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I 

基於深度卷積神經網路之手勢辨識技術研究 

 

研究生：謝汝欣      指導教授：王聖智 教授 

                               

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

在這篇論文中，我們提出了一個使用任意單一攝影機在不同角度下仍能遠距離辨識

多重手勢的技術。此技術不需固定攝影機角度，不需要由特定使用者操作，且能分辨多

種手勢。此技術在影片中自動找出使用者的手的位置，並判斷使用者想傳達的訊息，希

望能進行遠距離的操作以及在任何背景之下皆能達到手勢辨識的效果。在此設定議題下，

為了能在複雜背景與不同視角拍攝的情況下有效的找到手部出現的區域以及辨識使用

者所傳達的訊息，我們不採用易被複雜背景所誤導膚色資訊且不使用事先設定之特徵萃

取技術，而是利用卷積神經網路有效且準確的學習不同手勢所擁有的特徵，並結合不同

形狀與大小的特徵，以找到能分離不同手勢最佳的特徵空間，再利用深度神經網路找出

特徵之間的關係以及不同手勢與各特徵的連接，藉此達到手部偵測與多重手勢辨識的成

果。此外，我們也利用影片中已經得到的手部位置與移動資訊加上手勢辨識結果，推測

之後較有可能出現手部的區域以及最佳的手勢辨識結果。 
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Hand Gesture Recognition based on  

Deep Convolutional Neural Network 
 

Student：Ju-Hsin Hsieh   Advisor：Prof. Sheng-Jyh Wang 

 

 

                                 

Department of Electronics Engineering, Institute of Electronics 

National Chiao Tung University 

 

Abstract 

 

In this thesis, we propose an algorithm which recognize hand gestures with a single camera 

under different view-points within a range remotely. The algorithm can recognize multi-

gestures without fixing view-point of the camera or a particular user controlling. In order to 

find the hand position and recognize the gestures from the video automatically and efficiency 

in the clutter background under different view-points within a range, we don’t take the skin 

color as the information which is easily influence by the clutter background, nor do we use the 

specific feature extraction processing. Instead, we use the convolutional neural network to learn 

the features in the hand gesture image and combine the different kernel sizes to get the best 

feature space for separating different gestures. Then we use the deep neural network to find the 

relationship between the hand features and the gesture classes. Under this setting, we are able 

to locate the hand and recognize multi hand gestures. Furthermore, with the help of the temporal 

information for the hand position and motion getting from the video, we are able to infer the 

most possible area where the hand would appear and the best recognition result. 
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Chapter 1. Introduction 

In the technological era, computers play an important role in our daily lives. Our most 

common way to communicate with computer is through the mouse and keyboard. However, we 

want to interact with computer directly instead of using mechanical devices. The progress of 

computer vision and machine learning algorithms enable us to interact with computer in novel 

ways, such as Kinect. We can use our hand gesture to convey our thought intuitively. 

Hand gesture recognition system can be categorized into three stages: detection, tracking 

and recognition. We want to know the position of our hand in an image, then track the 

movement of hand and the moving trajectory. Finally, the computer must understand the 

meaning of user expression. Traditionally, people usually find skin color in the image with 

simple background and investigate the appearance of skin color part to determine where the 

hand is. Based on the temporal information obtained from acquired trajectory and result, predict 

the hand movement. At last, we use some classification methods to identify the gesture we 

express. However, the variant of appearance of hand is complicated since our hand is composed 

of five fingers and a palm. In addition, a finger has two knuckles to change the exterior of our 

hand. Furthermore, the shape of hand will be significantly different as the view point is 

changing. If the image has a complex background, it will influence the result of hand gesture 

recognition. Therefore, finding a robust classifier against complex background is difficult when 

using a simple model. Traditional machine learning method like support vector machine and 

random forest may not apply to multiple hand gestures and out-of-plane rotation of hand. As 

with the rapid development of deep learning algorithm, we want to use deep learning algorithm 

to find a robust classifier of hand gesture. 

In this thesis, we want to identify four different gestures, stop, pointer, ok and wave in the 

clutter background at a remote distance. We propose a hand gesture recognition algorithm in 
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which the detection and recognition stage is based on convolutional neural network and deep 

neural network. These two methods are widely used in handwritten digit recognition recently. 

We modify the convolutional neural network to apply it to the hand gesture data set. Combining 

convolutional neural network and deep neural network to build our classification model for 

multiple hand gestures and the hand detector. Due to the dramatic change of hand shape and 

appearance, the points to track are not easy to choose. Therefore, nowadays tracking algorithms 

are not robust of hand tracking. Therefore, we rely on the detection achievement and adding 

some basic tracking technique to improve the detection accuracy and reduce the computation 

time.  

In our algorithm, we first use convolutional neural network [1]錯誤! 找不到參照來源。 

to extract the feature of an image, and transform RGB images to the feature space. Then use 

these features of hand as the input of deep neural network. At deep neural network stage, we 

use unsupervised learning method : Restricted Boltzmann Machine (RBM) [3] to pre-train the 

relationship within the low level local features. Combine the local features into global features 

at RBM training stage. Then add labeled data to do the supervised fine-tuning stage to get the 

classification model. After we get the hand position in the frame and the gesture it represents, 

we can only search for the neighbor region to find the hand position in the next frame. In order 

to improve the accuracy, we calculate the patch similarity of adjacent region to correct the 

position of the hand. After we get the detection and tracking results, we will do some refinement 

to get the most reliable position and gesture class in the video frame. 

The thesis is organized as follows. We will introduce some other hand gesture recognition 

technique in Chapter 2. After that, we will describe our proposed method and learning algorithm 

to do the hand gesture recognition in detail in Chapter 3. Then some experiment results are 

shown in Chapter 4. Finally, we provide our conclusion in Chapter 5.  
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Chapter 2. Related Works 

The main purpose of hand gesture recognition is to convey user’s expression for the 

computers. The rapid development of vision based hand gesture recognition increase the 

possibility of remote control human computer interface. There are two different ways to do the 

hand gesture recognition. One way is using some additional equipment to help doing the 

recognition, such as Microsoft Kinect and the MIT colored glove. Another way is using the 

appearance of hand to classify different gestures in which extracting some specific feature in 

the image. The classification accuracy has been strongly associated with the feature extraction. 

In this section, we introduce two different methods of using the appearance of hands to 

recognize different gestures. The first method introduced in section 2.1 extracts different 

orientation edges from hand images and trains the classification model by the random forest 

algorithm. In section 2.2, the second method extracts the hand contour and complex moments 

in hand images as the feature vector. They use the neural network algorithm to classify the 

images into different hand gestures. 

2.1 Hand Gesture Recognition by using Random Forest 

In [10], they propose a single-camera hand gesture recognition algorithm for human-

computer interface. The hand gesture recognition algorithm is composed of three parts. First, 

they us eight pre-defined edge filters to generate the corresponding edge maps for the hand 

images. Second, they use randomized pooling cell method to learn more efficient cells for the 

hand images. They get image feature vectors by concatenating feature vectors in some different 

size and shape cells. Finally, they use these feature vectors to train a random forest model for 

hand gesture recognition. 
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At first, they use 360∘orientation edge filters to generate the corresponding edge maps 

for the hand images. They quantize 360 degrees into 8 bins, then get eight filtered images for 

all edge filters. The eight edge filters and the examples of the corresponding edge maps for an 

hand image are shown in Figure 2-1.  

 

Figure 2-1 Eight edge filters and the corresponding edge maps for the image “Five”. 

After generating the edge maps, they use the structure of randomized pooling cells to 

calculate feature vectors [9]. Unlike tradition grid cells, they use more efficient cells to calculate 

the edge information for the hand images. Figure 2-2(a) shows traditional grid cells for the hand 

image. It partitions the image into equal size and extract the edge information in each cell. 

However, in [9], they use randomized pooling cells to get edge information more efficiency 

instead of grid cells. The training procedure of random forest with randomized pooling cell is 

mentioned in [9]. Figure 2-2(b) represents the training result for pooling cells which can extract 
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the edge information more efficient for the hand image. After that, the feature vectors of hand 

images are concatenated by the feature vectors in all cells. 

 

Figure 2-2 Compare traditional grid cells and randomized pooling cells for hand image. 

As mentioned in [9], their proposed method of random forest with randomized pooling 

cell training procedure is shown in Figure 2-3(a). First, they choose some grid cells and some 

randomized cells. Use these cells to calculate the feature vector of hand images and train the 

hand gesture classifier by random forest. After that, they calculate the variable importance at 

the training stage for the feature vectors and eliminate some weak variables. They eliminate 

weak variables and resample different rectangular to get more informative cells iteratively. 

Finally, they can get the most efficient cells to extract the edge information from hand images. 

Figure 2-3(b) shows the final randomized pooling cells by random forest training stage. 

This hand gesture recognition is good at two class recognition. It can classify the “five” 

gesture with background and the “zero” gesture with background respectively. The error rate 

for two class recognition is about 1 to 2 percent. However, it might get much higher error rate 

when the hand gesture classes increased. The error rate for three class recognition may be 5 

percent or higher. Therefore, we want to obtain a more robust multi-gesture classifier for hand 

images.  
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Figure 2-3 (a) Training procedure of random forest with randomized pooling cells. 

(b) The final trained random pooling cells for hand image. 

2.2 Hand Gesture Recognition by Neural Network 

In [8], they proposed a novel technique to do the hand gesture recognition. They infer that 

the Neural Network has many benefits at pattern analysis. First, Neural Network learns to 

recognize the pattern which exist in the data set instead of some image processing technique 

which analyze specific behavior of the model. Second, Neural Network is more robust in 

different environment than some specific image processing system which is limited to the 

situation they were designed.  

The hand gesture recognition process consist three stages: pre-processing, feature 

extraction and classification. Furthermore, they consists of two phases: training (learning) and 

classification (testing). Overview of gesture recognition system is seen as Figure 2-4. They 

introduced two different ways to extract features for input hand images, that is geometric feature 

(hand contour) and invariant features (complex moments). 
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Figure 2-4 Overview of hand gesture recognition system. 

At pre-processing stage, they segment the input image into background and objects at first. 

They use a thresholding algorithm for segmentation of hand gesture images [13]. In order to 

eliminate some errors produced by segmentation algorithm, they use a median filter to reduce 

noise. Furthermore, for geometric feature (hand contour), they use edge detection to extract the 

hand contour For invariant feature (complex moments), they use image trimming to eliminate 

redundant margins and image scaling combine coordinate normalization to let the origin point 

coordinates be at the center of the image as shown in Figure 2-5(a). 

At feature extraction stage, for the first method, they extract hand contour by edge map. 

Then do the feature image scaling to get an 32*32 image and shift the hand gesture section to 

the origin point. Furthermore, they use general feature to be an additional information for height 

and width offset of the hand gesture image. Figure 2-5(b) shows the example of height and 

width offset matrix, which the hand gesture has the width near to 23 and the height near to 25. 

For the second method, they calculate the complex moments from zero-order to ninth-order for 

each hand gesture image.  

 

Figure 2-5 (a) Central coordinates normalization. (b) Example of general features matrix. 
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At the last stage, that is classification stage, they use a simple one hidden layer neural 

network with back-propagation learning algorithm. Input layer has 1060 nodes or 10 nodes for 

two method. Hidden layer has 100 nodes and output layer, the recognition layer, has 6 nodes 

for 6 different hand gestures. The recognition rate is 70.83% for the first method and 86.38% 

for the second method. 

This paper introduce a simple neural network training for hand gesture recognition. It also 

pointed out the advantage of learning algorithm. However, this paper still use some image 

processing like edge detection to get the feature of data set. In our method, we use convolutional 

neural network to extract feature from training data set. It might get more robust recognition 

systems for changing environment.  
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Chapter 3. Proposed Method 

The purpose of our system is to detect the hands position and recognize the meaning of 

user represent in a video captured by arbitrary camera and viewpoints within a range. The most 

difficult part is the clutter background and multi-class gestures classification. We want to figure 

out four different kinds of hand gestures: stop, pointer, ok and wave. Because of the complex 

background which might have some other skin color like objects with the remote distance of 

hand and camera, we won’t use the skin color clue to do the image pre-processing. To build a 

more robust hand gesture recognition model, our training data is from arbitrary viewpoints 

within a range, different users and clutter background. Furthermore, we extract the feature in 

training data set by learning features from convolutional neural network, instead of specific pre-

defined image processing technique like edge, corner, contour and silhouette. In order to find 

the relationship between local features extract from convolutional neural network, we use the 

unsupervised learning algorithm, deep neural network to recognize four different hand gestures. 

First find the internal structure in the local features and combine low level features into high 

level features at pre-training stage. After that, find the relationship between input features and 

output targets at fine-tuning stage. Furthermore, in order to solve the extremely variant shape 

of hand gestures, we modify the convolutional neural network to applicable to the multi-class 

hand gestures. At testing stage, we add some tracking technique to assist the detection result in 

correcting the hand position in the video frame. We also do some refinement to improve our 

hand gesture recognition accuracy. 

The overall proposed algorithm procedure is shown in Figure 3-1, Figure 3-1(a) shows the 

training stage of proposed algorithm and Figure 3-1(b) shows the testing stage of proposed 

algorithm. In training stage, we have three steps, learning features, feature combination and 

classification. In the testing stage, we not only extract the features and classify the gestures by 
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two model we get from training stage but also combining the detection and tracking result to 

correct the recognition result. 

We will describe the data set we use for convolutional neural network (CNN) and deep 

neural network (DNN) in Section 3.1. In Section 3.2, we will describe the learning algorithm 

of convolutional neural network and deep neural network, which we need to learn the features 

in hand gesture data set and classify different gestures in feature space. We do some 

modification for the hand gesture data set at the feature extraction stage by using convolutional 

neural network. In Section 3.3, we will introduce our modification and how to combine the 

convolutional neural network and deep neural network for doing the hand gesture recognition. 

Also, we will add some tracking technique to improve the hand gesture recognition accuracy in 

video testing. At last, in Section 3.4, we will use the temporal information and compare the 

confidence of detection result and tracking result to do the refinement stage. 
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Figure 3-1  (a) Training procedure of our proposed algorithm. 

 (b) Testing procedure of our proposed algorithm. 

3.1 Data Set 

We will provide two different data set for convolutional neural network and deep neural 

network respectively. For convolutional neural network, we take amount of hand image for four 

different gestures. After we extract features from the learning algorithm of convolutional neural 

network, we might transform the hand gesture images from RGB color space to the feature 

space. In order to detect the hand in the video frame and recognize the hand gestures at once, 

we also transform the background from the RGB color space to hand gesture’s feature space. 

The training data set for deep neural network will be the feature space of both hand gesture 

image and background images. 

3.1.1 Data set for Convolutional Neural Network 

We take images from arbitrary camera, viewpoints within a range and different clutter 

background. The image size is 50*50 pixel by pixel for all gestures. We use particle filter to 

automatically extract the hand part in the image. This makes a lot of mistakes, so that we choose 

the successful hand images by artificial selection. We use the fist to represent stop meaning, 
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one finger to represent pointer meaning, three fingers to represent ok meaning and all fingers 

with the palm to represent wave meaning. In order to have the same number of right hand image 

and left hand image, we flip all the hand image we have. Each gestures have 6400 hand images 

for training data set, in other words, there are 25600 hand images. We have 3742 hand images 

for testing data set. Figure 3-2 are ten examples of hand gesture image in the training data set 

for each gestures and the last row are examples of background image for deep neural network. 

 

 

Figure 3-2 Row one is the examples of stop gesture. 

  Row two is the examples of pointer gesture. 

Row three is the examples of ok gesture. 

 Row four is the examples of wave gesture. 

     Row five is the examples of background image. 

3.1.2 Data set for Deep Neural Network 

After we extract the feature from convolutional neural network, we add the background 

image into the training data set, as shown in the last row of Figure 3-2. We have 25600 

background images in the training data set and 6400 background images in the testing data set. 

We transform the RGB color space to the feature space for all training data. There are some 

examples of training data set in Figure 3-3. There are four hand gesture features and background 
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features, each column illustrate the same gestures. The order for the gestures are stop, pointer, 

ok and wave. The last column is the background image’s features. Each row represent the same 

kernel size for feature extraction in convolutional neural network. There are 3*3, 6*6, 7*3 and 

3*7 four different kinds of kernel size represented in sequence. 

 

 

Figure 3-3 For each row, there are, 3*3, 6*6, 7*3 and 3*7, four different kinds of kernel size. 

For each column, there are stop, pointer, ok, wave and background five different 

kinds of input images. 
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3.2 Basic concept of two learning algorithm 

We will introduce two learning algorithm we need for feature extraction and hand gesture 

classification. We will describe the architecture of the learning algorithm at first. After that, we 

will explain the basic concept of the learning algorithm. 

3.2.1 Convolutional Neural Network 

Convolutional neural network is a learning procedure which can extract some regular 

pattern or specific feature in a large amount of image which called training data set. The main 

idea of convolutional neural network is shared weight and translation invariance. Traditional 

neural network connect all input nodes with all hidden nodes. Therefore, when input image has 

a corner at left top and a corner at right bottom will make large difference for the learning 

weight. Convolutional neural network pose the shared weight concept to learn some regular 

pattern in the image. When image has repeated feature, the model might learn only one feature 

to represent it. Furthermore, convolutional neural network add a pooling layer after a 

convolutional layer, which can let the model be confronted with translation invariance. The 

pooling layer calculate the mean of no overlap patch in the feature map which is represent the   

appearance probability of feature. In section 3.2.1.1, we will introduce the architecture of 

convolutional neural network and describe each layer in detail. We will also brief introduce the 

basic learning algorithm of convolutional neural network in section 3.2.1.2. 

3.2.1.1 Architecture of Convolutional Neural Network 

Convolutional neural network has four different type of layers: input layer, convolution 

layer, pooling layer and fully-connected layer. Figure 3.4 is an example of convolutional neural 

network learning architecture. The convolutional neural network tool we use is from matlab 

deep learning toolbox provided by Palm[1]. 
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Figure 3-4 Example of convolutional neural network architecture. 

Input layer 

For 2D image processing, the input layer might be a gray-level image which normalized 

from zero to one.  

Convolution Layer 

In convolution layer, we can assume the number of kernel we need to learn in the image 

training data set. Traditional neural network will fully connect all input layer with a hidden 

node. A hidden node which connect with all input nodes represent the image appearance. The 

larger value the hidden node is, the more similar between input image and weight appearance. 

Figure 3.5(a) shows an input image as an example. If we want the hidden node can represent 

the input image appearance, the weight appearance might be complex, which shows in Figure 

3.5(b). However, convolutional neural network use shared weight to represent regular pattern 

arise from input image. A hidden node only connect a local patch in the image and let the node 

connected weight, which called kernel, to shows the local feature learn from the input image. 

Using a feature map corresponding to a kernel to record the appearance of the local feature in 



 

16 

the whole image. Do the convolution function between input image patch and kernel, the larger 

the result value, the more similar between local patch and kernel appearance. Figure 3.2(c) 

shows an example of a specific kernel and its correspondence feature map. 

 

Figure 3-5 (a) An example of input image. 

             (b) Neural network : A hidden node with its fully-connected weight which 

                might learns from the input image data set. 

             (c) Convolutional neural network : A hidden node with its local-connected  

                weight which might learns from the input image data set. 

Furthermore, if a hidden node is fully-connected with the input image, the weight number 

which we need to learn might be larger and more complex than the local feature learned from 

convolutional neural network. Hence, convolutional neural network might save some 

computation because of learning local and regular features in input image data set. 

For the convolution layer, the feature map size will be (N-M+1) by (N-M+1), where the 

input image is N by N and the kernel size is M by M. 

Pooling layer 

After convolution layer, we will get a feature map corresponding to a specific kernel mask. 

A node in the feature map represent the proportion of a local patch is similar as the specific 

feature which the kernel shows. However, the adjacent nodes will corresponding to two overlap 

region. For different input image, even the local feature appeared at different nearby patch, we 

want to get the same feature map to against the translation of local feature. Hence, we cut the 
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feature map to some non-overlap patch and calculate the mean of a local patch in the feature 

map. Then a node in the pooling feature map will represent the proportion of the feature 

appeared in a larger patch. There is a simple example at Figure 3.6. Even though the input image 

has the same appearance with translation, we can consider them to be the same appearance. 

This is an advantage that neural network might not have. 

 

Figure 3-6 (a) An example of a specific kernel. 

             (b)&(c) Two different input image with same appearance but some local  

                    translation feature (as circled region).  

             (d)&(e) Two feature map corresponding to two input image and its pooling  

                    result. 

For the pooling layer, the feature map size will be down-sample from (N-M+1) by (N-

M+1) to ((N-M+1)/scaling factor) by ((N-M+1)/scaling factor). We usually choose the factor 

of (N-M+1) to get the down-sampled feature map with integer size. 

Fully-connected layer 

In the last layer, we will arrange all feature map to an one column feature. In addition, we 

might have a target layer to do the final classification. All nodes in the feature column will 

connect to all the target nodes, as Figure 3-4 shows. 
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3.2.1.2 Learning algorithm of Convolutional Neural Network 

Convolutional neural network use the same learning algorithm as traditional neural 

network, which is back-propagation algorithm. The main concept of back-propagation is 

minimize the error function of the training model. We can modify the weight in each layer to 

get lower and lower error score. Gradient descent is the optimization method we use in the 

learning algorithm. [14] might discuss all the derivation and implementation of convolutional 

neural network in detail. 

The error function of convolutional neural network is as equation (3-1). N means the total 

number of input image in the training data set. C means the output target has C classes. 𝑡𝑘
𝑛 is 

the target of kth image in nth class is 0 or 1. 𝑦𝑘
𝑛 is the calculation result of kth image in  nth 

class. Consider with respect to a single training data, the error function can be seen as equation 

(3-2). 

𝐸𝑟𝑟𝑜𝑟𝑁 =
1

2
∑ ∑ (𝑡𝑘

𝑛 − 𝑦𝑘
𝑛)2𝐶

𝑘=1
𝑁
𝑛=1 ,                   (3-1) 

𝐸𝑟𝑟𝑜𝑟𝑛 =
1

2
∑ (𝑡𝑘

𝑛 − 𝑦𝑘
𝑛)2𝐶

𝑘=1 ,                        (3-2) 

We have different function operator in different layer. Therefore, the parameter update in 

each layer might be difference. We will introduce them all in the following. 

Back-propagation in fully-connected layer 

We define the function operator in the last layer to be as equation (3-3). 𝑥𝑙 denotes the 

current layer l output, as last layer been layer L , input layer been layer 1. 𝑓(. ) is the activation 

function we choose. 𝑊𝑙 is the weight and 𝑏𝑙 is the bias in layer l. 

𝑥𝑙 = 𝑓(𝑎𝑙),   with 𝑎𝑙 = 𝑊𝑙𝑥𝑙−1 + 𝑏𝑙,                 (3-3) 

The gradient of current layer is back-propagated from next layer as traditional neural 

network.  
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𝜕𝐸

𝜕𝑊
=

𝜕𝐸

𝜕𝑎

𝜕𝑎

𝜕𝑊
= 𝑥𝑙−1(𝛿𝑙)𝑇 ,   𝑤𝑖𝑡ℎ   𝛿𝑙 = (𝑊𝑙+1)𝑇𝛿𝑙+1⨀𝑓′(𝑎𝑙),       (3-4) 

where ⨀ denotes element-wise multiplication operator. 

𝜕𝐸

𝜕𝑏
=

𝜕𝐸

𝜕𝑎

𝜕𝑎

𝜕𝑏
= 𝛿𝑙.                             (3-5) 

Back-propagation in pooling layer 

The pooling layer produce a down-sampled feature maps. The function operator in 

convolution layer is defined in equation (3-6).  

𝑥𝑗
𝑙 = 𝑓(𝑎𝑙) , 𝑤𝑖𝑡ℎ  𝑎𝑙 =  𝛽𝑗

𝑙 ∙ 𝑑𝑜𝑤𝑛(𝑥𝑖
𝑙−1) + 𝑏𝑗

𝑙 ,                  (3-6) 

where 𝑑𝑜𝑤𝑛(. ) represents a non-overlapped sub-sampling function. Each output map might 

have its own multiplicative biasβ and an additive bias b. 

We need to update both multiplicative biasβ and additive bias b in this layer. The gradient 

can be compute as fully-connected layer.  

𝜕𝐸

𝜕𝑏𝑗
= ∑ (𝛿𝑗

𝑙)𝑢𝑣 , 𝑤𝑖𝑡ℎ 𝛿𝑗
𝑙 = 𝑓′(𝑎𝑙)⨀(𝑘𝑗

𝑙+1 ∗ 𝛿𝑗
𝑙+1) 𝑢,𝑣             (3-7) 

𝜕𝐸

𝜕𝛽𝑗
=

𝜕𝐸

𝜕𝑎

𝜕𝑎

𝜕𝛽𝑗
= ∑ (𝛿𝑗

𝑙⨀𝑑𝑗
𝑙)𝑢𝑣 , 𝑤𝑖𝑡ℎ 𝑑𝑗

𝑙 = 𝑑𝑜𝑤𝑛(𝑥𝑖
𝑙−1) 𝑢,𝑣             (3-8) 

 

Back-propagation in convolution layer 

The output feature map will combine several feature maps. The function operator in 

convolution layer is defined as equation (3-9), where 𝑆𝑗 represents a subset of input maps, * 

denotes convolution operator. 

𝑥𝑗
𝑙 = 𝑓(𝑎𝑙), 𝑤𝑖𝑡ℎ  𝑎𝑙 = ∑ 𝑥𝑖

𝑙−1
𝑖∈𝑆𝑗

∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙                  (3-9) 

The gradient of current layer might be sum over the next layer’s gradient corresponding to 

units that connected to the node of interest in the current layer. The update function of kernel 

and corresponding bias describe in equation (3-10) and (3-11), where 𝑝𝑖
𝑙−1 is the patch in 
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previous layer which multiplied element-wise by 𝑘𝑖𝑗
𝑙  during convolution. 𝛽𝑗

𝑙+1 denotes the 

next pooling layer parameter. 𝑢𝑝(. ) denotes an up-sampling operation. 

𝜕𝐸

𝜕𝑘𝑖𝑗
𝑙 = ∑ (𝛿𝑗

𝑙)𝑢𝑣(𝑝𝑖
𝑙−1)𝑢𝑣 , 𝑤𝑖𝑡ℎ  𝛿𝑗

𝑙 = 𝛽𝑗
𝑙+1 (𝑓′(𝑎𝑙) ⊙ 𝑢𝑝(𝛿𝑗

𝑙+1))𝑢,𝑣         (3-10) 

𝜕𝐸

𝜕𝑏𝑗
= ∑ (𝛿𝑗

𝑙)𝑢𝑣𝑢,𝑣                                (3-11) 

3.2.2 Deep Neural Network 

The reason we introduce “deep” neural network, not traditional neural network, is the high 

complexity of training data set. While the object we want to distinguish being more variability, 

we need more hidden nodes and more layers to learn the model. However, traditional learning 

algorithm is not efficiency for deep neural network architecture. For example, when we use 

back-propagation algorithm to update our learning weight, we have the gradient from later layer 

propagate to previous layer. The gradient might be tiny as propagating to the front layer. This 

causes the weight update stagnant at local optima. Furthermore, the traditional learning 

algorithm require labels to calculate error function and get gradient of weight to update the 

model. The back-propagation algorithm find the relationship between input feature and output 

target instead of finding the internal structure in training data set. Deep neural network is an 

unsupervised learning method which learns the model without target. We can find the exist 

structure behind the input data set. 

Hinton introduced a new learning method to train the model layer-by-layer instead of 

learning the whole deep architecture once [5]. This algorithm has two stage : unsupervised pre-

training and supervised fine-tuning. At first, they take the whole deep architecture apart to train 

two layers as a Restricted Boltzmann Machine (RBM) which uses an unsupervised training 

algorithm. As the previous layer complete the pre-training stage, the output of previous layer 

will be the input of the next layer RBM training. Figure 3-7(a) shows the architecture of whole 
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deep neural network. Figure 3-7(b) shows the layer-wise pre-training architecture. After that, 

we can get the initial weight of every layer and do supervised fine-tuning to get the relationship 

between input image and output target by updating the weight slightly, shows in Figure 3-7(c). 

We will introduce the structure of Restricted Boltzmann Machine (RBM) which is suitable for 

binary visible and Gaussian Restricted Boltzmann Machine which is suitable for real-valued 

visible both in section 3.2.2.1. In section 3.2.2.2, we will describe the learning algorithm of pre-

training and fine-tuning in detail. 

 

Figure 3-7 (a) The whole architecture of deep neural network. 

      (b) Layer-wised pre-training architecture. 

    (c) Supervised fine-tuning architecture. 

3.2.2.1 Restricted Boltzmann Machine 

Restricted Boltzmann Machine is a two layer and undirected model without intra-layer 

connections. The bottom layer called visible layer is a set of binary units v ∈ {0,1} and the top 

layer called hidden layer is a set of binary units h ∈ {0,1}. We will use Gaussian Restricted 

Boltzmann Machine if the bottom layer is a set of real-valued units v ∈ [0,1] which we will 

describe later. The structure of RBM is shown in Figure 3-6(b) pink circled. 

RBM is an energy-based model, the energy of a pair of (v,h) is defined in equation (3-12), 

where b , c denotes the bias of the visible and hidden layers respectively and W represents the 
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weights connecting hidden and visible units. The probability distribution of the pair of (v,h) is 

defined in equation (3-13), where the constant Z is the normalization term. 

Energy(v, h) = −𝑏𝑇𝑣 − 𝑐𝑇ℎ − 𝑣𝑇𝑊ℎ                   (3-12) 

P(v, h) =
1

𝑍
(𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑣,ℎ))                      (3-13) 

Since there is no connection within hidden layer and within visible layer, and the hidden 

layer and visible layer are conditionally independent given one-another. Using these two 

property, we can get the conditional distribution for each layer as equation (3-14) and (3-15), 

where 𝑠𝑖𝑔𝑚(𝑥) =
1

(1+𝑒−𝑥)
 is a sigmoid function and M , N denotes the number units in visible 

layer and hidden layer Respectively. 

P(h|v) = ∏ 𝑃(ℎ𝑗 = 1|𝑣)𝑁
𝑗 , 𝑤𝑖𝑡ℎ 𝑃(ℎ𝑗 = 1|𝑣) = 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊𝑗𝑣)       (3-14) 

P(v|h) = ∏ (𝑣𝑖 = 1|ℎ)𝑀
𝑖 , 𝑤𝑖𝑡ℎ 𝑃(𝑣𝑖 = 1|ℎ) = 𝑠𝑖𝑔𝑚(𝑏𝑖 + 𝑊𝑖ℎ)       (3-15) 

As mentioned previously, we use Gaussian Restricted Boltzmann Machine for real-valued 

visible. The energy function and the conditional distribution is defined as equation (3-16) to 

equation (3-18). 

Energy(v, h) = − ∑
(𝑣𝑖−𝑏𝑖)2

2𝜎𝑖
2

𝑀
𝑖 − ∑ 𝑐𝑗ℎ𝑗

𝑁
𝑗 − ∑ ∑

𝑣𝑖

𝜎𝑖
𝑊𝑖𝑗ℎ𝑗

𝑁
𝑗

𝑀
𝑖             (3-16) 

P(h|v) = ∏ (ℎ𝑗 = 1|𝑣)𝑀
𝑗 , 𝑤𝑖𝑡ℎ 𝑃(ℎ𝑗 = 1|𝑣) = 𝑠𝑖𝑔𝑚(𝑐𝑗 + ∑

𝑣𝑖

𝜎𝑖
𝑊𝑖𝑗

𝑁
𝑖 )       (3-17) 

P(v|h) = ∏ 𝑃(𝑣𝑗 = 1|ℎ)𝑁
𝑖 , 𝑤𝑖𝑡ℎ 𝑃(𝑣𝑗 = 1|ℎ) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑣𝑖|𝑏𝑖 + 𝜎𝑖 ∑ ℎ𝑗𝑊𝑖𝑗

𝑀
𝑗 ) (3-18) 

3.2.2.2 Learning algorithm of Deep Neural Network 

We have two stage for the learning algorithm, unsupervised pre-training and supervised 

fine-tuning. The first stage might get the relationship between the input features and get more 

efficient initial weight for learning an optimal model after the second stage. 
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Unsupervised pre-training 

We want to minimize the energy function of the RBM, on the other hand, we want to 

maximize the log-likelihood given a training data v with model parameters θ. By using gradient 

ascent method, we can get the learning rule for the model parameters. The first term of equation 

(3-20) denotes the data-term which takes expectation over the training data set empirical 

distribution P(h|v). The second term denotes the model-term which takes expectation over the 

model distribution P(v,h). 

lnP(v|θ) = ln
1

𝑍
∑ 𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑣,ℎ)

ℎ = ln ∑ 𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑣,ℎ)
ℎ − ln ∑ 𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑣,ℎ)

𝑣,ℎ      (3-19) 

𝜕

𝜕𝜃
lnP(v|θ) = − ∑ 𝑃(ℎ|𝑣)

𝜕

𝜕𝜃
𝐸𝑛𝑒𝑟𝑔𝑦(𝑣, ℎ)ℎ + ∑ 𝑃(ℎ, 𝑣)

𝜕

𝜕𝜃
𝐸𝑛𝑒𝑟𝑔𝑦(𝑣, ℎ)𝑣,ℎ      (3-20) 

∆W = ϵ(𝐸𝑑𝑎𝑡𝑎[vℎ𝑇] − 𝐸𝑚𝑜𝑑𝑒𝑙[vℎ𝑇]) , 𝑤𝑖𝑡ℎ 𝜖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒      (3-21) 

∆b = ϵ(𝐸𝑑𝑎𝑡𝑎[v] − 𝐸𝑚𝑜𝑑𝑒𝑙[v]), 𝑤𝑖𝑡ℎ 𝜖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒         (3-22) 

∆c = ϵ(𝐸𝑑𝑎𝑡𝑎[h] − 𝐸𝑚𝑜𝑑𝑒𝑙[h]), 𝑤𝑖𝑡ℎ 𝜖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒         (3-23) 

We use Gibbs sampling to approximate the model-term because of its difficulty. According 

to the Markov chain Monte Carlo (MCMC) algorithm, we can sample the hidden nodes by the 

visible nodes then sample the reconstruct visible nodes by the sampled hidden nodes. We will 

do this procedure until the Markov chain converge in order to get the model-term. The 

architecture of MCMC with Gibbs sampling is shown in Figure 3-8(a). However, it is not 

efficient to run a MCMC to converge in an update step. In [5], Hinton propose a fast algorithm 

which is called Contrastive Divergence. This method shows that the effect of sampling until the 

Markov chain converge and sampling once might get close result. Therefore, the update 

function can be approximated as equation (3-24) to equation (3-26). Figure 3-8(b) shows the 

architecture of Contrastive Divergence algorithm. 

∆W = ϵ(𝐸𝑑𝑎𝑡𝑎[vℎ𝑇] − 𝐸𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡[vℎ𝑇]) , 𝑤𝑖𝑡ℎ 𝜖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒      (3-21) 

∆b = ϵ(𝐸𝑑𝑎𝑡𝑎[v] − 𝐸𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡[v]), 𝑤𝑖𝑡ℎ 𝜖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒         (3-22) 
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∆c = ϵ(𝐸𝑑𝑎𝑡𝑎[h] − 𝐸𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡[h]), 𝑤𝑖𝑡ℎ 𝜖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒         (3-23) 

 

Figure 3-8 (a) Architecture of MCMC by using Gibbs sampling. 

             (b) Architecture of Contrastive Divergence algorithm 

We will train the RBM layer-wise staring from visible layer and hidden layer one. When 

we get the weight W1 between visible layer v and hidden layer one h1, we treat the real-valued 

probabilities of the conditional distribution E[P(ℎ1|v; 𝑊1)] as the visible units in the second 

RBM and so on. After we get all trained weight between layers, we can do the next stage, 

supervised fine-tuning. 

Supervised fine-tuning 

We learned the internal structure of the training data set in the previous stage. Next, we 

want to learn the relationship between input training data set and the output targets for 

classifying the different class in the training data set. We use the back-propagation algorithm to 

learn the overall optimization solution.  

3.3 Applicable to Hand Gesture Recognition 

As we mentioned before, the hand has extremely distinct shape and appearance from 

different gestures. Using traditional convolutional neural network or traditional deep neural 

network is not enough. We combine these two learning algorithms and modify them to be better 

than before. We will describe our modification in Section 3.3.1. In Section 3.3.2, we will 

introduce the way we combine these two learning algorithms to do the hand gesture recognition. 
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In order to improve the accuracy in the video testing, we add some tracking technique described 

in Section 3.3.3. 

3.3.1 Feature Extraction by Convolutional Neural Network 

We want to use convolutional neural network to learn the feature from training data set 

directly. Traditional convolutional neural network have the features for single kernel size and it 

is restricted to be square and the down-sampling scaling factor for feature map’s width and 

height are limited to be the same. As we observe the training data set of the hand gestures, we 

find that hands can be composed of fingers and a palm. Fingers are different orientation, 

different length, long and narrow strip. Palm is a larger rectangle which width and height ratio 

is extremely different from the fingers. Furthermore, the four hand gestures we need to classify 

are composed of different number of fingers and the open or close palm. Therefore, the features 

we want to learn in the hand gesture training data set might be modify to some long and narrow 

strips and some rectangles close to square. In order to cope with the different kernel size for 

width and height, we also modify the down-sampling scaling factor could be distinct for the 

width and height. Also, we want to represent the hand gestures by more different kernel size to 

get a more robust feature space of the hand gestures. Therefore, we need some algorithm to 

choose better features of different kernel size and combine different kernel size feature to find 

more robust feature space for hand gestures.  

The convolutional neural network architecture we attempt is shown in Figure 3-4. We set 

one convolution layer and one pooling layer to get the local features of the hand gesture images. 

Also, we don’t use the last full-connected layer for the hand gesture classification. We only 

extract the feature vector from the output of the pooling layer. The pooling scaling factor might 

be cope with the kernel size we choose at the convolution layer. We will have a summary of the 

choice for kernel size and corresponding pooling scaling factor in the following section. 
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3.3.1.1 Non-square kernel size and pooling scaling factor 

The important issue at convolutional neural network learning is the choice of kernel size. 

If the kernel size might be square, a larger square or a smaller square is not the best choice. As 

using the smaller one, it will turn on some position of the feature map because of the clutter 

background, which is shown in Figure 3-9 (a). The blue rectangles are the clutter background 

features we don’t need and red rectangles are the hand features we want. In Figure 3-9(b), we 

can discover that a larger block might get a complex feature to cope with the multiple fingers. 

However, if we have a complex feature, it might not represent the hand gestures good for the 

different hand gestures. Different number of fingers in the patch and the close or open palm 

might need different features to represent. These will reduce the effect we want to have in the 

learning feature stage of convolutional neural network. We want to learn the local features of 

the hand gestures not the global features in the whole image. For a specific long and narrow 

block, we can represent the fingers more efficient, as shown in Figure 3-9(c).  

 

Figure 3-9 (a) The kernel of convolutional neural network is a small square. 

                   (b) The kernel of convolutional neural network is a large square. 

                   (c) The kernel of convolutional neural network is a long and narrow   

                      stipe. 

For the feature of the palm and the fist, we use some small block to get the features of the 

edges and corners. Because of the complexity of hand shape variance, we needs not only long 

and narrow strip but also different kernel size combination to get more robust feature space. As 
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we have different viewpoints of the hand gestures, we not only need long and narrow rectangles 

but also need short and wide rectangles for different orientation fingers. However, convolutional 

neural network could not tolerate the different kernel size learning at once, we need to train the 

different kernel size feature one by one. Figure 3-10 shows four different kernel size features 

for the hand gesture training data set. The kernel size are 3*3, 6*6, 7*3, 3*7 pixel by pixel in 

Figure 3-10(a) to (d). Each row has sixteen features learned by the convolutional neural network. 

 

Figure 3-10 (a) The convolutional neural network feature learned by 3*3 kernel size. 

(b) The convolutional neural network feature learned by 6*6 kernel size. 

(c) The convolutional neural network feature learned by 7*3 kernel size. 

(d) The convolutional neural network feature learned by 3*7 kernel size. 

After the convolution layer, we have the pooling layer to down-sample the feature map we 

get from previous layer. The pooling concept might let the convolutional neural network to be 

translation invariance as we mention in Section 3.2.1. We calculate the mean of a local patch of 

the feature map to indicate the feature is existence or not at a small region in the original input 

image as shown in Figure 3-4. The pooling scaling factor is limited as the same for width and 

height in the conventional convolutional neural network. We modify it to coordinate the long 

and narrow rectangles and the short and wide rectangles of kernel we learned for the hand 

gesture. Therefore, we can down-sample for different scaling factor for the feature map width 

and height. Also, we choose a large scaling factor to let the feature map be more translation 
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invariance. The corresponding scaling factor for four different kernel size is shown in Table 3-

1. The unit for the kernel size and scaling factor are pixels. 

 1 2 3 4 

 Width Height Width Height Width Height Width Height 

Kernel Size 3 3 6 6 7 3 3 7 

Scaling Factor 6 6 5 5 4 6 6 4 

Table 3-1 Different kernel size correspond to different pooling scaling factor. 

The feature maps of different kernel size we get from convolutional neural network after 

pooling layer are shown in Figure 3-14(a) to (d). We random choose some example from 

training data set to get the feature maps for the four different gestures, each gestures has five 

example images. The top to down blocks are the stop gesture, pointer gesture, ok gesture and 

wave gesture. We can figure out that a long and narrow kernel size, such as 3*7 and 7*3 might 

be good at fingers feature, as the red circled region in Figure 3-11 (c) and (d). The small square 

kernel size, 3*3 and 6*6, might get the rough contour of the hand gesture, as the red circled 

region in Figure 3-11(a) and (b). 



 

29 

 

 



 

30 

 

 



 

31 

Figure 3-11 (a) The feature map of kernel 3*3, red circled region show the rough contour of  

hand gestures. 

(b) The feature map of kernel 6*6, red circled region show the rough contour of 

hand gestures. 

(c) The feature map of kernel 7*3, red circled region show the finger feature. 

(d) The feature map of kernel 3*7, red circled region show the finger feature. 

3.3.1.2 Combination of different kernel size feature 

Because of the complex shape and extremely variant of appearance for the hand gestures, 

the features might be different size, such as small square, large square and rectangles. Figure 3-

10 shows some example for different kernel size for the hand gestures. Therefore, we want to 

use different kernel size to express the hand gesture features as shown in Figure 3-12. For 

vertical fingers, horizontal fingers, fist and palm, we need different kernel size to represent its 

local feature. We design four different kernel size, 3*3, 6*6, 3*7 and 7*3. We will train sixteen 

kernels for a specific kernel size, then choose four of them. The reason why we need to train 

sixteen kernels then choose four of them rather than only train four kernels for one kernel size 

is the overall kernel number. If we only set four kernels for the convolutional neural network 

model, the model might learn more complex feature than we set sixteen kernels for it. It expect 

use four features to represent the whole training data set. However, we have sixteen feature to 

represent the training data set not four. The features we want to learn is the simple, local feature, 

not the complex and global feature. Figure 3-13 shows the different between four features and 

sixteen features for a convolutional neural network model. Figure 3-13(a) shows the features 

we learned for sixteen kernels and choose four of them and the corresponding feature maps. 

Figure 3-13(b) shows the features we learned for only four kernels and the corresponding 

feature maps. We can figure out that for four specific kernel, we get a more complicated feature 

maps. We couldn’t easily determine the gestures for ok and wave as shown in red rectangles of 

Figure 3-13(b). 
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Figure 3-12 The different kernel size we need for hand gesture images. 

 

Figure 3-13 (a) Four of sixteen kernels we choose and corresponding feature maps for stop, 

pointer, ok and wave gestures. 

(b) Four specific kernels and corresponding feature maps for stop, pointer, ok 

and wave gestures. 
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As record in Table 3-1, we have four different convolutional neural network for four 

different kernel size. For kernel 3*3, the feature map at the convolution layer is 48*48. After 

the pooling layer, the down-sampled feature map is 8*8 because of the scaling factor is 6*6. 

For kernel 6*6, the feature map at the convolution layer is 45*45. After the pooling layer, the 

down-sampled feature map is 9*9 because of the scaling factor is 5*5. For kernel 7*3, the 

feature map at the convolution layer is 44*48. After the pooling layer, the down-sampled feature 

map is 11*8 because of the scaling factor is 4*6. For kernel 3*7, the feature map at the 

convolution layer is 48*44. After the pooling layer, the down-sampled feature map is 8*11 

because of the scaling factor is 6*4. We transform the feature map from two dimension to one 

dimension vector and concatenate four different kernel size to get our overall feature vector. 

The feature vector dimension is 1284. (((8*8)*4) + ((9*9)*4) + ((11*8)*4) + ((8*11)*4) = 1284) 

As we have sixteen features for a specific kernel size and four different kernel size, we 

need some algorithm to choose the best combination for different kernel size. We take an 

intuitive idea to solve it. The criteria we choose are the more far from different gestures and 

more close for same gestures in the feature space. The concept is shown in Figure 3-14. Figure 

3-14(a) shows the feature space we prefer to and Figure 3-14(b) shows the feature space which 

the gestures is not easy to separate. We random sample four of sixteen features for a specific 

kernel size and combine four different kernel size to get a feature vector with different kernel 

size. Then calculate the difference map in different gestures of the specific kernel. Also, we 

calculate the difference map in same gesture of the specific kernel. After we get the difference 

map, we calculate the variance of the map and compute the ratio of the variance for same 

gestures and the variance for different gestures as equation (3-24). We choose the smallest value 

of the ratio to get a feature space with large distance from the different gestures and close in the 

same gestures. There are some examples in Figure 3-15. 

Ratio =  
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑝 𝑜𝑓 𝑠𝑎𝑚𝑒 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑝 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠)
            (3-24) 
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Figure 3-14 (a) The schematic diagram of feature space which is easy to separate. 

             (b) The schematic diagram of feature space which is not easy to separate. 

             

 

Figure 3-15 The feature vectors combining different kernel size for the hand gestures. 

3.3.2 Deep Convolutional Neural Network Classification 

After we get the transformation between RGB color space and hand gesture feature space, 

we can transform all image training data set from convolutional neural network to our feature 

training data set for deep neural network. Figure 3-11 shows all sixteen kernels we learned from 

convolutional neural network by a specific kernel size. We choose four of them by the algorithm 
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as mentioned before. Our training data set for deep neural network is shown in Figure 3-3. The 

architecture of our deep neural network model is shown in Figure 3-17(a). Our feature vector 

combines four different kernel size and each kernel size has four features. The input feature 

dimension is 1284 and output target is 5(four gestures and background). The model with layers 

of size 1284-1024-1024-1600-5. Also, we apply a sigmoid function after the hidden units and 

a softmax function after the target units as the activation function, as shown in Figure 3-17(b). 

Equation (3-25) and (3-26) are the formula of sigmoid function and softmax function 

respectively. 

sigmoid(x) =
1

1+𝑒𝑥𝑝−𝑥                            (3-25) 

softmax(𝒙)𝑖 =
𝑒𝑥𝑝𝑥𝑖

∑ 𝑒𝑥𝑝𝑥𝑘𝐾
𝑘=1

, for K is the dimension of 𝒙              (3-26) 

 

Figure 3-16 (a) Our deep neural network model architecture. 

              (b) The example of the activation function after the hidden node. 

The deep neural network training procedure is mentioned as Section 3.2.2. We have two 

stages, that is, unsupervised pre-training stage and supervised fine-tuning. We trained the neural 

network model layer-wise by using Restricted Boltzmann Machine and adopt the contrastive 
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divergence algorithm to update the weight between two layers. The basic concept for Restricted 

Boltzmann Machine is to find the hidden nodes which can represent the visible nodes better. As 

we use the hidden nodes to re-sample the visible nodes, we can figure out whether these hidden 

nodes could represent these visible nodes or not by calculating the different between visible 

nodes and the re-sampling visible nodes. After several times updating, we can get the hidden 

nodes which can represent our visible nodes. We might get some combination for the input 

features, on the other words, more global features be composed of the local features in the 

visible layer. As we trained the first two layers of the model, we might use visible nodes and 

the trained weight between visible nodes and hidden one nodes to get the output of hidden layer 

one nodes. Then we do the second two layers training by setting the hidden one nodes as the 

visible nodes, and so on. Finally, we have trained all the weights between any two layers. After 

that, we stack the two layer-wise structure to be a deep neural network architecture. At the 

supervised fine-tuning stage, we use the back-propagation algorithm to minimize the error 

function by updating the weight we get from previous stage. We adjusted the weight slightly, to 

get the best solution of this neural network model. At last, we could have a classifier for hand 

gesture recognition by using the deep neural network model. 

3.3.3 Tracking Technique 

The purpose of an object tracker is to find the object position from previous frame to next 

frame. The tracking method might get the trajectory of the object in every frame which we are 

interested. In [15], according to different object representation, the tracking method can be 

categorized into three types, point tracking, kernel tracking and silhouette tracking. Their 

common goal is finding the most possible position of the object in next frame from the 

information of the previous frame. The first one might use the previous frames position and 

motion to match the point which represent the interested object from previous frame to next 

frame. The second one adds some patch similarity to match the object more reliable. The third 
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one might find the optimum solution of the silhouette or contour matching. Figure 3-17(a) to 

(c) briefly illustrate the three tracking method. The dot arrow denote the previous motion 

estimation and the dash arrows denote the predict motion for the next frame. The solid nodes 

denote the previous hand gesture position and the light-colored nodes denote the predict hand 

position. Because of the complex changes for the hand shape from different gestures, there isn’t 

a robust tracking method for the hand gestures. Therefore, we only use the basic concept of the 

tracking technique in our hand gesture recognition algorithm. 

 

Figure 3-17 (a) The example of point tracking method. 

 (b) The example of kernel tracking method. 

    (c) The example of silhouette tracking method. 

The idea of our tracking algorithm are the constraints of the searching region of our 

detection algorithm and using a simple two dimension correlation of two patches to find the 

similarity of them. Because of the video will have about thirty frames in a second, the hand 

position won’t be distance from two successive frame. Also, the motion of previous two frame 

and next two frame won’t be a lot of difference. We restrict the searching region of our detection 

by using convolutional neural network and deep neural network. The searching region will 

adjusted according to the motion estimation. For example, as we estimate the object move from 

the bottom left corner to the top right corner, the range we search at the top right corner will 

larger than the bottom left corner to cope with the object trajectory. We estimate the object 

motion by assuming it will be the same as previous motion. The previous motion could get from 
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our hand gesture recognition result for the previous frames. Figure 3-18 shows an example of 

searching region adjustment and the motion estimation for our proposed method. In Figure 3-

18, the blue dash block is the adjustment of searching region for the detection algorithm and 

the green arrow is our motion estimation result. For the similarity issue, we use the two 

dimension correlation function for the target patch and a testing patch. The target patch is the 

hand gesture we find in the previous frame whether getting by detection or by tracking. The 

testing patches are the adjacent region of the target patch. The two dimension correlation 

function is described in equation (3-27),  

𝑐𝑜𝑟𝑟2 =
∑ ∑ (𝐴𝑖𝑗−𝐴̅)(𝐵𝑖𝑗−𝐵̅)𝑗𝑖

√∑ ∑ (𝐴𝑖𝑗−𝐴̅𝑗𝑖 )2√∑ ∑ (𝐵𝑖𝑗−𝐵̅𝑗𝑖 )2
,                       (3-27) 

where A denotes the target patch and B denotes the testing patch. Aij
 is the pixel at the i row and 

j column in the target patch and same as Bij. 𝐴̅ and 𝐵̅ are the mean of the target patch and 

testing patch respectively. We have an example target patch and some testing patches to shown 

the correlation between two patches in Figure 3-18. 

 

Figure 3-18 An example for the detection region adjustment and the motion estimation result. 
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Figure 3-19 The example of target patch and three testing patch with its two dimension 

correlation for the target patch. 

In order to reinforce the hand position constraint, we use two maps, position map and 

motion map to weighted the result of detection and tracking. The position map is obtained from 

the previous hand gesture recognition result. We use a two dimension Gaussian distribution to 

model the position map for the previous hand gesture recognition is one and drop to the 

surrounding. Also, the motion map is obtained from the previous hand gesture recognition result 

add the displacement we predict by motion estimation. The previous position add the 

displacement is set to one and drop to the surrounding as a two dimension Gaussian distribution. 

Figure 3-20 shows an example of the position map and motion map. The blue point and green 

point in the position map are the previous hand gesture recognition result. The red arrows in the 

motion map are the motion estimation result for the previous frame. 
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Figure 3-20 The examples for the position map and the motion map. 

3.4 Refinement 

The last stage of our hand gesture recognition algorithm is refinement. We have to choose 

the result from the detection algorithm and the tracking algorithm. The first refinement step is 

the weighted score for both detection and tracking result. The weighted are the position map 

and the motion map. The closer the local patch and the previous hand gesture recognition result 

the higher weighted it has. After we get the weighted score for both detection and tracking result, 

we will find the highest two scores to represent the right hand result and left hand result. Figure 

3-21 is the flowchart of the weighted score for detection and tracking result. This step is 

established under the constraint of the hand position won’t extremely change in the successive 

frames. 
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Figure 3-21 (a) The flowchart for the weight score of detection result. 

(b) The flowchart for the weight score of tracking result. 

Secondly, we use the temporal information to improve the stability of our hand gesture 

recognition results. The idea of our proposed refinement for temporal domain is the records of  

the temporal gesture recognition result and calculate for the most probable gesture. We record 
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seven frames to average the score for four different gestures. The closer to the frame we want 

to figure out the hand gestures in the temporal domain, the higher weighted we multiply to the 

score of detection or tracking result we choose. Figure 3-22 is an example for the temporal 

information refinement in our proposed method. The rows under the arrow is the result of our 

choice for the detection and tracking result in the temporal domain from ten frames before the 

frame we are processing. The square above the arrow is the refinement result in the frame we 

are processing. We can see that even the result in the processing from is distinct from previous 

few frames, we can use the temporal information to correct the result. This information is under 

the limitation of the hand shape would not dramatic change. 

 

Figure 3-22 The example of the temporal information refinement of our proposed method. 
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Chapter 4. Experimental Results 

We have several technique combine in our proposed algorithm. We will compare the 

detection and recognition accuracy for traditional convolutional neural network, traditional 

deep neural network and our proposed deep traditional neural network. As we combine the 

detection and tracking algorithm, we can save times for computation. We will compare the time 

savings for detection without tracking and detection with tracking. Also, detection accuracy 

might be improve when combining the tracking technique, we will have some example frames 

for the improvement. Furthermore, we will do the same tracking technique for both traditional 

convolutional neural network and traditional deep neural network and compare the frames of 

three methods. We have two videos for testing. The first video is a person stands in front of the 

camera and the background is clutter but static. The second video is a person sits in front of the 

camera and the background is clutter but having some moving people and hands.   

4.1 Detection accuracy 

The detection accuracy is defined as whether the hand gesture recognition is the same as 

the target or not. We test both training data set and testing data set. The training data set has 

6400 images for each gestures and 25600 images for the background and the testing data set 

has about 1000 images for each gestures and 6400 images for the background. We trained the 

traditional convolutional neural network model, traditional deep neural network model and our 

proposed deep convolutional neural network model for the same training data set. Then test 

these three models for the same testing data set. We calculate the accuracy for different gestures 

and for background independent. Table 4-1 shows the accuracy rate for three different training 

models when testing the training data set. Table 4-2 shows the accuracy rate when testing the 

testing data set. We can see that the accuracy might improve as we combine the convolutional 

neural network and deep neural network and using different kernel size for feature learning. 
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 0 1 3 5 background total 

DCNN 99.92 99.75 99.87 99.94 100.0 99.94 

CNN 96.33 64.73 91.23 91.03 98.74 92.29 

DNN 98.91 98.23 99.52 98.70 99.83 99.36 

Table 4-1 Accuracy rate for training data set. 

 0 1 3 5 background total 

DCNN 98.89 96.07 96.17 98.61 99.55 98.77 

CNN 94.07 55.58 88.40 91.28 98.42 92.12 

DNN 94.81 92.98 94.20 94.34 98.14 96.63 

Table 4-2 Accuracy rate for testing data set. 

Furthermore, we test the hand gesture recognition model for the real video frames. We 

shows the most probable two results for the hand gesture recognition in a frame in order to 

represent the right hand and the left hand. Figure 4-1(a) shows some frames in the first video 

we test for our proposed method, traditional convolutional neural network and traditional deep 

neural network. Figure 4-2(b) shows the test result for video 2. The square means the hand 

position we find and the red square denotes the stop gesture, the green square denotes the pointer 

gesture, the blue square denotes the ok gesture and the pink square denotes the wave gesture. 

Two videos are from different view-point and different background. We can see that our 

proposed deep convolutional neural network can detect the hand and recognize the gestures 

best. The row is the same frame for our proposed method, traditional convolutional neural 

network and traditional deep neural network respectively. 
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Figure 4-1 (a) Example frames for our proposed method, convolutional neural network  

and deep neural network in a row of video 1. 

(b) Example frames for our proposed method, convolutional neural network  

and deep neural network in a row of video 2. 

4.2 Combine Tracking and Detection 

As the detection test for all the patch in a frame is not efficient and the clutter background 

might influence the hand gesture recognition result, we use the tracking technique to save time 

and improve the accuracy. Table 4-3 shows the computation time for our proposed deep 

convolutional neural network (DCNN), traditional convolutional neural network (CNN) and 

traditional deep neural network (DNN) for detection only and detection combine tracking 

technique. We can see that adding tracking technique could reduce the computing time to about 

1 second per frame. 
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 Detection Only Detection & Tracking 

DCNN 6.12 sec/frame 1.09 sec/frame 

CNN 4.30 sec/frame 0.85 sec/frame 

DNN 2.16 sec/frame 0.88 sec/frame 

Table 4-3 The computing time for detection only and detection combine tracking. 

We also have some example frames to compare the hand gesture recognition result for 

using tracking technique or not, shows in Figure 4-2(a) and Figure 4-2(b). The left column is 

the result of detection algorithm and the right column is the detection combine tracking 

algorithm. We calculate the frame accuracy rate for both detection algorithm and detection 

combine tracking algorithm as shown in Table 4-4 and Table 4-5. We can see that combining 

detection and tracking not only reduce the computing time but also improve the frame accuracy. 

The hand detection accuracy denotes that the hand position is correct whether the gesture 

recognition is correct or not. The gesture recognition accuracy denotes that based on the hand 

position is correct, we could recognize the gesture. The hand gesture recognition accuracy 

denotes that we have both correct hand position and gesture recognition. 

 
Hand detection 

accuracy 

Gesture recognition 

accuracy 

Hand gesture 

recognition accuracy 

 Left Right Left Right Left Right 

Detection Only 69.35 % 79.84 % 92.64 % 49.83 % 64.25 % 39.78 % 

Detection 

&Tracking 
97.85 % 93.55 % 76.10 %  62.64 % 74.46 % 58.60 % 

Table 4-4 The hand gesture recognition accuracy for detection only and detection combine 

tracking of video 1. 
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Hand detection 

accuracy 

Gesture recognition 

accuracy 

Hand gesture 

recognition accuracy 

 Left Right Left Right Left Right 

Detection Only 82.68 % 65.09% 54.60 % 76.21 % 45.14 % 49.61 % 

Detection 

&Tracking 
94.75 % 95.54 % 56.79 % 65.38 % 53.81 % 62.47 % 

Table 4-5 The hand gesture recognition accuracy for detection only and detection combine 

tracking of video 2. 
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Figure 4-2 (a) Example frames for detection only algorithm and detection combine 

tracking algorithm in a row of video 1. 

(b) Example frames for detection only algorithm and detection combine 

tracking algorithm in a row of video 2. 

4.3 Video comparison 

The last comparison is using the detection and tracking algorithm and instead of our 

proposed deep convolutional neural network algorithm, we use traditional convolutional neural 

network and traditional deep neural network to combine with our tracking technique. We 

calculate the frame accuracy for hand detection, gesture recognition and hand gesture 
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recognition as the previous section. The accuracy rate shows in Table 4-6 and Table 4-7. We 

also have some example frames for both video and for these three algorithms as shown in Figure 

4-3(a) and Figure 4-3(b). The figure shows the same frame for our proposed method, traditional 

convolutional neural network algorithm and traditional deep neural network algorithm in a row 

respectively. We can see that the proposed deep convolutional neural network (DCNN) could 

detect the hand position best and almost recognize the hand gestures correct than two other 

method which is the traditional convolutional neural network (CNN) and traditional deep neural 

network (DNN). 

 
Hand detection 

accuracy 

Gesture recognition 

accuracy 

Hand gesture 

recognition accuracy 

 Left Right Left Right Left Right 

DCNN 97.85 % 93.55 %  76.10 %  62.64 % 74.46 %  58.60 %  

CNN 87.37 % 91.12 % 62.15 % 55.75 % 54.30 % 50.80 % 

DNN 87.63 % 79.57 % 60.12 % 33.45 % 52.69 % 26.61 % 

Table 4-6 The hand gesture recognition accuracy for our proposed deep convolutional neural  

network, traditional convolutional neural network and traditional deep neural 

network of video 1. 

 
Hand detection 

accuracy 

Gesture recognition 

accuracy 

Hand gesture 

recognition accuracy 

 Left Right Left Right Left Right 

DCNN 94.75 % 95.54 % 56.79 % 65.38 % 53.81 % 62.47 % 

CNN 81.63 % 94.23 % 53.70 % 70.19 % 43.83 % 66.14 % 

DNN 83.46 % 92.65 % 38.99 % 63.46 % 32.55 % 58.79 % 

Table 4-7 The hand gesture recognition accuracy for our proposed deep convolutional neural  

network, traditional convolutional neural network and traditional deep neural 

network of video 2. 
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Figure 4-3 (a) Example frames for our proposed deep convolutional neural network, 

traditional convolutional neural network and traditional deep neural network 

combining our tracking technique in a row of video 1. 

(b) Example frames for our proposed deep convolutional neural network, 

traditional convolutional neural network and traditional deep neural network 

combining our tracking technique in a row of video 2. 
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Chapter 5. Conclusion 

We proposed a hand gesture recognition algorithm which could be used in the human-

computer interface. We use some intuitive gestures to convey the user’s thought and interact 

with the computer. We defined more than two gestures to recognize and expect that the interface 

won’t be limited for a specific viewpoint, user, camera and background. We collect the hand 

images from different users, viewpoints, camera and arbitrary background. We try to use the 

convolutional neural network for feature extraction. In order to cope with the complicated hand 

gestures, we modify the traditional convolutional neural network and combine different kernel 

size convolutional neural network model to do the feature extraction.  After that, we use the 

deep neural network to classify the gestures in the feature space. We use the unsupervised pre-

training and supervised fine-tuning to fine the combination of local feature and to find the 

relationship between the features and the target gestures. Also, we add some tracking technique 

to reduce the computing time and to improve the hand gesture recognition accuracy. Therefore, 

we could detect the hand position and recognize the hand gesture in any video we want to 

process. 
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