤ K}, where vi : Fn

p → C, 1 ≤ i ≤

K are functions.

Theorem 4.1. Assume K ≥ 2. Then Q is a quantum ((n,K,≥ d))p-code if and

only if for any subset E ⊆ {1, 2, · · · , n} with |E| = d− 1, d ≥ 2, Ec = {1, 2, · · · , n} \

E, |Ec| = n− d+ 1 and w,w′ ∈ Fd−1
p , 1 ≤ i, j ≤ K, we have

∑
u[Ec]=u′[Ec]

vi(u)vj(u′) =

{
0, if i ̸= j

η(w,w′), if i = j,
(4.1)

where the sum is indeed over u,u′ ∈ Fn
p with u[Ec] = u′[Ec] and u[E] = w,u′[E] =

w′, and η(w,w′) ∈ C is a constant independent of i (depends on w,w′).

Proof. ” ⇒ ” : Let E = X(a)Z(b) ∈ En be an error of quantum weight at most

d − 1, where a satisfies a[E] = w − w′, a[Ec] = 0, and b ∈ Fn
p is a vector of d − 1

variables satisfying b[Ec] = 0. Then by definition 3.10,

λEδij = ⟨vi,Evj⟩ =
∑

x∈Fd−1
p

ωb[E]·x′ ∑
u[Ec]=u′[Ec]

vi(u)vj(u′), (4.2)
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where δij = 0 if i ̸= j; δij = 1 otherwise, λE depends only on E and is independent

of i, j, and the second sum is indeed over u,u′ ∈ Fn
p with u[Ec] = u′[Ec] and

u[E] = x,u′[E] = x − a[E]. In matrix form, (4.2) becomes

Ωy =

{
0, if i ̸= j

λE(1, 1, · · · , 1)T , if i = j,
,

where Ω is an pd−1 × pd−1 matrix indexed by Fd−1
p with b[E],x′-entry ωb[E]·x′ , and

y =
∑

u[Ec]=u′[Ec]

vi(u)vj(u′) (being indexed depending on x′)

is a (d− 1)-dimensional column vector over Fp . Since the matrix Ω is invertible by

lemma 3.25, we find the column vector

y =

{
0, if i ̸= j

λEΩ
−1(1, 1, · · · , 1)T , if i = j,

.

Hence the result follows by considering the x = w entry of vector y.

” ⇐ ” : To show that Q has minimum distance at least d, let E = ωtX(a)Z(b) ∈

En be an error of quantum weight at most d− 1. Without loss of generality, we can

assume t = 0. Choose E such that |E| = d−1 and a,b ∈ Fn
p satisfy (a[Ec],b[Ec]) =

(0,0). Pick two totally distinguishable codewords v =
∑K

i=1 αivi,w =
∑K

j=1 βjvj ∈

Q. Note that

Ew =
K∑
j=1

βjevj =
K∑
j=1

βj

∑
u′∈Fn

p

vj(u′)e|u′⟩ =
K∑
j=1

βj

∑
u′∈Fn

p

vj(u′)ωb·u′|u′ + a⟩.

Thus for u[E] = x,u′[E] = x − a[E], we have

⟨v,Ew⟩ =
K∑

i,j=1

αiβj

∑
u=u′+a

ωb·u′
vi(u)vj(u′)

=
K∑

i,j=1

αiβj

∑
x∈Fd−1

p

ωb[E]·(x−a[E])
∑

u[Ec]=u′[Ec]

vi(u)vj(u′)

=
K∑
i=1

αiβi

∑
x∈Fd−1

p

ωb[E]·(x−a[E])
∑

u[Ec]=u′[Ec]

vi(u)vi(u′)

=
∑

x∈Fd−1
p

η(x,x − a[E])ωb[E]·(x−a[E])⟨v,w⟩ = 0

13



(The last equality is obtained by the condition: when i ̸= j,
∑

u[Ec]=u′[Ec] vi(u)vj(u′) =

0; when i = j,
∑

u[Ec]=u′[Ec] vi(u)vi(u′) = η(x,x− a[E]), which is independent to i),

completing the proof.

Theorem 4.2. Let K ≥ 1. Then Q is a pure quantum ((n,K,≥ d))p-code if and

only if for any subset E ⊆ {1, 2, · · · , n} with |E| = d− 1, d ≥ 2, Ec = {1, 2, · · · , n} \

E, |Ec| = n− d+ 1 and w,w′ ∈ Fd−1
p , we have

∑
u[Ec]=u′[Ec]

vi(u)vj(u′) =

{
0, if w ̸= w′

δi,jp
1−d, if w = w′,

(4.3)

where the sum is indeed over u,u′ ∈ Fn
p with u[Ec] = u′[Ec], and u[E] = w,u′[E] =

w′ ∈ Fd−1
p .

Proof. ” ⇒ ” : Let a set E of cardinality d− 1 and w,w′ ∈ Fd−1
p be given. Choose

E = X(a)Z(b) ∈ En be an error of quantum weight at most d− 1, where a satisfies

a[E] = w − w′, a[Ec] = 0, and b ∈ Fn
p is any vector satisfying b[Ec] = 0. Since Q

is a pure ((n,K, d))p-quantum code, for all 1 ≤ i, j ≤ K,

δwtQ(E),0 = ⟨vi, evj⟩ =
∑

x′=x−a[E]

ωb[E]·x′ ∑
u[Ec]=u′[Ec]

vi(u)vj(u′). (4.4)

Note that

∑
x∈Fd−1

p

∑
u[Ec]=u′[Ec]

vi(u)vj(u′) =
∑
u∈Fn

p

vi(u)vj(u) = δi,j.

In matrix form, (4.4) becomes

Ωy =

{
(δi,j, 0, 0, · · · , 0)T , if w = w′(a[E] = 0);
(0, 0, 0, · · · , 0)T , if w ̸= w′(a[E] ̸= 0),

where Ω and y are as described in the proof of theorem 4.1. Note that the first

column of Ω−1 is p1−d(1, 1, · · · , 1)T . Thus

y =

{
δi,jp

1−d(1, 1, · · · , 1)T , if w = w′(a[E] = 0);
(0, 0, 0, · · · , 0)T , if w ̸= w′(a[E] ̸= 0),

proving the necessary condition.
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” ⇐ ” : To show that Q is d-pure, let E = ωtX(a)Z(b) ∈ En with 1 ≤ wtQ(E) ≤

d − 1. Without loss of generality, we can assume t = 0. Choose E = {i|1 ≤ i ≤

n, (ai, bi) ̸= (0, 0)} so that |E| = d − 1, (a[E],b[E]) ̸= (0,0) and (a[Ec],b[E]c) =

(0,0) for a,b ∈ Fn
p . Pick two codewords v =

∑K
i=1 αivi,w =

∑K
j=1 βjvj ∈ Q. Then

for u[E] = x,u′[E] = x − a[E], we have

⟨v,Ew⟩ =
K∑

i,j=1

αiβj

∑
u=u′+a

ωb·u′
vi(u)vj(u′)

=
K∑

i,j=1

αiβj

∑
x∈Fd−1

p

ωb[E]·(x−a[E])
∑

u[Ec]=u′[Ec]

vi(u)vj(u′)

=

{∑K
i,j=1 δi,jp

1−dαiβj

∑
x∈Fd−1

p
ωb[E]·x = 0, if a[E] = 0

0, if a[E] ̸= 0

(The last equality is obtained by the second condition: when a[E] ̸= 0,

∑
u[Ec]=u′[Ec]

vi(u)vj(u′) = 0;

when a[E] = 0, b[E] ̸= 0 and

∑
u[Ec]=u′[Ec]

vi(u)vj(u′) = δi,jp
1−d),

completing the proof.

In fact, the functions vi : Fn
p → C can be obtained simply by vi(u) = ωfi(u), where

1 ≤ i ≤ K and u ∈ Fn
p and fi are functions from Fn

p to Fp so that the functions

vi(u) = ωfi(u) satisfy the conditions (4.1) and (4.3) in the previous theorems (see

[6]). Hence these functions can be used to construct (pure) quantum codes. Such

function is called a logic function (for p = 2, a Boolean function).
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Chapter 5

Graph-theoretical Method

In this chapter, we will discuss about a method to construct quantum error

correcting codes introduced by Schlingemann and Werner in [7], in which only the

case for the odd primes is discussed, therefore we are going to improve the method

by applying vi(u) = ωuT
i Bw+wTAw for ui ∈ Fk

p (1 ≤ i ≤ K) to theorem 4.2 so that it

is valid for all primes.

Throughout this section, we assume the following hypotheses: Let p be a prime

and ω the p-th primitive root of unity. Let X,Y be sets with cardinality |X| = k

and |Y | = n. Let d ≥ 2 and (n, k, d) satisfy the quantum Singleton bound n ≥

k+2(d− 1). Let A be an n× n matrix with rows and columns indexed by Y , B an

k × n matrix with rows indexed by X and columns indexed by Y . Define a linear

function f : (Cp)⊗k → (Cp)⊗n by

f(|u⟩) =
∑

w∈Fn
p

ωuTBw+wTAw|w⟩ (5.1)

for u = (x1, x2, · · · , xk)
T ∈ Fk

p. Let Q = f((Cp)⊗k), the image of f . Here we will

use the function (5.1)to reprove the result in [7] in three steps.

In step 1, we shall give a definition and prove two lemmas, which give a necessary

condition and a sufficient condition of quantum pairs, respectively:

Definition 5.1. The pair (A,B) is an [[n, k, d]]p-quantum pair if for any E ⊆ Y
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with |E| = d− 1, u ∈ Fk
p and e ∈ Fd−1

p , the following implication holds:

uTB[X|Ec]− eT (A+ AT )[E|Ec] = 0 ⇒ u = 0 and B[X|E]e = 0, (5.2)

where Ec = Y \ E.

First we prove the necessary condition:

Lemma 5.2. If (A,B) is an [[n, k, d]]p-quantum pair, then the sub-matrix B[X|Ec]

of B has rank k over Fp, and the intersection of row space of B[X|Ec] and (A +

AT )[E|Ec] is the zero space for any (d− 1)-subset E of Y .

Proof. Taking e = 0 in (5.2), we find that B[X|Ec] has rank k. Suppose uTB[X|Ec] =

eT (A + AT )[E|Ec] is a vector in the intersection of row spaces of B[X|Ec] and

(A+ AT )[E|Ec]. Then u = 0 by (5.2). Hence the vector uTB[X|Ec] = 0.

Now we prove the sufficient condition:

Lemma 5.3. If the sub-matrix B[X|Ec] of B has rank k over Fp, the sub-matrix

(A+AT )[E|Ec] of A+AT has rank d− 1 over Fp and the intersection of row spaces

of B[X|Ec] and (A+AT )[E|Ec] is the zero space for any (d−1)-subset E of Y , then

(A,B) is an [[n, k, d]]p-quantum pair.

Proof. Suppose that uTB[X|Ec] − eT (A + AT )[E|Ec] = 0. Then uTB[X|Ec] =

eT (A + AT )[E|Ec] = 0 since it is in the intersection of row spaces of B[X|Ec] and

(A+ AT )[E|Ec]. Since rank(B[X|Ec]) = k, the row vectors of B[X|Ec] are linearly

independent, thus u = 0. And rank((A+AT )[E|Ec]) = d− 1 implies that e = 0 by

similar argument.

We shall call such a pair (A,B) in lemma 5.3 a pure [[n, k, d]]p-quantum pair.

In step 2, we shall prove

Theorem 5.4. For any v, v′ ∈ Cp⊗k, if (A,B) is an [[n, k, d]]p-quantum pair, then

⟨f(v′)|f(v)⟩ = pn⟨v′|v⟩. In other words, f preserves orthogonality. In particular,

Q = f((Cp)⊗k) has dimension pk.
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Proof. Let

v =
∑
u∈Fk

p

v(u)|u]⟩ ∈ Cp⊗k
,

v′ =
∑

u′∈Fk
p

v′(u′)|u′⟩ ∈ Cp⊗k
,

where v(u), v′(u′) ∈ C. Then

w =f(v) =
∑
u∈Fk

p

∑
w∈Fn

p

v(u)ωuTBw+wTAw|w⟩,

w′ =f(v′) =
∑

u′∈Fk
p

∑
w∈Fn

p

v′(u′)ωu′TBw′+w′TAw′|w′⟩.

Now, we can compute the Hermitian inner product:

⟨w′,w⟩ =
∑
u,u′

[
v′(u′)v(u)

(∑
w=w′

ωt

)]
,

where

t = (u − u′)TBw.

Since (A,B) is an [[n, k, d]]p-quantum pair, rankB[X|Ec] = k. Hence, by lemma

3.24, we have

∑
w

ω(u−u′)TBw =

{
pn, if u = u′,

0, otherwise.

This follows that

⟨w′,w⟩ = pn
∑
u=u′

v′(u′)v(u) = pn⟨v′, v⟩.

Hence f preserves the orthogonality, and so f maps the basis of (Cp)⊗k to that of

(Cp)⊗n. Hence f is 1-1, which means the image of f has dimension pk.

In step 3, we shall prove

Theorem 5.5. If (A,B) is an [[n, k, d]]p-quantum pair, then Q = f((Cp)⊗k) has

minimum distance at least d.
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Proof. Let

w =f(v) =
∑
u∈Fk

p

∑
w∈Fn

p

v(u)ωuTBw+wTAw|w⟩ ∈ Q,

w′ =f(v′) =
∑

u′∈Fk
p

∑
w′∈Fn

p

v′(u′)ωu′TBw′+w′TAw′|w′⟩ ∈ Q.

be totally distinguishable (hence v′, v are totally distinguishable). For any E =

X(l)Z(s) ∈ En with wtQ(E) ≤ d − 1, we have E|w[E],w[Ec]⟩ = ωs[E]·w[E]|w[E] +

l[E],w[Ec]⟩ for all (d − 1)-subset E of Y and s, l ∈ Fn
p with s[Ec] = l[Ec] = 0. It

follows that

Ew =
∑
u∈Fk

p

∑
w∈Fn

p

v(u)ωuTBw+wTAwe|w⟩

=
∑
u∈Fk

p

∑
w[E],w[Ec]

v(u)ωs[E]·w[E]+uTB(w,w[Ec])+(w[E],w[Ec])TA(w[E],w[Ec])|w[E] + l[E],w[Ec]⟩,

and so

⟨w′,Ew⟩ =
∑

u,u′∈Fk
p

∑
w′=w+l

ωrv′(u′)v(u),
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where

r =s[E] · w[E] + uTB[X|E]w[E]− uTB[X|E]l[E] + uTB[X|Ec]w[Ec]

+ w[E]TA[E|E]w[E]− l[E]TA[E|E]w[E]− w[E]TA[E|E]l[E]− l[E]TA[E|E]l[E]

+ w[Ec]TA[Ec|E]w[E]− w[Ec]TA[Ec|E]l[E]

+ w[E]TA[E|Ec]w[Ec]− l[E]TA[E|Ec]w[Ec]

+ w[Ec]TA[Ec|Ec]w[Ec]− u′TB[X|E]w′[E]− u′TB[X|Ec]w′[Ec]

− w′[E]TA[E|E]w′[E]− w′[E]TA[E|Ec]w′[Ec]

− w′[Ec]TA[Ec|E]w′[E]− w′[Ec]TA[Ec|Ec]w′[Ec]

=s[E] · w[E] + (u − u′)TB[X|E]w[E] + (u − u′)TB[X|Ec]w[Ec]

− uTB[X|E]l[E]− l[E]TA[E|E]l[E]− l[E]TA[E|E]w[E]− w[E]TA[E|E]l[E]

− l[E]TA[E|Ec]w[Ec]− w[Ec]TA[Ec|E]l[E]

=s[E] · w[E] + (u − u′)TB[X|E]w[E] + (u − u′)TB[X|Ec]w[Ec]

− uTB[X|E]l[E]− l[E]TA[E|E]l[E]

− l[E]T (A+ AT )[E|E]w[E]− l[E]T (A+ AT )[E|Ec]w[Ec]

(because w′ = w + l in the summation.). Then by the definition of quantum pairs
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and the previous lemmas, we can simplify the inner product ⟨w′,Ew⟩ as follows:

⟨w′,Ew⟩ =
∑

u,u′∈Fk
p

∑
w=w′

ωrv′(u′)v(u)

= ω−l[E]TA[E|E]l[E]
∑
u,u′

v′(u′)v(u)

·

[∑
w[E]

ωs[E]·w[E]+(u−u′)TB[X|E]w[E]−l[E]T (A+AT )[E|E]w[E]−uTB[X|E]l[E]

]

·

[ ∑
w[Ec]

ω(u−u′)TB[X|Ec]w[Ec]−l[E]T (A+AT )[E|Ec]w[Ec]

]

= pn−d+1ω−l[E]TA[E|E]l[E]
∑
u,u′

v′(u′)v(u) ·
[∑

w[E]

ω(s[E]−l[E]T (A+AT )[E|E])w[E]

]

= pn−d+1ω−l[E]TA[E|E]l[E]

[∑
w[E]

ω(s[E]−l[E]T (A+AT )[E|E])w[E]

]
⟨v′, v⟩ = 0.

The result of theorems 5.4 and 5.5 shows that if (A,B) is an [[n, k, d]]p-quantum

pair, then Q is a quantum [[n, k, d]]p-code. Below we quote Theorem 4.1 and 4.2 to

prove a stronger result, which was given in [6].

Theorem 5.6. If (A,B) is a pure [[n, k, d]]p-quantum pair, then Q is a pure quantum

[[n, k,≥ d]]p-code.

Proof. Order the vectors in Fk
p as u1,u2, . . . ,upk , and define functions vi : Fn

p → C

by

vi(w) =
1√
pn

ωuT
i Bw+wTAw

for w ∈ Fn
p . Then by Theorem 5.4, Q has the following orthonormal basisvi =

∑
w∈Fn

p

vi(w)|w⟩|1 ≤ i ≤ pk

 .

By theorem 4.2, it suffices to show that

1

pn

∑
w[Ec]=w′[Ec]

ωuT
i Bw+wTAwωujTBw′+w′TAw′

=

{
0, w′[E] ̸= w[E]

δi,jp
1−d, w′[E] = w[E],
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where the sum is over w,w′ ∈ Fn
p such that with w[Ec] = w′[Ec], and the two

prefixed parts w[E] and w′[E] of E. This follows by the following computation

vi(w)vj(w′)

=ωujTBw′+w′TAw′−(uiTBw+wTAw)

=ωuT
j B(w′[E],w[Ec])−uT

i B(w[E],w[Ec])+(w′[E],w[Ec])TA(w′[E],w[Ec])−(w[E],w[Ec])TA(w[E],w[Ec])

=ωuT
j B[X|E]w′[E]−uT

i B[X|E]w[E]+w′[E]TA[E|E]w′[E]−w[E]TA[E|E]w[E]

· ω{(uj−ui)
TB[X|Ec]+(w′[E]−w[E])T (A+AT )[E|Ec]}w[Ec].

Now we take the part related to Ec, and we have∑
w[Ec]

ω{(uj−ui)
TB[X|Ec]+(w′[E]−w[E])T (A+AT )[E|Ec]}w[Ec].

Since (A,B) is a pure [[n, k, d]]p-quantum pair, then (5.2) implies that ui = uj,

w′[E] = w[E] and the summation becomes pn−d+1. Otherwise, the summation

becomes 0 by lemma 3.24 again, completing the proof.

Actually, the previous result also shows that, by defining fi : Fn
p → Fp by

fi(x) = uT
i Bx + xTAx for ui ∈ Fk

p(1 ≤ i ≤ pk), we can obtain an [[n, k, d]]p-

quantum code Q = span{
∑

x∈Fn
p
ωfi(x)|x⟩|1 ≤ i ≤ pk} (see [6]). Now, let R be the

(k + n)× (k + n) matrix with rows and columns indexed by (X ∪ Y ) of the form

R =

(
0 B
BT A+ AT

)
. (5.3)

Then lemma 5.3 is equivalent to that the sub-matrix

R[X ∪ E|Ec] =

(
B[X|Ec]

(A+ AT )[E|Ec]

)
of R has rank k+d−1 for any E ⊆ Y with |E| = d−1. Hence we have the following

corollaries from the previous theorem. The corollaries are used for MDS quantum

codes (i.e. the codes reaching Singleton bound).

Corollary 5.7. Suppose n = k + 2(d− 1), and the square (k + d− 1)× (k + d− 1)

sub-matrix R[X ∪E|Ec] is invertible for any E ⊆ Y with |E| = d− 1. Then Q is a

pure quantum [[n, k, d]]p-code.
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Proof. By Lemma 5.3 and Theorem 5.6, Q is a pure quantum [[n, k, t]]p-code for

some t ≥ d. By using quantum Singleton bound and the assumption, we have

n− 2d+ 2 = k ≤ n− 2t+ 2, so t = d.

Here we give examples for the applications of theorems 5.4 and 5.5 and corollary

5.7.

Example 5.8. Let X = {x0}, Y = {y0, y1, y2, y3, y4} and E a 2-subset of Y . Con-

sider the graph G1 with vertex set V (G1) = X ∪ Y as below:

..x0 .
y0

.

y1

.
y2

.

y3

.

y4

Figure 1. G1

Then its adjacency matrix is

R =



x0 y0 y1 y2 y3 y4

x0 0 1 1 1 1 1

y0 1 0 1 0 0 1

y1 1 1 0 1 0 0

y2 1 0 1 0 1 0

y3 1 0 0 1 0 1

y4 1 1 0 0 1 0


,

which is of the form (5.3) with

A =


0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , B =
(
1 1 1 1 1

)
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Then we can check that

f(|a⟩) =
∑

w∈F5
p

ωa(1,1,1,1,1)·w+wTAw|w⟩ =
∑

w∈F5
p

ωa
∑5

i=1 ui+
∏

i(mod 5) uiui+1|w⟩,

where a = 0, 1, 2, · · · , p − 1, form a basis of Q = f((Cp)⊗1), and dimQ = p by the

orthogonality. Also, we check that for any subset E of Y with |E| = 2 and |Ec| = 3

the sub-matrix R[X ∪ E|Ec] is invertible. According the the edge relation between

X ∪ E and Ec, there are only two situations of R[X ∪ E|Ec]:1 1 1
0 0 1
1 0 0

 ,

1 1 1
1 0 1
1 1 0

 ,

both of which have determinant 1. Hence we can construct a pure quantum [[5, 1, 3]]p-

code Q = span{
∑

x∈F5
p
ω(i,i,i,i,i)·x+xTAx|x⟩|0 ≤ i ≤ 4, i ∈ Fp} explicitly.

Here is an example from [1]. We interpret it with the graph-theoretical method.

Example 5.9. Let X = ϕ, Y = {y0, y1, y2, y3, y4, y5} and G′
1 be the graph with

vertex set V (G′
1) = Y as below.

..y5 .
y0

.

y1

.
y2

.

y3

.

y4

Figure 2. G′
1
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Then consider its adjacency matrix

R = A+ AT =



y0 y1 y2 y3 y4 y5

y0 0 1 0 0 1 1

y1 1 0 1 0 0 1

y2 0 1 0 1 0 1

y3 0 0 1 0 1 1

y4 1 0 0 1 0 1

y5 1 1 1 1 1 0


,

with

A =


0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

 .

For any E ⊆ Y with |E| = 3, we have rank(R[E|Ec]) = 3 since the row vectors of

R[E|Ec] are never linearly dependent for any choice of E. Hence we can construct

a pure quantum [[6, 0, 4]]2-code

Q = span{
∑
x∈F6

2

(−1)f(x)|x⟩},

where

f(x) = xTAx = x0x1 + x1x2 + x2x3 + x3x4 + x4x0 + x5(x0 + x1 + x2 + x3 + x4).

Example 5.10. [4] For (n, k, d) = (6, 2, 3), we can not construct binary(p = 2) quan-

tum code this way, because these parameters violates Hamming bound when p = 2.

However, we can use this method to construct non-binary quantum codes with these

parameters as follows: Let (n, k, d) = (6, 2, 3), p = 3 and consider the graph G2 with

vertex set V (G2) = X ∪ Y , where X = {x0, x1}, Y = {y0, y1, y2, y3, y4, y5} and the

solid edge has weight 1 and the dashed ones has weight −1 as below:
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.. x0.x1 .

y0

.

y1

.

y2

.

y3

.

y4

.

y5

Figure 3. G2

Then its weighted adjacency matrix is

R =

(
0 B
BT A+ AT

)
=



x0 x1 y0 y1 y2 y3 y4 y5

x0 0 0 1 1 1 1 1 1

x1 0 0 1 −1 1 −1 1 −1

y0 1 1 0 −1 1 0 1 1

y1 1 −1 −1 0 1 −1 0 0

y2 1 1 1 1 0 1 −1 0

y3 1 −1 0 −1 1 0 −1 −1

y4 1 1 1 0 −1 −1 0 −1

y5 1 −1 1 0 0 −1 −1 0



,

which is in the form (5.3) with

A =


0 −1 1 0 1 1
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 −1 −1
0 0 0 0 0 −1
0 0 0 0 0 0

 and B =

(
1 1 1 1 1 1
1 −1 1 −1 1 −1

)
.

For any E = {yi, yj}(0 ≤ i ̸= j ≤ 5), it is clear that rank(B[X|Ec]) = 2. The column

space of (A+AT )[E|Ec] is spanned by {(1, 0)T , (0, 1)T}. So rank((A+AT )[E|Ec]) =

2. In addition, the intersection of their row spaces contains only the zero vector,

we can conclude that (A,B) is a pure [[6, 2, 3]]p-quantum pair for p = 3. Hence
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Q = span{
∑

x∈F6
3
ωuT

i Bx+xTAx|x⟩|1 ≤ i ≤ 9,ui ∈ F2
3} is a pure quantum [[6, 2, 3]]3-

code. As for the verification of the case p ≥ 5, please see [4].
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