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In this study, a hybrid simulated annealing algorithm with mutation operator is proposed to solve the
manufacturing cell formation problem considering multiple process routings for parts, so that either
the intercellular movements are minimized or the grouping efficacy is maximized, depending on the def-
inition of the decision objective. The proposed algorithm is designed mainly to explore solution regions
efficiently and to expedite the solution search process. The performance of the proposed algorithm is
tested by a range of test problems, some of which are from the literature and some of which are gener-
ated within this study. The comparative study shows that the proposed algorithm improves the best
results found in the literature for 28.6% of the test problems and the percentages of improvement are
even higher than 18% in several test instances.
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1. Introduction

Group technology (GT) groups parts that have similar design
characteristics or manufacturing characteristics into part families
in order to make manufacturing systems more efficient and pro-
ductive. Cellular manufacturing is the implementation of group
technology in the manufacturing process. Cellular manufacturing
decomposes the entire production system into several mutually
separable production cells, then assigns machines to these cells
to process one or more part families. Each cell is operated indepen-
dently; the intercellular movements are minimized, i.e., parts do
not have to move from one cell to another for processing. Extensive
research has been devoted to cell formation (CF) problems for
identifying machine cells and part families. Selim, Askin, and
Vakharia (1998) have provided comprehensive reviews of the
methodologies for CF problems.

Many CF researches assume that each part has a unique process
routing which indicates the sequence of machines used to process
each part. This assumption obviously ignores real situations, in
which each operation of a particular part may be performed on
alternative machines, i.e., parts may have multiple process rout-
ings. The manufacturing industry has noted the flexibility and
other benefits of parts with multiple process routings (Kusaik,
1987).

Limited studies of the cell formation problem considering mul-
tiple process routings, also called the generalized GT problem
ll rights reserved.

.
).
(Won & Kim, 1997), can be found. Kusaik (1987) presented a
p-median model to select process routings and to form part families
simultaneously. Nagi, Harlarakis, and Proth (1990) and Sankaran
and Kasilingam (1990) proposed mathematical models for solving
the problem. In addition to mathematical approaches, many cell
formation methods use similarity measures between parts or ma-
chines to form part-machine groups. Kusiak and Cho (1992) pre-
sented a similarity coefficient method that defines a similarity
coefficient between process routings of parts. In regard to the deci-
sion objectives of the problem under study, Won and Kim (1994)
presented an assignment model to maximize the sum of similarity
coefficients between process routings in the same family, while
Adil, Rajamani, and Strong (1996) developed a non-linear integer
programming model that considered both the minimization of a
weighted sum of the voids and the exceptional elements in the
objective function. Won and Kim (1997) later defined the general-
ized machine similarity coefficient and used multiple clustering
criteria to effectively form machine cells with the lowest possible
number of intercellular flows. Their method, however, generates
singleton machine cells or requires human judgment in the solu-
tion procedure. Motivated by previous work, Won (2000) used
the generalized machine similarity coefficient between machine
pairs to propose two new p-median models. Spiliopoulos and
Sofianopoulou (2007) presented a bounding scheme that examines
all combinations of alternate routings and solves only a few cell
formation problems, thereby reducing the complexity of the solu-
tion space.

Due to their excellent performances in solving combinatorial
optimization problems, meta-heuristic algorithms such as genetic
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Fig. 2. Incidence matrix of sample CF problem with alternative process routings.
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algorithms (GA), simulated annealing (SA), neural networks (NN)
and tabu search (TS) make up another class of search methods that
has been adopted to solve the CF problem and its variants effi-
ciently. Sofianopoulou (1999) presented a simulated annealing
algorithm to select process routings for parts and to construct ma-
chine cells sequentially. Adenso-Díaz, Lozano, Racero, and Guerre-
ro (2001) proposed an efficient tabu search algorithm to select
process routings for parts, to group parts into families, and to
group machines into cells simultaneously. Wu, Chen, and Yeh
(2004) decomposed and solved the problem sequentially in three
stages: process routing selection, part assignment, and machine
assignment, respectively. Among these three subproblems,
determination of part assignment consumes most of the computa-
tional effort and was hence solved by a tabu search algorithm. Lei
and Wu (2005) published an algorithm in which an initial solution
is first generated by a new similarity coefficient-based method and
is later improved iteratively by a fast, effective tabu search
algorithm.

The literature cited above shows that several meta-heuristic ap-
proaches have been used to solve the cell formation problem with
alternative process routings. However, each of the aforementioned
meta-heuristic algorithms has different strengths and weaknesses.
For example, GA explores the solution space by means of a popula-
tion of search points and operators such as selection, crossover and
mutation. It produces diversified solutions yet suffers from poor
convergence properties. In contrast with GA, SA converges easily
at local optima but may not be able to explore the solution space
and find the global optima. A strategy which combines GA and
SA can reasonably be expected to give rise to complementary
strengths. This idea has been implemented in some researches
and has obtained positive results (Wong, 2001; Soke & Bingul,
2006).

The purpose of this study is to develop a procedure that is effi-
cient and effective for the cell formation problem with alternative
process routings. This research combines SA and GA to generate
synergy. However, to avoid excessive consumption of computa-
tional effort, only the mutation operator from the GA is adopted
– mainly to escape from local solutions and to prevent premature
convergence. Two sets of test problems with various sizes, one
from the literature and one generated in this study, are used to test
the performance of the proposed hybrid algorithm. The corre-
sponding results are compared to the best results of several well-
known published algorithms.

The remainder of this article is organized as follows. In Section
2, we describe the problem definition. The proposed hybrid heuris-
tic is presented in Section 3. Section 4 shows the computational re-
sults on test problems, and Section 5 concludes the paper.

2. Cell formation problem with alternative routings

Cell formation in a given 0–1 machine-part incidence matrix in-
volves rearrangement of its rows and columns to create part fam-
ilies and machine cells. Researches usually attempt to determine a
rearrangement by which the inter-cellular movement can be
minimized and the utilization of the machines within a cell can
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Fig. 1. Sample machine-part ma
be maximized. Fig. 1a gives a sample machine-part matrix. A
rearrangement for that machine-part matrix, in which two
blocks can be observed along the diagonal of the matrix, is given
in Fig. 1b.

There have been several measures of goodness of machine-part
groups in cellular manufacturing in the literature. Two measures
frequently used are the grouping efficiency (Chandrashekharan &
Rajagopalan, 1986) and the grouping efficacy (Kumar & Chan-
drasekharan, 1990), because they are easy to implement. Although
grouping efficiency has been used widely, critics argue that in
some cases the size of the matrix impairs its discrimination ability.
The grouping efficacy C can be defined as:

C ¼ e� e0

eþ ev
;

where e is the total number of 1s in the matrix; e0 is the total num-
ber of exceptional elements (any 1s outside the diagonal blocks are
called ‘‘exceptional elements”); and ev is the total number of voids
( any 0s inside the diagonal blocks are called ‘‘voids”). Grouping effi-
cacy ranges from 1 to 0, with 1 being the perfect grouping.

Cases in which each part may have more than one process rout-
ing, such as the case shown in Fig. 2, are even more complicated
than the simple cell formation problem. Formation of part families,
formation of machine cells, and selection of routings for each part
need to be determined in order to achieve the decision objectives,
such as the minimization of inter-cellular movement or the maxi-
mization of grouping efficacy.

3. Proposed hybrid algorithm

SA was originally proposed by Metropolis, Rosenbluth, and Tell-
er (1953) to simulate the annealing process. After generating an
initial solution, SA attempts to move from the current solution to
one of the neighborhood solutions. The changes in the objective
function values (DE) are calculated. If the new solution results in
a better objective value, it is accepted. However, if the new solution
yields a worse value, it can still be accepted according to a proba-
bility function, i.e., the Boltzmann function, P(DE) = exp(�DE/kBT),
where kB is Boltzmann’s constant and T is the current temperature.
This check is done by selecting a random number from (0,1). If the
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Table 1
Similarity matrix for machines in Fig. 2

Machines 1 2 3 4 5 6

1 – 0.20 0.43 0.40 0.08 0.20
2 – 0.20 0.60 0.67 0.75
3 – 0.27 0.18 0.20
4 – 0.42 0.60
5 – 0.36
6 –
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Fig. 3. Incidence matrix after rearrangement.
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random number chosen is less than or equal to the probability va-
lue, the new solution is accepted; otherwise, it is rejected. By
accepting worse solutions, SA can avoid being trapped on local op-
tima. The parameter T is gradually decreased by a cooling function
as SA proceeds until the stopping criterion is met.

GA is inspired by the evolution of living things that occurs in
natural biology. Some individuals are selected as parents to gener-
ate offspring via the crossover operator. All the individuals are then
evaluated for fitness and the fittest are selected to survive. The pro-
cess of reproduction, evaluation, and selection is repeated until the
stopping criterion is met. There is usually a certain probability that
a mutation operator might be applied to the individuals; mutations
can cause GA to escape from local solutions and can prevent pre-
mature convergence. It is used mainly to increase the diversity of
the population and to ensure that an extensive search will be
performed.

We anticipate the synergy effect between the SA and the GA by
presenting a hybrid algorithm employing the SA, together with the
mutation operator from the GA to increase the quality and effi-
ciency of solutions. The solution procedure of the proposed algo-
rithm consists of two stages: initial solution construction and
later solution improvements, which will be detailed in Sections
3.1 and 3.2, respectively.

3.1. Initial solution construction

A large number of similarity coefficients methods (SCM) have
been proposed for grouping entities such as parts or machines in
the simple CF problem, far fewer SCMs have been designed espe-
cially for the CF problem with alternate routings. The works by Ku-
siak and Cho (1992), and by Won and Kim (1997) can be
considered as the two most widely used approaches. Kusiak and
Cho’s method is a part-based approach which uses a similarity
coefficient defined between part routings, while Won and Kim’s
study defined a machine-based similarity coefficient in their
algorithm. Compared to machine-based similarity coefficient
methods, the part-based similarity coefficient methods suffer from
a computational burden since the number of parts in a cell forma-
tion problem is usually much greater than the number of ma-
chines. We hence adopt Won and Kim’s machine-based similarity
coefficient method to generate the similarity matrix for forming
machine cells when constructing the initial solution in this
research.

After the machine cells have been obtained, the next task is to
assign a process routing for each part to the machine cells. Unlike
Won and Kim’s work (1997), which followed the maximum density
rule, i.e., a routing of a part is assigned to a machine cell that has
the most of its processings, we assign the part routings to machine
cells that will result in the least number of exceptional elements.
The proposed part routing assignment procedure is described as
follows:

Step 1. Read the list of machine cells formed by means of the
machine-based similarity matrix.

Step 2. For all alternative routings of each part, evaluate the
resulting number of exceptional elements of assignments
to each machine cell. The routing with the least number
of exceptional elements is selected as the process routing
for later manufacturing. If a tie happens, the one with the
least number of voids is chosen. If the least number of
voids is tied again, make a random selection.

Step 3. Repeat Step 2 until the process routing for each part has
been determined.

An initial solution for the CF problem with alternative routings
can be obtained at this point by using the machine-based similarity
coefficient methods and the above procedure for determining each
part routing. This is illustrated by the following example.

Consider the sample machine-part matrix with alternative pro-
cess routings in Fig. 2: the corresponding similarity matrix for ma-
chines can be obtained by using the formula (Won & Kim, 1997)
below and is listed in Table 1:

Sij ¼
Nij

Ni þ Nj � Nij

where Sij = similarity coefficient between machines i and j,
Ni ¼

PP
p¼1ap

i ;Nj ¼
PP

p¼1ap
j ;Nij ¼

PP
p¼1ap

ij, P = number of parts.

ap
i ¼

1 if i 2 some routing of part p

0 otherwise

(

ap
j ¼

1 if j 2 some routing of part p

0 otherwise

(

ap
ij ¼

1 if i; j 2 some routing of part p synchronously

0 otherwise

(

Suppose there are two cells to be formed. The largest coefficient in
the similarity matrix of Table 1 is 0.75, indicating that machines 2
and 6 must be assigned to the same cell. We proceed with the sec-
ond largest coefficient in the matrix, 0.67, appearing in pair (2,5).
Machine 5 is thus assigned together with machines 2 and 6. By
repeating the same logic, it can finally be obtained that machines
2, 4, 5 and 6 should be assigned in the same cell, while machines
1 and 3 should be assigned in another cell. The incidence matrix
of the sample problem displayed in Fig. 2 is thus rearranged as
shown in Fig. 3. The number of exceptional elements for each part
routing-machine cell combination is given in Fig. 4.

Using the methodology proposed above, the initial solution ma-
trix for the CF problem with alternative routings can thus be ob-
tained and shown in Fig. 5, in which three exceptional elements
are found and the corresponding value of grouping efficacy is
0.683. This solution is superior to the one adopting the maximum
density rule when assigning part routings to machine cells (Won &
Kim, 1997), in which four exceptional elements are resulted in, as
shown in Fig. 6.
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Fig. 5. Initial solution matrix obtained by using the proposed methodology.
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3.2. Solution improvements

At this stage in the solution procedure, the initial solution gen-
erated from Section 3.1 is improved through a sequence of neigh-
borhood moves.

Note that when generating the initial solution, part routing
selection and assignment to machine cells can not be implemented
until the machine cells have been formed. The procedure for form-
ing machine cells actually happens before the procedure for selec-
tion and assignment of part routings, and thus is critical to the
quality of the entire solution. The insertion-move, which is a type
of move used to search for better neighborhood solutions of the
current machine cells, is introduced and defined in this section.

The neighborhood of a given solution is defined as the set of all
feasible solutions reachable by a single move. The insertion-move
is an operation that moves a machine j from its current cell i to a
new cell i0. The new move is denoted (i0, j). For the insertion-move,
a move that results in the greatest possible improvement in the
objective function value from the current solution is selected – that
is:

Mði0; jÞ ¼maxfobjði
0 ;jÞ � objcurrent

; 8i0 2 I; i0–i; 8j 2 Jg;

where I and J are the sets for cells and machines, respectively.
3.3. Proposed hybrid algorithm HSAM

This section describes the proposed hybrid simulated annealing
algorithm with mutation, HSAM. It is evident that the number of
cells to be formed will affect the grouping solutions obtained in
the CF problem. In our algorithm, the number of cells resulting in
the best objective values is generated automatically. To preserve
flexibility, users are permitted to specify the preferred number of
cells.

In GA, application of the mutation operator enables the algo-
rithm to explore unvisited solution regions and to generate new
solutions better than currently best ones. Implementation of the
mutation operator in this study is similar to the traditional gene-
by-gene mutation with a small probability p. A mutation check is
performed machine by machine on the incumbent solution of ma-
chine cells formed. For each machine, a random number from (0,1)
is first drawn. If the value is greater than or equal to p, then the ma-
chine stays in the current cell; otherwise it is moved to another cell
that is randomly determined.

Before proceeding to the proposed algorithm HSAM, we intro-
duce some notations.
NC number of cells (cell size)
M number of machines
U maximum number of machines per cell
T0 initial temperature
Tf final temperature
L Markov chain length
a cooling rate
r0 initial solution of part- route assignment
r current solution of part- route assignment
r0 neighborhood solution of part- route assignment
r* incumbent solution of part- route assignment of current

cell size
r** best solution of part- route assignment so far
m0 initial solution of machines assignment
m current solution of machines assignment
m0 neighborhood solution of machines assignment
m* incumbent solution of machines assignment of current cell

size
m** best solution of machines assignment so far
E(m,r) total number of intercellular moves of all parts
p mutation probability
counter_MC number of times a neighborhood solution is generated

in a specific temperature
counter_BF number of times neighborhood solution fails in the

Boltzmann test
counter_stag number of times incumbent solution did not

improve

3.4. Algorithm HSAM

Step 1. Set E(m**,r**) =1, NC ¼ M
U

� �
.

Step 2. Initialize counters, SA and other parameters: T0, Tf, a, L, p,
counter_MC = 0, counter_stag = 0, counter_BF = 0, and set
Tk = T0.

Step 3. Generate an initial solution of machine cells, m0. Let
m = m0, m* = m0. On the base of initial solution m0, gener-
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ate an initial solution of routing selection and assignment
to machine cells, r0. Let r = r0, r* = r0.

Step 4. If Tk P Tf and counter_stag 6 stag_check and E (m*,r*) – 0,
repeat Steps 5 and 6; otherwise, go to Step 7.

Step 5. If counter_MC < L, repeat Steps 5.1–5.7; otherwise, go to
Step 6.
Step 5.1. If counter_BF P 1, apply mutation operator to m*

and generate a new solution of machine cells m0.
Step 5.2. If counter_BF < 1, generate a new solution of

machine cells m’ through neighborhood search-
ing for m by performing the insertion-move.

Step 5.3. Read new solution of machine cells m0 from
above steps and generate corresponding solution
of routing selection and assignment to machine
cells r0 using procedure in Section 3.1.

Step 5.4. Calculate DE = E(m0,r0)�E(m,r). If DE 6 0,
m = m0,r = r0, counter_BF = 0, go to Step 5.6; other-
wise, go to Step 5.5.

Step 5.5. Generate u 2 U(0,1), if exp �DE
Tk

� �
> u, m = m0,r = r0,

counter_BF = 0; otherwise, counter_BF = counter_
BF + 1.

Step 5.6. If E(m0,r0) < E(m*,r*), then m* = m0, r* = r0, counter_
stag = 0; otherwise, counter_stag = counter_stag
+1.

Step 5.7. counter_MC = counter_MC + 1.

Step 6. Tk = Tk � a, counter_MC = 0, counter_BF = 0.
Step 7. If E(m*,r*)<E(m**,r**), then E(m**,r**) = E(m*,r*), m** = m*,

r** = r*, NC = NC + 1, go to Step 2; otherwise report the cur-
rent E(m**,r** ), m**, r**, NC-1, and stop the algorithm.

Note that algorithm HSAM consists of an SA procedure that is
repeatedly applied until a cell formation resulting in the best
objective function values, e.g., number of exceptional elements
or grouping efficacy, has been found. In Step 1, initial number of
cells is set at the nearest integer that is greater than M/U, which
is a conservative setting; it gradually increases by increments of
1 as long as solution improvement is observed in Step 7. Every time
the number of cells is increased, another SA procedure will be
started. For a specific cell size, the best routing selection and
grouping plan for parts and machines will be calculated iteratively
and obtained in Steps 5.1–5.7 and Step 6. All algorithmic parame-
ters and counters are initialized in Step 2. Initial solutions of ma-
chine cells, routing selections, and assignments to machine cells
are generated in Step 3. counter_BF is used to record the number
of times a solution fails in Boltzmann’s test to avoid getting
trapped in local solutions and wasting too much computational ef-
fort. As long as the value of counter_BF is 0, a new neighborhood
Table 2
Problem description and comparisons of computational results

Test instances Other approaches

No. Source Size L U TS1 TS2 SA

1 Won and Kim (1997) 4 � 4 � 8 2 3 – – –
2 Kusaik (1987) 4 � 5 � 11 2 3 0 0 0
3 Moon and Chi (1992) 6 � 6 � 13 2 3 – – –
4 Sankaran and Kasilingam (1990) 6 � 10 � 20 2 4 – – –
5 Won and Kim (1997) 7 � 10 � 23 2 3 3 3 3
6 Logendram et al. (1994) 7 � 14 � 32 2 3 – – –
7 Adil et al. (1996) 10 � 10 � 24 2 4 – – –
8 Kasilingam and Lashkari (1991) 10 � 15 � 28 2 4 – – –
9 Won and Kim (1997) 11 � 10 � 22 2 3 4 4 4

10 Sofianopoulou (1999) 12 � 20 � 26 2 5 29 29 29
11 Sofianopoulou (1999) 14 � 20 � 45 2 5 25 25 29
12 Sofianopoulou (1999) 18 � 30 � 59 2 7 33 33 35
13 Nagi et al. (1990) 20 � 20 � 51 2 5 1 1 7
14 Won and Kim (1997) 26 � 28 � 71 2 7 23 23 34
solution is generated through the insertion-move in Step 5.2;
otherwise, gene-by-gene mutation is applied in order to generate
a new solution with higher degree of diversification in Step 5.1. If
the newly generated neighborhood solution is better than the cur-
rent solution, a replacement is made in Step 5.4. If the newly gen-
erated neighborhood solution is worse than the current solution, a
Boltzmann function test is performed in Step 5.5. Comparison with
the incumbent solution of current cell size then follows. The
incumbent solution will be updated in Step 5.6 if the newly gener-
ated neighborhood solution results in a better objective function
value; otherwise, the counter_stag, monitoring the solution stag-
nancy, is increased by 1. The solution process repeats until any
of the three stopping criteria in Step 4 is met. The incumbent solu-
tion obtained at this point represents the best solution of current
cell size. If larger cell sizes are considered, it is possible that better
solutions may result. The incumbent solution of current cell size is
thus compared to the best solution found so far in Step 7 to deter-
mine whether to increase the cell size by 1 and restart another SA
procedure to continue the search or to report the best solution
found and terminate HSAM.

For users having specific preferences in cell size, the proposed
algorithm can save considerable amounts of run time since it will
skip the process of iteratively searching for the cell size resulting in
the best objective function values. The savings in run time become
even more significant as the cell size increases.

After intensive testing, stag_check is set at 1000. Initial temper-
ature T0, final temperature Tf, cooling ratea, and the Markov chain
length L of the SA procedure are set at 10, 1, 0.9, 2000, respec-
tively. The mutation probability p of each gene is set at 0.8 in this
study.
4. Computational results and discussion

This section uses test problems from the literature as well
as newly created problems to illustrate the proposed solution
method HSAM for cell formation considering alternative process
routings. The computational results are compared with those of
algorithms reported in the literature. The proposed algorithm
HSAM was coded in C and implemented on a Pentium III
933 MHz personal computer with 256 MB RAM. Because of the
stochastic features of SA, five independent runs were performed
for each test instance.
4.1. Computational results

The test instances in the first problem set are from the open lit-
erature. For each instance, Table 2 shows the problem source, size
Proposed approach

P0 MP1 MP2 TSPA BS HSAM Cell size CPU (s) Efficacy (%)

0 0 0 – – 0 2 0.006 100.00
0 0 0 0 0 0 2 0.013 90.00
0 0 0 0 – 0 2 0.031 83.33
4 2 2 2 – 2 2 0.050 69.44
3 3 3 3 – 3 3 0.034 74.07
7 7 5 5 – 5 3 0.048 67.57
5 2 4 – – 2 3 0.102 80.00

11 12 11 – – 10 3 0.134 57.81
3 3 3 3 4 3 4 0.105 77.42

– – – – 29 29 3 0.216 47.06
– – – – 25 24 3 0.313 50.83
– – – – 32 26 3 0.506 39.65
– 7 3 – 1 1 5 0.528 79.52
– 25 22 – – 13 5 0.569 62.21
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in terms of the number of machines, number of parts, and the
number of alternative process routings, the minimum (L) and max-
imum (U) number of machines allowed in each cell, and the num-
ber of exceptional elements found. The computational results were
compared with the best results found in the literature, i.e., the TS-1
(Lei & Wu, 2005), TS-2 (Adenso-Díaz et al., 2001), SA (Sofianopou-
lou, 1999), P0 (Kusaik, 1987), MP1 (Won, 2000), MP2 (Won, 2000),
TSPA(Wu et al., 2004), and BS (a bounding scheme by Spiliopoulos
& Sofianopoulou, 2007). Note that in test problem #8, we followed
Won (2000)’s setting and did not consider the duplication of ma-
chines #1 and #10.

According to Table 2, the best results obtained by HSAM are bet-
ter than or equal to the reported best results in all test problems.
To be more specific, for 10 problems (the first seven problems,
#9, #10, and #13), HSAM obtains values of the number of excep-
tional elements that are equal to the best results found in the
TS1, TS2, SA, P0, MP1, MP2, TSPA, and BS methods; HSAM improves
the values of the number of exceptional elements for the remaining
4 problems (#8, #11, #12, and #14). The corresponding solution
matrices of these four problems obtained by HSAM are presented
in Appendix A. In test problem #12, the percentage improvement
of HSAM is higher than 18%; the improvement even reaches
40.9% in test problem #14. Dominance of HSAM over other ap-
proaches reported in the literature becomes even more significant
for problems with larger sizes.

In addition to the optimal number of exceptional elements for
each test problem, corresponding values of grouping efficacy and
run times are provided in Table 2 as well. It can be observed that
HSAM solves all the test problems in an extremely efficient
manner. The run time consumed has never been longer than
0.569 s. Taking test problems #11, #12, and #13 as examples, the
bounding scheme proposed by Spiliopoulos and Sofianopoulou
(2007) consumed 37, 687, and 82 s, respectively, to find the final
solutions while HSAM only took 0.313, 0.506, and 0.528 s, respec-
tively, to find the optimal solutions – these numbers are striking
considering that the CPU of their computer had higher specifica-
tions (1.8 GHz with 512 MB RAM) than ours (933 MHz with
256 MB RAM).

Following commonly accepted practice for the CF problem con-
sidering alternative routings, this study adopts the decision objec-
tive of minimizing the number of exceptional elements in
designing HSAM. However, HSAM is capable of generating a group-
ing plan which maximizes the grouping efficacy, another widely
used measure of goodness of machine-part groups in cellular man-
ufacturing, by a very minor revision. The same test problems as in
Table 3
Comparisons of computation results of different decision objectives

Test instances HSAM1 (HSAM min

No. Source Size L U EE Cell size

1 Won and Kim (1997) 4 � 4 � 8 2 3 0 2
2 Kusaik (1987) 4 � 5 � 11 2 3 0 2
3 Moon and Chi (1992) 6 � 6 � 13 2 3 0 2
4 Sankaran and Kasilingam (1990) 6 � 10 � 20 2 4 2 2
5 Won and Kim (1997) 7 � 10 � 23 2 3 3 3
6 Logendram et al. (1994) 7 � 14 � 32 2 3 5 3
7 Adil et al. (1996) 10 � 10 � 24 2 4 2 3
8 Kasilingam and Lashkari (1991) 10 � 15 � 28 2 4 10 3
9 Won and Kim (1997) 11 � 10 � 22 2 3 3 4

10 Sofianopoulou (1999) 12 � 20 � 26 2 5 29 3
11 Sofianopoulou (1999) 14 � 20 � 45 2 5 24 3
12 Sofianopoulou (1999) 18 � 30 � 59 2 7 26 3
13 Nagi et al. (1990) 20 � 20 � 51 2 5 1 5
14 Won and Kim (1997) 26 � 28 � 71 2 7 13 5

Note: EE denotes total number of exceptional elements.
Table 2 are used, and the computational results are given in Table
3. We call the HSAM minimizing the intercellular movements
HSAM1, while the HSAM maximizing the grouping efficacy is re-
ferred to as HSAM2. It can be observed from Table 3 that the num-
ber of exceptional elements of HSAM1 are less than or equal to
those of HSAM2, as expected. In contrast, HSAM2 performs better
in values of grouping efficacy. In test problems #4, #5, #6, #7
and #9, HSAM2 not only produces better values of grouping effi-
cacy than HSAM1, it even obtains the same number of exceptional
elements as HSAM1 does. This indicates that, for some cases,
HSAM2 is able to find a grouping plan resulting in the best group-
ing efficacy among grouping plans which all have the minimum
number of exceptional elements.

It is hence suggested that HSAM2 be applied after HSAM1 has
been used for test instances. If both approaches result in the same
number of exceptional elements, then the solution produced by
HSAM2 can be considered as a better decision alternative than
the one by HSAM1 since it has taken into account both decision
objectives, i.e., minimization of exceptional elements and maximi-
zation of grouping efficacy.

4.2. Further analysis

This section examines the performance of HSAM when solving
ten large-sized test problems and performs further analysis on
the effectiveness of some mechanisms designed in HSAM. Prob-
lems #20 and #24 are directly adopted from Wu et al. (2004); eight
more large-sized test problems are randomly generated in this
study. Firstly, eight large-sized cell formation test problems from
the literature are chosen (problems #20, #26, #29, #30, #31,
#33, #34, and #35 from Table 7, Conc�alves & Resende, 2004). Sec-
ondly, for each test problem, the number of alternative routes for
each part is randomly selected between 1 and 3. At last, the oper-
ations in each route are determined randomly and described as fol-
lows. The original machine-part incidence matrix is used as the
base. For each operation in the process route, a random number
is drawn and compared with a pre-set number, 0.8. If the random
number is greater than 0.8, the operation is changed from 0 to 1, or
from 1 to 0; otherwise, no change is made. The idea is that we
would like the new part routing to have only about 20% difference
from the original part routing.

This research presented a hybrid algorithm HSAM employing
the SA, together with the mutation operator from the GA, and a
counter for monitoring solution stagnancy to increase the quality
and efficiency of solution. The excellent computational results
imizing intercellular moves) HSAM2 (HSAM maximizing grouping efficacy)

Efficacy (%) CPU (s) EE Cell size Efficacy (%) CPU (s)

100.00 0.006 0 2 100.00 0.006
90.00 0.013 0 2 90.00 0.014
83.33 0.031 0 2 83.33 0.034
69.44 0.050 2 2 72.22 0.053
74.07 0.034 3 3 81.48 0.039
67.57 0.048 5 3 69.44 0.063
80.00 0.102 2 3 82.86 0.100
57.81 0.134 11 3 61.90 0.150
77.42 0.105 3 4 80.65 0.114
47.06 0.216 36 4 49.47 0.349
50.83 0.313 28 4 54.29 0.438
40.18 0.506 45 6 47.45 1.564
79.52 0.528 1 5 79.52 0.573
62.21 0.569 16 6 72.48 1.581



Table 4
Comparison of computational results of SA, SA with stagnancy control and HSAM

Test instances SA SA with stagnancy control HSAM

No. Source Size L U EE Cell size CPU (s) EE Cell size CPU (s) EE Cell size CPU (s)

1 Won and Kim (1997) 4 � 4 � 8 2 3 0 2 0.041 0 2 0.002 0 2 0.006
2 Kusaik (1987) 4 � 5 � 11 2 3 0 2 0.042 0 2 0.003 0 2 0.013
3 Moon and Chi (1992) 6 � 6 � 13 2 3 5 2 0.128 5 2 0.009 0 2 0.031
4 Sankaran and Kasilingam (1990) 6 � 10 � 20 2 4 2 2 0.423 2 2 0.025 2 2 0.050
5 Won and Kim (1997) 7 � 10 � 23 2 3 3 3 0.475 3 3 0.028 3 3 0.034
6 Logendram et al. (1994) 7 � 14 � 32 2 3 5 3 0.617 5 3 0.034 5 3 0.048
7 Adil et al. (1996) 10 � 10 � 24 2 4 2 3 1.533 2 3 0.078 2 3 0.102
8 Kasilingam and Lashkari (1991) 10 � 15 � 28 2 4 12 3 1.958 12 3 0.099 10 3 0.134
9 Won and Kim (1997) 11 � 10 � 22 2 3 3 4 1.422 3 4 0.069 3 4 0.105

10 Sofianopoulou (1999) 12 � 20 � 26 2 5 29 3 2.759 29 3 0.144 29 3 0.216
11 Sofianopoulou (1999) 14 � 20 � 45 2 5 27 3 3.675 27 3 0.181 24 3 0.313
12 Sofianopoulou (1999) 18 � 30 � 59 2 7 30 3 6.394 30 3 0.302 26 3 0.506
13 Nagi et al. (1990) 20 � 20 � 51 2 5 1 5 7.536 1 5 0.403 1 5 0.528
14 Won and Kim (1997) 26 � 28 � 71 2 7 14 5 17.328 14 5 0.805 13 5 0.569
15 This study 20 � 35 � 79 2 5 70 5 12.474 70 5 0.709 65 4 0.699
16 This study 24 � 40 � 82 2 5 112 5 12.322 112 5 0.569 104 5 0.895
17 This study 28 � 46 � 89 2 5 175 7 29.949 176 7 2.081 171 6 1.708
18 This study 30 � 41 � 74 2 7 119 5 16.586 115 5 0.813 107 5 1.309
19 This study 30 � 50 � 102 2 8 142 4 17.567 147 4 0.813 136 4 1.738
20 Wu et al. (2004) 35 � 40 � 90 2 8 391 5 23.217 396 5 2.072 389 5 3.009
21 This study 36 � 90 � 181 2 10 312 6 89.849 319 6 5.916 292 4 5.066
22 This study 37 � 53 � 107 2 15 370 3 24.663 381 3 1.780 363 3 2.864
23 This study 40 � 100 � 198 2 15 348 3 44.049 356 3 2.475 344 3 4.123
24 Wu et al. (2004) 50 � 50 � 120 2 15 626 4 38.331 626 4 3.205 625 4 5.077
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obtained and shown in Section 4.1 assure the success of the pro-
posed HSAM. An analysis is performed and the results are dis-
played in this section to further verify the effectiveness and
study how the addition of the mutation operator and stagnancy-
monitoring mechanism to the SA affects the solution quality and
efficiency. The following three algorithms are tested by using
24 test instances with various problem sizes, sixteen from the
literature and eight randomly generated by this study, and the
computational results are given in Table 4: the SA; the SA with stag-
nancy-monitoring counter; and the SA with both stagnancy-
monitoring counter and mutation operator (i.e., the HSAM).

It can be observed from Table 4 that SA and SA with stagnancy-
monitoring counter are tied in terms of the number of intercellular
movements in the first 16 test instances, and differ slightly for the
other 8 problems. However, SA with stagnancy-monitoring counter
is much more efficient, for it only takes less than 10% of the run
time consumed by ordinary SA. This confirms the great effective-
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Fig. 7. Run time comparison of three algorithms.
ness of the stagnancy-monitoring mechanism in HSAM. We next
proceed to the comparisons of SA with stagnancy-monitoring
counter only and the SA with both stagnancy-monitoring counter
and mutation operator (i.e., the HSAM). The number of exceptional
elements obtained by the SA with both stagnancy-monitoring
counter and mutation operator are consistently better than or
equal to those of SA with stagnancy-monitoring counter only in
all 24 test problems. The dominance becomes even more obvious
when problems with larger sizes are solved. The run time data
shows that both approaches are very efficient. Even the largest
problem can be solved in less than 6 s. A run time comparison of
the three algorithms is given in Fig. 7. The great effectiveness
and necessity of adding the stagnancy-monitoring counter and
mutation operator to the HSAM can thus be assured by the compu-
tational results.

5. Concluding remarks

A hybrid SA algorithm with a GA mutation operator for the cell
formation problem considering alternative process routings,
HSAM, has been proposed in this research. It is anticipated that
complementary strengths and synergy effects of both the GA and
the SA can be realized to increase the quality and efficiency of solu-
tions. Considerable effort has been devoted to the design of a pro-
cedure to assign a routing for each part to machine cells.
Computational results indicate the solution of this procedure is
superior to those appearing in the literature, which adopt the max-
imum density rule. In the solution improvement stage of the pro-
posed algorithm, the insertion-move has been utilized iteratively
to guide the solution search. In addition, several counters have
been used and collocated with the insertion-move in the algorithm
to speed up the solution search process and to escape from the lo-
cal optima.

Preexisting and newly generated test problems have been used
to verify the proposed algorithm. Computational results obtained
from running fourteen test instances from the literature have
shown that HSAM improves the best values for the number of
exceptional elements found in the open literature, i.e., the TS-1,



Appendix A. Solution matrices of problems surpassing the best
results in literature
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TS-2, SA, P0, MP, MP2, TSPA, and BS for four (28.6%) problems; and
that for ten (71.4%) problems, HSAM obtains values for the number
of exceptional elements that are equal to the best results found in
the aforementioned 7 methods. In test problem #12, the percent-
age improvement of HSAM is higher than 18%; the improvement
even reaches 40.9% in test problem #14. Dominance of HSAM over
other approaches becomes even more significant for problems
with larger sizes.

In addition to minimization of the intercellular movements,
HSAM is capable of generating grouping plans maximizing the
grouping efficacy as well, by a very minor revision on HSAM. It is
hence suggested that HSAM maximizing the grouping efficacy
#8

Cell: 3.
Total operations: 47.
Exceptional elements: 10.
Voids: 17.
Grouping efficacy: 57.8125.

#11

Cell: 3.
Total operations: 85.
Exceptional elements: 24.
Voids:35.
Grouping efficacy: 50.8333.
(HASM2) be applied after HSAM minimizing the intercellular
movements (HSAM1) has been used. If both approaches result in
the same number of exceptional elements, then the solution
produced by HSAM2 can be considered as a better decision alterna-
tive. Furthermore, the great effectiveness and necessity of adding
the stagnancy-monitoring counter and mutation operator to the
HSAM have been assured by the computational results shown in
Table 4.



#12

Cell: 3.
Total operations: 116.
Exceptional elements: 26.
Voids: 108.
Grouping efficacy: 40.1786.

#14

Cell: 5.
Total operations: 120.
Exceptional elements: 13.
Voids: 52.
Grouping efficacy: 62.2093.
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