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Abstract. Knowledge acquisition by interviewing a domain expert is one of the most problematic
aspects of the development of expert systems. As an aternative, methods for inducing concept
descriptions from examples have proven useful in eliminating this bottleneck. In this paper, we
propose a probabilistic induction method (PIM), which is an improvement of the Chan and Wong
method, for detecting relevant patterns implicit in a given data set. PIM uses the technique of
residual analysis and several heuristics to effectively detect complex relevant patterns and to avoid
the problem of combinatorial explosion. A reasonable trade-off between the induction time and
the classification ratio is achieved. Moreover, PIM quickly classifies unknown objects using clas-
sification rules converted from the positively relevant patterns detected. Three experiments are
conducted to confirm the validity of PIM.

Key words: adjusted residual, induction, probabilistic, relevant pattern.

1. Introduction

Much progress has been made in the field of artificia intelligence in recent
years. Among the most significant areas of progress has been the development
of powerful computer systems known as ‘expert’ or ‘knowledge-based’ systems.
These systems are designed to represent and to apply factual knowledge from
specific areas of expertise to solve problems [5-7]. Expert systems are knowledge
intensive, and the process of acquiring the necessary knowledge by interviewing
domain specialistsistedious and difficult, since the experts are usually unaware of
how to express their knowledge effectively. Moreover, the knowledge acquired
is often incomplete, inconsistent, or irrelevant. Methods for inducing concept
descriptions from examples, on the other hand, have proved useful in facilitating
the acquisition of knowledge in constructing expert systems [21-23].

The field of machine learning has been studied by many researchers over the
past two decades, and many approaches toward machine learning have been pro-
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posed [13-15]. Some research on machine learning has focused on techniques for
developing concept descriptions from training examples. Given a set of exam-
ples and counterexamples, the learning program tries to induce general concept
descriptions that describe the positive training instances and exclude the negative
ones.

Many factors are involved in designing a good learning system [10]. One of
the most important of these factors is reducing the influence of noise [9, 18].
Noise means incorrect values or incorrect classes in the training instances. Incor-
rect training instances may originate from unreliable or incorrect information or
may arise from input error. Two cases exist for wrong classification of atraining
instance. An originaly positive training instance that is wrongly classified into
the negative class is called a ‘false negative’ training instance; an originally neg-
ative training instance that is wrongly classified into the positive class is called
a ‘false positive’ training instance. Attribute values of training instances may
also be given incorrectly. For example, ‘size = 20° may be wrongly given as
‘size=10'.

The validity and relevance of the concepts eventually learned depend heavily
on the accuracy of the chosen training instances. In real applications, data pro-
vided to learning systems by experts, teachers, or users usualy contain noise.
Noise can be expected to affect the formation and use of the learned conceptsin
two ways [18]:

(1) Learning strategies usually must apply some form of generalization to
derive the desired concepts. This is usually accomplished by identifying subsets
of the given training instances that share common properties. Noisein the training
instances will tend to confuse a generalization mechanism of this type.

(2) Problems arise when the concepts formed from the noisy training instances
are used to classify other objects. Since the given training instances contain noise,
the learned concepts may contain errors, and the results obtained by using the
incorrect concepts to classify the objectsin question might well be incorrect also.

Many induction methods for managing noisy data sets have been proposed [4,
16, 19, 22]. One of these, the probabilistic induction system proposed by Chan
and Wong in 1990, reduced the effect of noise by using a statistical approach
[2, 3]. This approach first detects the relevant classification patterns of a sin-
gle attribute-value pair based on residual analysis. It then constructs rules with
individual weights based on the relevant patterns detected. Finally, it uses the
rules constructed to classify unknown data. Although Chan and Wong's method
indeed works in noisy domains, it is still subject to several disadvantages:

(1) It considers only the relevant relations between a single attribute-value
pair and a class and thus misses more complex patterns.

(2) It adlows negatively relevant patterns to be converted into rules, thus
causing erroneous classification when no positively relevant patterns are matched.

(3) It requires al of the rules constructed to be checked each time an unknown
object is classified, thus making the classification process very inefficient.
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This paper proposes a new probabilistic induction method (PIM) [11] that
avoids the above three problems. The new method proposed here uses heuristics
to find complex relevant patterns and to avoid the problem of combinatorial
explosion. It also uses the information implicit in the negatively relevant patterns
to find other positively relevant patterns so as to help raise the classification ratio.
In addition, when classifying an object, PIM stops checking the remaining rules
once the first rule matched is found.

Three experiments, involving fitting contact lenses domain [1], simulated arti-
ficial data [1], and brain tumor diagnosis [22], were conducted to evaluate the
performance of PIM. The results reveal that PIM indeed is more accurate than
Chan and Wong's method.

The remaining parts of this paper are organized as follows. The terms and
notations used in this paper are introduced in Section 2. Chan and Wong's method
isreviewed in Section 3, and some problems with their method are then discussed
in Section 4. In Section 5, a new probabilistic induction method (PIM) and a
corresponding reasoning method are proposed to improve on Chan and Wong's
method, and an exampleis provided to illustrate their use. Experiments conducted
to verify the proposed methods are described in Section 6. The results of the paper
are summarized in Section 7.

2. Terms and Notations

The following notation will be employed in this paper:

N, the number of training instances,
M, the number of available attributes,
A;,  the jth attribute, where 1 < j < M,
a;j, the number of possible values of A4,
vji, thedth value of A;, where1 <i < aj,
C, the number of possible classes to be classified,
p, the pth class, where 1 < p < C,
op, thetotal number of objects in the training set that belong to class p,
0ji,  the total number of objects with characteristic v;;,
opji,  the total number of objects in the training set that belong to class p and
are characterized by vj;,
epji,  the expected number of objects in the training set that belong to class p
and are characterized by v;; under the assumption that values of attribute
A; are uniformly distributed in class p,
rpji,  the adjusted residual between the characterization v;; and the class p.

Each instance is represented by one or several discrete attributes and its class.
If an attribute value of a training instance is originally continuous, it is first
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transformed into a discrete value by a discretization technique. Each instance is
then represented as follows:

A1 =y, A2=v2,,...,An = Uni,,, Class=p.
The adjusted residual r,;; is defined as follows [8]:

Tpji = Zpji/\/Ypjis )
where

zpji = (Opji — €pji)/\/€pjis

and

Ypji = (L= 0p/N)(1 — 0ji/N).
If the absolute value of 7,,;; is greater than 1.96, or 95% of the normal distribution,
the attribute-value pair A; = theith value (v;;) is considered an important feature
for class p. The sign of r,;; is also important: r,;; > +1.96 indicates that v;;
is a positively relevant characteristic of class p, whereas r,,;; < —1.96 indicates
that v;; is a negatively relevant characteristic of class p (meaning an object with
characteristic v;; has alow probability of belonging to class p).

An elementary pattern is a pattern with only one attribute-value pair. A com-
plex pattern is a pattern with more than one attribute-value pair. A positively
relevant pattern is a pattern for which the value of adjusted residua is greater
than or equal to +1.96. A negatively relevant pattern is a pattern for which the
value of the adjusted residual is less than or equal to —1.96. A pattern is irrel-
evant iff it is not relevant. A dominated pattern is a complex pattern composed
of an elementary positively relevant pattern and one or more positively irrele-
vant patterns. A nondominated pattern is a complex pattern composed of only
positively irrelevant patterns.

3. Review of Chan and Wong's Method

To effectively handle uncertainty and noise in classification tasks, Chan and Wong
developed a probabilistic induction system (PIS) based on the idea of analyzing
residuals in statistic and weighting evidence in information theory. PIS is capa-
ble of detecting and extracting statistically significant patterns from a set of data,
and is thus effective in dealing with uncertainty and noise. Chan and Wong's
method works well even when (1) the data contains inaccurate, incomplete, and
inconsistent values, or (2) the training sample size is relatively small [2, 3]. Chan
and Wong's method consists of three main phases:

1. detecting relevant patterns of a single attribute-value pair through residual
analysis;

2. constructing classification rules with individual weights based on the rele-
vant patterns detected; and

3. using the classification rules to classify the objects in question.
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3.1. DETECTING RELEVANT PATTERNS

Attributes important to classification usually need to be identified in order to form
efficient rules. In the past, some systems use the chi-square test to find attributes
that are statistically dependent on classes. The chi-square test, however, only
evaluates each attribute as a whole even though some of the possible values
may be irrelevant to the classification. Instead of using the chi-square test to
find relevant attributes, Chan and Wong's method uses the adjusted residual to
find relevant attribute-value pairs [2, 3]. If the absolute value of the adjusted
residual of an attribute-value pair for a class is greater than 1.96 (this value can
be arbitrarily assigned by the user) or considered 95% of the normal distribution,
then the attribute-value pair is an important feature for that class. The sign of the
adjusted residual is also important. A positive value indicates that an instance
with the attribute-value pair very likely belongs to the class; a negative value
indicates that an instance with the attribute-value pair is very unlikely to belong
to the class.

3.2. CONSTRUCTING CLASSIFICATION RULES

The relevant patterns detected are used to construct the classification rules. If an
attribute-value pair A; = v;; is relevant (positive or negative) to a certain class
p, arule is formed as follows:

If A; =vj, thenclass=p

Probability(attribute A; = v;; | class = p)

ith = — - .
with 1" =log Probability(attribute A; = v;; | class # p)

This type of rules probabilistically describes the relation between an attribute-
value pair and a class.

3.3. CLASSIFICATION OF UNKNOWN OBJECTS

Suppose that an unknown object obj is described by N attributes. The set of
classification rules (constructed by Step 2) is searched to determine which rules
match obj, and the object obj belongs to a class with weight equal to the sum of
the weights of the matched rules for that class. Among all possible classes, obj
is assigned to the class with the maximum weight as the classification resullt.

Although Chan and Wong's method indeed works well in noisy domains, it
also has several problems, as discussed below.

4. Some Problems with Chan and Wong's Method

The first problem with Chan and Wong's method is that only relevant patterns
of a single attribute-value pair are detected. In real-world application domains,
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data with dependent attribute-value pairs are very commonly seen. For example,
attribute-value pair A1 (A = 1) may show no correlation with class §1 and
attribute-value pair B1 (B = 1) may also show no correlation with class §1.
However, A1 and B1 together may be relevant to Class §1. Thiskind of complex
relevant pattern cannot be detected by Chan and Wong's method, and thus the
rules constructed include no preconditions for A1 and B1. Relevant patterns with
more than one attribute-value pair must be found to raise the classification ratio.

The second problem is that negatively relevant patterns are also converted into
rules with negative weights, thus causing wrong classification when no positively
relevant patterns are matched. For example, assume that by Chan and Wong's
method, attribute-value pair A1 is only negatively relevant to Class §1, and B1
and C1 areirrelevant to any class. Also assume a training instance with descrip-
tion (A1, B1,C1) isto be classified. According to the rule of classification, the
class with the maximum weight is to be assigned to the instance. In this example,
only §1 is matched, and it is then assigned to the instance, causing a classification
error. As another example, assume that by Chan and Wong's method, A1l is only
negatively relevant to Class §1, B1 is only negatively relevant to Class 62, and
C1 is only negatively relevant to Class §3. Again, assume a training instance
with description (A1, B1,C1) is to be classified. In this case, all three classes
have negative weights, representing negative evidence. The class with the max-
imum weight is then quite unlikely to be the class of the instance. Rather than
merely acting as rules with negative weights, negatively relevant patterns should
provide a clue to finding complex positively relevant patterns that can be used
to raise the classification ratio.

The third problem is that al rules constructed must be checked in order to
classify an unknown object. As mentioned before, when an unknown object
is presented, al rules are searched, the weights of the matched rules for each
class are added, and the class with the maximum total weight is chosen as the
desired class. All of this computation must be done for each new object. As a
better alternative, rules with complex patterns can be found from the elementary
relevant patterns and then sorted according to their weights. In this approach,
the first rule that matches an unknown object determines the class to which the
object belongs, and the remaining rules need not be checked. This is a form of
‘knowledge compilation’.

In the next section, a new probabilistic induction method and a correspond-
ing reasoning method are proposed that remove the disadvantages of Chan and
Wong's method.

5. A New Probabilistic Induction Method

The probabilistic induction method (PIM) proposed here can detect complex rel-
evant patterns instead of patterns of only a single attribute-value pair. It uses
heuristics to avoid the problem of combinatorial explosion. Moreover, only posi-
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tively relevant patterns are converted into classification rules. Negatively relevant
patterns are not converted into rules, but rather are used to derive other positively
relevant classification rules. Several heuristics are used in our algorithm to help
find complex relevant patterns more efficiently and thus alleviate the problem of
combinatorial explosion.

5.1. USE OF HEURISTICS

The heuristics are based on the following four observations.

Observation 1

Suppose the elementary positively relevant patterns (A1, 61) and (B1, 61) have
been detected. Since A1 and B1 both show a positive correlation with class
01, Al and B1 together will intuitively show more correlation with §1 than
either only A1 or only B1. The first heuristic used in the algorithm is that a
complex pattern composed of two elementary positively relevant patternsis also
most likely to be positively relevant.

Observation 2

Suppose (A1, §1) is an elementary positively relevant pattern and (B1, §1) is
irrelevant. Since B1 shows no correlation with class §1, Al and B1 together will
intuitively show no more correlation with 61 than only A1 aone. Furthermore,
a rule constructed using only A1 will be more general than a rule based on A1
and B1 together. The second heuristic used in the algorithm then stipulates that
a dominated pattern should not be added to the rule set.

Observation 3

Suppose (A1, §1) is an elementary negatively relevant pattern, meaning any
instance with attribute value A1 has a very low probability of being classified as
01. Since classes are mutually exclusive, the implicit meaning of this rule is that
any instance with attribute value A1 has a high probability of being classified as
02 or 63 (assuming only three classes may exist). In other words, an elementary
negatively relevant pattern (A1, §1) implies A1 may have some correlation with
d2 or 63. Assume (A1, §2) and (A1, §3) are not positively relevant. The complex
patterns composed of (A1, 62) or (A1, 03) with other patterns detected in this
way are more likely to be positively relevant than patterns composed of any two
randomly chosen irrelevant patterns. So, the third heuristic used in the algorithm
is that elementary negatively relevant patterns should be utilized to find some
other complex positively relevant patterns.
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Observation 4

Suppose both (A1, 1) and (B1, §1) are irrelevant patterns. Since neither A1
nor B1 shows a correlation with class §1, it is difficult to determine whether
Al and B1 together will be relevant to class §1. The adjusted residual must be
calculated to answer this question. So, the fourth heuristic used in the algorithm
is that irrelevant patterns should be utilized as late as possible to find some other
complex positively relevant patterns.

5.2. THE LEARNING ALGORITHM

The above heuristics are the basis for the induction algorithm, which is outlined
below.

The New Probabilistic Induction Algorithm

STEP 1. Find al elementary relevant patterns (both positively and negatively
relevant);

STEP 2. Retain elementary positively relevant patterns in the candidate set;

STEP 3. Form complex positively relevant patterns with K attribute-value pairs
(initially K = 2) by combining elementary positively relevant patterns.
Retain them in the candidate set;

STEP 4. Detect nondominated positively relevant patterns with K attribute-
value pairs by utilizing the elementary negatively relevant patterns.
Retain them in the candidate set;

STEP 5. Construct classification rules with weights from the positively relevant
patterns in the candidate set;

STEP 6. Sort the classification rules by the weights;

STEP 7. If the percentage of the undetermined training examplesis smaller than
a predefined threshold, stop the induction algorithm and add a default
rule by setting the most common class in the undetermined training
examples as the default class; otherwise, do Step 8;

STEP 8. Find al other nondominated positively relevant patterns each with K
attribute-value pairs by the residual analysis. If no such relevant pat-
terns are detected, stop the induction algorithm and add a default rule;
otherwise, go to Step 9;

STEP 9. Convert the new positively relevant patterns into classification rules. If
the percentage of the undetermined training examples is smaller than
a predefined threshold, stop the induction algorithm and add a default
rule; otherwise, set K = K + 1 and go to Step 3.

A flowchart of the learning algorithm is shown in Figure 1.
Thetraining set in Table | is used as an exampl e through this section to illustrate
the operation of the algorithm. This training set is composed of four attributes,
a, b, ¢, and d, and three classes, d1, o, and ds.
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Figure 1. System flowchart.

Can most training
instances be determined
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13

An elementary pattern is a pattern with only one attribute-value pair. The adjust-
ed residual of al elementary patterns are first calculated by Formula (1). Take
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Table |. Data table for the example

Value of attribute class Value of attribute class Vaue of attribute class
a b ¢ d 1 a b ¢ d 1) a b ¢ d 1)
1 1 1 1 1 2 9 2 1 1 1 1 17 3 1 1 1 1
2 1 1 1 2 1 10 2 1 1 2 3 18 3 1 1 2 3
31 1 2 1 2 11 2 1 2 1 1 19 3 1 2 1 1
4 1 1 2 2 1 12 2 1 2 2 3 20 3 1 2 2 3
51 2 1 1 2 13 2 2 1 1 1 21 3 2 1 1 2
6 1 2 1 2 1 14 2 2 1 2 3 2 3 2 1 2 2
7 1 2 2 1 2 5 2 2 2 1 1 23 3 2 2 1 2
8 1 2 2 2 1 6 2 2 2 2 3 24 3 2 2 2 2

Table I1. Adjusted residuals of all elemen-
tary patterns (items with * represent rele-
vant patterns)

01 02 03
a 0.586 1.225 * —2.000
az 0.586 * —2.449 *2.000
az —1171 1.225 0.000
by 0.828 —1.732 0.943
b, —0.828 1.732 —0.943
c1 0.000 0.000 0.000
c2 0.000 0.000 0.000
dy 0.828 1732 *—-2.828
d, —0.828 —1.732 * 2.828

(a1,01) as an example to illustrate the finding of the adjusted residuals (here
atribute a is considered the first attribute). In this example, p = 1, j = 1, and
1 = 1, and thus the adjusted residual r111 is to be found. From Table |, 011 is
equal to 4 (the second, the fourth, the sixth, and the eighth training instances),
and ejg11 is equal to 10/3 (since ten training instances belong to class ¢; and
attribute a has three possible values). Moreover, o1 is equal to 10, o1 is equal
to 8, and N is equal to 24. By Formula (1), r111 is then calculated as 0.586,
meaning that the attribute a; is not a relevant characteristic of the class 4;. The
other adjusted residuals are calculated in the same way. Table |l shows the results
for the training set in Table I.

When the absolute values of the adjusted residuals are compared with 1.96,
95% of the normal distribution, the elementary relevant patterns are found to be
as follows:

(az 03 -I-), (dz 03 +);
(a1 63 —), (a2 02 —), (d1 03 —),
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where + indicates a positively relevant pattern and — indicates a negatively
relevant one.

STEP 2. Retain elementary positively relevant patterns in the candidate set

Only the positively relevant patterns are retained here to construct rules. For this
example, only the following elementary positively relevant patterns are consid-
ered:

(a2 03 +), (d2 63 +).

STEP 3. Form complex positively relevant patterns with K attribute-value pairs
(initially K = 2) by combining elementary positively relevant patterns. Retain
them in the candidate set

The first heuristic is used here to detect complex positively relevant patterns
by combining elementary positively relevant patterns. Suppose both (ay d3 +)
and (d d3 +) are elementary positively relevant patterns. PIM presumes the
combinatorial pattern (az dz d3 +) is also a positively relevant pattern. For the
training set in Table I, the following positively relevant patterns are detected:

(a2 03 +), (d2 93 +), (a2 d2 63 +).

STEP 4. Detect nondominated positively relevant patternswith K attribute-value
pairs by utilizing the elementary negatively relevant patterns. Retain themin the
candidate set

According to the second heuristic, a dominated pattern will not be retained in
the candidate set, since the elementary positively relevant pattern in the dominat-
ed pattern is enough to represent the correlation. Therefore only nondominated
patterns are checked here.

In Step 1, all the elementary positively and negatively relevant patterns are
detected. In Step 2 and Step 3, only the elementary positively relevant patterns
and the combinations of such patterns are considered. In this step, elementary
negatively relevant patterns are used to find further complex positively relevant
patterns (the third heuristic).

For example, (a2 d2 —) is an elementary negatively relevant pattern in the data
set. Thisrule indicatesthat any instance with attribute value a, can be classified as
0> with low probability. According to the third heuristic, an elementary negatively
relevant pattern (az d —) implies a; may have some correlation with §; or
3. Since the elementary positively relevant pattern (a; d3 +) was detected in
Step 1, (a2 63 +) will not be considered again, because it is relevant. Only the
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combinations of the pattern (a, d1) with other possible patterns are tested by the
residuals.
For the data set in Table I, the elementary negatively relevant patterns are
processed as follows:
(a1 63 —) — (a1 d1): considered and (aq d2): considered,
(a2 02 —) — (a2 01): considered and (ay d3): not considered,
(d1 03 —) — (dq 01): considered and (d; d2): considered.

Therefore, the following three possible nondominated positively relevant patterns
are formed:

(aq d1 61), (a1 d1 02), (a2 d1 d1).

The adjusted residuals of these three nondominated patterns are then calculated
by Formula (1). Results are shown as follows:

(al dl 51) — —1.852,
(a]_ dl 52) — 3.098,

(az dl 51) — 2.592.
(

ay di 62 +) and (az d1 61 +) are then put into the candidate set.

STEP 5. Construct classification rules with weights from the positively relevant
patterns in the candidate set

Each elementary positively relevant pattern (attribute A; = vj; class=p +) is
now converted into a classification rule:

If A; =wvj;, then class=p (or A; = vj; — p).

Next, based on the information theory, the weight of this rule is calculated by
the following formula:

Probability(attribute A; = v;; | class = p)

Probability(attribute A; = vj; | class # p) -

For a complex positively relevant pattern with two attribute-value pairs (attribute
Aj = vy, dtribute A;, = vj,, class=p +), therule is

W = log

If Aj, =v;, and Aj, =vj,, thenclass=p
(or Ajl = Ujyig N Ajz = Vjpip =7 p).
The weight of the rule is

Probability(attribute A, = vj,;,, attribute A;, = vj,;, | class = p)

=1 — . . .
W =log Probability(attribute A, = vj,;,, attribute A;, = vj,;, | class # p)
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For more complex patterns, the rules and the weights can be formed and calcu-
lated in the same way.

For the data set in Table I, the following positively relevant patterns are
detected after execution of Step 4:

(a2 63 +),(d2 63 +), (a2 d2 03 +), (a1 d1 02 +) and (az d1 61 +).
The following classification rules are then constructed:

1. ax — 53 W = 0.477,
2.dy — 83 W = 0477,
3. axANdy — 63 W = o0,
4 a1 Ndy — 6 W = o0,
5.aANdy — 01 W = o0.

STEP 6. Sort the classification rules by the weights

To efficiently match the relevant rules and classify an unknown object, the clas-
sification rules constructed in Step 5 are sorted by their weights, with rules with
higher weights placed first. For this example, the classification rules are arranged
in the following order:

LayANdy —d3 W =0,
2.a1\Ndy — 0o W = o0,
3 axNdy — 6 W =o0,
4. ax — 53 W = 0.477,
5.dy — 3 W =0.477.

STEP 7. If the percentage of the undetermined training examples is smaller than
a predefined threshold, stop the induction algorithm and add a default rule by
setting the most common class in the undetermined examples as the default class;
otherwise, do Step 8

A training example is said to be determined if it can match the condition part of
at least one classification rule. If an object matches more than one rule, then the
rule with the highest weight will be used to determine the class. As an example,
if the object (a2 by c2 dy) is to be classified, the following three rules will all be
matched:

lLaANdy— 63 W =o0,
4.ar — 63 W= 0.48,
5. dy — (53 W = 0.48.
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Since Rule 1 has the highest weight, the object (a2 b2 ¢z d2) is classified as d3.
Thus the matching process can stop once the first rule matched is found, because
the list of the classification rules is sorted in order of decreasing weight. This
strategy greatly reduces the amount of time needed for matching.

If the percentage of undetermined training examples is smaller than a pre-
defined threshold, the set of classification rules is then enough to ensure good
performance. For the data set in Table I, the seventeenth, the nineteenth, the
twenty-first, and the twenty-third cannot be determined by the classification rules.
If the percentage of the undetermined training instances is set at, for example,
10%, then STEP 8 must be executed to determine these four instances.

If certain training instances cannot be determined by the classification rules,
one of two factors may be the cause:

(1) other complex positively relevant patterns have not yet been found; or

(2) noise is present in the training set.

The next step is intended to cope with this situation.

STEP 8. Find all other nondominated positively relevant patterns each with K
attribute-value pairs by the residual analysis. If no such relevant patterns are
detected, stop the induction algorithm and add a default rule; otherwise, go to
Sep 9

For this step to be executed, there must be some training instances left unde-
termined by the existing classification rules. As mentioned before, there are two
possible reasons for this situation. A simple heuristic is used to determine which
is applicable. Nondominated positively relevant patterns with K attribute-value
pairs are detected. If no such positively relevant patterns are detected, the first
value of K that yields a positively relevant pattern could be sought by gradually
increasing the value of K. However, the first nondominated positively relevant
pattern may contain K +1, K + 2, or even more attribute-value pairs. When no
positively relevant patterns of K attribute-value pairs are detected, it is hard to
decide what value of K is enough to yield another positively relevant pattern,
so instead we then stop the learning algorithm and consider the undetermined
training instancesto be noise. This policy allows us to avoid the problem of com-
binatorial explosion. By means of this heuristic, a reasonable trade-off between
induction time and the classification ratio can be achieved.

For the above example, the following nondominated positively relevant pat-
terns with two attribute-value pairs are detected:

(a3 bz 52) — 3.098,
(a]_ d2 51) — 2.592,
(bz dl 52) — 2.000.
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STEP 9. Convert the new positively relevant patterns into classification rules. If
the percentage of the undeter mined training examplesis smaller than a predefined
threshold, stop the induction algorithm and add a default rule; otherwise, set
K=K+1andgo Sep 3

If positively relevant patterns are detected, they are converted into classification
rules. If the ratio of the undetermined training samples is smaller than a pre-
defined threshold, the set of classification rules is then enough to achieve good
performance. Otherwise, more complex relevant patterns are possible (since the
current value of K can cause a positively relevant pattern), and the algorithm
returns to Step 3 for another run. This heuristic is called the ‘property of conti-

nuity’.
For the above example, the following classification rules are then constructed:
LazANby— 0 W =o0,
2.a1Ndp — 01 W = o0,
3. boANdL— 62 W = 0.602.

For the data set in Table I, the seventeenth and the nineteenth still cannot be
determined by the classification rules. If the percentage of the undetermined
training instances is set at, for example, 10%, the following default rule is added
into the rule set:

Other conditions — 4.

The learning process then stops, with the following set of classification rules
output as the result:

LayANdy =03 W =00

2201/ Nd1 — 6 W =00
.axANdy — 61 W = oo,

Laz3ANby— 0 W =00

apANdp =61 W =00

bo Nd1 — 6 W = 0.602,

. a2 —» 53 W = 0.477,

d2 — 53 W = 0.477,

. Other conditions — d1.

© N U~ W

Based on the induction method, an easy and effective approximate reasoning
method can be presented here. When an object is to be classified, it matches
the condition part of each classification rule to determine its class. If an object
matches more than one rule, then the rule with the highest weight will be used
to determine the class. If an object matches no rule, the default rule is used to
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determine its class. By this reasoning method, the classification rules derived in
the above example can classify the datain Table | with 100% accuracy.

Some related remarks about PIM are discussed below.

1. In STEP 8, only nondominated positively relevant patterns are detected.
Negative patterns are not detected. As a good alternative, negatively relevant
patterns (with K attribute-value pairs) can also be detected to act as negative
constraintsfor the next STEP 4 (K +1). However, the maximum possibl e attribute
number of positively relevant patterns derived from the negative constraints is
2x K.

2. In STEPs 7-9, the termination criterion is evaluated by the number of unde-
termined training instances. As an alternative, the termination criterion could be
evaluated by the number of wrongly classified training instances. This aterna-
tive, however, will take more time and get more specific rules than the original
algorithm.

3. When the numbers of instances for each class are not comparable, it is
possible that the patterns correctly classifying certain classes are very specific.
The implication is that no positively relevant patterns for these classes could be
found when the termination criterion is reached. In this situation, the algorithm
may regard these classes of instances as noise (they could actually be noise)
or may set a default rule to classify them (STEPs 7-9). As an dternative, the
termination criterion evaluated by the wrongly classified instances can be used to
get more specific rules of these classes (see Remark 2). It is hard to decide which
alternative is better, since these classes of instances could actually be noise.

4. Traditional symboalic learning is most suitable for deriving linear boundaries
(represented by attributes). It has less power in deriving nonlinear boundaries.
For example, the learning results by PIM for the XOR problem are four rules,
with each rule covering only one training instance. No generalization is achieved.
But actually, only two rules are enough for the XOR problem (e.g., z*y = 1 —
class 1, and z*y = 0 — class 2). For this kind of problems, numerical learning
methods (such as neural network learning) are good candidates.

6. Experiments

The proposed algorithm was applied to three problem domains — fitting contact
lenses [1] (a noise-free domain with a small number of instances), a simulated
data set [1] (a noise-free domain with a larger number of instances), and brain
tumor diagnosis [22] (a noisy domain) — to demonstrate its effectiveness. The
classification accuracy of an induction algorithm is usually evaluated by the
following steps. The data set is first split into a training set and a test set; the
induction algorithm is run on the training set to induce concept descriptions; and
the concept descriptions are then tested on the test set to measure the percentage
of correct predictions. In each of the following experiments, 75% of the cases
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Table I11. Accuracy for the con-
tact lens fitting domain

Method Accuracy
PRISM 99.40%
ID3 96.89%
PIM 94.70%

Chan and Wong  90.60%

were selected at random for training, and the remaining 25% were used for
testing.

6.1. FITTING CONTACT LENSES

Consider an adult spectacle wearer who consults an optician for purchasing con-
tact lenses [1]. Assume that, from the optician’s point of view, this is a three-
category problem with four factors a, b, ¢, and d that must be taken into consid-
eration. Table Il compares the accuracy averaged over 100 runs on this problem
of PRISM [1], ID3 [12, 17, 20], PIM, and Chan and Wong's method [2, 3].

Although all methods have high accuracy on this problem, PIM performs
dightly better than Chan and Wong's. As mentioned before, an induction algo-
rithm for noisy domains may cause classification errors when applied to noise-free
domains. Thusiit is not surprising that ID3 and PRISM (two noise-free learning
algorithms) perform better than PIM.

6.2. ARTIFICIAL DATA

Suppose there are four attributes, a,b, ¢, and d. Attribute a has five possible
values (1, 2, 3, 4, 5); Attributes b and ¢ have four possible values (1, 2, 3, 4);
and Attribute d has three possible values (1, 2, 3). Thus a complete training set
would consist of 5 x 4 x 4 x 3 = 240 instances. Also suppose that all instances
are generated according to the following rules:

rule 1: as A dp — 1

rue2: ci Ady — 01

rule3: ag Aca Adp — 01
ruled: as Aca ANdy — 01

rule 5: all others are of class 4.

Table IV compares the accuracy of the four learning methods on this problem,
averaged over 100 runs. The results are similar to those for Experiment 1.
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Table IV. Accuracy for the arti-
ficia data domain

Method Accuracy
PRISM 89.30%
ID3 86.80%
PIM 85.20%

Chan and Wong ~ 75.90%

6.3. BRAIN TUMOR DIAGNOSIS

The brain tumor diagnosis domain is quite interesting and challenging because
the brain is very complex and the cause of many brain tumorsis still unclear. The
most reliable technique for diagnosing brain tumors is generally considered com-
puter tomography (CT). Nearly all intracranial lesions can be detected with CT.
The usual examination involves scanning the neurocranium in a series of trans-
verse dlices lying in parallel. The head is bent forward so that the sectional plane
lies at an angle of 12° to the orbitomeatal lines. Each slice is 8 millimeters thick,
so that 8-15 dlices are usually sufficient to visualize the intracranial structures
which are to be examined. Normally, the process of diagnosing a brain tumor
comprises several stages. First, the CT pictures of a patient’s brain are analyzed
and compared in order to determine the location and density of the lesion. Next,
the CT pictures are further analyzed to obtain edema, shape of edema, degree
of enhancement, appearance of enhancement, general appearance, size of mass,
mass effect, and bone change. Finaly, the brain tumor can be identified as one
of several possible types of tumors.

Data on 204 cases of patients with the brain tumors were provided by the
Department of Radiology of Veterans General Hospital, Taipei, Taiwan [22].
Each case is described using 12 attributes and six types of brain tumors may be
distinguished. A training instance, for example, is shown as follows:

1 0Sex o M.

2. Location .......... ...l Sellar

3. Precontrast ........................ High

4. Cdcification ...................... Marginal

5, BEdema .......... ...l No.

6. Shape_edema ..................... Smooth and regular.

7. Degree of enhancement ............ Less than vessel.

8. Appearance of enhancement ........ Homogeneous with lucency
inside.

9. General of appearance ............. Solid with small cyst/cysts.
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10. Bone_change ..................... Sellar enlargement.
11. Masseffect ...l With mass effect.

12 Hydro ... No hydrocephalus.
Pathology ............c.ooooiiiiiiiiat, Pituitary adenoma.

A total of 58 rules are derived. A rule, for example, is shown as follows:

If (Location = Sellar) and (Precontrast = High) and (Hydro = No)
Then Class is Pituitary adenoma.
Table V compares the accuracy of the four learning methods on this problem,

averaged over 100 runs. The table shows that PIM has the highest accuracy
among the four learning methods.

Table V. Accurecy for the brain
tumor diagnosis domain

Method Accuracy
PRISM 82.30%
ID3 74.80%
PIM 87.10%

Chan and Wong  80.60%

7. Conclusion

We have proposed a new probabilistic induction method for obtaining relevant
patterns implicit in data sets. Compared with Chan and Wong's method, PIM has
the following advantages:

(2) It can detect complex positively relevant patterns and avoid the problem
of combinatorial explosion. A reasonable trade-off between the induction time
and the classification ratio can be achieved.

(2) It converts only positively relevant patterns into classification rules. Neg-
atively relevant patterns are not converted, but rather used as information for
inducing other positively relevant patterns. PIM thus avoids erroneous classifi-
cation of unknown objects when no positively relevant patterns are matched.

(3) It lists the rules by order of weight, with the rules of highest weights at the

front. The matching process can then stop when the first rule matched is found,
thus decreasing the matching time.
Three experiments were conducted to compare the performance of PIM with
that of three other learning methods. PIM outperformed Chan and Wong's in all
three experiments. PIM also outperformed the ID3 and PRISM learning methods
in the brain tumor diagnostic domain (a noisy domain). PIM is clearly a good
candidate for application in noisy learning environments.
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