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Abstract

Online mining of frequent itemsets over a stream sliding window is one of the most important problems in stream data mining with
broad applications. It is also a difficult issue since the streaming data possess some challenging characteristics, such as unknown or
unbound size, possibly a very fast arrival rate, inability to backtrack over previously arrived transactions, and a lack of system control
over the order in which the data arrive. In this paper, we propose an effective bit-sequence based, one-pass algorithm, called MFI-Trans-
SW (Mining Frequent Itemsets within a Transaction-sensitive Sliding Window), to mine the set of frequent itemsets from data streams
within a transaction-sensitive sliding window which consists of a fixed number of transactions. The proposed MFI-TransSW algorithm
consists of three phases: window initialization, window sliding and pattern generation. First, every item of each transaction is encoded in
an effective bit-sequence representation in the window initialization phase. The proposed bit-sequence representation of item is used to
reduce the time and memory needed to slide the windows in the following phases. Second, MFI-TransSW uses the left bit-shift technique
to slide the windows efficiently in the window sliding phase. Finally, the complete set of frequent itemsets within the current sliding win-
dow is generated by a level-wise method in the pattern generation phase. Experimental studies show that the proposed algorithm not only
attain highly accurate mining results, but also run significant faster and consume less memory than do existing algorithms for mining
frequent itemsets over data streams with a sliding window. Furthermore, based on the MFI-TransSW framework, an extended sin-
gle-pass algorithm, called MFI-TimeSW (Mining Frequent Itemsets within a Time-sensitive Sliding Window) is presented to mine the
set of frequent itemsets efficiently over time-sensitive sliding windows.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mining data streams is one of the most challenging
problems in data mining. Many applications generate large
amount of data streams in real time, such as sensor data
generated from sensor networks, online transaction flows
in retail chains, Web record and click-streams in Web
applications, call records in telecommunications, and per-
formance measurement in network monitoring and traffic
management. Data streams are continuous, unbounded,
usually come with high speed and have a data distribution
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that often changes with time. Hence, it is also called
streaming data.

Due to the characteristics of data streams, there are
some inherent challenges for mining streaming data (Bab-
cock, Babu, Datar, Motwani, & Widom, 2002; Golab &
Özsu, 2003; Jiang & Gruenwald, 2006). First, each data ele-
ment of stream should be examined at most once. Second,
the memory usage in the process of mining data streams
should be bounded even though new data elements are con-
tinuously generated from the streams. Third, each element
in the stream should be processed as fast as possible.
Fourth, the analytical outputs of the stream should be
instantly available when the user requested. Finally, the
errors of outputs should be constricted as small as possible.
Based on the above issues, a one scan of streaming data
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and a proper small and compact data structure of the
stream data mining techniques are necessary. Hence, previ-
ous studies of multiple-pass algorithms for mining static
datasets are not feasible for mining data streams.

Recently, some research results of stream data mining
have been studied for modeling and computing data
streams (Henzinger, Raghavan, & Rajagopalan, 1998),
monitoring statistics over streams (Datar, Ginois, Indyk,
& Motwani, 2002), and continuous queries over data
streams (Babu & Widom, 2001), multidimensional data
analysis (Chen, Dong, Han, Wah, & Wang, 2002), classifi-
cation (Domingos & Hulten, 2000), clustering (Aggarwal,
Han, Wang, & Yu, 2003; Bandyopadhyay et al., 2006), syn-
opsis data structure (Gibbons & Matias, 1999), stream data
reduction (Littau & Boley, 2006; Yan et al., 2006), mining
frequent itemsets (Chang & Lee, 2003; Chang & Lee, 2004;
Chi, Wang, Yu, & Muntz, 2006; Giannella, Han, Pei, Yan,
& Yu, 2003; Lee, Lin, & Chen, 2005; Li, Lee, & Shan, 2004;
Li, Lee, & Shan, 2005a; Manku & Motwani, 2002; Yu,
Chong, Lu, Zhang, & Zhou, 2006), change detection and
mining (Dong et al., 2003; Li, Lee, & Shan, 2005b), top-k
queries computing (Babcock & Olston, 2003), and mining
sequential patterns (Chen, Wu, & Zhu, 2005; Ho, Li,
Kuo, & Lee, 2006). In this paper, we consider one of the
most challenging problems of stream data mining, i.e., sin-

gle-pass mining of frequent itemsets over data streams within

a sliding window.
Compared with previous sliding-window based mining

techniques of frequent itemsets (Chang & Lee, 2004; Chi
et al., 2006; Lee et al., 2005), we propose an efficient one-
pass algorithm called MFI-TransSW (Mining Frequent
Itemsets within a Transaction-sensitive Sliding Window),
for online, incremental mining of frequent itemsets in data
streams within a transaction-sensitive sliding window. A
transaction-sensitive sliding window is composed of a fixed
number of transactions. An effective bit-sequence represen-
tation of item is developed to maintain the sliding order of
window and the itemsets frequencies. Comprehensive
experiments show that the proposed MFI-TransSW algo-
rithm not only attains highly accurate mining results, but
also runs significant faster and consume less memory than
do previous well-known algorithms SWFI-stream (Chang
& Lee, 2004), moment (Chi et al., 2006), and SWF (Lee
et al., 2005) for mining frequent itemsets over sliding
windows. Furthermore, based on the MFI-TransSW
framework, an efficient single-pass algorithm, called
MFI-TimeSW (Mining Frequent Itemsets within a Time-
sensitive Sliding Window), is developed for mining the
set of frequent itemsets over data streams within a time-
sensitive sliding window. A time-sensitive sliding window
consists of a fixed number of time-units.

The remainder of this paper is organized as follows.
Related work is discussed in Section 2. The problem defini-
tion of mining frequent itemsets in data streams within a
transaction-sensitive sliding window is described in Section
3. In Section 4, the MFI-TransSW algorithm is proposed to
mine the set of frequent itemsets in a transaction-sensitive
sliding window. Moreover, based on MFI-TransSW, the
MFI-TimeSW algorithm is also proposed for mining
time-sensitive sliding windows in this section. Comprehen-
sive experiments of the proposed algorithms are discussed
in Section 5. Finally, we conclude the work in Section 6.

2. Related work

Many previous studies contributed to the efficient min-
ing of frequent itemsets over data streams (Chang & Lee,
2003, 2004; Chi et al., 2006; Giannella et al., 2003; Lee
et al., 2005; Li et al., 2004, 2005; Manku & Motwani,
2002; Yu et al., 2006). According to the stream data pro-
cessing model (Zhu & Shasha, 2002), the research of min-
ing frequent itemsets in data streams can be divided into
three categories: landmark-window based mining (Li et al.,
2004, 2005; Manku & Motwani, 2002; Yu et al., 2006),
damped-window based mining (Chang & Lee, 2003; Gian-
nella et al., 2003), and sliding-window based mining (Chang
& Lee, 2004; Chi et al., 2006; Lee et al., 2005).

In a landmark window model, frequent pattern mining
is performed based on the values between a specific time-
stamp called landmark and the present. In Manku and
Motwani (2002), developed two single-pass algorithms,
Sticky-Sampling and Lossy Counting, to mine frequent
items over data streams with a landmark window. More-
over, Manku and Motwani proposed a Lossy-Counting
based three module method BTS (Buffer-Trie-SetGen) for
mining the set of frequent itemsets from data streams. A
lattice-based in-memory data structure is used in the BTS
algorithm to store itemsets, approximate supports of item-
sets, and maximum possible errors in the approximate sup-
ports. Li et al. proposed the online incremental projected,
single-pass algorithms, called DSM-FI (Li et al., 2004)
and DSM-MFI (Li et al., 2005), to mine the set of all fre-
quent itemsets and maximal frequent itemsets over the
entire history of data streams. Prefix-tree based data struc-
tures are developed in the proposed algorithms to store
items and their support values, window ids, and nodes links
pointing to the root or a certain node. Yu et al. (2006) pro-
posed efficient algorithms based on Chernoff bound for
false negative or false positive mining of frequent itemsets
from high speed transactional data streams. The algo-
rithms use a running error parameter to prune itemsets
and use a reliability parameter to control memory.

In the damped window model, recent windows are more
important than previous ones. In other words, older trans-
actions contribute less weight toward itemsets support.
Chang and Lee (2003) developed a damped window based
algorithm, called estDec, for mining frequent itemsets over
streaming data in which each transaction has a weight
decreasing with age. Two efficient techniques, delayed-
insertion and pruning, are used in estDec to enhance the
mining performance. Giannella et al. (2003) proposed the
FP-stream algorithm to find the set of frequent itemsets
at multiple time granularities by a novel titled-time win-
dows technique. A frequent pattern tree (FP-tree) (Han,
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Pei, Yin, & Mao, 2004) is used to maintain the frequent
itemsets and their supports stored in titled-time windows.

In a sliding window model, knowledge discovery is
performed over a fixed number of recently generated data
elements which is the target of data mining. Two types of
sliding widow, i.e., transaction-sensitive sliding window
and time-sensitive sliding window, are used in mining data
streams. The basic processing unit of window sliding of
transaction-sensitive sliding window is an expired transac-
tion while the basic unit of window sliding of time-sensitive
sliding window is a time unit, such as a minute or 1 h.

Lee et al. (2005) proposed a sliding-window filtering
(SWF) algorithm for incremental mining of frequent item-
sets within a sliding window. The sliding window is com-
posed of a sequence of partitions. Each partition
maintains a number of transactions. SWF uses a filtering
threshold in each partition to deal with the candidate
itemsets generation. All candidate 2-itemsets are main-
tained separately. When the window is sliding, the candi-
date 2-itemsets of the new incoming partition are
modified. Subsequently, all possible candidate itemsets
are generated from these candidate 2-itemsets. The set of
frequent itemsets is generated by scanning the entire win-
dow. In the SWF algorithm, to get an up-to-date mining
result, all the transactions within the current window
should be re-scanned.

Chang and Lee (2004) proposed a BTS-based algorithm,
called SWFI-stream, for finding frequent itemsets within a
transaction-sensitive sliding window. A prefix tree lattice
structure called monitoring lattice is constructed to store
the current candidate itemsets and their frequencies.
Another in-memory data structure called current transac-
tion list (CTL) is developed to maintain all the transactions
in the range of current sliding window. For each incoming
transaction, SWFI-stream inserts this transaction into the
CTL and enumerates the transaction into a set of itemsets.
Furthermore, SWFI-stream inserts these itemsets into the
current monitoring lattice. When the current window is
sliding, the oldest transaction in the CTL is extracted and
every itemsets embedded in the transaction is deleted from
the current monitoring lattice. Finally, all the currently fre-
quent itemsets in the monitoring lattice are found by tra-
versing all the paths of the monitoring lattice.

Chi et al. (2006) proposed the first streaming algorithm,
called Moment, to mine the set of closed frequent itemsets

within a transaction-sensitive sliding window. A compact
prefix-tree based data structure, called closed enumeration
tree (CET), is developed in the Moment algorithm to main-
tain a dynamically selected set of itemsets which includes
four types of nodes: infrequent gateway nodes, unpromis-
ing gateway nodes, intermediate nodes and closed nodes.
The selected itemsets is composed of a boundary between
closed frequent itemsets and the rest of the itemsets. When
a new transaction arrives, Moment algorithm traverses the
parts of the CET that related to the new transaction. For
each related node, Moment updates its support, tid_sum
and possibly its node type property. When an oldest trans-
action is deleted from the current sliding window, Moment
also traverses the parts of the CET that is related to the
deleted transaction and judges the related node types. Fur-
thermore, the exploration and node type checking are time
consuming.

In this paper, we propose two efficient one-pass
algorithms, MFI-TransSW and MFI-TimeSW, to mine
the set of frequent itemsets online and incrementally within
a sliding window by using an effective bit-sequence repre-
sentation of items. Before we describe our bit-sequence
data structure and the proposed algorithms, let us first
explain the definitions that are going to be used in this
paper.

3. Problem definition

Let W = {i1, i2, . . ., im} be a set of items. A transaction

T = (tid, x1x2. . .xn), xi 2 W, for 1 6 i 6 n, is a set of items,
while n is called the size of the transaction, and tid is the
unique identifier of the transaction. An itemset is a non-
empty set of items. An itemset with size k is called a k-item-

set. A transaction data stream TDS = T1,T2, . . .,TN is a
continuous sequence of transactions, where N is the tid
of latest incoming transaction TN.

A transaction-sensitive sliding window (TransSW) in the
transaction data stream is a window that slides forward
for every transaction. The window at each slide has a fixed
number, w, of transactions, and w is called the size of the
window. Hence, the current transaction-sensitive sliding

window is TransSWNw+1 = [TN�w+1,TN�w+2, . . .,TN], where
N � w + 1 is the window identifier of current TransSW. The
support of an itemset X over TransSW, denoted as
sup(X)TransSW, is the number of transactions in TransSW

containing X as a subset. An itemset X is called a frequent

itemset (FI) if sup(X)TransSW P s � w, where s is a user-
defined minimum support threshold (MST) in the range
of [0,1]. The value s � w is called the frequent threshold of
TransSW (FTTransSW).

Given a transaction-sensitive sliding window TransSW,
and a MST s, the problem of online mining of frequent
itemsets in recent transaction data streams is to mine the
set of all frequent itemsets by one scan of the TransSW.

Example 1. Let the first four transactions in a transaction
data stream be hT1, (acd)i, hT2, (bce)i, hT3, (abce)i, and hT4,
(be)i, where T1, T2, T3, and T4 are transactions and a, b, c,
d, and e are items. Let the size of sliding window w be 3 and
the user-defined minimum support threshold s be 0.6.
Hence, the transaction data stream consists of two trans-
action-sensitive sliding windows, i.e., TransSW1 =
[T1,T2,T3] and TransSW2 = [T2,T3,T4], where first win-
dow TransSW1 contains the transactions T1, T2, and T3,
and the second window TransSW2 contains the transac-
tions T2, T3, and T4. The example is shown in Fig. 1.

In Fig. 1, the frequent itemsets in TransSW1 are (a), (b),
(c), (e), (ac), (bc), (be), (ce), and (bce), and the frequent
itemsets in TransSW2 are (b), (c), (bc), (be), (ce), and



A Transaction Data Stream FIs in TransSW1 FIs in TransSW2

      <T1, (acd) > 
      <T2, (bce) > 
      <T3, (abce) > 
      <T4, (be) > 

(a), (b), (c), (e), (ac),
(bc), (be), (ce), (bce)

(b), (c), (bc), (be), (ce),
(bce)

A transaction data stream is formed by transactions arriving in series 

Fig. 1. An example data stream and the frequent itemsets over two consecutive TransSWs.

1 It is a downward closure property, i.e., if a pattern is frequent, all of its
sub-patterns will also be frequent.
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(bce). In this instance, we can find that (a), (e), and (ac) are
frequent itemsets in TransSW1, but not frequent ones in
TransSW2.

4. MFI-TransSW: online mining of frequent itemsets within
a transaction-sensitive sliding window

In this section, we describe our proposed single-pass
mining algorithm, called MFI-TransSW (Mining Frequent
Itemsets within a Transaction-sensitive Sliding Window)
and its bit-sequence representation of items. Compared
with other sliding window based mining techniques, we
save memory and improve speed by dynamically maintain-
ing all transactions in the current sliding window by using
an effective bit-sequence representation of items.

4.1. Bit-sequence representation of items

In MFI-TransSW algorithm, for each item X in the cur-
rent transaction-sensitive sliding window TransSW, a bit-

sequence with w bits, denoted as Bit(X), is constructed. If
an item X is in the ith transaction of current TransSW,
the ith bit of Bit(X) is set to be 1; otherwise, it is set to
be 0. The process is called bit-sequence transform.

For example, in Fig. 1, the first sliding window Trans-

SW1 consists of three transactions: hT1, (acd)i, hT2, (bce)i,
and hT3, (abce)i, but the TransSW2 consists of transac-
tions: hT2, (bce)i, hT3, (abce)i, and hT4, (be)i. Because item
a appears in the 1st and 3rd transactions of TransSW1, the
bit-sequence of a, Bit(a), is 101. Similarly, Bit(b) = 011,
Bit(c) = 111, Bit(d) = 100, and Bit(e) = 011.

The proposed MFI-TransSW algorithm consists of three
phases: window initialization, window sliding and frequent
itemsets generation.

4.2. Window initialization phase of MFI-TransSW

The window initialization phase is activated while the
number of transactions generated so far in a transaction
data stream is less than or equal to a user-predefined sliding
window size w. In this phase, each item of the new incom-
ing transaction is transformed into its bit-sequence
representation.

For example, in Fig. 1, the first sliding window Trans-

SW1 contains three transactions: T1, T2, and T3. The bit-
sequences of items of TransSW1 in the window initializa-
tion phase are shown in Fig. 2.
4.3. Window sliding phase of MFI-TransSW

The window sliding phase is activated after the current
sliding window TransSW becomes full. A new incoming
transaction is appended to the current sliding window,
and the oldest transaction is removed from the window.

For removing oldest information, an efficient method is
used in the proposed algorithm. Based on the bit-sequence
representation, MFI-TransSW algorithm uses the bitwise

left shift operation to remove the aged transaction from
the set of items in the current sliding window. After sliding
the window, an effective pruning method, called Item-

Prune, is used to improve the memory usage. The pruning
approach is that an item X in the current transaction-sensi-

tive sliding window is dropped if and only if sup(X)TransSW =
0.

For example, in Fig. 1, before the fourth transaction
hT4, (be)i is processed, the first transaction T1 must be
removed from the current window using bitwise left shift
on the set of items. Hence, Bit(a) is modified from 101 to
010. Similarly, Bit(c) = 110, Bit(d) = 000, Bit(b) = 110,
and Bit(e) = 110. Then, the new transaction hT4, (be)i is
processed by bit-sequence transform. The result is shown
in Fig. 3. Note that item d is dropped since Bit(d) = 000,
i.e., sup(d)TransSW = 0.

4.4. Frequent itemsets generation phase of MFI-TransSW

The frequent itemsets generation phase is performed
only when the up-to-date set of frequent itemsets is
requested. In this phase, MFI-TransSW algorithm uses a
level-wise method to generate the set of candidate itemsets
CIk (candidate itemsets with k items) from the pre-known
frequent itemsets FIk�1 (frequent itemsets with k-1 items)
according to the Apriori property (Agrawal & Srikant,
1994).1 The step is called CIGA (Candidate Itemset Gener-
ation using Apriori property). Then, the proposed algo-
rithm uses the bitwise AND operation to compute the
support (the number of bit 1) of these candidates in order
to find the frequent k-itemsets FIk. The candidate-genera-
tion-then-testing process is stopped until no new candi-
dates with k + 1 items (CIk+1) are generated. The MFI-
TransSW algorithm is shown in Fig. 4.



Window-id Transactions Bit-Sequences of items 
TransSW1 <T1, (acd) >      

<T2, (bce) > 
<T3, (abce) > 

Bit(a) = 101, Bit(c) = 111, Bit(d) = 100, 
Bit(b) = 011, Bit(e) = 011 

TransSW2 <T2, (bce) > 
<T3, (abce) > 
<T4, (be) > 

Bit(a) = 010, Bit(c) = 110, Bit(d) = 000,
Bit(b) = 111, Bit(e) = 111 

Fig. 2. Bit-sequences of items in window initialization phase of TransSW.

tid Items Bit-Sequences in current TransSW1

T1 (acd) Bit(a)=100, Bit(c)=100, Bit(d)=100

T2 (bce) Bit(a)=100,Bit(c)=110,Bit(d)=100,Bit(b)=010,
Bit(e)=010

T3 (abce) Bit(a)=101,Bit(c)=111,Bit(d)=100,Bit(b)=011,
Bit(e)=011

Fig. 3. Bit-sequences of items after sliding TransSW1 to TransSW2.
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For example, consider the bit-sequences of TransSW2 in
Fig. 3, and let the minimum support threshold s be 0.6.
Hence, an itemset X is frequent if sup(X)TransSW P
0.6 � 3 = 1.8. In the following, we discuss the step of fre-
quent itemset mining of TransSW2. The set of generated
frequent itemsets is shown in Fig. 1.

First, MFI-TransSW algorithm generates three candi-
date 2-itemsets, (bc), (be) and (ce), by combining frequent
1-itemsets: (b), (c) and (e), where Bit(b) = 111, i.e.,sup(b) =
3, Bit(c) = 110, i.e., sup(c) = 2, and Bit(e) = 110, i.e.,
sup(e) = 2. 1-itemset (a) is an infrequent itemset, since its
Bit(a) = 010, i.e., sup(a) = 1. All these candidates are fre-
quent itemsets after using bitwise AND operations to
count the supports of these candidates. Because the Bit(bc)
is 110, the support of candidate 2-itemset bc are 2, i.e.,
sup(bc) = 2. Similarity, sup(be) = 3, and sup(ce) = 2. Sec-
ond, MFI-TransSW generates one candidate 3-itemset
(bce) according to Apriori property and uses bitwise
AND operation to count the sup(bce) = 2, i.e., Bit(bc)
AND Bit(be) AND Bit(ce) = 110. Because no new candi-
dates are generated, the generation-then-test process is
stopped. Hence, there are six frequent itemsets, (b), (c),
(bc), (be), (ce), (bce), generated by MFI-TransSW algo-
rithm in TransSW2. The process is shown in Fig. 5.

In the next section, we will extend the capabilities of
MFI-TransSW algorithm to mine the set of frequent
itemsets over data streams within a time-sensitive sliding
window.
4.5. Mining frequent itemsets in a time-sensitive sliding

window

4.5.1. Problem definition

Let W = {i1, i2, . . ., im} be a set of items. An itemset is a
non-empty set of items. An itemset with size k is called a k-

itemset. A transaction data stream TDS = T1,T2, . . .,TN is a
continuous sequence of transactions, where N is the trans-
action identifier of latest incoming transaction TN. A trans-

action T = (TUid,Tid, itemset), where TUid is the identifier
of the time unit, and Tid is the identifier of the transaction.

A time-sensitive sliding window (TimeSW) in the transac-
tion data stream is a window that slides forward for every
time unit (TU). Each time unit TUi consists of a variable
number, jTUij, of transactions, and jTUij is also called
the size of the time unit. Hence, the current time-sensitive

sliding window with w time units is TimeSWN�w+1 =
[TUN�w+1, TUN�w+2, . . .,TUN], where N � w + 1 is the id
of time unit of current TimeSW, and N is the TUid of latest
time unit TUN. The window at each slide has a fixed num-
ber, w, of time units. The value w = jTUN�w+1j +
jTUN�w+2j + � � � + jTUNj is called the size of the time-sen-
sitive sliding window and denoted as jTimeSWj.

The support of an itemset X over TimeSW, denoted as
sup(X)TimeSW, is the number of transactions in TimeSW

containing X as a subset. An itemset X is called a frequent

itemset (FI) if sup(X)TimeSW P s � jTimeSWj, where s is a
user-defined minimum support threshold (MST) in the
range of [0,1]. The value s � jTimeSWj is called the frequent

threshold of TimeSW (FTTimeSW).
Given a time-sensitive sliding window TimeSW, and a

MST s, the problem of online mining of frequent itemsets
in recent transaction data streams is to mine the set of all
frequent itemsets by one scan of the TimeSW.
4.5.2. The proposed algorithm MFI-TimeSW

Based on the MFI-TransSW framework, we propose an
extended single-pass algorithm, called MFI-TimeSW

(Mining Frequent Itemsets within a Time-sensitive Sliding
Window), to mine the set of frequent itemsets over data
streams within a time-sensitive sliding window. The algo-
rithm description of MFI-TimeSW is shown in Fig. 6.
The major differences between MFI-TransSW and MFI-



Algorithm MFI-TransSW 

Input: TDS (a transaction data stream), s (a user-defined minimum support threshold in the range of 

[0, 1]), and w (the user-specified sliding window size). 

Output: a set of frequent itemsets, FI-Output.

Begin
TransSW = NULL;  /* TransSW consists of w transactions */
Repeat: 

for each incoming transaction Ti in TransSW do
              for each item X in Ti do
                    Do bit-sequence transform(X);
              end for 

 if TransSW = FULL then
                  Do bitwise-shift on bit-sequences of all items in TransSW; 
              end if 
         end for 

for each bit-sequence Bit(X) in TransSW do
             if sup(X) = 0 then

                  Drop X from TransSW; 
              end if 

end for 
/* The following is the frequent itemsets generation phase. The phase is performed only when requested by 

users. */ 
          FI1 = {frequent 1-itemsets}; 

for (k=2; FIk−1≠ NULL; k++) do
             CIk = CIGA(FIk−1);

              Do bitwise AND to find the supports of CIk;
             for each candidate ck ∈ CIk do

                  if sup(ck)
TransSW ≥ w⋅s then

                      FIk = {ck ∈ CIk | sup(ck)
TransSW ≥ w⋅s};

                  end if 
              end for 
           end for 
    FI-Output = kFIk;

End

Fig. 4. Algorithm MFI-TransSW.

  Transactions in 
TransSW2

Bit-Sequences in 
TransSW2

 FI1 in TransSW2

 (s = 0.6) 
sup

    <T2, (bce) > 
    <T3, (abce) >      
    <T4, (be) > 

Bit(a) = 010 
Bit(c) = 110 
Bit(b) = 111 
Bit(e) = 111 

 {(b) | Bit(b) = 111} 
{(c) | Bit(c) = 110} 
{(e) | Bit(e) = 111} 

3
2
3

CI2 in SW2  FI2 in TransSW2 sup 
{(bc) | Bit(b) = 111 AND Bit(c) = 110} 
{(be) | Bit(b) = 111 AND Bit(e) = 111} 
{(ce) | Bit(c) = 110 AND Bit(e) = 111} 

 {(bc) | Bit(bc) = 110} 
{(be) | Bit(be) = 111} 
{(ce) | Bit(ce) = 110} 

2
3
2

CI3 in TransSW2  FI3 in TransSW2 sup 
{(bce) | Bit(bc) = 110 AND Bit(be) = 111 
AND Bit(ce) = 110} 

 {(bce) | Bit(bce) = 110} 2 

Fig. 5. Steps of frequent itemsets generation in TransSW2.
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TimeSW are the unit of data processing, the bit-sequence
transformation of a time unit, the number of sliding trans-
actions, and the dynamic frequent threshold of itemsets.
These issues are discussed as follows.



Algorithm MFI-TimeSW 

Input: TDS (a transaction data stream), TU-list (a time unit list), s (a user-defined minimum 

support threshold in the range of [0, 1]), and w (the user-specified sliding window size, i.e., w

time units). 

Output: a set of frequent itemsets, FI-Output.

Begin
TimeSW = NULL;  /* TimeSW consists of w time units */
Repeat:                 /*  N is the id of current time unit*/

       for each new time unit TUN from TDS do   /*  N ≥ 1*/      
             for each transaction Ti of TUN do
                  for each item X in Ti do
                      Do bit-sequence transform(X);
                  end for 
             end for   

if TimeSW = FULL then
                  Do |TUN−w+1| times of bitwise-shift operation on bit- 
                  sequences of all items in TimeSW; 
             end if 

      end for 
for each bit-sequence Bit(X) in TimeSW do

               if sup(X) = 0 then
                   Drop X from TimeSW; 
               end if 

end for 
N = N +1; 

/* The following is the frequent itemsets generation phase. The phase is performed only when 

requested by users. */ 
          FI1 = {frequent 1-itemsets}; 

for (k=2; FIk−1≠ NULL; k++) do
              CIk = CIGA(FIk−1);
              Do bitwise AND to find the supports of CIk;
              for each candidate ck ∈ CIk do
                  if sup(ck)

TimeSW ≥ |TimeSW|⋅s then
                      FIk = {ck ∈ CIk | sup(ck)

TimeSW ≥ |TimeSW|⋅s};
                  end if 
              end for 
           end for 
    FI-Output = kFIk;

End

Fig. 6. Algorithm MFI-TimeSW.
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(1) Unit of data processing: For MFI-TransSW algo-
rithm, the unit of data processing is each incoming
transaction, but the unit of data processing of MFI-
TimeSW is each new time unit. However, each time
unit contains variable number of transactions. Hence,
a list of time unit (TU-list) is developed in the MFI-
TimeSW algorithm to solve the issue of data
processing unit. A TU-list is a list of time unit entries,
where each time unit entry records the number of
transactions within the time unit, i.e., TU-list =
h(TUidN�w+1,jTUN�w+1j), (TUidN�w+2, jTUN�w+2j), . . .,
(TUidN, j TUNj)i, where jTUij is the number of trans-
actions within the time unit TUi.
(2) Bit-sequence transformation of a time unit: For the bit-
sequence transformation of a time unit, a modified
transformation process is proposed in MFI-TimeSW
algorithm. For each item X in the current time-sensi-
tive stream sliding window TimeSWN�w+1, a bit-

sequence with jTimeSWN�w+1j bits, denoted as
BitðX ÞTimeSW

N�wþ1, is constructed. Similarly, if the item X

is in the i-th transaction of TimeSWN�w+1, the ith
bit of BitðX ÞTimeSW

N�wþ1 is set to be 1. Otherwise, it is set
to be 0.

(3) Number of sliding transactions: In the window sliding
phase of MFI-TimeSW algorithm, after the oldest
time unit TUN�w+1 is removed from the current sliding
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window, a new time unit TUN+1 is appended to the
window. If the aged time unit TUN�w+1 contains d

transactions, MFI-TimeSW performs d times of bit-
wise left shift operation on the current sliding window.
After that, MFI-TimeSW uses that same pruning
method Item-Prune to improve the memory usage in
mining process.

(4) Dynamic frequent threshold of itemsets: In the MFI-
TransSW algorithm, the constant value s � w is the
frequent threshold of itemsets, where s is the user-
specified minimum support threshold in the range
of [0, 1] and w is the size of sliding window. However,
in the MFI-TimeSW algorithm, the value of frequent
threshold is s � jTimeSWj is a dynamic value,
where jTimeSWj = jTUN�w+1j + jTUN�w+2j + � � � +
jTUNj.
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Fig. 7. Comparisons of memory usages in the window initialization phase
(s = 0.1%).
5. Performance evaluation

In this section, we will describe the experimental evalu-
ation of the proposed algorithms: MFI-TransSW and
MFI-TimeSW. All the programs are implemented using
Microsoft Visual C++ Version 6.0 and performed on a
1.80 GHz Pentium(R) PC machine with 1024 MB memory
running on Windows n000. For testing frequent itemset
mining over sliding windows, synthetic data streams are
generated by using IBM synthetic data generator proposed
by Agrawal and Srikant (1994). Two synthetic data
streams, denoted by T5.I4.D1000K and T15.I6.D1000K
are generated, where T, I and D mean the average transac-
tion length, the average length of the maximal frequent
itemset, and the total number of transactions, respectively.
To simulate data streams, the transactions in both syn-
thetic data are looked up in sequence and feed them in
the buffer. The parameter setting used in the experiments
is shown in Table 1.

5.1. Performance evaluation of MFI-TransSW algorithm

In this section, we compare our algorithm MFI-Trans-
SW with sliding-window based algorithms, SWF (Lee
et al., 2005), Moment (Chi et al., 2006), and SWFI-stream
(Chang & Lee, 2004). In the following experiments, the
minimum support threshold is 0.1% and the size of the slid-
ing window is 20 K transactions.

Fig. 7 shows the comparison of memory requirements in
the window initialization phase. Fig. 7a shows the memory
Table 1
Parameters used in the experiments

Parameter Description Value

D Number of transactions in data streams 1000 K
N Number of distinct items 1 K
I Average length of maximal frequent itemsets 4, 6
T Average length of transactions 5, 15
s Minimum support thresholds 0.1%
usage of window initialization on T5.I4 and Fig. 7b gives
the memory requirement on T15.I6. From the figures we
can see that as window size increases, the memory usage
for all algorithms grows. However, the memory require-
ment of our MFI-TransSW algorithm is significantly less
than that of SWF, Moment, and SWFI-stream.

Fig. 8 gives the comparison of memory usage in the win-
dow sliding phase. Fig. 8a shows the memory requirement
of window sliding on T5.I4.D and Fig. 8b gives the mem-
ory requirement on T15.I6. As can be seen from the figures,
from T5.I4 to T15.I6, the memory usages for algorithms
SEFI-stream, Moment and SWF grow dramatically except
our algorithm MFI-TransSW. This implies that the item
with bit-sequence representation of MFI-TransSW remains
approximately the same.

Fig. 9 shows the comparison of memory usage in the fre-
quent itemset mining phase. Fig. 9a shows the memory
requirement on T5.I4 and Fig. 9b gives the memory
requirement on T15.I6. In this experiment, the up-to-date
set of frequent itemsets is requested when a new window
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Fig. 8. Comparisons of memory usages in the window sliding phase
(s = 0.1%).
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is arrived. From the figures we can see that the memory
requirement of MFI-TransSW in the frequent itemset min-
ing phase is less than that of SWFI-stream, Moment and
SWF.

As shown in the above experiments, the proposed MFI-
TransSW algorithm significantly outperforms other slid-
ing-window based data mining algorithms for memory
consumption.

Fig. 10 shows the processing time of window initializa-
tion phase under various window sizes from 20 K to
100 K transactions. Fig. 10a shows the processing time
on T5.I4 and Fig. 10b gives the processing time on
T15.I6. From the figures, we can see that as the window
size increase, the processing time of window initialization
for all algorithms grows. However, the response time of
MFI-TransSW is faster than that of SWF, Moment and
SWFI-stream by more than an order of magnitude under
different window sizes from 20 K to 100 K transactions.

Fig. 11 shows the processing time of window sliding
phase under different sizes of sliding window. Fig. 11a
shows the processing time on T5.I4 and Fig. 11b gives
the processing time on T15.I6. As can be seen from the fig-
ures, as the size of window increases, the processing time
for all algorithms grows. However, the sliding time of
MFI-TransSW is less than that of SWF, Moment and
SWFI-stream. This is because that the sliding time of the
proposed bit-sequence representation is fast than other
algorithms.

Fig. 12 shows the processing time of frequent itemset
mining phase under different window sizes. Fig. 12a shows
the processing time on T5.I4 and Fig. 12b gives the pro-
cessing time on T15.I6. From the figures, we can see that
as the sliding window size increases, the processing time
of pattern discovery for all algorithms increases. Although
the processing time of mining frequent itemsets of our
MFI-TransSW algorithm is slower than that of Moment
and SWFI-stream, the total processing time, which
includes window initialization time, window sliding time
and frequent itemset mining time, of MFI-TransSW is fas-
ter than that of SWF, Moment and SWFI-stream by more
than an order of magnitude. In conclusion, the proposed
MFI-TransSW algorithm is a time-efficient method for



T5.I4

0

100

200

300

400

500

600

20K 40K 60K 80K 100K

Window Size (1K = 1,000)

Pr
oc

es
si

ng
 T

im
e 

(S
ec

on
d)

SWFI-stream

Moment

SWF

MFI-TransSW

(a) T5.I4 

T15.I6

0

500

1000

1500

2000

2500

3000

20K 40K 60K 80K 100K

Window Size (1K = 1,000)

Pr
oc

es
si

ng
 T

im
e 

(S
ec

on
d) SWFI-stream

Moment

SWF

MFI-TransSW

(b) T15.I6 

Fig. 10. Processing time of window initialization phase under different
window sizes (s = 0.1%).
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Fig. 11. Processing time of window sliding phase under different window
sizes (s = 0.1%).
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mining frequent itemsets from data streams within a trans-
action-sensitive sliding window.
5.2. Performance evaluation of MFI-TimeSW algorithm

In this section, we report the experiments of the pro-
posed MFI-TimeSW algorithm. The minimum support
threshold s is 0.1%. The synthetic data stream consists of
ten time units from TU1 to TU10, where jTU1j = 200 K,
jTU2j = 400 K, jTU3j = 800 K, jTU4j = 1000 K, jTU5j =
1,000 K, jTU6j = 200 K, jTU7j = 500 K, jTU8j = 1000 K,
jTU9j = 800 K, and jTU10j = 800 K. In order to simulate
a time-sensitive sliding window of data streams, the size
of the sliding window w is composed of five time units.

Fig. 13 shows the memory usage of phases 1–2 (window
initialization phase + window sliding phase) and phases 1–
2–3 (window initialization phase + window sliding
phase + frequent itemsets generation phase) of MFI-
TimeSW algorithm. As shown in Fig. 13, the memory
usage of MFI-TimeSW is increased linearly as the window
size increased.

Fig. 14 shows the processing time of phases 1–2 (window
initialization phase + window sliding phase) and phases 1–
2–3 (window initialization phase + window sliding phase +
frequent itemsets generation phase) of MFI-TimeSW algo-
rithm. As shown in Fig. 14, the processing time of phases 1
and 2 of MFI-TimeSW is increased linearly as the window
size increased.
6. Conclusions

In this paper, we propose an efficient single-pass
algorithm, called MFI-TransSW, for mining the set of
frequent itemsets over data streams with a transaction-sen-
sitive sliding window. An effective bit-sequence representa-
tion of items is developed to enhance the performance of
MFI-TransSW. Based on MFI-TransSW algorithm, an
efficient single-pass algorithm, called MFI-TimeSW, is
presented to find the set of frequent itemsets over time-sen-
sitive sliding windows. Experiments show that the pro-
posed algorithms MFI-TransSW and MFI-TimeSW not
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Fig. 12. Processing time of frequent itemset mining phase under different
window sizes (s = 0.1%).
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only attain highly accurate mining results, but also run sig-
nificant faster and consume less memory than do existing
algorithms, such as SWF, Moment and SWFI-stream, for
mining frequent itemsets from data streams within a sliding
window.
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