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Abstract

Online mining of closed frequent itemsets over streaming data is one of the most important issues in mining data streams. In this
paper, we propose an efficient one-pass algorithm, NewMoment to maintain the set of closed frequent itemsets in data streams with
a transaction-sensitive sliding window. An effective bit-sequence representation of items is used in the proposed algorithm to reduce
the time and memory needed to slide the windows. Experiments show that the proposed algorithm not only attain highly accurate mining
results, but also run significant faster and consume less memory than existing algorithm Moment for mining closed frequent itemsets over

recent data streams.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Online mining of data streams is one of the most interest-
ing research issues of data mining in recent years. Data
streams have the unique characteristics as described below
(Babcock, Babu, Datar, Motwani, & Widom, 2002; Golab
& Ozsu, 2003; Jiang & Gruenwald, 2006): (1) unbounded
size of input data; (2) usage of main memory is limited;
(3) input data can only be handled once; (4) fast arrival rate;
(5) system cannot control the order data arrives; (6) analyt-
ical results generated by algorithms should be instantly
available when users request; (7) errors of analytical results
should be bounded in a range that users can tolerate.

Many previous studies contributed to the efficient min-
ing of frequent patterns in streaming data (Chang & Lee,
2004a, 2004b; Chi, Wang, Yu, & Muntz, 2004; Giannella,
Han, Pei, Yan, & Yu, 2003; Jin & Agrawal, 2005; Li,
Lee, & Shan, 2004, 2005; Li, Ho, Shan, & Lee, 2006;
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Manku & Motwani, 2002; Teng, Chen, & Yu, 2003,
2004; Wong & Fu, 2005; Yu, Chong, Lu, & Zhou, 2004).
According to the stream processing model (Zhu & Shasha,
2002), the research of mining frequent patterns over data
streams can be divided into three categories: landmark win-
dows (Jin and Agrawal, 2005, Li et al., 2004, 2005; Manku
and Motwani, 2002; Yu et al., 2004), sliding windows
(Chang & Lee, 2004b; Chi et al., 2004; Li et al., 2006; Teng
et al., 2003, 2004; Wong & Fu, 2005), and damped windows
(Chang & Lee, 2004a; Giannella et al., 2003), as described
briefly as follows. In the landmark window model, knowl-
edge discovery is performed based on the values between a
specific timestamp, called landmark, and the present time-
stamp. In the sliding window model, knowledge discovery
is performed over a fixed number of recently generated
data elements which is the target of data mining. Two types
of sliding widow, i.e., transaction-sensitive sliding window
and time-sensitive sliding window, are used in mining data
streams. The basic processing unit of window sliding of
first type is an expired transaction while the basic unit of
window sliding of second one is a time unit, such as a min-
ute or an hour. In the damped window model, recent slid-
ing windows are more important than previous ones.
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In Manku and Motwani (2002), Manku and Motwani
developed two single-pass algorithms, sticky-sampling and
lossy-counting, to mine frequent items over offline data
streams with a landmark window. Moreover, Manku and
Motwani proposed a lossy-counting based three module
method BTS (Buffer-Trie-SetGen) for mining the set of
frequent itemsets from offline data streams. Li et al. pro-
posed prefix tree-based single-pass algorithms, called
DSM-FI (Li et al., 2004) and DSM-MFT (Li et al., 2005),
to mine the set of all frequent itemsets and maximal fre-
quent itemsets over the entire history of offline data streams.
Jin and Agrawal (2005) proposed an algorithm, called
StreamMining, for in-core frequent itemset mining over
online data streams. Yu et al. (2004) discussed the issues
of false negative or false positive in mining frequent itemsets
from high speed offline transactional data streams.

Chang and Lee (2004a) developed a damped window
based algorithm, called estDec, for mining frequent item-
sets in online streaming data in which each transaction
has a weight decreasing with age. In other words, older
transactions contribute less toward itemset frequencies,
and it is a kind of damped windows model. Giannella
et al. (2003) proposed a frequent pattern tree (abbreviated
as FP-tree (Han, Pei, & Yin, 2000)) based algorithm, called
FP-stream, to mine frequent itemsets at multiple time gran-
ularities by a novel titled-time windows technique. FP-
stream focuses on offline data streams.

Chang and Lee (2004b) proposed a BTS-based algo-
rithm, called SWFI-stream, for mining frequent itemsets
in online data streams with a transaction-sensitive sliding
windows model. Li et al. (2005) proposed a single-pass
algorithm, called DSM-RMFI, based on DSM-MFI to
find maximal frequent itemsets over offline data streams
with a time-sensitive sliding window. Teng et al. (2003) pro-
posed a regression-based algorithm, called FTP-DS, to find
temporal patterns (frequent inter-transaction itemsets)
across multiple online data streams in a time-sensitive slid-
ing window. Teng et al. (2004) proposed a resource-aware
algorithm, called RAM-DS, to mine temporal patterns in
multiple online data streams with a time-sensitive sliding
window. Li et al. (2006) proposed efficient algorithms,
called MFI-TransSW and MFI-TimeSW, and to find the
set of frequent itemsets in online data streams with a trans-
action-sensitive sliding window and time-sensitive sliding
window, respectively. Wong and Fu (2005) proposed an
efficient algorithm to mine top-k frequent itemsets in offline
data streams with a transaction-sensitive sliding window
without a user-defined minimum support constraint.

Chi et al. (2004) proposed a transaction-sensitive sliding
window based algorithm, called Moment, which might be
the first to find frequent closed itemsets (FCI) from online
data streams with a transaction-sensitive sliding window.
A summary data structure, called CET (closed enumera-
tion tree), is used in the Moment algorithm to maintain a
dynamically selected set of itemsets over a transaction-sen-
sitive sliding window. These selected itemsets consist of
closed frequent itemsets and a boundary between the

closed frequent itemsets and the rest of the itemsets. CET
can cover all necessary information because any status
changes of itemsets (e.g. from infrequent to frequent or
from frequent to infrequent) must be through the boundary
in CET. Whenever a sliding occurs, it updates the counts of
the related nodes in CET and modifies CET. Experiments
of Moment show that the boundary in CET is stable so
the update cost is little. However, Moment must maintain
huge CET nodes for a closed frequent itemset. The ratio of
CET nodes and closed frequent itemsets is about 30:1. If
there are a large number of closed frequent itemsets, the
memory usage of Moment will be inefficient.

The purpose of this work is on closed frequent itemsets
mining over online data streams with atransaction-sensitive
sliding window. An efficient algorithm, called NewMo-
ment,' is proposed to mine the set of closed frequent item-
sets over online data streams with a transaction-sensitive
sliding window. Experiments show that the proposed New-
Moment algorithm not only attain highly accurate mining
results, but also run significant faster and consume less
memory than Moment algorithm (Chi et al., 2004) for min-
ing closed frequent itemsets over the most recent w transac-
tions of a data stream.

The remainder of the paper is organized as follows. The
problem is defined in Section 2. Section 3 presents the pro-
posed NewMoment algorithm. Experiments are discussed
in Section 4. Finally, we conclude this work in Section 5.

2. Problem definition

Let ¥ = {i,i5,...,i,} be a set of items. A transaction
T=(TID,x1,x5,...,x,), x; € ¥, for 1 <i<n, is a set of
items, while n is called the size of the transaction, and
TID is the unique identifier of the transaction. An itemset
is a non-empty set of items. An itemset with size & is called
a k-itemset. A transaction data stream 7DS = T1,7>5,..., Ty
is a continuous sequence of transactions, where N is the
TID of latest incoming transaction 7.

A transaction-sensitive window (7ransSW) in the trans-
action data stream is a window that slides forward for
every transaction. The window at each slide has a fixed
number, w, of transactions, and w is called the size of the
window. Hence, the current transaction-sensitive window
is TransSW+1 = [Tn—w+1s T N—w+2,- - -» T ], Where N —
w+ 1 is the window id of current TransSW. The support
of an itemset X over TransSW, denoted as sup(X), is the
number of transactions in TransSW containing X as a
subset.

Definition 1 (Frequent itemset). An itemset X is called a
frequent itemset (F7) if sup(X) > s-w, where s is a user-
defined minimum support threshold (MST) in the range of
[0, 1]. The value s - w is called the frequent threshold (7)) of
TransSW.

'A New algorithm for Maintaining Closed Frequent Itemsets by
Incremental Updates.
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TID | Transaction  Window size w = 4
T, abc TransSW,
T, becd TransSW,
T, abc TransSW;
Ty bc
Ts bd
Ts cd

Fig. 1. Example Transaction-Sensitive Window.

Definition 2 (Closed frequent itemset). An itemset X is a
closed frequent itemset if there exists no itemset X’ such that
(1) X’ is a proper superset of X, and (2) every transaction
containing X also contains X'.

Problem Statement: Given a transaction-sensitive win-
dow TransSW, and a minimum support threshold s, the
problem is to mine the set of closed frequent itemsets in
the most recent w transactions in a data stream.

Fig. 1 is an example transaction-sensitive window used
in this paper. In Fig. 1, the size of the sliding window is
4. The first transaction-sensitive widow TransSW; consists
of the transactions from 7 to 74,. When the transaction
with T's comes, the transaction-sensitive window eliminates
the oldest transaction (7;) from the current window and
appends the incoming transaction (7). The second win-
dow TransSW, is the result after the first time of window
sliding.

3. The proposed algorithm NewMoment

In this section, we introduce the proposed NewMoment
algorithm. A bit vector based representation of items is
used in the NewMoment algorithm to reduce the time
and memory needed to slide the windows. A new summary
data structure NewCET? based on a prefix tree structure is
developed to maintain the essential information of closed
frequent itemsets in the recent w transaction of a data
stream.

3.1. Bit-vector representation of items

In the NewMoment algorithm, for each item X in the
current TransSW, a bit-sequence with w bits, denoted as
Bit(X), is constructed. If an item X is in the ith transaction
of current TransSW, the ith bit of Bit(X) is set to be 1;
otherwise, it is set to be 0.

For example, in Fig. 1, the first window TransSW, con-
sists of four transactions: (77, (abc)), (T, (bcd)), {Ts,(abc))
and (T4, (bc)), but the second window TransSW, consists of
transactions:  (T»,(bcd)), (Ts,(abc)), (T4, (bc)), and
(Ts,(bd)). Because item a appears in the first and third

2 New Closed Enumeration Tree.

transactions of TransSW), the bit-sequence of a, Bit(a), is
1010. Similarly, Bit(b) =111, Bit(¢) = 1111, and Bit(d) =
0100. The bit-sequences of all items in each window are
listed in Table 1. The most left bit of a bit-sequence repre-
sents the oldest transaction in current window and the most
right bit represents the newest transaction.

In the next section, we will introduce the methods to
slide the transaction-sensitive windows using the bit-
sequences of items.

3.2. Window sliding using bit-sequences

The bit-sequence is efficient in window sliding process.
The sliding process consists of two steps: delete the oldest
transaction and append the incoming transaction.

3.2.1. Delete the oldest transaction

In this step, the bit-sequences of items are used to left-
shift one bit to delete the oldest transaction. For example,
in Fig. 1, the bit sequence of item a, Bit(a), is 1010 in the
first window TransSW,. If transaction T is deleted from
TransSW/, Bit(a) becomes 0100. Now the most left bit rep-
resents the transaction 75. The most right bit is meaning-
less and is conserved for next step.

3.2.2. Append the incoming transaction

After deleting the oldest transaction from current trans-
action-sensitive window, we set the most right bit of each
bit-sequence of items by checking the new incoming trans-
action T'y. We set the most right bit of the bit-sequence of
item X to 1 if Ty contains X as a subset. Otherwise, we set
the bit to 0.

For example, in Fig. 1, the bit-sequence of item a, Bit(a),
becomes 0100 after deleting the expired transaction 77.
Because the incoming transaction 75 does not contain item
a, we set the most right bit of Bit(«) to 0, i.e., Bit(a) changes
form 1010 to 0100. Similarly, Bit(c) changes from 1111 to
1110 and Bit(d) changes from 0100 to 1001.

In the next section, we introduce an efficient method to
count the support of itemsets in the current transaction-
sensitive window.

3.3. Counting support using bit-sequences

The concept of bit-sequence of item can be extended to
itemset. For example, in Fig. 1, the bit-sequence of 2-item-
set ab, Bit(ab), in the TransSW, is 1010. That means trans-
actions 7'} and 75 of TransSW, contain the itemset ab.

Table 1
Bit-sequences of items in each window
TransSW, TransSW, TransSW;
a 1010 0100 1000
b 1111 1111 1110
¢ 1111 1110 1101
d 0100 1001 0011
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The process of counting support of an itemset is
described as follows. Assume that there are two k-itemsets
X and Y and their corresponding bit-sequences Bit(X) and
Bit(Y). The bit-sequence of the (k + 1)-itemset Z=XU Y
can be obtained by the bitwise AND of Bit(X) and Bit( Y).
For example, the bit-sequence of 2-itemset ab, Bit(ab), in
the first window TransSW, is 1010 which can be obtained
by bitwise AND the bit-sequences of items ¢ and b, where
Bit(a) = 1010 and Bit(h) = 1111.

In the next section, we propose an efficient approach to
build the proposed summary data structure NewCET using
bit-sequences of itemsets. Based on the bitwise AND of bit-
sequences of itemsets, candidates can be efficiently gener-
ated when building NewCET.

3.4. Building the NewCET

The proposed summary data structure, called NewCET
(New Closed Enumeration Tree), is an extended prefix tree
structure. NewCET consists of three parts.

(1) The bit-sequences of all 1-itemsets in the current trans-
action-sensitive window TransSWyn_,+1.

(2) A4 set of closed frequent itemsets in TransSWyn_+1-

(3) A4 hash table: For checking whether a frequent itemset
is closed or not, we use a hash table to store all closed
frequent itemsets with their supports as keys. Assume
that there are two frequent itemsets X and Y. If the
support of X is equal to the support of Y and
X C Y, X and Y must be contained in the same set
of transactions. That means the itemset X is not a
closed frequent itemset. Moreover, the value of sup-
port is suitable to be the key of the hash table.

Similar to a prefix tree, each node n; in the NewCET
represents an itemset /. A child node, ny, is obtained by
adding a new item to I. But, NewCET only maintains a
set of closed frequent itemsets, not all itemsets.

Fig. 2 gives the algorithm of building NewCET. In the
building algorithm, each n; has a corresponding bit-
sequence, Bit(/), to store the support information in the
current sliding window. Function Build is a depth-first pro-
cedure. Build visits the itemsets of the current NewCET in a
lexicographical order. In the lines 1-2 of Fig. 2, function
Build is performed if n; is frequent and is not contained
by other closed frequent itemsets. Function leftcheck uses
the support of n; as a hash key to speed up the checking.
In the lines 3-5, if n; passes the checking of the lines 1-2,
Build generates all possible children of n; with frequent
siblings and creates their bit-sequences by bitwise AND
bit-sequences of n; and its frequent siblings. In the lines
6-7, Build recursively calls itself to check each child of #n;.
In the lines 8-10, if there is no child of n; with the same sup-
port as ny, n;is a closed frequent itemset and it is retained in
the NewCET.

Fig. 3 shows the NewCET in the first window TransSW,
when the function Build is in process. Although a bit-

Build (n, N, s)

—_

if support(n;) > s - N then
if leftcheck(n;) = false then
foreach frequent sibling ng of n; do

generate a new child »;-x for ny;

wm AW

bitwise AND Bit(/ ) and Bit(K ) to
obtain Bit(/ K);
foreach child n,’ of n; do
7. Build(n/, N, S);
8: if a child »;’ of n; such that
support(#;’) = support(#;) then
9: retain »; as a closed frequent itemset;

10: insert #; into the hash table;

Fig. 2. Algorithm of building NewCET.

//@\\

(a): <1010>  (b): <1111> (c): <1111>  (d): <0100>
(a, b): <1010> (a, c): <1010> (b, ¢): <1111>

(a, b, c): <1010>

Fig. 3. NewCET in the first window TransSW;.

sequence is generated and a new tree node is created, only
a branch of the tree is maintained in the main memory.
This is because Build is a depth-first procedure. Besides
the set of l-itemsets, the maximum number of bit-
sequences in the memory is 3, i.e., bit-sequences of the
itemsets ab, ac, and abc. When the function Build is done,
all bit-sequences of k-itemsets eliminated, where k£ > 1. The
set of all closed frequent itemsets in the current transac-
tion-sensitive window only retains their supports.

Fig. 4 shows the NewCET in the first transaction-sensi-
tive window TransSW; when Build is done. The tree nodes

/Z@\\

(a): <1010>  (b): <1111>  (¢): <1111> (d): <0100>

(a,b,c): 2 (b, c): 4

Fig. 4. NewCET in the first window TransSW, (tree nodes with shadow
are closed frequent itemsets).
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with shadow are closed frequent itemsets. For simplicity,
the hash table is not displayed in this figure.

In Sections 3.5 and 3.6, we describe the methods to
delete the oldest transaction and append a new incoming
transaction in the current transaction-sensitive window,
respectively.

3.5. Deleting the oldest transaction

Deleting the oldest transaction is the first step of win-
dow sliding. First of all, all bit-sequences of I-itemsets
are left-shifted one bit. Then, all items in the deleted trans-
action are kept. The process can be done by observing the
most left bit before the left-shifting.

Fig. 5 gives the algorithm of deleting the oldest transac-
tion after left-shifting all the bit-sequences of 1-itemsets. In
the Fig. 5, the function Delete generates the prefix tree
including the itemsets whose supports are s- N — 1. This
is because the supports of a set of closed frequent itemsets
in previous window would be s- N and then becomes
s+ N — 1 after the deletion.

Function Delete is a depth-first procedure. When the
recursive calls of n;’s children return, Delete is performed,
if ny is a closed frequent itemset, the NewCET is main-
tained and the hash table is updated. In the lines 19 and
23, if n; is closed frequent itemset in previous window, n;
is marked as a non-closed itemset. In this case, n; will not
be retained when the function Delete is done. Fig. 6 shows
the NewCET after deleting the oldest transaction T7.

3.6. Appending a new incoming transaction

Appending the incoming transaction is the second step
of window sliding. All the bit-sequences of 1-itemsets are
set their most right bit to 1 or 0 based on the incoming
transaction 7. We set the most right bit of the bit-
sequence of itemset X to 1 if T contains X as a subset.
Otherwise, we set the bit to 0.

Fig. 7 gives the algorithm of appending a new incoming
transaction after setting the most right bit of each bit-
sequence of 1-itemsets. Function Append is almost the same
as Build. The only difference is in the lines 9-11. If the
checked closed frequent itemsets are already in the New-
CET, Append updates the NewCET and hash table.
Fig. 8 shows the NewCET in the second window TransSW,
after appending the incoming transaction 7.

4. Performance evaluation of NewMoment

In this section, the experiments are performed to com-
pare the proposed NewMoment algorithm with the
Moment algorithm (Chi et al., 2004). The source code of
Moment algorithm, denoted as MomentFP, is provided
by Chi et al. (2004). All experiments are done on a
1.3 GHz Intel Celeron PC with 512 MB memory and run-
ning with Windows XP system. The proposed NewMoment
algorithm is implemented in C++ STL and compiled with

Delete (1, N, s)

1: if »; is not relevant to the deleted transaction then
2: return;

3: else if support(n;) > (s*N — 1) then

4: foreach sliding ng of n; whose support > (sN—1)
do

5: generate a new child ;- for ny;

6: bitwise AND Bit(/) and Bit(K) to obtain Bit(/[ 1 K);

7 foreach child »;' of n; do

8: Delete(n,', N, s);

9: if support(n;) > s - N then

10: if leftcheck(n;) = false then

11: if n; is closed frequent itemset

in previous sliding window then

12: update the support of n;;

13: update #; in the hash table;

14: else

15: retain n; as a closed frequent itemset;
16: insert 7; into the hash table;

17: else /* leftcheck(n)) = true */

18: if n; is closed frequent itemset

in previous sliding window then

19: mark #; as a non-closed frequent itemset;
20: eliminate 7; from the hash table;

21: else /™ support(n;) <s'N */

22: if n, is closed frequent itemset

in previous sliding window then
23: mark 7; as non-closed itemset;

24: eliminate 7; from the hash table;

Fig. 5. Algorithm of deleting the oldest transaction.

//@\\

(a): <0100>  (b): <1110> (c): <1110> (d): <1000>

(b, c): 3

Fig. 6. NewCET after deleting the transaction 7.
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Append (n;, N, 5)

1: if support(n;) > s*N then

2: if leftcheck(n;) = false then

3: foreach frequent sibling ng of n; do

4: generate a new child n;- for ny;

5: bitwise AND Bit(/) and Bit(K) to
obtain Bit(/[1K);

6: foreach child »;" of n; do

7: Append(n/, N, s);

8: if a child »,’ of n; such that

support(#;") = support(#;) then
9: if n; is closed frequent itemset

in previous sliding window then

10: update the support of 7,

11: update #; in the hash table;

12: else

13: retain »; as a closed frequent itemset;
14: insert »; into the hash table;

Fig. 7. Algorithm of appending the incoming transaction.

/f\

(a): <0100>  (b): <1111>  (c¢): <1110>  (d): <1001>
(b,c):3 (b, d):2

Fig. 8. NewCET after appending a new incoming transaction 7 in the
TransSW,.

Visual C++ .NET compiler. Moreover, the synthetic data
T10.110.D200K is generated by the IBM synthetic data gen-
erator (Agrawal & Srikant, 1994). Parameters of synthetic
data are listed in Table 2.

The performance measurements include memory usage,
the loading time of the first window, and the average time
of window sliding. Memory usage was tested by system
tool to observe real memory variation. Average time of

Table 2

Parameters of the synthetic data

Parameter Value
Average items per transaction (7)) 10
Number of transactions (D) 200 K
Number of items (N) 1000
Average length of maximal pattern (/) 10

window sliding was reported over 100 consecutive sliding
windows.

4.1. Mining with different minimum supports

In the first experiment, the minimum support threshold
is changed from 1% to 0.1%, and the size of sliding window
is fixed to 100,000 (100 K) transactions.

Fig. 9 shows the memory usage with KB units. We can
observe that memory used by Moment is more than
120 MB but used by NewMoment is about 15 MB. When
the minimum support is down to 0.05%, the memory used
by NewMoment is just 50 MB but memory of Moment is
out of bound (more than 512 MB).

The maintaining data of NewMoment is much less than
the one of Moment. NewMoment only maintains bit-
sequences of 1-itemsets and closed frequent itemsets in cur-
rent window. Experiment shows that NewCET is more
compact than CET.

Fig. 10 shows the loading time the first window. In the
first window, both NewMoment and Moment need to
build a prefix (lexicographic) tree. We can observe that
NewMoment is a little faster than Moment. The reason is
that generating candidates and counting their supports
with bit-sequences is more efficient than with an indepen-
dent sliding window (in MomentFP, a FP-tree (Chi et al.,
2004) is used).

Fig. 11 shows the average time of window sliding. In the
experiment, NewMoment is a little slower than Moment
because NewMoment do not use TID sum as another
key to speed up left-check step. But we can observe that

Memory usage

’ —&— NewMoment—#— MomentFP ‘

W
o

S

1 09 0.8 0.7 06 0.5 04 0.3 0.2 0.1 0.05
Minsup (%)

W
(=)

Memory (MB)
—_— N N
oS o S
S35 3
L

(=]

Fig. 9. Memory usage with different minimum supports.

Time of Loading the First Window

—&— NewMoment —8— MomentFP |

Qé 80
£ g 60
e 5
£ g 40
S 2
g2 20
—

(=]

1 09 08 07 06 05 04 03 02 0.1
Minimum Support (%)

Fig. 10. Time of loading the first window with different minimum
supports.
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Average Time of Window Sliding

|—0—NewMoment —— MomentFP |
0.06 f\
0.04 [ o\ ,/”/.
0.02 ; \ i
1 09 08 0.7 06 05 04 03 02 0.1
Minimum Support (%)

Window Sliding Time
(seconds)

Fig. 11. Average time of window sliding with different minimum supports.

the difference is about 0.02 s. The steps of window sliding
can be finished in one second for both algorithms and the
difference is meaningless.

4.2. Mining with different window sizes

In the second experiment, the size of sliding window is
changed from 10 K transactions to 100 K transactions,
and the minimum support threshold s is fixed to 0.1%.

Fig. 12 shows the memory usage with KB units. Both
NewMoment and Moment are linearly affected by the sizes
of sliding windows. In this experiment, the proposed New-
Moment algorithm outperforms the Moment algorithm in
the memory requirement.

Fig. 13 shows the time of loading the first window.
Although with the increasing sliding window size, each
bit-sequence becomes larger, NewMoment is still faster
than Moment in the experiment of loading time of the first

Memory Usage
_ ’—O—NeWMoment —&— MomentFP ‘
M
) 250000
5 200000 M
50
%’, 150000
= 100000
S
g 50000
[} 1 1 1
=

10 20 30 40 50 60 70 80 90 100
Window Size (K transactions)

Fig. 12. Memory usage with different window sizes.

Time of Loading the First Window
—&@— NewMoment —ll— MomentFP |

o 80 =
E/‘\
g§60
2540
22
&> 20
—
O 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
Window Size (K transactions)

Fig. 13. Time of loading the first window with different sliding window
sizes.

window. The reason is that the processing time of bitwise
AND operation between bit-sequences is almost not
effected by the length of bit-sequence.

Fig. 14 shows the average time of window sliding. In this
experiment, the time of window sliding of NewMoment
and Moment is almost the same.

4.3. Mining with different number of items

NewMoment algorithm maintains bit-sequences of all
items instead of independent sliding window structure
maintained in MomentFP algorithm (Chi et al., 2004). In
this section, several experiments are done to prove that
with the increase of item types, NewMoment is still efficient
in memory usage and running time. But, MomentFP is out
of memory (more than 512 MB) when the number of items
exceeds 3000.

In these experiments, the number of items is changed
from 1000 to 10,000. The size of sliding window is set to
100,000 and minimum support threshold is set to 0.1%.
Fig. 15 shows the memory usage with KB units. The mem-
ory usage of NewMoment and the number of items is lin-
early related. This result shows that NewMoment does
not increase its memory usage suddenly when the number
of items is large.

Fig. 16 shows the loading time the first window and
Fig. 17 shows average time of window sliding. The results
show that loading time and window sliding time also has
linear relation with the number of items. Although loading
time is more than 300 s when the number of items exceeds
9000, the process of loading the first window is only exe-
cuted once. Average time of window sliding is still less than

Average Time of Window Sliding
| —— NewMoment —8— MomentFP |

0.08

~ 0.06 /!*
0.04 —:i- \J\ﬁ;‘:—:
< 0.02
10 20 30 40 50 60 70 80 90 100
Window Size (K transactions)

seconds

Window Sliding Time

Fig. 14. Average time of window sliding with different sliding window
sizes.

Memory Usage
| —4— NewMoment —#— MomentFP
~ 500000
< 400000 —*
£ 300000 ——
£ 200000
§ 100000 —t
0 N I ! . . . . .

1 2 3 4 5 6 7 8 9 10
Number of Items (K)

Fig. 15. Memory usage with different number of items.
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Time of Loading the First Window
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N
(=)
(=)

|

Loading Time
(seconds)

—_— N W
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o O

(=)

1 2 3 4 5 6 7 8 9 10
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Fig. 16. Time of loading the first window with different number of items.

Average Time of Window Sliding

|+NewMoment —— MomentFP |

0.6
2 0.2

1 2 3 4 5 6 7 8 9 10
Number of Items (K)

Window Sliding Time
(seconds)

Fig. 17. Average time of window sliding with different number of items.

one second. It means that the proposed NewMoment algo-
rithm is still efficient with a large number of items.

5. Conclusions

In this paper, we propose an efficient single-pass algo-
rithm NewMoment to mine the set of closed frequent item-
sets over data streams with a transaction-sensitive sliding
window. In NewMoment algorithm, an effective bit-
sequence representation is developed to reduce the memory
requirement of the online maintenance of closed frequent
itemsets generated so far. Experiments show that the pro-
posed NewMoment algorithm outperforms the Moment,
a state-of-art algorithm for mining the set of closed fre-
quent itemsets over online data streams with a transac-
tion-sensitive sliding window.
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