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Critical thresholds represent one of the most important diffusion indicators of epidemic outbreaks.
However, we believe that recent studies have overemphasized ways that the power-law connectivity
distribution features of social networks affect epidemic dynamics and critical thresholds. As a result,
two important factors have been overlooked: resource limitations and transmission costs associated
with social interactions and daily contact. Here we present our results from the simultaneous applica-
tion of mean-field theory and an agent-based network simulation approach for analyzing the effects
of resources and costs on epidemic dynamics and critical thresholds. Our main findings are: (a) a
significant critical threshold does exist when resources and costs are taken into consideration, and it
has a lower bound whenever contagion events occur in scale-free networks� (b) when transmission
costs increase or individual resources decrease, critical contagion thresholds in scale-free networks
grow linearly and steady density curves shrink linearly� (c) regardless of whether the resources of
individuals obey delta, uniform, or normal distributions, they have the same critical thresholds and
epidemic dynamics as long as the average value of usable resources remains the same across differ-
ent scale-free networks� and (d) the spread of epidemics in scale-free networks remains controllable
as long as resources are properly restricted and intervention strategy investments are significantly
increased.
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1. Introduction

The presence or absence of a critical threshold as an epi-
demic spreads through a social network is a central issue
currently being addressed by researchers from a range of
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disciplines [1–13]. Pastor-Satorras and Vespignani [5–9]
argue that Internet-based computer viruses and contagious
diseases in social networks do not have critical thresh-
olds, while others have consistently concluded that, re-
gardless of transmission capability, all contagious diseases
have high probabilities of stable spreading and survival in
scale-free networks [1–4, 10–14]. A frequently cited ex-
ample is scale-free networks associated with human sex-
ual contact, which are being analyzed as capable yet vul-
nerable platforms for the spread of HIV/AIDS.

An important fact remains: new contagious diseases
and computer viruses are constantly emerging in differ-
ent parts of the world, but the majority die almost imme-
diately and an extremely small number survive to achieve
epidemic status. In addition to contradicting previous con-
clusions [1–14], this observation serves as motivation to
focus on limitations in daily interaction/communication
processes among individuals/computers rather than the
topological features of complex networks—the focus of
many network-oriented epidemic studies published in the
past decade [12, 15, 16]. We believe that two important
factors associated with social interactions and computer
communications have not been adequately addressed: re-
source limitations and transmission costs. While acknowl-
edging the importance of Pastor-Satorras and Vespignani’s
work on the topological power-law features of scale-free
networks (the inspiration for numerous studies on criti-
cal thresholds and immunization strategies), we believe
a closer inspection of their mathematical analyses and
numerical simulations reveals incorrect assumptions that
daily interaction/communication processes are cost-free,
and that the impacts of resource limitations and transmis-
sion costs are minimal. Such assumptions are beneficial
in terms of mathematical equations and hypotheses, and
therefore suitable for studying Internet viruses spread via
email messages with large numbers of recipient addresses.
However, they are unrealistic and inaccurate when applied
to contagious diseases and innovative concepts spread via
social interactions and daily human contacts.

Resources consumed by individuals during the process
of spreading a contagious disease have five properties: (a)
they are visible (e.g., seminal fluid, physical power) or
invisible (e.g., time, energy, communication bandwidth)�
(b) individual resources are finite (e.g., time and energy
spent on social interactions per day are finite and fol-
low a normal distribution) and can be temporarily ex-
hausted (e.g., time elapses during interactions with other
individuals, daily sexual contacts are limited due to lim-
ited consumptive energy)� (c) the use of one type of
resource entails the consumption of smaller quantities
of other types of resources, thereby reducing the total
available resource amount (e.g., HIV-positive individuals
spend both time and energy during sexual contacts)� (d)
individual resources can recover or regenerate after a pe-
riod of time (e.g., energy levels are revived by sleeping)�
and (e) resources are nonreproducible. Contagious carriers
who spend resources on specific recipients cannot reuse

the same resources on other recipients� conversely, recipi-
ents cannot reuse resources spent on individual carriers.

Adhering to five resource/cost properties, we simul-
taneously applied mean-field theory and an agent-based
network simulation approach to analyze the influences
of resources and costs on epidemic dynamics and crit-
ical thresholds in scale-free networks. Our results indi-
cate that (a) a significant critical threshold does exist
when resources and costs are taken into consideration,
and the threshold has a lower bound whenever contagion
events occur in scale-free networks� (b) when transmis-
sion costs increase or individual resources decrease, criti-
cal contagion thresholds in scale-free networks grow lin-
early and steady density curves shrink linearly� (c) regard-
less of whether the resources of individuals obey delta,
uniform, or normal distributions, they have the same crit-
ical thresholds and epidemic dynamics as long as the av-
erage value of usable resources remains the same across
different scale-free networks� and (d) the spread of epi-
demics in scale-free networks remains controllable as long
as resources are properly restricted and intervention strat-
egy investments are significantly increased. These conclu-
sions can assist epidemiologists, public health profession-
als, computer scientists, and marketing experts in their ef-
forts to predict epidemic dynamics and critical thresholds
and to develop intervention, immunization, and marketing
strategies.

2. Complex Networks Applied to Epidemic
Simulation Models

Complex networks are commonly used to represent struc-
tures for groups of individuals who exhibit interaction or
relationship patterns [11–12, 17–19]. As shown in Fig-
ure 1 and Table 1, complex networks can be categorized
as small-world, scale-free, or random according to basic
statistical properties such as (a) local clustering, (b) the
small-world phenomenon, and (c) the power-law connec-
tivity distribution. They are popular among researchers
who construct computational simulations of virtual soci-
eties, contagious diseases, Internet viruses, and the spread
of cultural beliefs and influences—all of which are af-
fected by transmission routes.

Generating a Watts and Strogatz [12] small-world net-
work begins with an n-dimension ordered network (with
periodic boundary conditions) in which each node is con-
nected to a z quantity of neighbors, usually z � 2n (Fig-
ure 2(a)) [11, 19]. Each link is randomly rewired to a new
node with probability p (Figure 2(b)). Under adverse cir-
cumstances, this construction method can break the origi-
nal ordered network into several isolated subgraphs (Fig-
ure 2(d)). Newman and Watts [20] introduced a variation
of the original construction method that emphasizes the
insertion of long-range shortcuts instead of rewiring links.
In their version, two previously unconnected nodes are
randomly selected and connected via a newly added link,
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Figure 1. Three types of complex networks. (a) Small-World Network (SWN). (b) Scale-Free Network (SFN). (c) Random Network (RN).

Table 1. Two Complex Network Categories

Category Network Type Model Clustering
Coefficient

Degree of
Separation

Connectivity
Distribution

Homogeneous networks Small-world Watts and Strogatz [12] high low normal

Random Erdös and Renyi [18] very low low normal

Heterogeneous network Scale-free Barabási and Albert [17] very low low power-law

Figure 2. (a) One-dimensional ordered network with each node connected to four adjacent nodes. (b) Watts and Strogatz’s [12] small-world
network with four rewired shortcuts. (c) Newman and Watts’ [20] improved small-world network with five additional shortcuts. (d) Example
of a broken network in Watts and Strogatz’s [12] small-world network.

with users determining the number of links to be added
(Figure 2(c)). Newman and Watts’ small-world network
thus avoids the problem of network breakage while pre-
serving the positive characteristic of connecting each node
in an n-dimensional ordered network with 2n neighboring
nodes. Since both the original and new versions [19] ex-
hibit small-world and local clustering properties, they are
considered similar to human daily-contact networks.

Generating a Barabási and Albert [17] scale-free net-
work begins with a small number of nodes designated as
z0 [19]. During each iteration, a new node is introduced
and connected to z � z0 pre-existing nodes according to
a probability based on each node’s vertex degree. New
nodes are preferentially attached to existing nodes that
have large numbers of connections. This type of network
exhibits small-world and power-law connectivity distribu-
tion properties, implying the existence of a small number

of nodes with very large vertex degrees—similar to World
Wide Web hyperlinks and human sexual contact networks.

Erdös and Renyi’s [18] random networks are generated
by adding links between pairs of randomly chosen nodes
with certain probabilities [18, 19]. They are capable of
exhibiting small-world properties if sufficient numbers of
links are added, but with little or no local clustering—an
unusual situation in the real world.

Communities, cities, and countries—even the planet—
can be defined as individual complex networks consist-
ing of large-scale nodes and links. Each node represents
one individual with status-determining attributes (often re-
ferred to as node-related local information) such as epi-
demiological progress, contagiousness, or immunization
[13, 21]. Connections between individuals are referred to
as links, with different links representing different inter-
personal relationships [8]. In HIV/AIDS epidemic simula-
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tions they represent sexual relationships, while in Severe
acute respiratory syndrome (SARS) epidemic simulations
they represent close physical proximity [22,23]. The states
of all network nodes change simultaneously during each
time step. The state of an individual node is determined
by its original state, its linked neighbor’s state, and a set
of interaction rules.

3. Epidemic Dynamics in Complex Networks

In standard epidemiological models, all individuals
(nodes) in a population (complex network) can be roughly
classified into a limited number of states, including Sus-
ceptible (an individual is vulnerable to infection but has
not yet been infected), Infected (an individual can infect
others), and Removed (an individual has recovered, died,
or otherwise ceased to pose any further threat). Epidemiol-
ogists use combinations of these states to represent orders
of transition between different epidemiological phases,
giving names such as ‘SIR’ and ‘SIS’ to their models.

Past epidemiological research has focused on the trans-
mission dynamics and spreading situations of biologi-
cally contagious diseases. A growing number of recent
studies are focusing on nonbiological and intangible con-
cepts such as computer viruses, cultural influences, ru-
mors, ideas, and beliefs that exist in social networks and
on the Internet. In these kinds of spreading scenarios, cul-
tural influences move ideas and beliefs between transmit-
ters and receivers, eventually making the majority of re-
ceivers behave in the same manner as the transmitters [21,
24, 25].

In Sections 3.1 and 3.2 we will review research on epi-
demic dynamics and critical thresholds in homogeneous
networks (e.g., Erdös and Renyi’s [18] random and Watts
and Strogatz’s [12] small-world) and heterogeneous net-
works (e.g., Barabási and Albert’s [17] scale-free). Our
epidemic model will be analyzed in Section 3.3.

3.1 Epidemic Dynamics and Critical Thresholds in
Homogeneous Networks

When simulating epidemic dynamics in complex net-
works, epidemiologists usually assume that nodes in com-
plex networks run stochastically through an SIS cycle
(Susceptible � Infected � Susceptible), which does
not take into account the possibility of an individual’s re-
moval due to death or acquired immunization. The SIS
epidemiological model has been adopted widely to study
contagious diseases leading to endemic states with a sta-
tionary average density of infected individuals. Note that
similar analytical results derived from the SIS epidemi-
ological model can be readily extended to the SIR and
SIRS models for many contagious diseases [8]. During
each time step, each susceptible node is subject to a �
probability contagion rate if it is connected to one or more
infected nodes. Infected nodes recover at a probability

rate �, and once again become susceptible. An effective
spreading rate � is defined as � � ���. Recovery rate �
can be assigned a value of 1, since it only affects the time
scale of contagious disease propagation [9].

Pastor-Satorras and Vespignani [5] define ��t� as the
density of infected nodes at time step t . When time step t
becomes infinitely large, � can be represented as a steady-
state density of infected nodes. Using these definitions,
they applied mean-field theory to the SIS epidemiological
model, and used Anderson and May’s [26] homogeneous
mixing hypothesis according to the topological features of
homogeneous networks to obtain (a) a steady-state density
� of infected nodes during long time periods (Equation
(1)), and (b) the critical threshold �c (Equation (2)):

� �
��
�

0 � 	 �c

�� �c

�
� � �c

(1)

�c � 1
�k	 (2)

where �k	 � �
k kpk is the average vertex degree of the

network and pk the fraction of nodes that have vertex de-
gree k in the network. According to Equations (1) and
(2), a positive and nonzero critical threshold �c exists in
a homogeneous network based on the SIS epidemiologi-
cal model. A contagion spreads and becomes epidemic if
the effective spreading rate exceeds the critical threshold
(� � �c)� otherwise, the contagion dies out. As shown in
Figure 3, the SIS epidemiological model separates an in-
fected state from a healthy state at critical threshold �c.
In summary, the primary prediction in an SIS epidemio-
logical model in a homogeneous network is the presence
of a positive critical threshold, proportional to the inverse
of the average number of neighbors of each node, below
which epidemics die and endemic states are impossible.

3.2 Epidemic Dynamics and Critical Thresholds in
Heterogeneous Networks

Pastor-Satorras and Vespignani [6] relaxed their homo-
geneity assumption and obtained a critical threshold �c in
a scale-free network (Equation (3)). Their results indicate
that, in scale-free networks with a connectivity exponent
of 2 	 
 � 3 and for which

�
k2
� ��k k2 pk �
 is the

limit of a network of infinite size, the critical threshold �c
is very close to 0 (�c � 0),

�c � �k	�
k2
� � (3)

Asserting that the steady-state density � of infected
nodes for the SIS epidemiological model in a Barabási
and Albert [17] scale-free network can be expressed as a
function of the effective spreading rate �, Pastor-Satorras
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Figure 3. Phase transition diagram for epidemic simulations in homogeneous networks.

Figure 4. Steady-state density � of infected nodes as a function of effective spreading rate �.

and Vespignani compare it to a theoretical prediction for a
homogeneous network. As shown in Figure 4, the steady-
state density � of infected nodes in a Barabási and Albert
scale-free network reaches 0 in a continuous and smooth

manner when the effective spreading rate � decreases, in-
dicating the absence of any critical threshold (�c � 0). In
such networks, epidemics can be stably spread and even-
tually reach a steady state as long as � � 0. This explains
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why scale-free networks are fragile in epidemiological
spreading situations. The Internet, social networks, and
the web of human sexual contacts all appear to be scale-
free, therefore computer viruses, innovative concepts, and
biologically contagious diseases can be stably spread even
when initial contagion cases occur in small and limited ar-
eas.

For finite-size scale-free networks, Pastor-Satorras and
Vespignani [8] introduced the concept of maximum con-
nectivity kc (dependent on the number of nodes), which
has the effects of restoring a boundary in connectivity
fluctuations and inducing an effective nonzero critical
threshold. According to the definition of maximum con-
nectivity kc,

�
k2
�

in Equation (3) clearly has a finite value
in a finite-size scale-free network. However, in this sit-
uation the critical threshold vanishes as network size in-
creases.

These conclusions explain the epidemic outbreak
mechanisms of some biologically contagious diseases and
computer viruses. According to traditional epidemiologi-
cal theory, large-scale pandemics only occur when the ef-
fective spreading rate exceeds a specific critical thresh-
old. However, Pastor-Satorras and Vespignani claim that
contagious diseases can proliferate in scale-free networks
regardless of their effective spreading rates. This idea rep-
resents a major threat to public health and computer data.

3.3 Epidemic Model Analysis

Our epidemic model is based on the mathematical model
proposed by Pastor-Satorras and Vespignani [5]:

d�k�t�

dt
� ��k�t�� �k

�
1� �k�t�

	


�

�k�t�

�	
� (4)

where �k�t� � 1 (neglecting the higher order) is the rel-
ative density of infected nodes that have k connections,
� is the infection rate, and 


�
�k�t��
	

is the probabil-
ity that any given individual will link to an infected in-
dividual (with 
 assumed to be a function of the partial
densities of infected individuals



�k�t�

�
). Equation (4)

states that, during each time step, infected individuals who
have k connections will recover, yet still infect other indi-
viduals according to four parameters: infection rate, con-
nectivity, number of healthy individuals, and probability


�
�k�t��

	
. Pastor-Satorras and Vespignani observed that


�k�t�
�

is a function of � in a steady state, and therefore 

becomes a function of � such that 
��� � 1

�k	
�
k

k P�k��k ,

where P�k� is the connectivity distribution. When con-
sidering the stationary condition d�k�t��dt � 0 within a
scale-free network in which P�k� � 2m2k�3 with min-
imum degree m, the critical threshold has the property
�c � �k	 � �k2

� � 0 as k � 
. Accordingly, for
infinite-size networks, either no epidemic threshold exists
or the threshold approaches 0.

However, Pastor-Satorras and Vespignani’s model
(Equation (4)) neglects individual access to energy, time,
and other finite resources. To incorporate these costs, we
modify their model to

d�k�t�

dt
� ��k�t�� �Sk

�
1� �k�t�

	


�

�k�t�

�	
�

where Sk � min

�
R

c
� k



� (5)

The term Sk � min�
R

c
� k� (with R representing av-

erage resources and c denoting transmission costs) states
that each infection is spread proportional to the mini-
mum value of each active node’s available resources (R�c)
and number of links. We assume the stationary condition
d�k�t��dt � 0 and obtain

�k � �Sk
���

1� �Sk
���
(6)

where �k is the steady state of �k�t�. Substituting 
���
into Equation (6) we get


 � 1
�k	

�
k

k P�k�
�Sk


1� �Sk

� (7)

Note that the right-hand side of Equation (7) is concave at
about 
 (i.e., the second derivative is no larger than zero),
and that 
 � 0 is considered a trivial solution. Since it is
possible for 
 to have a nonsingular solution, we derive
the inequality

d

d


�
1
�k	

�
k

k P�k�
�Sk


1� �Sk


������

�0

� 1� (8)

By differentiating Equation (8) and replacing 
 with 0 we
get

1
�k	

�
k

k P�k��Sk � 1 or � � �k	�
k

k P�k�Sk
� (9)

Accordingly, the critical threshold �c is defined as the
maximal �, resulting in

�c � �k	�
k

k P�k�Sk
� (10)

Since Sk � min�R�c� k�, the denominator can be divided
into two parts, thereby obtaining

�c � �k	�
k� R

c

k2 P�k�� �
k� R

c

R
c k P�k�

� (11)
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According to the first term in the denominator of Equation
(11), the variable k is smaller than R�c, so substituting
R�c for k makes the first term larger. Similarly, according
to the second term the summation is smaller than the en-
tire scope of k, so substituting k for the entire scope also
makes the second term larger. As a result,

�c � �k	�
k� R

c

�
R
c

�2
P�k���

k

R
c k P�k�

� (12)

By the same method, making another substitution on the
left-hand side of the denominator of Equation (12) results
in

�c � �k	�
k

�
R
c

�2
P�k���

k

R
c k P�k�

� (13)

Since
�
k

P�k� � 1, we arrive at

�c � �k	�
R
c

�2 � R
c �k	

� 1��
R
c

�2

�k	

�
� R

c

(14)

and find that as �k	 � 
, �c is at a minimum equal to
c�R.

Since �c represents the critical threshold at which
a contagious disease exceeds control and becomes epi-
demic, managing its value is the primary concern of epi-
demiologists and public health officials. In summary, the
lower bound of the critical threshold �c becomes smaller
if the transmission cost c decreases or the average re-
source R increases. Accordingly, an individual’s avail-
able resources expand when c�R decreases, thereby in-
creasing the individual’s ability to contact almost all other
individuals in his or her personal social network. This
result supports what we know about immunization: ap-
propriately restricting one’s resources increases the crit-
ical threshold. Neglecting resources makes R infinitely
large, meaning that resources are inexhaustible and that
the critical threshold �c will continue to approach 0 as
long as the average number of links is sufficiently large.
The model thus becomes identical to Pastor-Satorras and
Vespignani’s model in Equation (4), in which a disease
has the potential to reach epidemic proportions regardless
of the small number of infected nodes.

Most contagion events involving biological diseases
and intangible concepts such as cultural influences, ru-
mors, ideas, and beliefs need sufficient resources (e.g.,
time, energy, or money) for social interactions and daily
contacts to occur. Accordingly, controlling the c�R ratio
can increase the threshold �c and decrease the steady-
state density �. In contrast, computer viruses can spread
very quickly via the Internet because they can be trans-
mitted simultaneously to many sites [5–9]. While the
spreading time is short, affected areas can be very large,

with disastrous results in terms of lost data, work time,
and money [15]. One suggested strategy for controlling
computer virus diffusions and network attacks is plac-
ing restrictions on upload/download capacities from re-
mote service servers (e.g., a maximum of one gigabyte
per day)—in other words, limiting resources so as to in-
crease the critical threshold. A related strategy is charg-
ing upload/download fees when users want to exceed daily
limitations—that is, raising transmission costs to achieve
the same end result.

4. Epidemic Simulations and Results

For simulation runs we constructed a complex network
G�N� E� with �N � nodes (representing individuals in so-
cial networks) and �E� links (indicating social interactions
and daily contacts between two individuals, with those
having direct connections labeled neighbors). Only Ini-
tialStatus_I nodes were given Infected status at the begin-
ning of each simulation run� all others were designated
as Susceptible. All epidemic dynamics and critical thresh-
olds discussed in this paper represent average values for
30 runs (95% confidence interval� 17.89%). A list of ex-
perimental parameters is presented in Table 2.

Also, at the beginning of each time step, usable re-
sources for each node �i were reset to R��i �, meaning
that all individuals renewed and/or received supplemental
resources. In our later experiments, the statistical distrib-
ution of individual resources could be delta (fixed value
rConstant ), uniform, normal, or power-law, as long as the
average �r	 value of individual resources satisfied

�r	 �
N�

i�1

R��i ��N � rConstant � (15)

Nodes randomly interacted with several neighbors dur-
ing each time step, with node resources and costs being
consumed during each interaction. Each node �i randomly
selected from all Neighbor��i � nodes interacted with a
single neighboring node � j . Following each interaction
and regardless of the result, nodes �i and � j had trans-
mission costs c��i �, c�� j � where 0 � c��i � � R��i � and
0 � c�� j � � R�� j �, deducted from their resources. If
R��i � 	 c��i � after an interaction, node �i could not inter-
act with other neighbors because all of its resources were
used up. Otherwise the interaction process was repeated,
with nodes randomly selecting other neighboring nodes
until their resources were exhausted.

At each time step, the epidemiological status of each
node was determined by a combination of behavioral
rules, original epidemiological status, neighbors’ epi-
demiological status, contagion rate �, and recovery rate �.
Assume that an infected and contagious node �a is adja-
cent to a susceptible and contagion-prone node �b. When
the two nodes come into contact, a contagion rate � de-
termines whether or not �b is infected by �a . At the same
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Table 2. Epidemic simulation parameters.

Attribute Type Description

� Real Contagion rate. Default range from 0.01 to 0.5 in 0.01 steps when � = 1.

� Real Reset rate (also called ‘recovery rate’ in SIS epidemiological model). Default value = 1.0.

� Real Effective spreading rate � � contagion rate �/recovery rate �.

Network Type Symbol According to Network Type, a complex network for the SIS epidemic model can be built in the same
manner as Watts and Strogatz’s [12] small-world homogeneous network and Barabási and Albert’s [17]
scale-free network. If Network Type = SWN, a small-world network is built� if Network Type = SFN, a
scale-free network is built. Default value = SFN.

N Set Node set of a complex network. �N� represents the total number of nodes in a complex network built for
a SIS epidemiological model.

E Set Link set of a complex network. �E � represents the total number of links in a complex network built for a
SIS epidemiological model.

Rewiring Rate Real Specific parameter for Watts and Strogatz’s small-world network. Generating a WS-SWN begins with a
one-dimensional regular network with periodic boundary conditions. Each link is randomly rewired to a
new node with a Rewiring Rate probability. Default value = 0.01.

Time Step Limit Integer Total number of time steps during each simulation. Default value = 300.

c Integer Transmission costs per interaction event. Default value = 1.

R Integer Daily individual economic resources. Default value = 16.

InitialStatus_I Integer Initial number of infected nodes at the beginning of the epidemic simulation. Default value = 10% � �N�.

time, an infected node �a can recover at a recovery rate �
and once again become susceptible. The effective spread-
ing rate � is defined as ���. Generally, the recovery rate
� � 1 and the effective spreading rate � � �. We defined
��t� as the density of infected nodes present at time step
t � when time step t becomes infinitely large, � can be pre-
sented as a steady infected node density.

As shown by the curve marked with triangles in Fig-
ure 5, the steady density of the SIS epidemiological model
based on a scale-free network approached 0 in a continu-
ous and smooth manner as the effective spreading rate was
decreased, thereby indicating the lack of a critical thresh-
old in scale-free networks in the absence of transmission
costs. The curve marked with squares in the same figure
shows that epidemics do have critical thresholds in small-
world networks. In addition to its similarity to the curve
marked with squares, the curve marked with circles shows
that a nonzero, positive, and significant critical threshold
exists when epidemics are spread throughout a scale-free
network if individual resources and transmission costs are
taken into consideration.

A significant increase in critical threshold �c was ob-
served as the overall amount of usable resources de-
creased. For example, in Figure 6 the critical threshold
�c increased to 0.22 when the usable resources value was
set at 8 units at the beginning of each time step. When the
usable resources value was set at 40 units at the beginning
of each time step, the shape of the density curve marked
with squares was very close to that of the scale-free net-
work without transmission costs (Figure 6, solid black
line), and the critical threshold �c was reduced to 0.09.
As shown in Figure 7, a linear correlation was observed
between the critical threshold and the ratio of the cost of
a single contagion event to total amount of an individual’s

resources (hereafter referred to as ‘the ratio’). As shown
in Figure 6, the density curve grew at a slower rate as
the ratio increased—in other words, the ratio and density
curve had a negative linear correlation when the effective
spreading rate exceeded the critical threshold. The simula-
tion results suggest that in scale-free networks, the critical
thresholds of epidemics grow linearly and density curves
shrink linearly when transmission costs increase or indi-
vidual resources decrease. A comparison of results from
our mathematical analyses and simulation experiments is
shown in Figure 8.

The density curves marked with diamonds, crosses,
and circles in Figure 9 respectively represent the effects
of delta (fixed value = 16), uniform, and normal distribu-
tions of individual usable resources on the critical thresh-
olds of epidemics spread in scale-free networks marked
by limited individual resources and transmission costs.
Data on their statistical distributions and parameters (av-
erage value and standard deviation in a normal distrib-
ution or number of values and range in a uniform dis-
tribution) are presented in Figure 10. The same critical
threshold (� 0�14) and near-overlapping density curves
(i.e., no statistically significant differences, correlation co-
efficient c � 0�9998 and chi-square test, P � 0�05) were
observed for all three scenarios when average individual
usable resource values were equal. When those same re-
sources were distributed in a power-law mode (i.e., the
majority of individuals had very limited resources while
a small number had large amounts) (Figure 11), and in
the absence of correlations between the total amount of an
individual’s usable resources and vertex degree, the result-
ing dashed density curve grew more slowly than those for
the other three distributions (chi-square test, P 	 0�01),
even when they all had the same critical threshold.
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Figure 5. Relationship between effective spreading rate and steady density of the SIS epidemiological model in three types of complex
network platforms: small-world, scale-free without transmission costs, and scale-free with limited individual resources and transmission
costs.

Figure 6. The amount of an individual’s resources affects steady-state density curves and critical thresholds.
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Figure 7. Linear relationship between the ratio of transmission costs to an individual’s resources and critical threshold.

Figure 8. As a function of the c/R ratio (transmission costs/individual resources) in Barabási and Albert’s [17] scale-free networks, the
epidemic threshold �c is used to represent results from a simulation and three mathematical analyses.
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Figure 9. The effects of different statistical distribution types for individual resources on the steady-state density curves and critical thresh-
olds of contagious diseases spread within scale-free networks.

We repeatedly achieved the same results as long as the
average usable resource value remained unchanged (Fig-
ures 9 and 12 curves marked with diamonds, crosses, and
circles). In addition, density curves and critical thresh-
olds were almost identical (i.e., no statistically significant
differences, correlation coefficient c � 0�9998 and chi-
square test P � 0�05) across different distribution types,
regardless of whether the resources were (a) distributed
uniformly with a range of 2 or 3 (Figures 10 and 13) or
(b) distributed normally with a standard deviation of 2
or 3 (Figures 10 and 13). From the significantly differ-
ent groups of density curves shown in Figures 9 and 12
(curves marked with diamonds, crosses, and circles ver-
sus dashed curve), we conclude that as long as researchers
ensure that usable resources do not obey a power-law dis-
tribution (Figures 11 and 14), then at the beginning of each
time step they can assign usable resources for each indi-
vidual as the fixed average value �r	 (Equation (15)) of the
statistical distribution derived from a real-world scenario,
and do so without affecting simulation results.

Here we will use the 2002–2003 SARS outbreak as a
discussion of a practical application of our simulation re-
sults. The SARS coronavirus is propagated over short dis-
tances and can survive in air for several hours to several
days [27, 28]. During the outbreaks, the Singaporean gov-
ernment enacted a body temperature measurement policy,

Hong Kong enforced policies such as hand washing and
surgical mask usage, and the Taiwan government applied
both [27]. These and all other policies can be divided into
two categories. The first is aimed at decreasing propaga-
tion, with examples including home quarantines for any-
one suspected of having contact with infected individuals
for a period equal to twice the known SARS latency pe-
riod [27, 28]. As part of this policy, public health workers
take the body temperatures of large numbers of individu-
als entering public spaces. Anyone with a fever exceeding
37�C is detained and instructed to not come into contact
with other individuals. The second type is aimed at in-
creasing propagation costs for infected individuals. Exam-
ples include public appeals to wash hands, wear surgical
masks, and maintain a high level of cleanliness. Vaccines
and anti-virus medicines also belong to this category, as
do requests for individuals to avoid public places as much
as possible. It is generally believed that the speed with
which both types of policies were put into place by the
Hong Kong, Taiwan, and Singaporean governments were
positive factors in the successful control of the SARS epi-
demic.

Volume 85, Number 3 SIMULATION 215

 at NATIONAL CHIAO TUNG UNIV LIB on April 25, 2014sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


Huang, Tsai, Sun, Hsieh, and Cheng

Figure 10. Uniform (n = 5, r = 2) and normal (standard deviation = 2) distributions of individual resources with an average �r	 value of 16.

Figure 11. Individual resources in a power-law distribution.
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Figure 12. The effects of different statistical distribution types for individual resources on the steady-state density curves and critical
thresholds of contagious diseases spread within scale-free networks.

Figure 13. Uniform (n = 5, r = 3) and normal (standard deviation = 3) distributions of individual resources with an average �r	 value of 16.
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Figure 14. Individual resources in a power-law distribution.

5. Conclusion

Ever since Watts and Strogatz [12] proposed their small-
world network model and Barabási and Albert [17] in-
troduced their scale-free network model, epidemiolo-
gists, computer scientists, and marketing experts have
used complex network theories and computer simulations
to analyze the details of contagious diseases, computer
viruses, and product diffusion. As part of their attempt
to simplify their experiments, researchers have tended to
overlook individual resources and transmission costs—
both of which exert significant impacts on epidemic dy-
namics.

In this paper we used definitions for resources and
transmission costs from the field of economics, proposed
five characteristics of resources, and applied agent-based
modeling and network-oriented simulation approaches to
construct SIS epidemiological models to investigate how
resources and transmission costs influence epidemic dy-
namics and thresholds in scale-free networks. Our mathe-
matical analysis and simulation results indicate that, when
resources and transmission costs are taken into consider-
ation, a critical threshold does in fact exist when a conta-
gion event occurs in a scale-free network.

According to results from our first set of experiments,
individual resources, transmission costs, and average ver-
tex degree are among factors exerting significant impacts
on critical thresholds� node and link numbers were found
to have little impact. Results from our second experimen-

tal set provide insight into how the ratio of the single
contagion event costs to the total amount of an individ-
ual’s resources affects density curves and critical thresh-
olds. When transmission costs increase, or when the to-
tal amount of an individual’s resources decrease, the criti-
cal threshold of a contagion event in a scale-free network
grows and density is reduced at certain transmission rates.
Results from our third set of experiments indicate that, re-
gardless of whether resources obey a delta, uniform, or
normal distribution, they all have the same density curve
and critical threshold as long as the average resource value
remains the same across different networks. This conclu-
sion can make the process of constructing both simple and
abstract computer models significantly less complex.

We suggest that our three main conclusions can help
epidemiologists and public health professionals under-
stand and analyze core questions of disease epidemics,
predict epidemic dynamics and diffusion, and develop ef-
fective public health policies and immunization strate-
gies. They may also have utility for computer scientists
wanting to develop strategies against contagious viruses
(and perhaps computer viruses) at various intrusion
levels.
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