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The semiclassical path integral �SPI� method has been applied for studying spin relaxation in a narrow
two-dimensional strip with the Rashba spin-orbit interaction. Our numerical calculations show good agreement
with the experimental data, although some features of experimental results are not clear yet. We also calculated
the relaxation of a uniform spin-density distribution in the ballistic regime of very narrow wires. With the
decreasing wire width, the spin polarization exhibits a transition from the exponential decay to the oscillatory
Bessel-type relaxation. The SPI method has also been employed to calculate the relaxation of the particularly
long-lived helix mode. Good agreement has been found with calculations based on the diffusion theory.
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I. INTRODUCTION

The spin relaxation rate is an important spin transport
parameter. Recent calculations and measurements of this pa-
rameter in semiconductor systems have to a great extent been
motivated by numerous ideas of spintronic applications.1 In
view of these applications, as well as from the fundamental
point of view, one of the most interesting problems is the
spin relaxation in quantum dots �QD� and quantum wires
�QW�. In zinc-blende semiconductors at low temperatures
the spin lifetime is mainly determined by the mechanism of
D’yakonov-Perel’ �DP�2 associated with spin-orbit effects. In
systems with restricted dimensions this relaxation mecha-
nism is strongly suppressed, as has been calculated in the
case of QD �Ref. 3� and QW.4–6 The physics of such a sup-
pression in QW became clear from the analytical solution of
the diffusion equation for nonuniform spin distributions con-
fined in a wire.4 Surprisingly the suppression starts when the
width w of a wire becomes less than the characteristic length
Lso of the spin-orbit interaction. In typical zinc-blende semi-
conductor systems it varies from several thousand angstroms
up to several microns and can be much larger than the elec-
tron mean-free path l. Hence, such a spin lifetime enhance-
ment cannot be considered as a manifestation of the motional
narrowing effect when a restricted geometry of the system
imposes the upper limit on the mean-free path. Indeed, recent
measurements7 have demonstrated that the spin lifetime �s
starts to increase already at w�10l. On the other hand, the
observed slowdown of the spin relaxation appears to be not
so strong, as expected from the theory. To understand such a
behavior, one has to take into account that in experiments7

the measured parameter is the relaxation time of a particular
spatial spin distribution rather than of an individual electron
spin. At the same time, as shown in Ref. 4 only two kinds of
spin distributions have very long lifetimes in narrow two-
dimensional �2D� wires. The first one corresponds to a po-
larization which is homogeneous along the wire with spins
oriented in the plane of a two-dimensional electron gas
�2DEG� and perpendicular to the wire axis. The second dis-

tribution is a nonuniform helix mode with the wavelength
determined by Lso. As it will be pointed out below, none of
these distributions have been excited by an incident light
beam in the experiment.7

In order to interpret experimental data we will analyze
relaxation of various spin distributions. We will study diffu-
sive as well as ballistic regimes of electron motion in the
wire. The path integral method previously applied to QD
�Ref. 3� will be employed to calculate the spin relaxation in
a wide parameter range, including the ballistic regime w� l,
and at time intervals less than the electron momentum relax-
ation time.

The article is organized in the following way: Sec. II
gives an introduction to the path integral method; in Sec. III
the spin relaxation of a homogeneous spin distribution is
calculated and a comparison with the experiment is given; in
Sec. IV some analytical results are presented useful for un-
derstanding the spin relaxation behavior in the ballistic
range; and Sec. V is devoted to an analysis of long-lived
helix spin distributions, beyond the diffusion theory of Ref.
4. The conclusion is presented in Sec. VI.

II. SEMICLASSICAL PATH INTEGRAL APPROACH

The semiclassical path integral �SPI� formalism has been
used to study the spin relaxation and spin current transmis-
sion in systems with the Rashba spin-orbit interaction
�SOI�.3,8,9 The Hamiltonian of these systems can be divided
into two parts,

H = H0 + HR, �1�

where H0 contains the kinetic and potential energies of an
electron in a 2DEG. The second part HR=��p��� ·z repre-
sents the SOI, where � is the spin-orbit coupling constant, p
denotes the electron momentum, � stand for Pauli matrices,
and z is the unit vector perpendicular to the 2D sample.
Within the SPI method the spin-orbit interaction HR gives
rise to spin precession of a particle moving along a classical
trajectory. A characteristic length determining this precession
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is given by Lso= �

�m� , where m� is the effective mass of the
particle. In real semiconductor materials, the energy ratio
HR /H0 can reach 1/10, like in the InSb sample.10 But even
for such a ratio, HR is still small compared with H0. In such
systems whose characteristic size, or the electron mean-free
path, is smaller than Lso, the electron dynamics is not af-
fected strongly by its spin dynamics so that in the leading
approximation classical trajectories are determined by H0.

For a free electron moving along a straight trajectory � of
length l, the dynamics of its spin state is governed by the
evolution operator U in the path integral formalism,3

U = exp�−
i

�
�

�

HR�t�dt� = exp�− i
l

Lso
b · �� , �2�

where b=z�p / �p�. This operator represents simply the spin
rotation. Note that the semiclassical approximation has been
employed in Eq. �2� since only the classical paths were taken
into account in the integral.3 This approximation is valid for
systems whose size is much larger than the de Broglie wave-
length of electrons. The term “semiclassical” here is referred
to the semiclassical �saddle point� approximation taken in the
spin evolution operator in Eq. �2�. Though this terminology
is used, the following analysis within the SPI method is the
classical one. This method is equivalent to the classical
Boltzmann equation modified to take into account spin dy-
namics. Such an equation was used already in Ref. 2 and
many times since.

If an electron collides with impurities or boundaries n�

−1 times, its trajectory � will consist of n� straight segments;

� = �n�
+ ¯ + � j + ¯ + �2 + �1.

The corresponding spin evolution operator U� becomes a
product,

U� = U�n�

¯ U�j
¯ U�2

U�1
, �3�

where the individual operators,

U�j
= exp�− i

lj

Lso
b j · �� = 1 cos� lj

Lso
� − i�b j · ��sin� lj

Lso
� ,

�4�

along different straight segments do not commute with each
other. Each trajectory � at the time t is uniquely determined
by the particle initial coordinate and momentum. Since in the
semiclassical approximation the particle momentum is equal
to the Fermi momentum pF, the trajectory will depend on its
initial angle while its total length is simply tvF. At the time t
the spin of a particle moving along the trajectory � is deter-
mined by s����t ,�0�= 	U�

−1�U�
�0
, where angular brackets

denote averaging over the initial spin state �0. Using this
expression one may calculate the evolution of the spin state
in systems of various geometries, with or without elastic im-
purity scatterers, as shown by several examples in Ref. 3. In
order to determine the evolution of a given particle distribu-
tion, one must perform a statistical average of the above
expression over initial trajectory coordinates and angles,
which we will denote by the trajectory label �. Below, we

will assume that particle initial positions and momentum di-
rections are uniformly distributed. In this case, given a small
area D of 2DEG, the z projection of the spin polarization
Pz�t� within this area at time t is determined by the average,

Pz�t� =
1

n�t,D�
�
��D�

sz
����t,�0� , �5�

where n�t,D�=���D� is the number of trajectories reaching the
area D at time t, with sz

����t ,�0� denoting the z component of
the electron spin. According to the above definition,
sz

����t ,�0� varies within �−1,1. Hence, the maximum value
of �Pz�t�� is 1, which corresponds to all electrons in D being
aligned in z direction.

To apply the SPI method numerically, a large number of
electrons are initially randomly distributed in the channel
with uniform or helix spin configurations as explained below.
Each electron moves straight before collision with impuri-
ties. The distance between two collisions follows the well-
known exponential distribution of free paths. In the follow-
ing, we assume that the channels have smooth boundaries on
which the electron reflection is specular. In the diffusive re-
gime �as in the experimental sample in Ref. 7�, the spin
relaxation behavior under this assumption is the same as in
the case of nonsmooth boundaries because even when elec-
tron trajectories are not randomized by the smooth boundary
they will be immediately randomized by the impurities near
the boundaries. In the ballistic regime, the relaxation behav-
iors in systems with smooth and nonsmooth boundaries are
different. Here we focus on the simple example of specular
reflection. Once the boundary roughness of a ballistic sample
is known, the extension to the nonspecular case is straight-
forward.

III. RELAXATION OF UNIFORM SPIN MODES

The spin relaxation times obtained in the experiments of
Ref. 7 were measured in a 2D n-InGaAs channel of the
length L=200 	m and the width w=0.42–20 	m. The SOI
in the sample is dominated by the Rashba coupling. In the
notation of Ref. 7 it corresponds to the characteristic length
lSP�1 	m, which is related to the above defined spin rota-
tion length Lso as Lso=2lSP.

The sample is characterized by the electron mean-free
path l=0.28 	m, the momentum scattering time �M
=0.76 ps, and its Fermi velocity can accordingly be esti-
mated as vF=0.28 	m÷0.76 ps�0.37 	m /ps. For the car-
rier concentrations ns=5.4–7.0�1011 cm−2 used in Ref. 7,
the de Broglie wavelength 
 f =�2� /ns of electrons in the
2DEG is around 30–34 nm. The sample was patterned
along various crystallographic directions, and electron spins
have been optically oriented parallel to the growth direction
�0,0,1. The relaxation times �s measured in Ref. 7 are re-
plotted by the circles and the stars connected by the blue and
green curves in Fig. 1.

Since the width range 0.4 	m�w�20 	m used in our
calculations is much larger than the de Broglie wavelength

 f, the quantum effects are negligible and the validity of the
SPI approach is justified. With the above experimental pa-
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rameters, the SPI calculations are represented in Fig. 1,
where the inset shows the relaxation curves Pz�t� for three
channels of different widths. All electron spins were initially
aligned in the z direction. The relaxation time �s can be de-
termined by a fitting of these Pz�t� curves with the exponen-
tial function

Pz�t� = A exp�− t/�s� + c . �6�

For example, the �red� solid curve in Fig. 1 represents the
relaxation time of 1.2�107 electrons in channels of different
widths w. A comparison with the experimental data �circles
and stars� leads to following conclusions.

�i� At large widths �w15 	m�, the electron spin can be
regarded as relaxing in bulk systems. In the experiments in
Ref. 7, lSP was estimated to be 1.0�0.1 	m, corresponding
to Lso=2.0�0.2 	m. This experimental uncertainty results
in �s=9.7�2.1 ps, when calculated by the SPI method.
However, each �s obtained from the SPI method agrees very
well with that determined by the analytical expression of DP
relaxation �s=Lso

2 / �4vFl� for boundless systems. Thus, if the
experimental samples are governed by pure Rashba Hamil-
tonian, as in our calculation, these samples most likely have
Lso=2.19 	m. This value is used in our SPI simulations to
obtain the red and black curves in Fig. 1.

�ii� For intermediate widths �1.4 	m�w�15 	m�,
there is no an analytical expression for �s to compare with.
The SPI result deviates slightly from the experimentally
measured �s. The maximum deviation is around 3 ps for
�1,1,0 sample and 4 ps for �1,0,0 sample at w=5 	m. The
calculated �s is closer to the �s of the �1,1,0 sample.

�iii� For small widths �w�1.4 	m�, the experimentally
measured �s saturates at 28 ps for �0,0,1 sample and 20 ps
for �0,1,1 sample. It is assumed in Ref. 7 that this saturation
might be related to other mechanisms, such as the bulk in-
version asymmetry. However, the calculated �s in Fig. 1 is
also bounded by a maximum value around 24 ps, although in
our calculation only the Rashba Hamiltonian was considered,
without any additional mechanisms involved.

An important factor affecting the interpretation of the ex-
perimental data is how to determine the relaxation time �s
from the function Pz�t�. The solid curve in Fig. 2 is an ex-
ample of Pz�t� in a channel with w=0.1 	m and l
=0.3 	m. At first sight it looks like an exponential function
to be fitted with a relaxation time �s in Eq. �6�. But a closer
look shows that it is not a pure exponential function. Indeed,
if we gradually increase l by reducing the number of impu-
rities in the channel, the monotonically decreasing Pz�t� in
Fig. 2 will transform to an oscillatory function. In the ex-
treme case of an infinitely thin impurity-free channel, we
shall prove in Sec. IV that the evolution of Pz�t� will follow
the Bessel function,

Pz�t� = J0�2vFt

Lso
� . �7�

This analytical formula is depicted by the smooth �red�
dashed curve in Fig. 3. A corresponding result of a numerical

FIG. 1. �Color online� The spin relaxation times �s’s of �1,0,0
sample �circle� and �1,1,0 sample �star� versus channel width w are
taken from the experiments in Ref. 7. The �s calculated by the SPI
method are extracted from the polarization curve Pz�t�, fitted by Eq.
�6� with free parameters A and c �red solid curve� and with fixed
parameters A=1 and c=0 �black dash-dotted curve�. The experi-
mental �s saturates at 11.5 	m �pink dashed straight line� for large
w, the same as the analytically estimated value for Lso=2.19 	m.
The inset demonstrates three examples of Pz�t� for channel width
w=1.6, 2.8, and 4.4 	m.
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FIG. 2. �Color online� In the inset, a spin configuration in a
channel of the length 8� 	m relaxes to zero, depicted at three
different times. These configurations are spatially uniform up to the
ripples at two ends caused by boundary effect. Recording the po-
larization Pz�t� at the middle point of the channel gives the relax-
ation curve �green solid thick� in the main plot. This curve can be
fitted by the exponential function in Eq. �6� with ��s ,A ,c
= �7.127,1.274,−0.055 �blue dashed curve� and ��s ,A ,c
= �4.323,1 ,0 �red dotted curve�. For t close to zero, most electrons
have not been reflected by impurities or boundaries. In this range
Pz�t� does not behave as an exponential function. Later, after most
of the electrons and their spins have been randomized by impurities
or boundaries, Pz�t� became more exponential-like. The phys-
ical parameters used are �w ,Lso ,vF , l= �0.1 	m,2 	m,
0.37 	m /ps,0.3 	m with 6�104 electrons.
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SPI simulation is plotted as a �green� rugged solid curve in
the same figure.

During transition from the diffusive to ballistic regimes,
Pz�t� will undergo a crossover from an exponential function
to a Bessel function. In principle, it is meaningless to use an
exponential function to extract �s from such a crossover
function, especially when it is far from an exponential be-
havior. But if one would like to carry out this procedure, the
so-obtained �s will depend on the choice of parameters A and
c in Eq. �6�.

�A� If A=1 is chosen, Eq. �6� can precisely fit the real
initial polarization Pz�t�=1 at t=0 �red dotted curve in Fig.
2�. If A�1, Eq. �6� can provide a better fitting to Pz�t� in a
wider range of times at t0 �blue dashed curve in Fig. 2�.
On this reason, such a choice of A seems to be more appro-
priate.

�B� Further, if c�0 the fitted values of c and �s will be
strongly dependent on the observation time cutoff. The rea-
son is that usually the tail of Pz�t� is oscillating if the system
within the considered range of times is not in the diffusive
regime. The closer the system to the ballistic regime, the
larger is the oscillation amplitude. The Bessel function in Eq.
�7� for “pure” ballistic regime has the largest amplitude. If
the nonoscillating equation �6� is used to fit an oscillating
equation �7� truncated at some cutoff, the fitted �s and c will
depend on the cutoff. The corresponding uncertainty of �s
will decrease with an increasing observation time.

In the experiments,7 the width of the channel varies be-
tween w�1.5 and 70l. Since at the smallest w the system is
not far from the ballistic regime, the difference between Pz�t�
and the exponential function should be observable. Indeed,
the value of �s fitted by Eq. �6� with A=1 and c=0 �black
dash-dotted curve in Fig. 1� is somewhat distinct from �s at
A�1 and c�0 �red solid curve in Fig. 1�. Since our obser-
vation time is sufficiently long, the fitted value of c is close
to zero. A disagreement produced by different fitting proce-
dures will become more remarkable when the system ap-
proaches the ballistic regime with strongly oscillating Pz�t�.

Hence, when comparing �s’s obtained by different research
groups, it is important to know the whole set of the fitting
parameters �A, c, and observation time�. Even when the same
Pz�t� curve is considered, the reported �s’s could be different.
One more problem with the fitting procedure is that even in
the diffusive regime the evolution of the spin polarization
does not necessarily follow the exponential behavior with a
single relaxation time. For example, a homogeneous Pz dis-
tribution is not an eigenstate of the diffusion equation in a
2D channel. Therefore, as shown in Ref. 6, edge states can
contribute to the Pz�t� evolution with the relaxation time dif-
ferent from that of the bulk eigenstate. The weight of edge
states increases with decreasing w.

In regime �ii�, the experimental data deviate slightly from
the SPI calculations with a maximum difference �s
�3–4 ps at w�5 	m. This discrepancy is too large to be
attributed to different fitting procedures. One of the explana-
tions for such a behavior might be a specific role of long-
lived edge states. The lifetime of such modes depends on the
boundary conditions.6 Our SPI calculations assumed a specu-
lar reflection of electrons from hard wall boundaries of the
wire. Probably, the experimental situation in Ref. 7 corre-
sponds to other boundary conditions which give rise to the
edge states with larger �s. This problem requires a more thor-
ough analysis.

In regime �iii�, the relaxation time goes to a finite value at
w→0 in both experimental and SPI calculated plots in Fig.
1. For a homogeneous spin distribution along the channel,
the diffusion theory4 also predicts a saturation of �s at w
→0. The saturated value should be twice the bulk DP spin
relaxation time. With the experimental bulk value �s
=11.5 ps, one expects �s=22.8 ps at w=0. Experimental
and SPI curves at Fig. 1 are not far from this value, although
the diffusion approximation fails at w� l. At the same time,
one should not forget that in a narrow channel the time evo-
lution of the spin polarization strongly deviates from the ex-
ponential function. On this reason, in regime �iii� �s cannot
be a representative parameter to describe the spin relaxation.

IV. BESSEL RELAXATIONS IN BALLISTIC
CHANNELS

Depending on the ratio between the channel width and the
electron wavelength, one encounters two limiting cases. If
the wire carries only one propagating channel, we have ef-
fectively a one-dimensional �1D� situation. In the opposite
limit, if the width of the wire is much larger than the electron
wavelength, semiclassical electrons are able to move in both
the x and y directions. Therefore, the system is two dimen-
sional, even if geometrically the channel is narrow, with w
much less than other characteristic lengths, such as Lso and l.
Below, we will consider the evolution of electron polariza-
tion in the ballistic regime for these two limiting cases.

A. 1D ballistic channels

Let us consider a 1D impurity-free channel where at t
=0 spins of all electrons are aligned in the z direction. Since
the impurities and the electron-electron interaction are ab-
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FIG. 3. �Color online� In a 1D channel without impurities, a spin
polarization Pz�t� behaves like a sinusoidal function Eq. �8� �blue
dash-dotted curve�. In an infinitely thin channel without impurities,
Pz�t� behaves like Bessel function �7� �smooth red dashed curve�,
which agrees with the numerically obtained Pz�t� simulated by 5
�104 electrons �rugged green solid curve�. The physical parameters
are �w ,Lso ,vF , l= �0.1 	m,2 	m,0.37 	m /ps,104 	m.
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sent, electrons can only move in +x or −x directions along
the channel axis with a constant velocity. The spins of all
these electrons will rotate simultaneously along different
geodesics connecting the north and south poles on the spin
sphere. A 2� spin rotation takes place when an electron
passes a distance �Lso during a time period �Lso /vF. There-
fore, the angular frequency of this rotation is 2vF /Lso, the
same for all spins. The spin polarization at any place in the
channel will then evolve according to

Pz�t� = cos�2vFt

Lso
� �8�

and oscillate without any amplitude decay, as shown by the
blue dash-dotted curve in Fig. 3.

B. 2D ballistic channels

Now we suppose that the channel is a 2D thin ballistic
wire where all electron spins are initially aligned in the z
direction, as in the 1D case. Given an observation point, say,
p0�x0 ,y0� in Fig. 4, the polarization Pz�t� at x0 at time t is the
average of the spins of all electrons which will arrive at this
moment at the x0 cross section. These electrons can arrive
through a straight trajectory p1p0 of length l=vFt or through
different zigzag trajectories of the same length as the path

p2p0
˜ in Fig. 4.

As follows from Eq. �3�, the spin state of an electron

running along the zigzag trajectory p2p0
˜ in the inset of Fig. 4

will evolve according to the spin evolution operator

Up2p0
˜ = exp�− i

ln · �

Lso
� . . . exp�− i

l2 · �

Lso
�exp�− i

l1 · �

Lso
�

= �1 − i
ln · �

Lso
+ . . .� . . . �1 − i

l2 · �

Lso
+ . . .�

��1 − i
l1 · �

Lso
+ . . .� = Up2p0

+ O� w2

Lso
2 � . �9�

Making the above expansion up to the linear in w term, the
operator Up2p0

can be written as

Up2p0
ª exp�− i

l · �

Lso
� = �1 − i

�
j=1

n

l j · �

Lso
+ . . .� ,

with the vector l pointing from p2 to p0. Equation �9� indi-
cates that the spin evolution of an electron moving along the

zigzag trajectory p2p0
˜ is approximately the same as that of an

electron drifting along the shorter straight line p2p0 with a
drift velocity vFx / l slower than vF, where l= �l1�+ �l2�+ . . .
+ �ln� and x= �l1+ l2+ . . . + ln�. As discussed in Sec. IV A, if an
electron moves a distance x, its spin will rotate the angle
2x /Lso in the spin space. If initially this spin is aligned along
the z direction, its z component will become

sz�x� = cos� 2x

Lso
� + O� w2

Lso
2 � . �10�

To determine how many electrons will contribute to Pz�t�,
let us uniformly divide the channel axis into small intervals
��i ,�i+1 of length � separated by points �i with i
=0,1 ,2 , . . .. Let ���i� be the outgoing angle of an electron at
�i. This angle is chosen so that when the electron travel a
zigzag path of the length l=vFt, its drift length will be x.
Hence, this electron will arrive at p0 at time t. If outgoing
angles are isotropically distributed, the number of such elec-
trons within ��i ,�i+1 is proportional to the spanned angle
W��i�=���i�−���i+1�. For a given small interval �=�i+1−�i
this angle is related to x by

W�x� = ��x� − ��x + �� = arccos� x

l
� − arccos� x + �

l
�

=
�

�l2 − x2
+ O��

l
� , �11�

where the outgoing angle ��x� of the trajectory along p2p0
˜ is

the same as the angle of p2p3 �see Fig. 4�. According to Eq.
�5�, the spin polarization Pz�t� at p0 will be contributed from
electrons traveling from different initial locations x,

Pz�t� =

�
0

l

�W�x�sz�x�dx

�
0

l

�W�x�dx

, �12�

where � is the line density of electrons along the channel
axis. Inserting Eqs. �10� and �11� into Eq. �12� yields

Pz�t� =

�
0

l �

�l2 − x2
cos� 2x

Lso
�dx

�
0

l �

�l2 − x2
dx

= J0�2vFt

Lso
� + O� w2

Lso
2 � ,

which at the w→0 limit is the Bessel function in Eq. �7�.
Hence, uniformly polarized spins in a ballistic narrow chan-
nel will relax to the zero polarization through a Bessel func-

θ(ξ
i
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θ(ξ
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n

FIG. 4. �Color online� Two kinds of trajectories with the same
length l=vFt in a thin channel: the straight trajectory p1p0 and the

zigzag trajectory p2p0
˜. The latter has the same length as the straight

line p2p3 since it can be obtained through a multiple mirror reflec-
tion of p2p3 with respect to the horizontal dotted lines. The symbol
���� denotes a certain outgoing angle of an electron located at �, as

explained in the text. The trajectory p2p0
˜ is magnified in the inset.
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tion. This phenomenon is in contrast to our conventional
intuition that a relaxation is a monotonically exponential pro-
cess. It is worthwhile to note that the Bessel-type spin dy-
namics also takes place in other SOI systems.11

We conclude that the spin relaxation dynamics even in a
very thin 2D channel is remarkably different from that in a
1D channel, as can be seen from a comparison of Eq. �7�
with Eq. �8�. It can be understood from the fact that no mat-
ter how narrow the width of a 2D channel is, it contains a
large number of electrons moving along various zigzag tra-
jectories bouncing between two channel boundaries. These
trajectories give a significant contribution and change the
dynamics of Pz�t� from a sinusoidal oscillation in 1D sys-
tems to a Bessel-function decay in 2D systems.

V. RELAXATION OF HELIX SPIN MODES

In Secs. I–IV, all initial electron spins were polarized
along the z axis. The relaxation dynamics of such spin con-
figuration does not change dramatically at small w �the maxi-
mum �s only reaches 28 ps in Fig. 1�, in agreement with the
experiment.7 In fact, this behavior is expected from the
analysis of eigenstates of the spin diffusion equation. As
shown in Ref. 4, the only homogeneous eigenstate is �0 in
Fig. 5�a�, which has all spins polarized in the y direction and
whose relaxation time strongly increases in narrow wires. In
addition to this mode there are two nonuniform slowly relax-
ing eigenstates.

These two long-lived eigenmodes exist in a 2D channel
where w� lSP. Using a perturbation method with respect to
w / lSP, one can solve a diffusion equation and obtain its un-
perturbed eigensolution,4

�̃M,k,m�x,y� = exp�ikx��m�y��M , �13�

with the eigenvalue �relaxation rate�

�M,k,m
0 = D��m/d�2 + D�k − MlSP

−1�2. �14�

Therein, �M are the eigensolutions of the momentum opera-
tor Jy with eigenvalues M =0, �1 and �2n�y�=cos�2�yn /d�,
as well as �2n+1�y�=−sin��y�2n+1� /d. In Fig. 5�a�, ��1
will construct the helix eigenmodes with the wave vectors
k= �1 / lSP. We note that the eigenmode of the diffusion
equation is a spin configuration exponentially decreasing in
time, but its shape remaining unchanged. Taking the second-
order correction in w / lSP, one obtains

�M,k,m = �M,k,m
0 +

�2 − M2�w2

24�s0lSP
2 �15a�

=�M,k,m
0 +

2�2 − M2�w2vFl

3Lso
4 �15b�

for �k−M / lSP��1 / lSP, where �s0= lSP
2 /vFl and lSP=Lso /2

have been used in the second equality. The modes with m
=0 and k=M / lSP will relax most slowly since in these cases
the first term �M,k,m

0 in Eq. �15� disappears. The second term
indicates that the spin relaxation time �s=1 /�M,k,m will be
proportional to 1 /w2. In the limit Lso�w, we thus have �s
much larger than the D’yakonov Perel’ relaxation time �s0 in
2D boundless systems.2 Such a behavior will become more
clear from the following simple consideration in a 1D sys-
tem. Let us consider an electron at x1 in a 1D channel with an
initial spin pointing to n1, as shown in Fig. 5�b�. Under the
Rashba SOI, the spin will rotate to n2 ,n3 , . . ., when this elec-
tron moves to x2 ,x3 , . . .. It is easy to see that if each electron
spin in an initial spin-density distribution follows this �xi ,ni�
relation, such a distribution will not change in time. Hence,
its relaxation time is infinite. In a realistic 2D wire the relax-
ation time is finite at finite width. That is because electrons
there can move in the y direction. The polarization Pz�t�
contributed from electrons moving along the channel is fro-
zen, as in the 1D case, while electrons moving along the y
axis give rise to the relaxation of the helix distribution.

Since the above expressions have been obtained under the
assumption that l�w�Lso, it is interesting to extend the
analysis beyond this limits. Within the SPI method we stud-
ied the relaxation of the helix mode in the range l�w,
choosing Lso=12.5 	m, l=0.5 	m, and vF=0.37 	m /ps.
Given the initial helix spin mode �+1−�−1 corresponding to
spins oriented along the z axis at x=0 in Fig. 5�a�, the spin
relaxation time �s�w� calculated by the SPI method is repre-
sented by squares in the inset of Fig. 6. In the range of w
�10 	m, this time increases dramatically and strongly de-
viates from the �s of the corresponding uniform mode �red
solid curve�. Note that in order to display the divergent �s,
we choose a large �s-axis scale in the inset of Fig. 6. At this
scale the uniform mode �s �red curve� almost overlaps with
the �s=0 axis. The relaxation time of the uniform mode will
saturate at some value for w→0. It is �s�28 ps for
�Lso , l ,w= �2.19,0.28,1.4 	m in Fig. 1 and �s�441.1 ps
for �Lso , l ,w= �12.5,0.5,0.4 	m. In contrast to these uni-
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FIG. 5. �Color online� �a� Long-lived spin eigenmodes: �0 de-
notes the spin mode with all spins aligned in the y direction. �+1

−�−1 represents the helix spin modes with spin rotating on the xz
plane. �b� An electron in the channel moves a distance �Lso from
the left end x1 to the right end x9. Due to Rashba SOI, the spin of
the electron precesses from n1 to n9 and completes a phase period
of 2�. �c� A schematic plot of the decay of the helix mode at 1
�dotted�, 35 �dash�, and 170 �solid� time units. ��1 in �a� has been
replaced by �+1−�−1.
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form modes, �s of the helix mode strongly increases for w
→0 �if w� l�. This behavior is consistent with the theoretical
result Eq. �15a�. On the other hand, if w is as large as
20 	m, the relaxation time �1927.4 ps of the helix mode is
still much larger than �s�241.0 ps corresponding to the uni-
form mode. This difference can be easily seen by magnifying
the �s axis of the inset in Fig. 6.

The main plot in Fig. 6 shows the 1 /�s dependence on w2.
The squares show the helix relaxation rate corresponding to
the data in the inset. The line with circles for the helix mode
is obtained from analytical expression �15b�, while the line
with triangles is obtained from Eq. �15a�. In the latter line,
�s0 is simulated numerically, instead of using the analytical
relation �s0= lSP

2 /vFl mentioned below Eq. �15b�. The lines
with circles and triangles are valid only at l�w�Lso, while
that with squares is valid for all w. One can clearly see that
the curve calculated by the SPI method agrees very well with
Eq. �15� at small w between w1=2 	m �the smallest calcu-
lated width� and w2=10 	m. It is interesting to note that
although formula �15� was derived under the condition l
�w�Lso, it seems to be valid in a wider range of w, because
w1 is close to the ballistic regime crossover point at w� l
=0.5 	m and w2 is close to Lso=12.5 	m. Finally, one
should not expect that the linear trend in Fig. 6 can continue
down to w2→0 because in this range the system will even-

tually reach the ballistic regime and Pz�t� will decay like a
crossover function between the exponential and the Bessel
functions. Similar to the discussion of the uniform initial
spin configuration in Sec. III, it does not make sense to con-
sider �s at extremely small w because Pz�t� is no longer an
exponential function.

VI. CONCLUSION

The semiclassical path integral method has been applied
to study the spin relaxation in thin 2D wires with the Rashba
spin-orbit interaction. We considered the relaxation of a uni-
form spin polarization along the z axis, as well as of the
long-lived helix mode. In the former case we found a good
agreement of �s calculated in the regime of large w�w
�20 	m� with the well-known bulk DP spin relaxation rate
and with the experimental data from Ref. 7. At smaller w our
numerical results deviate slightly from the experimental data.
The nature of this distinction is not clear. We assume that the
edge spin diffusion modes can contribute to the spin relax-
ation so that the conditions for electron reflections from the
wire lateral boundaries become important. Also, the Dressel-
haus spin-orbit interaction can give rise to the observed de-
pendence of �s on the orientation of the wire axis in the xy
plane. At w→0 the relaxation time has a tendency to saturate
at a value which is about twice of the bulk �s, as predicted by
the spin diffusion theory. Although both SPI and experimen-
tal data show similar saturation behavior, one must take into
account that at w approaching the crossover w� l to the bal-
listic regime the evolution of the spin polarization cannot be
described by an exponential function. Hence, in this regime
�s is not a representative parameter to describe the spin re-
laxation. We studied the evolution of the spin polarization in
the ballistic regime and found that it is described by the
Bessel function. The numerical SPI results fit well to this
behavior. For the helix spin distribution, the linear depen-
dence of 1 /�s on w2 predicted in the framework of the dif-
fusion theory4 coincides precisely with that calculated by the
SPI method. The SPI method also allowed calculation of the
spin relaxation beyond the constraints of those analytic
results.4
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