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a b s t r a c t

Here we proposed an automatic segmentation method based on a decision tree to classify the brain
tissues in magnetic resonance (MR) images. Two types of data – phantom MR images obtained from
IBSR (http://www.cma.mgh.harvard.edu/ibsr) and simulated brain MR images obtained from BrainWeb
(http://www.bic.mni.mcgill.ca/brainweb) – were segmented using an automatic decision tree algorithm
to obtain images with improved visual rendition. Spatial information on the general gray level (G), spatial
gray level (S), and two-dimensional wavelet transform (W) was combined in-plane in two coordinate
systems (Euclidean coordinates (x, y) or polar coordinates (r, �)). The decision tree was constructed based
on a binary tree with nodes created by splitting the distribution of input features of the tree. The spatial
information obtained from MR images with different noise levels and inhomogeneities were segmented to
compare whether the use of a decision tree improved the identification of human anatomical structures in
a neuroimage. The average accuracy rates of segmentation for phantom images with a noise variation of 15
gray levels were 0.9999 and 0.9973 with spatial information (G, x, y, r, �) and (S, x, y, r, �), respectively, and
0.9999 and 0.9819 with spatial information (G, x, y, S, r, �) and (W, x, y, G, r, �). The average accuracy rates
of segmentation for simulated MR images with a noise level of 5% were 0.9532 and 0.9439 with spatial
information (G, x, y, r, �) and (S, x, y, r, �), respectively, and 0.9446 and 0.9287 with spatial information
(G, x, y, S, r, �) and (W, x, y, G, r, �). The accuracy rates of segmentation were highest for both simulated
phantom and brain MR images, having the lowest noise levels, from a reduction of overlapping gray levels
in the images. The accuracies of segmentation were higher when the spatial information included the
general gray level than when it included the spatial gray level, which in turn were higher than when it

included the wavelet transform. Furthermore, the performance of segmentation was also evaluated with
a boundary detection methodology that is based on the Hausdorff distance to compare with the mean
computer to observer difference (COD) and mean interobserver difference (IOD) for gray matter (GM),
white matter (WM), and all areas (ALL) from images segmented using the decision tree. The values of
mean COD are similar and around 12 mm for GM segmented using the decision tree. Our segmentation
method based on a decision tree algorithm presented an easy way to perform automatic segmentation

ue re

t
s

for both phantom and tiss

. Introduction
Magnetic resonance (MR) imaging is widely used in clinical
iagnosis. Segmentation is one of the techniques used to classify the
rain tissues in MR images, which is a basic problem for identifying
natomical structures in MR image processing. Several segmen-
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gions in brain MR images.
© 2008 Published by Elsevier Ltd.

ation methods have been applied in the analysis of anatomical
tructures involving three-dimensional (3D) reconstruction, tissue-
ype contour definition, clinical diagnosis [1,2], and in cortical
urface segmentation, volume assessment of brain tissue, tissue
lassification, tumor segmentation, and characterization of vari-

us brain diseases such as sclerosis, epilepsy, stroke, cancer, and
lzheimer’s disease [3,4]. The accuracy of segmenting the cortical
urface for analyzing the volumes of different tissues, such as gray
atter (GM) and white matter (WM), significantly affects clinical

iagnoses. It this is made difficult by the presence of imaging noise
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nd inhomogeneities. Several segmentation techniques have been
roposed to improve the detection of brain structures in MR images
nd the subsequent diagnoses. Both manual and automatic seg-
entation methods are used to segment brain MR images. Manual

egmentations, such as thresholding, is a traditional method used to
istinguish among different tissues in MR brain images [5–7], but it

s difficult due to a low contrast-to-noise ratio, low signal-to-noise
atio (SNR), and tissue overlapping in the gray-level distributions.
t is also a very labor-intensive and time-consuming procedure [8].
herefore, several studies have investigated automatic segmenta-
ion methods for distinguishing brain MR images structures and
mproving the efficiency of segmentation and tissue classification
2,9–16]. Marroquin et al. presented an automatic segmentation

ethod based on an accurate and efficient Bayesian algorithm [17].
utomatic segmentation based on a constrained Gaussian mixture
odel framework employed an expectation-maximization algo-

ithm to determine parameters and to segment both simulated and
eal three-dimensional, T1-weighted noisy MR images [18]. Some
f these automatic segmentation methods were used to classify the
issues (GM, WM, and cerebrospinal fluid (CSF)) in brain MR images.
n automatic segmentation method has also been used to segment
M lesions [19]. However, it is essential to increase accuracy in the

utomatic segmentation of the GM, WM, and CSF.
Several studies have improved coil sensitivities and the perfor-

ance of transmitter devices [20–24], but it remains difficult and
xpensive to reduce imaging noise and inhomogeneity through
ardware improvements. The purpose of these studies was to
btain better anatomical structures of MR images. A low cost tech-
ique to obtain MR brain structures is valuable to study. Thus, the
bility through software improvements to discriminate different
issue characteristics of brain structures is increasingly important.
patial features defined as the combination of image intensities and
n-plane information in two coordinate systems (Euclidean coordi-
ates (x, y) or polar coordinates (r, �)) in images have generally
een used to extract the spatial features of MR images [18,19]. The
patial gray information was defined in the current study by com-
ining neighboring pixel intensities, as described in Section 2. The
avelet-transform spatial information obtained from each local

rea was also used. The performances of the three types of spatial
nformation were compared using decision tree algorithms. Deci-
ion trees are easily implemented according to the attributes of a
ubset in the entire data set, and provide rapid analysis. Decision
rees have been widely used in the analysis of symbolic data sets,
lassifying EEG spatial patterns [25], and different regions of digi-
al images sensed remotely [26]. The present study compared the
erformance of segmentation based on an automatic decision tree
ith different types of spatial information – the general gray level

G), spatial gray level (S), and two-dimensional wavelet transform
W) – to improve the accuracy of segmentation in MR images.

. Materials and methods

.1. Preprocessing for spatial information

Spatial information on the general gray level, spatial gray level,
nd wavelet transform were combined in Euclidean coordinates (x,
) or polar coordinates (r, �) with image preprocessing. Noise and RF
nhomogeneities often reduce the quality of MR images; therefore,
heir effects on the accuracy of segmentation need to be reduced

y image manipulation.

The general gray level represents the intensity of each pixel
xpressed in Euclidean coordinates (x, y) or polar coordinates (r,
) for MR image segmentation. The use of more spatial information
n an image improved the accuracy of image segmentation. Two

u
p
s
q
w

ig. 1. Diagrams of two spatial features in the local area: (a) spatial gray local area,
nd (b) wavelet transform of the neighboring area.

ypes of spatial feature information were used in this study. The
rst was the spatial gray level:

(x, y) =
n∑

i=1

ωigi(x, y), (1)

hich is the summation of combined weighting ωi and gray level
i(x, y) of pixel i on the neighboring area. The neighboring area was
hown in Fig. 1(a), where n = 5 and ωi was the weighting of the gray
evel at the center pixel with the nearest four pixels. The second
ype of spatial feature information used was the coefficient of the
avelet transform transferred from each local area to represent the
avelet spatial features of the center pixel for every location. The

ocal area consisted of every nine pixels in an MR image, as shown
n Fig. 1(b).

.2. Segmentation

The proposed automatic decision tree segmentation method
sed in this study was the classification and regression tree (CART)

roposed by Breiman et al. [27] to model the prediction tree by
tatistical analysis, considering outcome variables and decision
uestions to assess the prediction accuracy. The method protocol
as described below.
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ig. 2. Decision tree configuration: (a) example of the distribution of two subspaces
rom an entire space, and (b) structure of the corresponding decision tree graph.

.2.1. Decision tree classification
In a classification tree, the decision tree classification structure

s constructed to distinguish different classes through statistical
nalysis [25,28]. Decision trees classify multidimensional spatial
ata through recursive partitioning steps. Each vector consisting of
sampled data in an M-dimensional space is given by

xm}, m = 1, . . . , M, (2)

here M represents the dimension of the data space, with the class
abel in the data space as

∈
{

1, . . . , J
}

. (3)

The subspaces can be illustrated easily to maximize the over-
ll class separation for the M-dimensional spatial data set. The
lass separation is maximized during the partitioning step, and is
ubsequently processed as the basis for further partitioning to the
-dimensional spatial data set. A two-space and two-class example

s described as follows for decision tree classification. The distri-
utions of the two spatial data sets are shown in Fig. 2. The first
artitioning step can perfectly partition the entire data set along
orizontal line x1 with vertical dashed line x1 = x′

1 into the first
wo subspaces: subspace 1 is S1 ∪ S4, and subspace 2 is (S2 ∪ S3 ∪ S5).

ubspace 1 can also be partitioned along vertical line x2 with hor-
zontal dashed line x2 = x′′

2 into two subspaces S1 and S4. Data set
lasses 1 and 2 can be maximally segmented from subspaces S1 and
4. Subspace 2 can then be partitioned along horizontal line x1 with
ertical dashed line x1 = x′′

1 into two subspaces S2 and S3 ∪ S5. Next,

c
n
l
i
c

ging and Graphics 33 (2009) 111–121 113

ata set class 1 can be maximally segmented from subspace S2 with
ertical dashed lines x1 = x′

1 and x1 = x′′
1. Finally, subspace S3 ∪ S5

an be partitioned along vertical line x2 with horizontal dashed
ine x2 = x′

2 into two subspaces S3 and S5. Data set classes 1 and 2
an be maximally segmented from subspaces S3 and S5. Fig. 2(a)
learly showed the entire partition of the two spatial data sets. The
artitioning procedure can be displayed as a decision tree struc-
ure of a binary tree due to the maximal class separation of the
artitioning steps. The decision tree structures of the two spatial
ata sets are shown in Fig. 2(b). A root node is displayed at the
op of the tree graph for the first level, and is connected to other
eaf nodes and branches. The root node of the decision tree cor-
esponds to the entire data space, and the two spatial data sets
re decided with a condition x1 ≤ x′

1 that is similar to a binary or
yes/no” question for partitioning, which yields subspace 1 (S1 ∪ S4)
nd subspace 2 (S2 ∪ S3 ∪ S5). Next, partitions of the space are asso-
iated with descendant nodes of the root node in level 1. Subspace
in node 2 is partitioned by applying condition x2 ≤ x′′

2 to decide
erminal node 4 for class 1 and node 5 with condition x2 > x′′

2 for
lass 2. Next, partitioning for subspace S2 ∪ S3 ∪ S5 is decided by the
ondition x1 > x′

1, which yields leaf node 3. Terminal node 6 for
ubspace S2 is decided by the condition x1 > x′′

1. The next partition
or subspace S3 ∪ S5 in leaf node 7 is applied with condition x2 ≤ x′

2
o decide terminal node 8 for class 2 in subspace S5 and terminal
ode 9 with condition x2 > x′

2 for class 1 in subspace S3.
The connection mechanism is constructed using a Gini impu-

ity function from the root node until the tree reaches the terminal
odes. Classification of decision tree processes determines the con-
ition of attributes in a top-down manner. The classification of a
attern begins at the root node, deciding the condition of the main
ttribute of the pattern. The connection mechanism then follows a
imilar link mechanism to the descendent nodes. All of these linking
echanisms are binary, and together they form the tree graph. This

onnection mechanism proceeds continuously until all the nodes
re determined, when the class of each terminal node of the test
attern is decided.

.2.2. Decision tree construction
Descendant nodes of greater purity are desired when construct-

ng a decision tree, achieved by maximizing an impurity function.
escendant nodes have greater purity than ancestor nodes, and an

mpurity function � is defined based on a node N defined as [25]

(N) = �(p(ω1|N), . . . , p(ωJ |N)), (4)

here p(ωJ|N) is the conditional probability for class ωJ of node N.
mpurity i(N) is maximal when node N has an equal number of cases
or all classes. In other words, a node is maximally pure when the
ode comprises of a single category. The impurity function [27,28]
an be interpreted as a general variance impurity for two or more
lasses, which is the Gini impurity given by

(N) =
∑

i /= j

p(ωi|N)p(ωj|N) = 1 −
∑

j

p(ωj|N)p(ωj|N), (5)

here p(ωi|N) and p(ωj|N) are the proportions of patterns for
lasses ωi and ωj at node N, respectively. The Gini impurity is 0 if all
he patterns are of the same class. At the beginning of the root node,
he CART calculates the node impurity with the Gini impurity func-
ion. All decision tree nodes are decided by determining the best

hange in the impurity from the root node down to the terminal
ode, as shown in Fig. 2. A node consisting of a single class has the

argest purity. Thus, the terminal node is then selected when the
mpurity of the node is 0. The largest impurity value is 1. The best
hange in impurity [28] is the difference between i(N) and a sum of
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ig. 3. Segmentation of phantom images from IBSR. Row 1 contains the origi-
al phantom images with Var15, Var30, Var15RF20, Var15RF40, Var30RF20, and
ar30RF40. Images in rows 2, 3, and 4 represent the corresponding results of seg-
entation with spatial information (S, x, y), (S, x, y, r, �), and (G, x, y), respectively.

he impurities of NL and NR determined by

i(N) = i(N) − pLi(NL) − pRi(NR), (6)

here NL and NR are the left and right descent nodes, i(NL) and i(NR)
re their impurities, and pL and pN are their fractions of patterns at
ode N, respectively. The CART employs an iterative approach to
ecide the split at node N based on the best numerical change in
he Gini impurity, which corresponds to the maximal class separa-
ion. At the beginning of the root node, the CART estimates the node
mpurity using the Gini impurity function of Eq. (5). Each of these
odes is decided by maximizing �i(N) and minimizing i(N). This
epetitive approach produces the partitioning step with the highest
urity at the terminal nodes. In other words, maximal class sepa-
ation is equivalent to minimizing the misclassification of classes
n the decision tree at node N [27,28]. The Gini impurity function
f Eq. (5) evaluates the probability of misclassification at node N. A
lass in node N can be estimated through Eq. (5) with conditional
robability p(ωi|N) and p(ωj|N). The conditional probability of node
can also be quantified using Eq. (5). Finally, the entire decision

ree structures can be decided from the data set of the entire space
y algorithmically applying these rules.

.3. Simulated data

Two types of simulated data were used in this study: phan-
om MR images and simulated brain MR images. The images were
btained from IBSR (http://www.cma.mgh.harvard.edu/ibsr). They
omprised of the circle center, circle ring, and background region,
s shown in row 1 of Fig. 3, with noise variations of 15 or 30 gray
evels. We also added RF inhomogeneities of 20% and 40% to the two
NR phantom images. The variations in the gray levels due to noise
nd inhomogeneities that were added to a gold-standard phantom

mage are designated in Table 1. The simulated MR images obtained
rom BrainWeb (http://www.bic.mni.mcgill.ca/brainweb) were T1-
eighted 3-mm-thick images with noise levels of 3%, 5%, 7%, 9%,

nd 15%. Furthermore, images of these noise levels combined with

able 1
esignations of the original phantom images obtained by combining the noise levels
nd inhomogeneities parameters.

esignation Combined noise level and inhomogeneities parameter

ar15 Noise variation = 15 gray levels
ar30 Noise variation = 30 gray levels
ar15RF20 Noise variation = 15 gray levels and 20% RF inhomogeneities
ar30RF20 Noise variation = 30 gray levels and 20% RF inhomogeneities
ar15RF40 Noise variation = 15 gray levels and 40% RF inhomogeneities
ar30RF40 Noise variation = 30 gray levels and 40% RF inhomogeneities
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w
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F inhomogeneities of 20% and 40% examines the performance of
egmentation with spatial information of different qualities. An
xpert manually derived a gold-standard brain MR image with no
oise or inhomogeneity from the original image. All of the simu-

ated data were preprocessed to extract the spatial information and
hen segmented using the automatic decision tree algorithm.

.4. Evaluation of segmentation

A quantization index was needed to evaluate the performance
f segmentation based on the accuracy of the classification. The
ccuracy rate was calculated based on the overlap between the
old-standard reference image and a collection of segmentation
esults obtained from the proposed automatic decision tree seg-
entation method. The accuracy rate used in this study was

uantified as the overlap fraction (OF) index, defined as

F = Ref (k) ∩ Seg(k)
Ref (k)

, (7)

hich is the accuracy rate of the segmented area in class k relative
o the area in the gold-standard reference image [19]. Three classes
f phantom MR images (circle center, circle ring, and background)
nd four classes of simulated brain MR images (GM, WM, CSF, and
ackground) were used in this study. The numerator in Eq. (7) rep-
esents the number classified or intersection area of voxels in class
between the proposed automatic segmentation method and the

old standard. The denominator represents the area of voxels in
lass k in the gold standard.

Another index, a boundary detection algorithm [33,34], was
sed to evaluate the performance of the brain tissue segmentation.
he index is based on the Hausdorff distance to calculate statistical
valuation including Williams index (WI), percent statistic (P), con-
dence interval of WI, and confidence interval of P. The Hausdorff
istance is defined as below. Two sets of all points in two curves
re A = {a1, a2, . . ., am} and B = {b1, b2, . . ., bm} [33,34].

(ai, B) = min
j

∥∥bj − ai

∥∥ (8)

(bi, B) = min
j

∥∥ai − bj

∥∥ (9)

The Hausdorff distance of the two curves is defined as

(A, B) = max(max
i

d{ai, B}, max
j

d{bj, A}). (10)

t is the maximum distance of the closet points between the two
urves. The Williams index (WI) is defined as

= P0

Pn
, (11)

here P0 is the average level of agreements between observer 0
nd reference observers. The P0 is given as

0 = 1
n

n∑

j=1

P0,j, (12)

here the Pn is the average level between the n reference observers.
n is defined as

n = 2
n(n − 1)

∑

j

n∑

j′:j′ /= j

Pj,j′ . (13)
hen, the 95% CI of the WI is checked for inclusion of the expected
alue.

The percent statistic (P) is defined as that the number of times
or boundaries) produced by the proposed algorithm which are
ithin the interobserver range. This is hypothesized in advance

http://www.cma.mgh.harvard.edu/ibsr
http://www.bic.mni.mcgill.ca/brainweb
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Table 2
Designations of the original simulated MR images obtained by combining the noise
levels and inhomogeneities parameters.

Designation Combined noise level and inhomogeneities parameter

T1n3 Noise level = 3%
T1n5 Noise level = 5%
T1n7 Noise level = 7%
T1n9 Noise level = 9%
T1n15 Noise level = 15%
T1n3RF20 Noise level = 3% and 40% RF inhomogeneities
T1n5RF20 Noise level = 5% and 20% RF inhomogeneities
T1n7RF20 Noise level = 7% and 20% RF inhomogeneities
T1n9RF20 Noise level = 9% and 20% RF inhomogeneities
T1n15RF20 Noise level = 15% and 20% RF inhomogeneities
T1n3RF40 Noise level = 3% and 40% RF inhomogeneities
T
T
T
T

�
r
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x
those segmented with spatial information (G, x, y). Images with a

F
T

ig. 4. Average accuracy rates of segmentation obtained using a decision tree with
ifferent spatial information from original phantom images with different noise
ariations and inhomogeneities.

hat the computer-generated boundaries and the observer out-
ined boundaries are samples from the same distribution. The
xpected percent of times that the computer-generated boundaries
ie within the interobserver range is 100(n/(n + 1)). For example, for
hree human observers, this expected percentage is 75%; for four
bservers, it is 80%; and for five observers, it is 83%. Next, the 95% CI
f the percentage statistic is checked for inclusion of the expected
alue.

. Results

.1. Results of phantom images
All simulated phantom MR images with different SNRs and inho-
ogeneities (see Table 1) obtained from the IBSR website were

egmented with spatial information (G, x, y), (S, x, y), (G, x, y, r,

n
s
p
(

ig. 5. Results of segmentation using a decision tree for simulated MR images obtained fro
1n5, T1n7, T1n9, and T1n15. Lower row contains the corresponding images resulting fro
1n5RF40 Noise level = 5% and 40% RF inhomogeneities
1n7RF40 Noise level = 7% and 40% RF inhomogeneities
1n9RF40 Noise level = 9% and 40% RF inhomogeneities
1n15RF40 Noise level = 15% and 40% RF inhomogeneities

), (S, x, y, r, �), (G, x, y, S, r, �), (W, x, y, G, r, �), and (W, x, y, G,
, �, S). Fig. 3 shows the original phantom images with different
NRs and inhomogeneities, and the segmentation results obtained
sing a decision tree algorithm. The images in row 1 of Fig. 3 were
he original phantom images with noise variations and RF inhomo-
eneities of Var15, Var30, Var15RF20, Var15RF40, Var30RF20, and
ar30RF40 (in columns 1–6, respectively), as listed in Table 1. The

mages in row 2 of Fig. 3 corresponded to those in row 1 segmented
sing the automatic decision tree with spatial information (S, x, y).
uclidean coordinates (x, y) and polar coordinates (r, �) were also
sed for spatial information in this study. The images in row 3 of
ig. 3 corresponded to those in row 1 segmented using automatic
ecision tree with spatial information (S, x, y, r, �). The images in row
of Fig. 3 consisted of those in row 1 segmented using a decision

ree with spatial information (G, x, y).
The images segmented with spatial information (S, x, y) and (S,

, y, r, �) (rows 2 and 3 of Fig. 3) showed better performance than
oise variation of 30 gray levels and 40% RF inhomogeneities con-
tituted a very large fraction of the source phantom images. The
erformance for images with Var30, Var30RF20, and Var30RF40
row 4 of Fig. 3) segmented with spatial information (G, x, y) was

m BrainWeb. Upper row contains the original MR images with noise levels of T1n3,
m segmentation with spatial information (G, x, y, r, �).
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nclear. The segmentation of phantom MR images with Var15,
ar30, Var15RF20, Var15RF40, Var30RF20, and Var30RF40 using
decision tree with spatial information (G, x, y, r, �), (G, x, y), (G,

, y, r, �), (G, x, y, S, r, �), (S, x, y), (W, x, y, G, r, �), and (W, x, y,
, r, �, S) produced better performance. Fig. 4 shows the average
ccuracy rate of phantom images with different SNRs and inhomo-
eneities segmented by a decision tree algorithm with different
patial information. The average accuracy rates were averaged
cross all phantom image regions (circle ring, circle center, and
ackground). They were evaluated by the OF index as described

n Section 2. The average accuracy rates of segmentation for phan-
om images with Var15, Var30, Var15RF20, Var15RF40, Var30RF20,
nd Var30RF40 and segmentation spatial information (G, x, y, r, �),
G, x, y), (G, x, y, r, �), (G, x, y, S, r, �), (S, x, y), (W, x, y, G, r, �), and (W,
, y, G, r, �, S), were shown in Fig. 4. The highest average accuracy
ates of segmentation are in the range of 0.9819–0.9999 for phan-
om images with Var15 and Var15RF20 segmented using a decision
ree for all of the used spatial information. The higher average accu-
acy rates of segmentation are shown in Fig. 4 for phantom images
ith Var15RF40 for all of the used spatial information. The accuracy

ates of phantom images with Var30 and Var30RF20 segmented by
decision tree for spatial information (G, x, y, r, �), (G, x, y), (G, x, y,

, r, �), (S, x, y), (W, x, y, G, r, �), and (W, x, y, G, r, �, S) were mod-
rate, ranging from 0.9164 to 0.9872. The average accuracy rates of
hantom images with Var30 and Var30RF20 segmented by a deci-
ion tree for spatial information (S, x, y, r, �) and (S, x, y) were also
lose to the highest values. Segmenting images with Var30RF40
ith spatial information (G, x, y, r, �), (G, x, y), (G, x, y, S, r, �), (W,

, y, G, r, �), and (W, x, y, G, r, �, S) produced the lowest average
ccuracy rates, although segmentation with spatial information (S,
, y, r, �) and (S, x, y) produced a higher average accuracy rate of
.9461. The segmentation results shown in Fig. 3 indicated that the
utomatic decision tree successfully segmented phantom images
ith different noise variations and RF inhomogeneities.
.2. Results of simulated brain MR images

All simulated MR brain images with different noise levels and
nhomogeneities (see Table 2), as described in Section 2, were also

i
r
S
�
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ig. 7. Results of segmentation using a decision tree for simulated MR images. Upper row
1n7RF20, T1n9RF20, and T1n15RF20. Lower row contains the corresponding images resu
ig. 6. Average accuracy rates of segmentation with different spatial information
rom the original MR images with noise levels of T1n3, T1n5, T1n7, T1n9, and T1n15.

egmented using the automatic decision tree with different spatial
nformation (G, x, y), (S, x, y), (G, x, y, r, �), (S, x, y, r, �), (G, x, y, S,
, �), (W, x, y, G, r, �), and (W, x, y, G, r, �, S). Fig. 5 shows the orig-
nal simulated MR images obtained from BrainWeb (upper row)
nd the images resulting from segmentation with spatial informa-
ion (G, x, y, r, �) (lower row). The OF index was used to assess
he performance of segmentation using the automatic decision tree
ith different spatial information. Fig. 6 shows the average accu-

acy rates of segmentation with different spatial information for
imulated MR images with noise levels of T1n3, T1n5, T1n7, T1n9,
nd T1n15. All accuracy rates were calculated for the GM, WM,
SF, and background of simulated brain MR images. The average
ccuracy rates decreased as the noise levels increased from T1n3
o T1n15 for most of the segmentations with this spatial informa-
ion. Fig. 6 shows that segmenting these MR images with spatial
nformation (G, x, y, r, �) produced the highest average accuracy

ates (0.9374–0.9598), with the resulting images shown in Fig. 5.
egmenting these MR images with spatial information (G, x, y, S, r,
) and (W, x, y, G, r, �) produced moderate and low average accu-
acy rates of 0.9132–0.9626 and 0.8920–0.9297, respectively. Fig. 5

contains the original MR images with noise parameters of T1n3RF20, T1n5RF20,
lting from segmentation with spatial information (G, x, y, r, �).
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ig. 8. Average accuracy rates of segmentation with different spatial informa-
ion from MR images with noise parameters of T1n3RF20, T1n5RF20, T1n7RF20,
1n9RF20, and T1n15RF20.

hows that all of the simulated brain MR images with these noise
evels were successfully segmented with the automatic decision
ree with spatial information (G, x, y, r, �), (G, x, y), (S, x, y, r, �), (G,
, y, S, r, �), (S, x, y), (W, x, y, G, r, �, S), and (W, x, y, G, r, �).

Fig. 7 shows original simulated brain MR images with different
oise levels and an RF inhomogeneity of 20% obtained from Brain-
eb (upper row) and the images resulting from segmentation with

patial information (G, x, y, r, �) (lower row). The segmented images
howed better visual rendition. Fig. 8 shows the average accuracy
ates of segmentation with different spatial information from the
imulated brain MR images shown in Fig. 7. The average accu-
acy rates decreased as the noise level increased from T1n3RF20
o T1n15RF20 for most of the segmentations with this spatial infor-

ation. They do not differ greatly between Figs. 6 and 8, ranging
rom 0.96 to 0.89. The presence of 20% RF inhomogeneities had lit-

le effect on segmentation of these simulated brain MR images. The
verage accuracy rates of segmentation in these brain MR images
Fig. 8) with spatial information (G, x, y, r, �), (G, x, y, S, r, �), and (W, x,
, G, r, �) were 0.9376–0.9587, 0.9144–0.9538, and 0.8865–0.9285,
espectively. All of the simulated brain MR images with these noise

i
g
R
s
y

ig. 9. Results of segmentation using a decision tree for simulated MR images. Upper row
1n7RF40, T1n9RF40, and T1n15RF40. Lower row contains the corresponding images resu
ig. 10. Average accuracy rates of segmentation with different spatial informa-
ion from MR images with noise parameters of T1n3RF40, T1n5RF40, T1n7RF40,
1n9RF40, and T1n15RF40.

evels and inhomogeneities were successfully segmented with this
patial information for all of the accuracy rates of automatic deci-
ion tree segmentation.

Fig. 9 shows original simulated brain MR images with differ-
nt noise levels and an RF inhomogeneity of 40% from BrainWeb
upper row) and the images resulting from segmentation with spa-
ial information (G, x, y, r, �) (lower row). The segmented images
howed better visual rendition. Fig. 10 shows the average accu-
acy rates of segmentation with different spatial information from
he simulated brain MR images shown in Fig. 9. The average accu-
acy rates decreased as the noise level increased from T1n3RF40 to
1n15RF40 for most of the segmentations with this spatial infor-
ation. They do not differ greatly between Figs. 8 and 10 except

n lower values of the range. The 40% RF inhomogeneities have a

reater effect on the segmentation than that shown for the 20%
F inhomogeneities in Figs. 7 and 8. The average accuracy rates of
egmentation of these MR images with spatial information (W, x,
, G, r, �) as shown in Fig. 10 changed from 0.8810 to 0.9261. They

contains the original MR images with noise parameters of T1n3RF40, T1n5RF40,
lting from segmentation with spatial information (G, x, y, r, �).
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ig. 11. Accuracy rates of GM, WM, and CSF in simulated MR images segmented
sing a decision tree with spatial information (G, x, y, r, �) for T1n3, T1n5, T1n7,
1n9, and T1n15 (a); T1n3RF20, T1n5RF20, T1n7RF20, T1n9RF20, and T1n15RF20
b); and T1n3RF40, T1n5RF40, T1n7RF40, T1n9RF40, and T1n15RF40 (c).

ere also lower than that in brain MR images with T1n3RF20 to
1n15RF20 because of the larger fraction of the combined inho-
ogeneities. A higher average accuracy rate of segmentation with

patial information (G, x, y, r, �) for simulated brain MR images
ade it easier to classify the GM, WM, and CSF in simulated MR

rain images with different noise levels and inhomogeneities, as
hown in Fig. 11. Fig. 11(a) shows the accuracy rates of segmentation

ith spatial information (G, x, y, r, �) for simulated brain MR images
ith T1n3, T1n5, T1n7, T1n9, and T1n15; Fig. 11(b) shows the rates

or T1n3RF20, T1n5RF20, T1n7RF20, T1n9RF20, and T1n15RF20;
nd Fig. 11(c) shows the rates for T1n3RF40, T1n5RF40, T1n7RF40,
1n9RF40, and T1n15RF40. Fig. 11 shows that the accuracy rates of
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egmentation with spatial information (G, x, y, r, �) decreased with
ncreasing noise level, but were not affected by RF inhomogeneities.
he accuracy rates were respectively higher, moderate, and lower
or segmentation with spatial information (G, x, y, r, �) of GM,

M, and CSF in brain MR images. The higher and lower accuracy
ates for CSF in Figs. 10 and 11 were attributable to it representing
arger and smaller regions, respectively. Together our results indi-
ated that GM, WM, and CSF in simulated brain MR images with
he investigated noise levels and inhomogeneities were all suc-
essfully segmented using the proposed automatic decision tree
lgorithm, irrespective of the accuracy rates, with the described
patial information.

The performances of simulated brain MR image segmentation
ere also evaluated with a well-known methodology of boundary
etection algorithm [33,34]. The evaluations based on the Haus-
orff distance in comparison with the mean computer to observer
ifference (COD), mean interobserver difference (IOD), Williams

ndex (WI), WI confidence interval (CI), percent statistic (P) for gray
atter (GM), white matter (WM), and all areas (All) from images

egmented using the decision tree with spatial information (G, x,
, r, �), (S, x, y, r, �), (G, x, y, S, r, �), (W, x, y, G, r, �), and (W, x, y,
, r, �, S) from simulated brain MR images with all noise and inho-
ogeneity levels were shown in Table 3. The WI was close to one,

ndicating similar differences between COD boundaries and expert
old-standard boundaries, and that expert generated boundaries.
ll areas (All) in Table 3 represents that the values of GM, WM, CSF,
nd background of the brain MR images were calculated. The values
f mean COD were approximately 12 mm. The values of mean COD
ere all close to one for GM, WM and All segmented using decision

ree (Table 3). Most of the upper limit of 95% CI were larger than
ne, except 0.95 for the All (all areas) segmented with (S, x, y, r, �),
.96 for the WM segmented with (G, x, y, S, r, �), and 0.95 for the WM
egmented with (W, x, y, G, r, �). The expected value of P in Table 3
as 66.7%. All of the upper limits of 95% of P in Table 3 for Hausdorff
istance were lower than its expected value. Discrepancies among
reas were shown in the percent statistics (P). The mean COD of
ausdorff distance was not smaller due to the variations of GM,
M, and CSF brain MR image boundaries. The edge variations of

M, WM, and CSF are more complex than the edge of other organs
n human body. Evaluation results with Hausdorff distance from the
egmented tissues might not show better performance than those
f other organs. The performance of segmentation in the present
tudy might have been affected by the segmentation gold-standard
eference established by an expert.

. Discussion

A proposed automatic segmentation method using a decision
ree was used in the present study to classify different tissue
ypes in brain MR images. The phantom and simulated MR images
btained from IBSR and BrainWeb, respectively, were both suc-
essfully segmented by the proposed decision tree algorithm. The
erformance of the proposed segmentation technique was eval-
ated using a previously described index [19,29]. The gray-level
istributions in the phantom MR images differed more between the
arious regions. The spatial gray-level information had a greater
ffect on the performance of phantom image segmentation. The
ray-level distributions of each tissue overlapped more in differ-
nt regions in simulated brain MR images than in the phantom MR
mages. Therefore, the spatial gray-level information is useful for

ssessing the performance of segmentation, with local features of
he spatial information being more suitable for assessing the accu-
acy of segmentation by a decision tree of a simulated MR image.
he average accuracy rates were higher with spatial information (S,
, y, r, �) and (S, x, y) for the simulated phantom MR images with all
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Table 3
Direct comparison of the computer-generated boundaries to the two observers. The comparisons are mean computer to observer difference (COD), mean interobserver
difference (IOD), percent statistic (P) for gray matter (GM), white matter (WM) and all areas (ALL) from images segmented using the decision tree with spatial information
(G, x, y, r, �), (S, x, y, r, �), (G, x, y, S, r, �), (W, x, y, G, r, �), and (W, x, y, G, r, �, S).

Spatial information Tissue COD (mm) IOD (mm) WI 95% CI P (%) 95% CI

(G, x, y, r, �)
GM 12.66 (� = 0) 13.60 (� = 0) 1.10 (1.10, 1.09) 64.4 (61.5, 67.3)
WM 12.37 (� = 0) 12.25 (� = 0) 0.98 (0.99, 0.97) 24.4 (3.5, 45.4)
All 11.62 (� = 0) 14.99 (� = 0) 1.12 (1.18, 1.05) 40.0 (18.4, 61.6)

(S, x, y, r, �)
GM 12.08 (� = 0) 13.60 (� = 0) 1.14 (1.14, 1.13) 62.6 (56.6, 67.8)
WM 10.98 (� = 0.01) 12.25 (� = 0) 1.04 (1.05, 1.03) 40.0 (18.4, 61.6)
All 15.05 (� = 0.78) 14.99 (� = 0) 0.96 (0.97, 0.95) 20.0 (1.1, 38.9)

(G, x, y, S, r, �)
GM 12.85 (� = 0.45) 13.60 (� = 0) 1.09 (1.10, 1.08) 57.7 (47.4, 68.2)
WM 12.71 (� = 0.99) 12.25 (� = 0) 0.97 (0.98, 0.96) 26.6 (5.0, 48.3)
All 12.15 (� = 0.70) 14.99 (� = 0) 1.07 (1.14, 1.00) 35.5 (13.1, 58.0)

(W, x, y, G, r, �)
GM 12.87 (� = 0.27) 13.60 (� = 0) 1.08 (1.08, 1.07) 62.2 (56.6, 67.8)
WM 12.10 (� = 0.81) 12.25 (� = 0) 0.97 (0.99, 0.95) 22.2 (2.2, 42.2)
All 11.78 (� = 0.22) 14.99 (� = 0) 1.13 (1.19, 1.07) 53.3 (38.9, 67.8)

(
0 (� =
5 (� =
9 (� =

t
g
s
w
p
g
w
w
t
t
f
i
o
s
l

o
t
t
a
i
r
h
(
p
0
r
t
F
r
t
t
a
s
0
r
t
(
a
i
a
t
v
s

i
s
M
i

p
a
V
a
m
i
i
s
t
a
a
r
i
i
s
t
t
(
s
F
f
m
t

r
p
0
s
t
s
T
r
t
i

W, x, y, G, r, �, S)
GM 12.29 (� = 1.10) 13.6
WM 11.93 (� = 0.78) 12.2
All 11.12 (� = 0.24) 14.9

he used noise levels and inhomogeneities, which was due to the
ray levels of the spatial information being the main factor affecting
egmentation of the phantom images. The average accuracy rates
ere lower for all the used spatial information when the simulated
hantom MR images were combined with a noise variation of 30
ray levels. Furthermore, the average accuracy rates were highest
ith spatial information (G, x, y, r, �) for simulated brain MR images
ith all the used noise levels and inhomogeneities due to the loca-

ion attribute of the spatial information being more important than
he gray-level information. The average accuracy rates were lowest
or all the used spatial information when the simulated brain MR
mages contained 15% noise, which represented the largest fraction
f images. The best results of segmentation were obtained in this
tudy for simulated and brain MR images with the lowest noise
evels.

The noise level is the main factor responsible for overlapping
f the gray-level distribution in MR images. Also, the gray level is
he main spatial feature that affects the performance of segmen-
ation in phantom MR images, and hence it is the main decision
ttribute of tree structures. These characteristics were confirmed
n both phantom and simulated MR images. The average accuracy
ates of segmentation with spatial information (G, x, y, r, �) were
ighest for phantom images with Var15, Var15RF20, and Var15RF40
0.9999, 0.9990, and 0.9908, respectively), and were lowest for
hantom images with Var30, Var30RF20, and Var30RF40 (0.9388,
.9164, and 0.8778). The decrease (0.06) in the average accuracy
ate for phantom images with Var15 and Var30 was more than
hat (0.0009) for phantom images with Var15 and Var15RF20 (see
ig. 4). The noise variation was the main factor affecting the accu-
acy rate of phantom image segmentation. In simulated MR images,
he average accuracy rates of segmentation with spatial informa-
ion (G, x, y, r, �) were highest for simulated MR images with T1n3
nd T1n15 (0.9598 and 0.9374, respectively) (Fig. 6), and lowest for
imulated MR images with T1n3RF40 and T1n15RF40 (0.9582 and
.9371, respectively). The decrease (0.0224) in the average accu-
acy rate for simulated images with T1n3 and T1n15 was more
han that (0.0016) for phantom images with T1n3 and T1n3RF40
see Fig. 10). The noise level was also the main factor affecting the
ccuracy rate of simulated MR image segmentation. Noise had sim-

lar effects on the trends in the performance of tissue (GM, WM,
nd CSF) segmentation of simulated MR images (see Fig. 11), and
hose on GM and WM segmentation were similar to those of pre-
iously reported approaches [17,18,30]. The accuracy rates of our
egmentation method increased with decreasing noise level, which

a
t
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a
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0) 1.12 (1.11, 1.13) 57.8 (47.4, 68.2)
0) 0.99 (0.97, 1.00) 26.7 (5.1, 48.3)
0) 1.07 (0.90, 1.23) 33.3 (10.8, 55.9)

s consistent with previous results for tissues or the overall cortical
urface [17,18,30,31]. Our method was also suitable for segmenting
R images, although its performance decreased as the noise level

n the images increased.
For comparison, consider the spatial information approach pro-

osed by Anbeek et al. [19]. In phantom images (see Fig. 4), the
verage accuracy rates of segmentation for phantom images with
ar15 were 0.9999 and 0.9973 with spatial information (G, x, y, r, �)
nd (S, x, y, r, �), respectively, 0.9999 and 0.9973 with spatial infor-
ation (G, x, y) and (S, x, y), and 0.9999 and 0.9819 with spatial

nformation (G, x, y, S, r, �) and (W, x, y, G, r, �). In simulated MR
mages (see Fig. 6), the average accuracy rates of segmentation for
imulated MR images with T1n5 were 0.9532 and 0.9439 with spa-
ial information (G, x, y, r, �) and (S, x, y, r, �), respectively, 0.9480
nd 0.9369 with spatial information (G, x, y) and (S, x, y), and 0.9446
nd 0.9287 with spatial information (G, x, y, S, r, �) and (W, x, y, G,
, �). The overlapping of gray levels of noise was greater for spatial
nformation (S) obtained from five neighboring pixels (see Fig. 1(a))
n a local region than for spatial information (G) obtained from a
ingle gray-level intensity. Therefore, the accuracy rates of segmen-
ation with spatial information (S, x, y) and (S, x, y, r, �) were lower
han those of segmentation with spatial information (G, x, y) and
G, x, y, r, �). The overlapping of gray levels of noise was greater for
patial information (W) obtained from nine neighboring pixels (see
ig. 1(b)) in a local region than for spatial information (G) obtained
rom a single gray-level intensity. Thus, the accuracy rates of seg-

entation with spatial information (W, x, y, G, r, �) were lower than
hose of segmentation with spatial information (G, x, y, S, r, �).

Inhomogeneity comparison revealed that the average accuracy
ates of segmentation with spatial information (G, x, y, r, �) from
hantom MR images with Var15, Var15RF20, and Var15RF40 were
.9999, 0.9990, and 0.9908, respectively (see Fig. 4). It indicated
imilar accuracy rates of segmentation of inhomogenous phan-
om MR images. The average accuracy rates of segmentation with
patial information (G, x, y, r, �) for simulated MR images with
1n5, T1n5RF20, and T1n5RF40 were 0.9532, 0.9527, and 0.9527,
espectively (see Figs. 6, 8 and 10). The accuracy rates of segmen-
ation with spatial information (G, x, y, r, �) of CSF of simulated MR
mages with T1n3, T1n3RF20, and T1n3RF40 were 0.8241, 0.8222,

nd 0.8185, respectively (see Fig. 11). The accuracy rates of segmen-
ation with spatial information (G, x, y, r, �) of GM of simulated MR
mages with T1n3, T1n3RF20, and T1n3RF40 were 0.9251, 0.9211,
nd 0.9214, respectively (see Fig. 11). The accuracy rates of segmen-
ation with spatial information (G, x, y, r, �) of WM of simulated MR
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mages with T1n3, T1n3RF20, and T1n3RF40 were 0.9077, 0.9054,
nd 0.9038, respectively (see Fig. 11). These data indicated there
ere no significant differences among accuracy rates of segmenta-

ion of tissues in inhomogenous MR images. Thus, the presence of
nhomogeneity in MR images might not decrease the accuracy rates
f segmentation for both phantom MR images and simulated MR
mages. Furthermore, segmentation performance was also evalu-
ted by a boundary detection methodology. Evaluation results with
ausdorff distance from the segmented tissues demonstrated that
ean computer-generated and mean expert gold standard showed

imilar differences from the expert gold-stand. The percent statis-
ics (P) was the largest when tissues were segmented using decision
ree with spatial information (G, x, y, r, �). Other approaches could
lso be used to determine the gold-standard reference image. A
ore sophisticated method [32] is to have a group of experts con-

truct the reference gold-standard image, which might improve the
ccuracy of segmentation.

In conclusion, our segmentation method based on a decision
ree algorithm presented a useful way to perform automatic seg-

entation for both phantom and tissue (GM, WM, and CSF) regions
n brain MR images. It provided an easy method, through the
artition of each spatial information (spatial feature), to form a
ecision tree for the brain tissues segmentation in MR images.
he accuracy rates of segmentation were highest for both sim-
lated phantom and brain MR images, having the lowest noise

evels, from a reduction of overlapping gray levels in the images.
he accuracies of segmentation were higher when the spatial infor-
ation included the general gray level (G) than when it included

he spatial gray level (S), which in turn were higher than when it
ncluded the wavelet transform (W). Finally, the accuracy rate of
ur segmentation method was not affected by inhomogeneity in
R images.
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